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Abstract:

Urban forests provide ecosystem services important for climate
regulation, wildlife, and human well-being. However, they vary in
composition and physiological traits due to their unique biophysical and
social contexts. This variation complicates assessment of urban forests
important to biodiversity conservation and climate adaptation. We
conducted sampling of tree species composition and externally-sourced
traits (i.e., drought tolerance and water use capacity), in residential
yards, unmanaged areas, and natural reference ecosystems in six cities
across the continental U.S to compare the characteristics of the ‘urban
forest’. Compared to natural and unmanaged forests, residential yards
had markedly higher tree species richness, were composed primarily of
introduced species, and had more species with low drought tolerance.
The divergence between natural and human-managed areas was most
dramatic in arid climates. Our findings suggest that the answer to the
question of “what is an urban forest” strongly depends on where you
look within and between cities.
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Abstract

Urban forests provide ecosystem services important for climate regulation, wildlife, and human
well-being. However, they vary in composition and physiological traits due to their unique
biophysical and social contexts. This variation complicates assessment of urban forests important
to biodiversity conservation and climate adaptation. We conducted sampling of tree species
composition and externally-sourced traits (i.e., drought tolerance and water use capacity), in
residential yards, unmanaged areas, and natural reference ecosystems in six cities across the
continental U.S to compare the characteristics of the ‘urban forest’. Compared to natural and
unmanaged forests, residential yards had markedly higher tree species richness, were composed
primarily of introduced species, and had more species with low drought tolerance. The
divergence between natural and human-managed areas was most dramatic in arid climates. Our
findings suggest that the answer to the question of “what is an urban forest” strongly depends on

where you look within and between cities.

Keywords: Urban forests, ecosystem services, tree species composition, physiological traits,

climate adaptation, residential yards
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Introduction

Urban forests are significant ecological features of the urban environment that provide
many ecosystem services (e.g., climate regulation, wildlife habitat, and recreation). There is a
wide variety of natural, managed and cultivated green spaces in cities containing trees; from
street trees and other planted trees to large tracts of relict forests, and cultivated and spontaneous
trees in yards (Pregitzer ef al. 2019; Trammell et al. 2020). This variation greatly complicates
assessment of the functions and services of urban forests, their relevance to diverse stakeholder
groups, and their resilience in the face of multiple, interacting environmental and social changes.

Many assessments of urban forests vary in scale and focus, making it difficult to compare
across land-uses and cities. One focus of urban forest assessments is finer scale assessments of
specific components of urban forests. Large parks or other tracts of native vegetation provide
important services related to native biodiversity (Pregitzer et al. 2019; Templeton et al. 2019).
However, the scale of urban forest assessments may impact inferences on the characteristics of
urban forests, such as the proportions of native and exotic tree species in highly heterogeneous
urban forests. For example, Pregitzer ef al. (2019) compared assessments of urban forest within
New York City and found that the type of sampling (coarse-scale vs. fine-scale), provided
different results of native urban tree canopy (42.8% vs. 83.9%). Therefore, disparities among
assessments of urban trees leads to different conclusions about urban forests and the services
they provide (McHale et al. 2017; Pregitzer et al. 2019). Fine-scale sampling (e.g., patch level)
vs. coarse-scale (e.g., landscape level) sampling also facilitates mechanistic assessments of forest
response to environmental change and urban resilience (McHale ef al. 2017; Zhou et al. 2017).

A second focus of urban forest assessments has been on residential parcels. Here, human

preferences for particular species act as an environmental filter (Pearse et al. 2018). Human
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choices are a key driver of the introduction, transportation, and cultivation of species, some of
which may become invasive, with the potential to spread at continental (Padullés Cubino ef al.
2019a), and global scales (Aronson ef al. 2014; Avolio et al. 2021). Human preferences and
management have also been shown to have a homogenizing effect on the structure and
composition of cultivated and spontaneous plant communities in residential systems across cities
(Groffman et al. 2017; Padullés Cubino et al. 2020), whereby tree communities in cities are more
similar to each other than to the native ecosystems that they replaced (Pearse et al. 2018). The
effect of this homogenization on urban forest resilience to environmental change is a growing
concern in an urbanizing world (Jenerette et al. 2016). Plant species origin and biological traits
influence the fitness of tree species for the urban environment (Kendal ez al. 2012; Pataki et al.
2013; Avolio et al. 2015) and may help to predict their performance under altered future
physical, chemical, and biological conditions (e.g., droughts).

