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Abstract

The frame dimension function of a frame F = {f j};le for an n-dimensional Hilbert
space H is the function d z(x) = dimspan{(x, f;) f; : j=1,...,N},0 #x € H. It
is known that F does phase retrieval for an n-dimensional real Hilbert space H if and
only if range(dr) = {n}. This indicates that the range of the dimension function is one
of the good candidates to measure the phase retrievability for an arbitrary frame. In this
paper we investigate some structural properties for the range of the dimension function,
and examine the connections among different exactness of a frame with respect to its
PR-redundance, dimension function and range of the dimension function. A subset 2
of {1, ..., n} containing n is attainable if range(dr) = <2 for some frame F. With the
help of linearly connected frames, we show that, while not every 2 is attainable, every
(integer) interval containing n is always attainable by an n-linearly independent frame.
Consequently, range(dr) is an interval for every generic frame for R ”. Additionally,
we also discuss and post some questions related to the connections among ranges of
the dimension functions, linearly connected frames and maximal phase retrievable
subspaces.
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1 Introduction

The phase-retrieval problem asks to determine and/or reconstruct an object after loss
of phases. Mathematically, it asks to recover a vector (signal) x in a vector space, up
to a unimodular scalar, from some phaseless measurements {m ;(x)};c7 such that
mj(Ax) = mj(x) for all unimodular scalars A. The frame-based phase retrieval
requires to perform phaseless measurements by using a frame or redundant basis.
Recall that a frame for a Hilbert space H is a sequence F = {f;}jc7 such that there
exist C1, C2 > 0 with the property

Cillxll> < D7 1x, [P < Callxl?, x € H.
jed

In the finite-dimensional space case, frames are exactly the spanning sets, i.e.,
span{ f;} = H. Clearly, frames are generalizations of (linearly independent) bases. A
frame { f j}y: | 18 called phase retrievable for a finite dimensional Hilbert space H if
[{x, fi)l = |{y, fi)| for all j implies that y = Ax for some unimodular scalar 1. We
refer to [1-14, 18-21] and the references therein for some backgrounds and recent
developments on the frame-based phase retrieval.

For a finite-dimensional real Hilbert space, it is known [13] that a frame { f;}
for H is phase-retrievable if and only if

N
J=1

span{(x, fj)fj:j=1,...,N}=H

holds for every nonzero vector x € H. For the complex Hilbert space case, this con-
dition is still necessary, but not sufficient. A frame { f; }’}:1 for H has the complement
property if either span{f; : j € A} = H orspan{f; : j € A°} = H for any subset
A of {1,..., N}. The following is well known (c.f. [7, 13] and some generalizations
[16, 18]):

Proposition 1.1 Let {fj}j.v=1 be a frame for H. Then the following are equivalent:

(i) span{(x, f;)fj:j=1,..., N} = H for every nonzero vector x € H.
(ii) 1rank(2:?]:1 [{x, fj)|2fj ® f;j) = dim H for every nonzero vector x € H.
(iii) {f; }7:1 has the complement property.

In real world applications, our preferred frames may not be phase retrievable due
to some application constraints or other restrictions. Nevertheless, phase-retrieval can
still be performed on some subsets of the signal space. This naturally leads to the
problem of examining the phase retrievability for arbitrary frames. There are different
possible approaches to measure phase retrievability for a frame. Possible candidates
include the “measurements” on

(I) The subspace M with largest dimension such that F is phase retrievable when
restricted to M;

(II) The algebraic variety of S» N kerLz, where S = {A € B(H) : A* =
A, rank(A) <2} and Lr(A) = [(Af. fi)}) s
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(II) span{(x, fj)fj :j=1,..., N}foreveryx € H.

In a recent work [17], we investigated the exact phase retrievability in terms of
measurement (II), and phase retrievability of (usually not phase retrievable) frames
in terms of measurement (I). In this paper, we examine this issue from the frame
dimension function point of view. Listed below are few notations and terminologies
that are needed in this paper.

e H—a finite real or complex dimensional Hilbert space. We will explicitly state it
if a statement is only valid for a real Hilbert space, and otherwise it is valid for
both real and complex cases.

e B(H)—the space of bounded linear operators on H. We also use M (C) or M;(R)
for B(H) in the case that H = C? or R¥.

o S'(H)—the set of all unit vectors in H.

o Let {ej}Ll be an orthonormal basis for H and x € H. The set supp(x) := {j :

(x,ej) # 0} is the support of x with respect to the basis, and [supp(x)]| is the

cardinality of the support.

(S, T) = Tr(ST*) is the Hilbert—Schmidt product on B(H).

Forx,y € H, x ® y € B(H) is the rank-one operator defined by z — (z, y)x.

[N]={1,2,...,N},[K:N]={jeN:K <j <N}, where K, N € N.

Foraframe F = { f;} ?’: (andasubset A C [N], weuse F, to denote the subframe

{fj}jen for Hp := spanFj.

Definition 1.1 Let F = {f;} yzl be aframe for H. Then the frame function is defined to
be the subspace-valued function 7 = span{(x, f;)f; : j=1,..., N}jon S'(H), and
the integer-valued function d(x) := dim F, is called the frame dimension function
or simply dimension function of F.

Proposition 1.2 Let F be a frame for H. Then d € range(dr) if and only if there
exists A C {1,..., N} such thatd = dim Hy and f; ¢ Hxc for everyi € A.

Proof =: Let d € range(dr). Then there exists x € H such that d = dz(x). Set
A = {i : (x, fi) # 0}. Then clearly Fyx = Hx. Moreover, since (x, f) = 0 for any
f € Hpe, we have that f; ¢ Hpc foreveryi € A.