In this study, we conducted a comparative analysis of urban forest (trees and shrub)
species composition within three different land uses (natural reference areas, interstitial sites,
residential yards) across six different cities located in different climatic regimes in the
continental US. We also analyzed drought tolerance and water use capacity information for every
species from external databases to compare physiological traits important to climate adaptation
between land-use type. Our goal was to identify the composition of the US urban forests on
continental and municipal scales and investigate implications for native biodiversity and climate
adaptation capacity. Our study sought to answer three questions: 1) What tree species are found
in urban forests across diverse regions of the U.S? 2) How do tree species vary among different
areas of the cities? 3) What are the implications of urban trees for native biodiversity and climate

adaptation capacity in different components of urban forests across the U.S.?
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Methods

Our analysis encompassed six major U.S. Metropolitan Statistical Areas (cities): Boston,
MA (BOS), Baltimore, MD (BAL), Los Angeles, CA (LAX), Miami, FL (MIA), Minneapolis-St.
Paul, MN (MSP) and Phoenix, AZ (PHX) that represent six different ecological biomes and/or

major climatic regions across the U.S. (Trammell et al. 2016).

For each city, we focused on three distinctive land-use types: natural areas (reference),
relatively unmanaged areas (interstitial), and residential sites. We selected four to six reference
sites representative of the natural ecological biomes where the cities were located (Padullés
Cubino et al. 2020). Natural biomes sampled included oak and tulip poplar forests (BAL),
northern hardwood forests and pastures (BOS), southern California coastal sage scrub (LAX),
pine rockland; subtropical hardwood hammock; coastal hammock; pine flatwoods (MIA), oak
savannah; tallgrass prairie; bluff prairie; maple-basswood forest (MSP), and Sonoran Desert
(PHX).We selected four to six interstitial sites on public lands within the cities that represented
relatively unmanaged systems with vegetation that had developed spontaneously. Due to their
proximity to managed areas, these sites were more likely to have species that may have dispersed
from residential areas than the reference areas. Finally, we sampled four types of residential
yards (12-16 per city) in each city: high fertilizer-input, low fertilizer-input, wildlife-certified,
and water-wise (xeriscaping in Phoenix and Los Angeles, rain gardens in other cities). Site

selection and characterization are described in Padullés Cubino et al. (2020).

Within reference and interstitial sites, eight, 8-m radius plots were established randomly
to assess tree and shrub (and cacti in Phoenix) species presence, with a total of 64 plots in each

city. In the residential sites, all tree species that occurred in yards (cultivated and spontaneous)
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were identified. All the plant presence/absence data is stored at the Environmental Data Initiative
(EDI) portal, and can be found by searching the reference number edi.309.1, or by the following

https://doi.org/10.6073/pasta/8b29dc7fd536f4649f8ct6a5364211c9. Each plant species was

classified as native or introduced using the USDA PLANTS (https://plants.usda.gov) and the

Encyclopedia of Life (http://www.eol.org) databases. According to the USDA PLANTS

database, native species are those which are naturally occurring within a state (in the U.S.), while
introduced species are classified as, “(1) non-native (or alien) to the ecosystem under
consideration and (2) a species whose introduction causes or is likely to cause economic harm,
environmental harm, or harm to human health.” Two ordinal traits important to climate
adaptation were recorded for species available in USDA PLANTS: drought tolerance (none, low,
medium, high), and water use capacity (low, medium, high), and only one categorical value is
possible for each species. Drought tolerance is based on relative tolerance of the plant to drought
conditions relative to other species with similar growth habits, while water use capacity is based
on a species’ physiological ability to acquire water from the soil relative to other species in the

same (or similar) soil moisture availability in the region (USDA, 2023).

All data analysis was conducted in R Version 2022.12.0+353 (R Core). Differences in
number of trees/shrubs (cacti in Phoenix) species (i.e., species richness), drought tolerance, and
water use capacity among land-use type in each city were assessed with the Kruskal-Wallis rank
sum test followed by a post hoc pairwise comparison test. Rarefaction was conducted using the
“INEXT’ package in R (Hsieh et al. 2016) to account for sampling differences between

interstitial and reference sites and residential yards (WebFigure 1).