<:Let A C {l,..., N} be a subset such that d = dim Hx and f; ¢ Hae for
every i € A. Then for each i € A, the restriction of f; to H I%C is a nonzero linear
functional, and so {x € H kc : (x, fi) = 0} has measure zero in H 1%( Thus there exists
X € HI%C (actually for almost all x) such that (x, f;) # 0 for all i € A. This implies
that 7, = Hx and hence d € range(dr). m|

A frame F and its proper subframe F could share the same phase retrievabil-
ity measured by their PR-redundancy (see Sect. 2 for the definition), the dimension
functions and range of the dimension functions. Therefore, to have a meaningful clas-
sification of frames with respect to their phase retrievability, it is natural to restrict
to only those ones that have the “exact” phase retrievability. Section 2 is devoted to
establishing the connections among PR-redundancy exact, dimension function exact
and dimension range exact frames. In the real Hilbert space case, we show that PR-
redundancy exactness and dimension function exactness are equivalent. However, they
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do not necessarily imply the range exactness. Section 3 will be focused on examining
the structure of the ranges of the dimension functions. Since every frame spans the
Hilbert space H, we know that n = dim H € range(dr) for every frame F. We say
that a subset 2 of {1, ..., n} containing # is attainable if range(dr) = 2 for some
frame F. We first prove that range(dr) = {k, k+ 1,...,n}if F = {fj}?’:1 is an n-
independent (i.e. full spark) frame, where k = min{N —n + 1, n}. This clearly implies
that every (integer) interval containing n in {1, . . ., n} is attainable and range(dr) is an
interval for every generic frame. For the general case, range(dr) is totally determined
by the ranges of dimension functions for linearly connected frames. This allows us
to obtain variety of examples where either range(dr) is not an interval or a subset
2 is not attainable. For example, we will show that {k,n — k, n} is attainable for
every 1 < k < n, and Q is not attainable if | € Qandn — 1 ¢ Q2 whenn > 4. In
Sect. 4, we post some questions related to the connections among ranges of the dimen-
sion functions, linearly connected frames and maximal phase retrievable subspaces.
In particular, we conjecture that range(d ) is an interval if F is linearly connected.

2 Exactness

Recall that an exact frame is a frame that F fails to be a frame for H for any proper
subset A of 7. In the finite-dimensional case, exact frames are precisely the bases of H.
While high redundancy of a frame makes is really important for many applications (for
example, it wouldn’t be possible to perform phase retrieval without enough redundancy
of a frame), “exactness” is also an important feature to require in some applications.
For this purpose, we introduced the concept of exact phase retrievable frames [17]: An
exact phase-retrievable frame is a phase retrievable frame F = {f; }?]:1 such that Fa
fails to be a phase retrievable frame for H whenever A is proper subset of [N]. While
any generic frame of length N > 2n — 1 is a non-exact phase retrievable frame for R”,
exact phase retrievable frames for R” do exist forevery N : 2n — 1 < N < @
Clearly, exact phase retrievable frames are the ones that have the exact redundancy
with respect to phase retrieval property. Based on the well-known fact (c.f. [13]) that
a frame F is phase retrievable if and only if S, NkerLz = {0}, it is reasonable to
measure the exactness of an arbitrary (not necessarily phase retrievable) frame with
respect to its phase retrievability with the following definition:

Definition 2.1 Let F = {fj}ﬁ.\]:l be a frame for a Hilbert space H. We say that F has
the exact PR-redundancy if

S NkerLy # S NkerLl 7,

for any proper subset A of {1, ..., N}.

Since frame dimension functions are also proper candidates for measuring the phase
retrievability of a frame, naturally we introduce the following concept of exactness
with respect to the dimension function.

Definition 2.2 Let F = {fj};v | be a frame for a Hilbert space H. We say that F is
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(i) dimension function exact if dy # dF, for any proper subset A of [N].
(ii) dimension range exact or simply range exact if range(dr) # range(dg,) for
any proper subset A of [N].

Remark 2.1 Let G r(x) = Zyzl [{x, fj)|2fj ® fj (see Theorem.2.1. Property 5 in
[7D. Then dx(x) = rank(G£(x). Thus dimension function and dimension range
exactness can also be interpreted in terms of the matrix-valued map G £(x).

Next we examine the connections among the exactness with respect to PR-
redundancy, dimension function and range of the dimension function in the case that
H is a real Hilbert space. Our first main result tells us that, in the real Hilbert space
case, the exactness of PR-redundancy and dimension function are the same.

Theorem 2.1 Let F = { f; }9]:1 be a frame for a real Hilbert space H. Then F has the
exact PR-redundancy if and only if F is dimension function exact. The sufficient part
is also true for complex Hilbert spaces.

Proof (=): Assume that F is not dimensional function exact. Then there exists a
proper subset A of {1, ..., N} such that dr(x) = dF, (x) for every x € S(H). This
implies that 7, = G for every x € H, where G = F. We show that S, NkerLg =
Sy NkerL 7, which will lead to a contradiction since F is assumed to have the exact
PR-redundancy.

We only need to show that S, NkerLg € S; NkerLr. Let R € S; NkerLg.
Without losing the generality, we can assume that R = u @ u + Av ® v with A = +1.
Then we get

u, f)1*+ Al(v, f)IF =0

forevery j € A.

If & = 1, then we obtain that | (u, fj)|2 = |(v, fj)|2 = Oforevery j € A, and hence
u,v € (Gy)*foreveryx € H.Since Fy = G, foreveryx € H, wehaveu, v € (Fy)*
for every x € H. In particular, we get u € (F,)" and v € (F,)*. This implies that
[{u, f/)|2 = (v, fj)|2 =O0forevery 1 < j < N, and thus R € §; NkerL r.

If . = —1, then |(u, £;)1> — |(v, f;)|*> = O forevery j € A.Letx = u — v and
y = u + v. Since

W, )12 = o, )12 = —4(x, (0, F)F5)s

we obtain that x L Gy and hence x L F). This implies that

0= —4(x, (y, ) ;) = lu, )12 = (v, F)1P

forevery 1 < j < N.Thus R € S; NkerLx.

(«): In this part we assume that H is either a real or complex Hilbert space.
Suppose that F does not the exact PR-redundancy. Then there exists a proper subset
Aof {1,..., N}suchthat S NkerLg = & NkerL 7, where G = F. We show that
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dr(x) = dg(x) for every x € H, which will imply that F' is not dimension function
exact.

Assume to the contrary that there exists a vector x € H such that dz(x) # dg(x).
Then G, C F. Thus there exists y € H such that y L G, but y ¢ }"j-. This
implies that (x, f;){f;,y) = O for every j € A and there exists some i such that
(x, fiX{fi,v) #0.Letu =x —yandv=x+y,andlet R=u ® u — v @ v. Then,
from

(R, fj ® fj) = —=4(x, [)(fj» ¥)s

we get that R € S NkerLg but R ¢ S NkerL 7, which contradicts with the equality
SyNkerLg = Sy NkerL r. O

The next simple example shows that the necessary part in the above theorem is not
true for the complex Hilbert space case.

Example 2.1 Let H = C? and

=3} a2 -1 o[

Then it can be verified that 7 = {f j}‘}:l is an exact phase-retrievable frame for C2.
However, F is not dimension function exact since dx(x) = dr, (x) = 2 for every
nonzero vector x € C2, where A = {1, 2, 3}.

Corollary 2.2 [f a real Hilbert space frame F has the exact PR-redundancy, then so
does every subframe of F.

Proof Suppose that Fp is a subframe which does not have the PR-redundancy. Then
there is a proper subset €2 of A such that

span{(x, f;) fj : j € @} = span{(x, fj) fj : j € A}

for every x € H. This implies that
span{(x. )£ j € QU A} = span{(x, £;) f; : j € AUA)

holds forevery x € H.Let I = QU A€. Then / is a proper subset of {1, ..., N} with
the property that (F7), = F, for every x € H. Thus, by Theorem 2.1, we have that
JF does not have the exact PR-redundancy. O

By the proof of the Theorem 2.1 we also have:

Corollary 2.3 Let F = {f; }j.vzl be a frame for a real Hilbert space H and Fp be a
subframe of F. Then S, NkerLr = S, NkerL z, if and only if dr = dF, .

The next result shows that range exactness is stronger than dimension function
exactness.

W Birkhauser
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Proposition 2.4 Let F = {fj}jyzl be a frame for a Hilbert space H. If F is range
exact, then it is dimension function exact. The converse is not true in general. However,
the converse is true if F is a phase-retrievable frame.

Proof Assume that F is not a dimension function exact. Then there exists a proper
subset A of {1,..., N} such that dr(x) = dF, (x) for every x € H. This clearly
implies that range(d ) = range(dr, ). Thus F can not be range exact.

For a counterexample of the converse, let H = R3 and F = { fj};:l =
{e1, er,e3,e1 + €2, e1 + e2 + e3}, where {eq, e>, €3} is an orthonormal basis for H.
Let G; = F\{fi}, x1 = e1,xo0 = e2,x3 = €3,x4 = €1,X5 = e1 + ep. Then it can
be directly verified that F,, # (G;),, for each i. Thus for every proper subset A of
{1,...,5} we have that dr # dr, and so F is dimension function exact. However,
since range(dr) = range(dg,) = {2, 3}, we know that F is not range exact.

Now assume F is a phase retrievable frame and dimension function exact. By
Theorem 2.1, it has the exact PR-retrievability and hence it is an exact PR-frame. We
show that F is the dimension range exact. Since F is phase-retrievable, we know
that range(dr) = {n}, where n = dim H. Let A be a proper subset of {1,..., N}.
Then Fj is not phase-retrievable. Thus there exists a nonzero vector x € H such
that (Fp)x # H, and hence dim(Fp)y # d. If dim(Fu), # 0, then we already
have range(dr) # range(dr,). If dim(Fp), = 0, then we get that (x, f;) f; = 0
for every j € A. Since F is dimension function exact, we know that f; # 0. Thus
x L fjfor j € A. This implies that (), € spanF, # H for every z € H. Thus
d ¢ range(dr,) and therefore again we have range(dr) # range(dg,). Thus F is
range exact. O

Follows from Theorem 2.1 and Proposition 2.4 we get:

Corollary 2.5 Assume that F is a phase-retrievable frame for a real Hilbert space H .
Then the following are equivalent:

(1) F has the exact PR-redundancy, i.e. F is an exact phase phase-retrievable frame.
(i) F is dimension function exact.
(iii) F is range exact.

3 Ranges of frame dimension functions

In this section, we assume that H = R" or C" and {e; }§:1 is the standard orthonormal
basis for H. We are interested in digging out more information on R(F) := range(dr).
There are two extreme cases for which we know that R(F) is an integer interval:
R(F) = {n} = [n : n] if F is phase-retrievable, and R(F) = {1, ...,n} =[1 : n]if
Fisabasis for H. This leads to the question of investigating the structure of R(F) with
the aim at establishing some kind of possible classifications for frames with respect
to their phase-retrievability. We first point out that R(F) could be complicated, in
particular, it does not have to be an integer interval.