Results
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Residential yards contained significantly higher numbers of species than reference and
interstitial sites (Fig.1a; x> = 11.62, p < 0.001) across cities. The percentage of native species
(Fig. 1b) was the lowest in residential yards in all cities. The highest percentage of native species
was observed in the reference and interstitial sites in the driest cities (Los Angeles and Phoenix;
Fig. 1b; x* =9.12, p=0.01).

The driest cities (Los Angeles and Phoenix) had significantly (x’ = 14.94, p <0.001)
higher percentages of species with high drought tolerance in reference and interstitial sites than
the more humid cities (Fig. 2). Species with high drought tolerance were less common in the
residential yards in these dry cities, for example, all tree species found in the natural and
interstitial sites in Phoenix were native and had high drought tolerance. Similarly, in Los Angeles
and Miami the percent of species with high drought tolerance was higher in natural and
interstitial sites compared to residential yards. In Minneapolis-St. Paul, the percent of species
with high drought tolerance was higher in natural sites than in residential yards.

The percent of species with a high water use capacity was lower across cities and land-
use type, than species with lower water use capacity, but these species were particularly rare in
the driest cities (Fig. 3). Differences between land use were statistically significant, (x* = 19.61,
p <0.001). Species with high drought tolerance and low water use capacity were common in
cities with hot climates (Los Angeles, Miami, and Phoenix) within reference sites. Most species
identified across cities had medium water use capacity.

Discussion

Urban forests are part of the heterogeneous urban ecosystem, which makes them diverse

in composition. Our dominant finding is that residential yards support dramatically larger

numbers of woody species (150) than natural reference (29) or interstitial (30) areas across the
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U.S. A major question is if this increase in species numbers creates resilience or vulnerability to
ecosystem services related to general urban greening and/or native biodiversity (Keeler ef al.
2019). The marked differences in species number, composition, and traits between native
reference, interstitial, and residential yard sites suggest that different sampling strategies for
characterizing urban forests that include different land use types to different degrees may
produce different divergent assessments of native biodiversity and the capacity of urban forests
to adapt to a changing climate.

Previous analyses of data from our six study cities (Padullés Cubino ef al. 2019b, Pearse
et al. 2018), have shown that human preferences and management of vegetation play a strong
role in influencing the species composition of urban ecosystems, leading to an ecological
homogenization at multiple scales, including for both spontaneous and cultivated species pools.
Studies in other cities found that biotic homogenization plays a strong role at subcontinental
scales (Jenerette et al. 2016; McHale et al. 2017). Here, our focus is on the comparison of tree
species in residential yards versus interstitial areas (areas with intact soil profiles where
vegetation develops spontaneously) and native reference areas, to highlight the challenges of
assessing biodiversity and response to environmental change in urban ecosystems given the huge
number of species in residential yards — many of which are introduced.

Given human preference for certain species traits common to introduced species, such as
showy flowers (Avolio et al. 2015; Pataki et al. 2013), there is great uncertainty about the effect
of these preferences on the ability of urban ecosystems to support native biodiversity (e.g., plants
and wildlife; Aronson et al. 2014; Narango et al. 2017) and to be resilient to environmental
change (e.g., species adaptation to disturbances), posing a challenge in urban conservation

(Gaetner et al. 2017).
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Here, we found that the effect of human preferences on increased the numbers of
introduced woody species is most obvious in residential yards, and in warmer climates such as
Los Angeles, Miami and Phoenix. For example, in Baltimore, Boston, and Minneapolis-St. Paul,
approximately 50% of tree species in residential yards were native, while less than 25% were
native in Los Angeles, Miami and Phoenix. Our results build on those presented by Padullés
Cubino et al. (2019a) from the same residential yards studied here, which found that introduced
species (including woody and herbaceous species) were ubiquitous in Los Angeles and Phoenix
residential yards. In these warm cities, the availability of irrigation water and fertilizer allows for
the expression of human preferences, but may create vulnerabilities to potential reductions in
water and nutrient supply, e.g., watering restrictions that may accompany drought or real estate
disruptions (Ripplinger ef al. 2017).

Data from the interstitial sites shed light on which species, both native and introduced,
are capable of thriving in urban conditions. These unmanaged areas, surrounded by highly
managed areas contain species with the ability to colonize and grow spontaneously under these
conditions (Padullés Cubino et al. 2019b; Pearse ef al. 2018). A major finding of our study is that
introduced species were absent in interstitial and reference sites in cities with dry, hot climates
(Los Angeles and Phoenix). While this result indicates that the species introduced in Los
Angeles and Phoenix are not generally invasive, it also, this result amplifies concern about the
vulnerability of vegetation in residential yards to reductions in water availability in these hot, dry
cities.