Example 3.1 Let F = {ey, e2, €3, e4, €] + €2, e3 + e4}, where {ey, €2, €3, e4} is the
standard orthonormal basis for R*. Then a simple calculation shows that R(F) =
{2,4}.

) Birkhauser



31 Page80of19 D.Han and K. Liu

Naturally, we are interested in answering the following questions: Is it true that for
every subset Q of {1, ..., n} containing n there exists a frame F such that R(F) = Q7?
If this is not true, what kind of structure can we say about 2? In particular, under what
conditions do we have that R(F) is an interval? What can we say about two frames
F and G that have the same length and R(F) = R(G)?

In this section, we will examine the conditions under which R(F) is an integer
interval. Since dim dx(x) = n for every generic x € H, R(F) has the form [¢ : n] if
it is an interval. While the smallest interval [n : n] = {n} characterizes all the frames
with complement property (and hence phase-retrieval frames for real Hilbert space
case), the following tells that the largest interval [1 : n] in principle characterizes all
the bases.

Proposition 3.1 Let F = { f; };V:l be a frame for a Hilbert space H. Then F is a basis
if and only if F is range exact and R(F) = [1 : n].

Proof Suppose that F is a basis. Clearly, we can assume that F = {e j}’}:l is an
orthonormal basis. For every j € [1 : n], let x = e; + --- + ¢;. Then F, =
span{ey, ..., e;} and hence j € R(F). Thus we have R(F) = [l : n]. It is also
obvious that a basis is always range exact.

Now assume that R(F) = [l : n] and F is range exact. Since F is a frame,
it contains a basis, say Fa, for H, where A is a subset of [N]. This implies that
R(FA) =[1 : n]. Thus we have R(F) = R(F,). Since F is range exact, we get that
A = [N] and so F is a basis. O

Example 3.2 We point out that in the above proposition, the range exactness con-
dition can not be replaced by dimension function exactness: For example, let 7 =
{e1, ez, e3, e +e3}. Clearly F is not a basis. It is easy to verify the dimension function
will be different if we remove any one element from the frame. Thus F is dimension
function exact. Moreover, by selecting x to be e, €3 + €3 and e + e respectively,
we get R(F) =[1:3].

One of our main results of this section is to show that R(F) is an interval if F is
n-independent.

Definition 3.1 Let A be a matrix and { fi, ..., f,;} be a (finite) sequence of vectors in
R”™ or C". We say that

(i) A is totally k-nonsingular if every £ x £ submatrix of A is nonsingular for every
1<l <k.
@) {f1,..., fin} is totally k-nonsingular if the matrix A = [f1, ... fin] is totally
k-nonsingular.
(i) {f1,..., fm} is k-independent if every k-vectors in {fi,..., fn} are linearly
independent. An n-independent frame is also called a full spark frame.

Since every frame F = {fj}yzl is similar to a frame of the form {eq,...,
en, &1, - - -, 8k} in the sense that there exists an invertible matrix S such that Sf; = e;
forj=1,...,nand Sf,4; = gi fori = 1,..., N — n, and the similarity preserves

the frame dimension function and linear independence, it suffices to assume that F
has the form of {ey, ..., en, f1,... fk}-

W Birkhauser



Frame dimension functions and phase retrievability Page90of19 31

Lemma3.2 Let F = {e1,...,en, f1,... fr} be aframe for H withk < n. Then F is
n-independent if and only if A = [ f1, ..., fi] is totally k-nonsingular.

Proof Write f; = Z?:l ajjej forl <i <k.
(«): It is enough to show that {eq, ..., en, f1,..., f¢} are linearly independent,
where £ > 0 and m + £ = n. Assume that

m Ja
Z)Cjej —}—Zy,-ﬁ =0.
j=1 i=1

Then we get

Z(x, +Z)’:au)€, + Z (Zyla,,) ej =0.

Jj=m+1

This implies that x; + Zle yiagijj = 0for1 < j < m and Zle yiaij = 0 for
m+1<j<n.

Since A is totally k-nonsingular and ¢ < k, we get that the submatrix
laijli<i<e,m+1<j<n Of Aisinvertible (here we use the factn—m = £). This implies that
y1 =--- =y, =0andhencex; = - -- = x,; = 0. Therefore {e1, ..., em, f1,..., fe}
are linearly independent.

(=): Suppose that A is not totally k-nonsingular. Then without losing the generality,
we can assume that the submatrix B = [a;;]¢x¢ is singular for some 1 < £ < k. Then
there exists nonzero vector y € R ¢ such that Zf: 1 viaij = Oforevery j =1,..., ¢
Thus we get that

l Y4 n n ya
S s = Y ae = Y wage = 3 (z )
i=1

i=1  j=I j=li=l j=t+1

This implies that {e;+1, ...en, f1,..., fe} are linearly dependent, which contradicts
with the n-linearly independence assumption of F. Thus A is totally k-nonsingular. O

Remark 3.1 Although we proved for the case when k < n in the above lemma,
it can be easily generalized (with exactly the same proof) to any k: Let F =
{et,...,en, f1,... fx} beaframe for H and m = min{k, n}. Then F is n-independent
ifand only if A = [f1, ..., fk] is totally m-nonsingular.

Theorem 3.3 Let F = {ey, ..., en, f1,... fr} be a frame for H with k < n. Then
R(F)=1lk+1:n]lifand onlyif A =[f1, ..., fx] is totally k-nonsingular.

Proof Write f; = 2?21 ajjej for1 <i <k.

“«<=": Assume that A is totally k-nonsingular. We first show that dim F, > k for
every nonzero vector x = (xq, ..., x,). This is clearly true if |supp(x)| > k since
in this case e; € F, for every j € supp(x). So we can assume that [supp(x)| < k.
Without losing the generality, we can assume that supp(x) = {1, ..., m} withm < k.

) Birkhauser
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Assume to the contrary thatdim Fy = £ < k. Thenm < ¢ < ksinceey, ..., e, € F.
We alsohavek — (£ —m) =k — €+ m > m.

We claim that f; € F, forexactly £ —m number of indices i, and f; ¢ F, for{ —m
for the rest of indices i. Indeed, note that ey, ..., e, € Fy and €41, ..., €, € ]-"j-.
This implies that we need at least £ —m number of indices i such that f; € Fy. Assume
that say fiy, ... fi,_»> fip_myr € Fx.Sincem + (€ —m)+1=~£+1 < n, we get
by Lemma 3.2 that ey, ..., em, fi;, ... fi,_» fi,_ns, are linearly independent, which
implies that dim Fy > £+ 1, a contradiction. Hence there exists exactly £ —m number
of indices i such that f; € Fx.

So without losing the generality, we can assume that f; € F, fori =1,...,£—m
and f; ¢ Fy for j = (¢ —m) + 1, ..., k. This implies that Y ;" | xja;j = (x, f;) =
O foreachi = (¢ —m) + 1,..., k. Thus every m x m submatrix of the matrix
[aijle—m+1<i<k,1<j<m is singular. This leads to a contradiction since m < k — (£ —m)
and the submatrix { fy—n+1, . . ., fi] of A istotally m-nonsingular. Therefore we have
proved that dim F, > k.

Now we need to show that for every £ € [k + 1 : n], there is x € H such that
dim F, = €. Given such an £, we write £ = m + k. Then 1 < m < n — k. Since
{f1, ..., fi} is totally k-nonsingular, we know that a;; # O forall 1 < i < k and
1 < j < n.Sothereexistnonzeroscalars xy, . .., x,; suchthata; 1 x;+- - -+a@imxm 7 0
forevery 1 <i <m.Letx = (x1,...,x,0,...,0) € R". Then (x, ¢;) = 0 for
i=m+1,...,n,(x,ej)=x; #0fori =1,...,m, and

(x, fiy =apx1+ -+ aimxm #0

for every i = 1,...,m. This implies that F(x) = span{ei, ..., en, f1,..., fk}
Again, from Lemma 3.2, we obtain that {ey, ..., en, f1,..., fr} are linearly inde-
pendent. Therefore we get dim Fy = m + k = (. Therefore we proved that
R(F)=[k+1:n].

“=": Assume that R(F) = [k+1 : n] but A is not totally k-nonsingular. Then there
exists a singular £ x £ submatrix, say B = [a;;]1<;, j<¢, of Aforsome £ € [1 : k]. Lety
be a nonzero vector in R ¢ such that By =0andletx = (y(,...,y¢,0,...,0) e R".
Then we get

Fy Cspanfey, ..., eq, fest, -y fi)s

since (x, e;) = 0and (x, f;) =0fori =£+1,...,nand j =1, ..., £. This implies
that dim F, < £ + (k — £) = k. Thus we have proved that A is totally k-nonsingular
if R(F) = [k 4+ 1 : n]. This completes the proof. O

Theorem 3.4 Let F = {f1, ..., fn} be a frame for H. If F is n-independent, then
R(F) = [m : n], where m = min{n, N —n + 1}.

Proof If m = n, then N > 2n — 1. Since F is n-independent, this implies that F has
the complement property and hence dim F, = n for every nonzero vector x. Therefore
R(F)={n}=[m:n]l.lfm <n,then N < 2n—1andm = N —n+ 1. Without losing
the generality, we can assume that 7 = {e1, ..., eu, f1,..., fr} withk < n — 1.
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Since F is n-independent, then, by Lemma 3.2, we have that [ f1, ..., fi] is totally k-
nonsingular. Thus, by Theorem 3.3, R(F) = [k+1: N]=[N—n+1:n] =[m :n].
|

Remark 3.2 The n-independent condition is Theorem 3.4 is not necessary for R(F) to
be an integer interval even with the additional assumption that F is dimension range
exact. For example, by [17], for n(n + 1)/2 > N > 2n — 1, there exists an exact
phase-retrievable frame F = {f j}?]:l for R". So R(F) = {n} is an interval and F
is dimension range exact. However, F can not be n-independent. Indeed, if F is n-
linearly independent, then { f1, ..., fy—1}is also n-independentand N — 1 > 2n — 1.
This implies that { f1, ..., fy—1} has the complement property and hence it is phase-
retrievable, which is impossible since F is an exact phase-retrievable frame.

Corollary3.5 Let F = {f1,..., fn} be a frame for H. Assume A is a subset of
{1, ..., N} with the largest cardinality such that F is n-independent. Then R(F) C
[m : n], where m = min{n, |A| —n + 1}.

Proof By Theorem 3.4, we have that R(Fp) = [m : n]. Let £ € R(F). Then there
exists x such that dim F,, = £. Since (Fp), € Fy, wehavethatn > £ > dim(Fp), >
m. Therefore R(F) C [m : n]. O

The next proposition allows us to easily construct a rich class of examples whose
dimension functions do not have an interval range. Let 21, ..., Q2 be subsets of N.

We use Z’;Zl Q; to denote the set {d : d = Z";:ldj, dj € Q;}.

Proposition 3.6 Let F = {fj}?/:] be a frame for H, {A1, ..., Ay} be a partition of
[N]andnj = dimspanFy,. Ifn =Y 5_ n;. then

k
R(F)U{0} =) (R(Fa;) U{O).
j=1

Proof Let Hj = spanFj,;. Then the condition n = Z?:l n; implies that H =
Zl;zl Hj is a direct sum. Since similar frames preserve the dimension function, we

can assume that H = 21;21 H; is an orthogonal direct sum.
Letx € H and x; = P;x, where P; is the orthogonal projection of x onto H;. Thus
we have

(Fa;)x =span{(x, fi) fi 1 € Aj} = span{(x;, fi) fi :1 € Aj} = (Fa;)x; € Hj.
Since H = ZI;: | Hj is an orthogonal direct sum, we get
k k
Fe=Y (Fape =Y _(Fa)s,
Jj=1 Jj=1

) Birkhauser



31 Page120f19 D.Han and K. Liu

is also a direct sum, and so

k k

dim 7, = Y dim(Fa,)x; € Y _(R(Fa,) U{O}).
j=1 j=1

Thus R(F) U {0} € Y5 (R(Fa,) U{O)).

Conversely, let d € Z];: 1(R(Fa;) U{0}) be nonzero positive integer. Then there
exist (not necessarily nonzero) vectors x; € H; such that

k
d=" " dim(Fa,)s,
j=1

Letx = Y5_ x; € H. Then Fx = Y%_(Fa,)s,. Thus we get d = dr(x) €
R(F) U {0}. This completes the proof. O

By selecting F; such that R(F5 ;) = {n;} and H = ZI;=1 Hj is a direct sum of
H, we get the following:

Corollary 3.7 If {ny, ..., nk} is a partition of n, i.e., n = ZI;=1 nj, then there exists
a frame F for an n-dimensional space H such that

R(F)={nj,+---+nj:1<€=<kandji, ..., jearedistinct indices}.

We say that a subset 2 of [r] containing r is attainable if there is a frame F for an
n-dimensional Hilbert space H such that R(F) = Q.

Remark 3.3 The above corollary implies that {k, n — k, n}, in particular {rn/2, n} when
n is even, is attainable for every 1 < k < n.

Clearly, every subset is attainable for n = 2. We will show that there exists subset
that is not attainable for any n > 3. In [15], the first named author and co-authors
introduced the concept of linearly connected frames. Two vectors f; and f; in a frame
JF are called F-connected if there exist linearly independent vectors { fx,, ..., f,} in
JF and nonzero scalars ¢, cq, ..., ¢, such that

4
fi=cfi+ ) emfin

m=1

We say that F is linearly connected if every two vectors in F are F-connected. The
following main result was used in [15] to characterize spectrally optimal dual frames
for erasures.

Theorem 3.8 [15] Let F = {fj}j.\’:l be a frame for an n-dimensional Hilbert space
H withn > 2. Then the following are equivalent:
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(1) F is linearly connected.
(ii) Hpa N Hpe # {0} for any proper subset A of [N].
(iii) There exists a subset A of [ N] such that Fy is n-independent and |A| = n + 1.

Lemma 3.9 [f F is a linearly connected frame for an n-dimensional Hilbert space H
andn > 2, then 1 ¢ R(F). More generally, min R(F) > m := min{n, L —n + 1},
where L is the largest cardinality such that there is a subset A of [ N] with the properties
that |A| = L and Fp is n-independent.

Proof Assume that F is linearly connected. Then, by Theorem 3.8, we know that
L > n+ 1. So, by Theorem 3.3, R(F) = [m : n]. This implies that

dim F; > dim(Fp)y > m

for any nonzero vector x € H. So min R(F) > m. Since m > 2 whenn > 2, we
particularly get that 1 ¢ R(F) if F is linearly connected. O

Now we are ready to prove our last main result of this section.

Theorem 3.10 Let H be an n-dimensional Hilbert space.

(1) [k : n] is attainable for every 1 <k < n.
(i) R(F) is an interval for every generic frame for H.
(iii) Let 2 be a subset of [n] containing n. If 1 € Qandn — 1 ¢ Q, then Q is not
attainable. In particular, {1, n} is not attainable for n > 3.

Proof (i) follows from Theorem 3.3 or Theorem 3.4, and (ii) follows from Theorem 3.4
and the fact that every generic frame is n-independent. So we only need to prove (iii).
Suppose that R(F) = {1, n} for some frame F. By Lemma 3.9, F is not linearly
connected. By Theorem 3.8, there exists a partition {A 1, ..., Ag} of [n] suchthat H =
g:ﬁ:l Hj is a direct sum and each F ; is linearly connected, where H; = spanFy ;.
ince

k

1€ R(F)U{0} =) (R(Fa,) U {0,
j=1

we get that 1 is in one of the R(fA_,.)’s, say 1 € R(Fp,). Thus, again by Lemma 3.9,
dim H; = 1. Now let A = A;. Then A = A U---U Ay and Hy N Hpe = {0}. By
Proposition 3.6, we have that

R(F) U {0} = R(Fa) U {0} + R(Fac) U{0}.
Since dim Hy, = 1, we know that dim Hyc =n — 1. Thusn — 1 € R(Fac) C R(F)
which leads to a contradiction. Therefore €2 is not attainable. O

Example 3.3 For n = 4, {1, 3} and {1, 2, 4} are the only sets that are not attainable.
Indeed, we already know that every interval containing 4 is attainable, {2, 4} and
{1, 3, 4} are also attainable by Remark 3.3. By Theorem 3.10 (iii), we also have that
{1,3} and {1, 2, 4} are not attainable.

) Birkhauser



31 Page140f19 D.Han and K. Liu

4 Remarks and questions
4.1 Linearly connected frames

Proposition 3.6 tells us that R(F) is constructed by the building blocks R (Fx j ), where
each Fj is linearly connected frame for H; = spanFy, ;. Therefore it is essential to
have a better understanding of the dimension functions for linearly connected frames.
In particular, we ask:

Question 1 Is R(F) an interval for every linearly connected frames?

Remark 4.1 We conjecture that the answer is yes. Clearly, it is true forn = 1, 2, 3 since
we already know that every attainable set is an interval. However, we still do not know
the answer for n = 4, By Example 3.3, {1, 3, 4} and {2, 4} are the only non-interval
attainable sets. From Lemma 3.9, F is not linearly connected if R(F) = {1, 3, 4}. So
to confirm the conjecture for n = 4, it is sufficient to show that {2, 4} is not attainable
by a connected frame.

Remark 4.2 Every phase-retrievable frame is linearly connected, since if otherwise
then it clearly will contradict the complement property. Clearly, the converse is false.
Moreover, we have the following:

Example 4.1 Forevery N € [2n—1, n(n+1)/2), then there exists a linearly connected
frame G of length N for R” such that G has exact PR-redundancy but it is not phase-
retrievable.

Proof Since 2n — 1 < N + 1 < n(n + 1)/2, by Theorem 2.1 in [17] there exists an
exact PR-frame F of length N + 1. Thus F is linearly connected. By Theorem 3.8,
there exists a subset A with the largest cardinality such that L = |A| > n and F is
n-independent. Hence by Theorem 3.8 again, F, is linearly connected.

We claim that A is a proper subset of [N + 1]. Indeed, if otherwise A = [N + 1],
then F is n-independent. In particular any N number of vectors in F is n-independent
and hence they form a PR- frame, which is impossible since F is an exact PR-frame.
Pickanyi ¢ A andletG = {f; : j #i}. Then the G is a frame of length N which is
not phase-retrievable. Since G © Fa and Fj is linearly connected, we get that G is
linearly connected. By Corollary 2.2, G has exact PR-redundancy. This completes the
proof. O

While not every subframe of a linearly connected frame is linearly connected, the
following results tell us that the ones that share the same PR-redundancy with F
remain to be linearly connected.

Proposition 4.1 Let F be a linearly connected frame for H and Fp be a subframe of
F such that

Sy NkerLy =S NkerL g, .

Then Fp is linearly connected.
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Proof Suppose that F, is not linearly connected. Then there exists a proper subset
Q of A such that Hg N Ha\q = {0}. Assume that for every i ¢ A we have either
fi € Hoor f; € Hy\g.Set I ={j : fj € Hg}. Then I¢ = {j : f; € Hp\q}. This
implies that

HI N HIL' = HQ n HA\Q - {O}v

which contradicts with the linearly connectedness of F. Thus there exists ip ¢ A such
that f;, ¢ Hg and f;, ¢ Ha\q.

Since fj, fi, ¢ Hgq for every j € A\, there exist x € H such that (x, f;) =0
fori € Qbut (x, f;) # 0 forevery j € A\Q and (x, f;,) = 1, here we use the fact
that the restriction of f;(j € A\Q) and f;, to H 1{- are nonzero linear functionals.
Similarly, there exists y € H such that (y, f;) = 0 fori € A\Q but (y, f;) # O for
every j € Qand (y, fi,) = 1.

Letu = x —yandv = x +y. Then we have |(u, f;)| = [{v, f;)| forevery j € A,

but |{u fz, ) = 0 and [{v, fi;)| = 2. This implies that u ® u — v ® v € kerLr,
butu @ u — v ® v ¢ kerL r, which leads to a contradiction. Hence F, is linearly
connected. m|

4.2 Equivalence

Definition 4.1 Two frames F and G of same length for a Hilbert space H are called
switching equivalent (or just equivalent in short) if one of them is obtained by com-
position of similarity, nonzero rescaling and permutation. We use notation F ~ G for
two equivalent frames F and G.

Clearly, equivalence preserve all the exactness and the dimension functions. In
particular, if 7 ~ G, then R(F) = R(G). The next example shows that the converse
is not true.

Example 4.2 Suppose thatn > 3. Let2n — 1 < N < n(n + 1)/2. By Theorem 2.1
in [17], there exists an exact PR-frame F = {fj} - LetG = {gj} | be an n-
independent frame for R”. Then G is phase- retrlevable Thus R(F) = R(g){n} Let
A ={l,..., N — 1}. Since G, is also n-independent with |[A| = N — 1 > 2n — 1,
we know that G is phase-retrievable for R”. Thus G is not exact. Since equivalence
preserves exactness, we get that 7 and G are not equivalent.

Question 2 Suppose that two frames F = {fj}j.\’:l and G = {gj}j.v:1 are range exact
and satisfy the condition R(F) = R(G). Is it true that F ~ G? In particular, is it true
that F ~ G if both F and G are exact PR-frames?

4.3 Maximal PR subspaces

Let F = { fi},N: | be a frame for H and M be a subspace of H. Recall from [17] that

M is called a phase retrievable subspace with respect to F if { Py f,}N | is a phase
retrievable frame for M, where Py is the orthogonal projection from H onto M. The
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largest k such that there is a k-dimensional phase-retrievable subspace will be called
the phase retrievability index of F:

indpr (F) := max{dim M : M is a phase-retrievable subspace w.r.t. F}.
Theorem 4.2 [17] Let F = {fj} | be a frame for R". Then

indp (F) = Ancli[rl\ll] max{dim Hp, dim Hxc},

where Hy = span{f; : j € A}.

Corollary 4.3 If F = {f]}N | is a frame for R", then indp (F) > L”+1J where | x |
denotes the integer part of X.

Proof We can assume that G = {f1, ..., f,} is a basis for R”. By Theorem 4.2, we
know that indp(G) = [ 4 |. Thus indp(F) > indpr(G) = [ £ ]. O

LetF ={e1,...,eu, f1, ..., fx} beann-independent frame for R” withk < n—1.
Then, by Theorem 3.4, R(F) = [k + 1 : n] and so min R(F) = k + 1. By n-linear
independence of the frame, we get that

k+1
min max{dim Hy, dim Hpc} = LuJ ]
AC[N]

2

In the case that k > n — 1, we have that F is phase-retrievable. Thus R(R) = {n} and
so indp (F) = n. Therefore we get:

Example 4.3 If F is an n-linearly independent frame for R", then indy (F) =
Ln+min R(.7:)J
1.

However, this is not true in general if F is not n-independent. For example, let
fi = er and f; € Hy := span{ey, ..., e,} such that {f]}N , 18 a phase retrievable
frame for H;. Then the range of the dimension function of 7 = { f; }N (is{l,n—1, n}

by Proposition 3.6. Clearly, indp(F) = n — 1 # L"—;lj. So we ask the following
question:

Question 3 What can we say about indp, (F) from R(F)? In particular, is it true that
indp (F) = indpe(G) if R(F) = R(G)? Is it true that indp(F) = L%R(}—)J if
R(F) is an interval?

Proposition 4.4 Let F = {f/} | be a frame for R". If R(F) = [n — 1 : n], then
indp (F) =n — 1.

Proof Since F is not phase retrievable, we get that ind, (F) < n. By Theorem 4.2,
there is a subset A of [N] such that

indp (F) = dim Hp > dim He.
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Pick a nonzero vector x € H such that x € H 1{( Then F, = (Fa)x. This implies
that

n—1<dimF, =dim(Fp)x < dim Hp = indy(F).
Therefore ind, (F) =n — 1. O
Remark 4.3 (i) The above proof also shows that ind,(F) > min R(F) for any frame
F . (i1) The following result tells us that we only need to consider the frame dimension

function exact frames.

Proposition 4.5 Let F = {fj};.\’:1 be a frame for R" and A be a subset of [N]. If F
and Fp have the same frame dimension functions, then indp; (F) = indp (F).

Proof Since every phase retrievable subspace with respect to Fj is also phase

retrievable with respect to F, we immediately get that indp(F5) < indy(F). By
Theorem 4.2, there exists a subset 2 of A such that

indpr(]-'A) = max{dim HQ, dim HA\Q}.
Let A=QU{i € A°: fi ¢ Hneland B = (A\Q) U {i € A°: f; € Hpa\q}
Clearly {A, B} is a partition of [N], and Hp = Hx\q. Next we show that H4 = Hg.
We claim that f; € Hq if f; ¢ Ha\q. Indeed, if f; ¢ Ha\q, then we can pick x €
(Han@)t = Hy such that (x, f;) # 0. This implies that f; € Fy and (Fp)x € Ha.

If 7 and F have the same frame dimension functions and (Fp), € Fy, we get that
Fy = (Fp)x and hence

fi € Fx = (Fa)x € Ha.
Therefore Hy = Hj. This together with Theorem 4.2 imply that
indp (F) < max{dim Hy, dim Hg} = max{dim Hg, dim Hx\o} = indp(Fp).
Therefore we get indp (Fa) = indp (F). O

Therefore we can restrict to the range exact frames for Question 3.

Example4.4 If F = {f j}]/\’:1 is range exact and R(F) is an interval, then indp, (F) =
| R | for n < 4.
Proof We only need to consider for the cases when n = 3 and n = 4.

(1) n = 3: By Proposition 4.4, the statement is true when R(F) = {2, 3}. If R(F) =
{1, 2, 3}, then, by Proposition 3.1, F is a basis for R 3, and so indp (F) = 2 by
Example 4.3, and hence indy, (F) = L%J is true.
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(i) n = 4: Similar to (i), the statement is true when R(F) = {1, 2, 3,4} or {3, 4}.

Suppose that R(F) = {2, 3, 4}. We need to show that indy,(F) = 3. It is enough
to show that indp, (F) # 2. Assume to the contrary that indp,(F) = 2. Then, by
Theorem 4.2, there exists a subset A of [ N] such that

max{dim Hp, dim Hxc} = 2,

which implies that dim Hy = dim Hpac = 2. Since 1 ¢ R(F), we know by
Proposition 3.6 that 1 ¢ R(Fx) and 1 ¢ R(Fpc). This implies that R(Fp) =
R(FAc¢) = {2} and, so by Proposition 3.6 again, R(F) = {2, 4}, which leads to
a contradiction.

O

It is natural to expect that the phase retrievability index is related to the “size” of the

algebraic variety Sy NkerL . It certainly makes sense that larger size of S; NkerL £
indicates smaller phase retrievability index.

Question4 How is indp (F) related to the dimension of the algebraic variety Sy N
kerL z? In particular, is it true that indp, (F) + dim(S; NkerL x) = n?
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