In contrast to Los Angeles and Phoenix, Miami had the highest percentage of introduced
species in interstitial areas. These results suggest that hot and wet cities may be most vulnerable

to declines in ecosystem services associated with native biodiversity (e.g., plants and wildlife) in
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the face of increases in urbanization and other components of environmental change. For
example, decreasing native biodiversity and similarities in species composition in cities can also
cause cascading effects on wildlife that depend on a diverse native urban forest (Aronson ef al.
2014; Narango et al. 2017). On the other hand, these cities may have increased resilience of
services provided by general greening (shading, carbon sequestration, latent heat flux) regardless
of continental origin as many introduced species have been able to spontaneously colonize and
grow in these cities. Introduced species were also a significant component of natural reference
and interstitial sites in cool, wet cities (Boston, Baltimore, Minneapolis-St. Paul) and are likely
contributing to declines in ecosystem services provided by native biodiversity while at the same
time increasing the resilience of services derived from general greening (Keeler et al. 2019).
The effects of environmental change on urban tree communities may depend on the traits
of the species in these communities, as shown by the differences between unmanaged and
human-managed spaces in our study. There is particular concern about how the continued and
projected rise in temperatures in the coming years will impact urban forests (Esperon-Rodriguez
et al. 2022), which are already exposed to increased temperatures through the urban “heat island”
effect (Ziter et al. 2019). The long-term studies that have shown marked differences in species
composition between understory and canopy layers have raised questions about the adaptability
of native species to a changing climate (Pregitzer ez al. 2019; Trammell et al. 2020). Our study
showed that physiological traits, such as drought tolerance and water use capacity are useful
metrics understanding climate adaptability, which have shown to predict the capacity of trees to
tolerate rising temperatures and weather extremes (Niinemets and Valladares 2006, Pataki et al.

2013, Jenerette et al. 2016). In addition, these traits affect key ecosystem processes, such as

10
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evapotranspiration (Grimmond and Oke 1999; Pataki et al. 2011; Goedhart and Pataki 2012),
which mitigates the urban heat island effect (Arnfield 2003; Ziter et al. 2019).

Our results suggest that human management (e.g., selection of certain species and
irrigation) might reduce urban forest adaptability to a changing climate with implications for
their resilience and ecosystem services. The percent of species with high or medium drought
tolerance was lower in residential yards and interstitial areas than in reference areas in most
cities, due to numerous introduced species that were not drought tolerant. In the driest cities,
differences between urban and natural areas were particularly marked, such as in Los Angeles
interstitial sites, where none of the species were introduced or had low drought tolerance or high
water use. On the one hand, in all studied cities, the number of species with high drought
tolerance was higher in residential yards compared to interstitial and natural areas. This suggests
that human management, via the introduction of multiple drought-tolerant species, might
increase urban forest adaptability to a changing climate.

However, the effects of urbanization in hot and dry environments on tree physiological
responses are neither linear nor easily predictable from trends observed in natural environments
(Pataki et al. 2011). For example, California sycamore (Platanus racemosa), a tree species that
naturally grows along rivers and canyons in southern California is also a popular urban tree in
the region because of its perceived low water consumption. However, an in-situ empirical study
of transpiration of multiple southern California trees in natural and urban environments revealed
that California sycamores tend to use extremely high amounts of water in urban settings (~100
kg tree-1 day-1 on average), which were up to an order of magnitude larger than many non-
native species (Pataki et al. 2011). Another study, based in Los Angeles Arboretum, observed

higher transpiration rates in arid horticultural plants native to the region, compared to non-native

11
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plants from temperate environments (Goedhart and Pataki 2012). Therefore, it possible that some
species in our study have different physiological responses based on land-use, but this was
beyond the scope of our study. Overall, high species diversity (Avolio et al. 2015), large percent
of drought-sensitive non-native species, and water use patterns (e.g., irrigation) make the

adaptability of urban forests in dry cities to changing climate highly uncertain.

Conclusion

Our analysis suggests that the species composition, proportions of native to introduced
species, and the distribution of drought-tolerant and water-conserving species largely depends on
where (i.e., the land-use type) you look within and between cities. Our detailed sampling of
natural (reference) and interstitial areas show domination of urban tree communities by native
species across diverse climate zones of the U.S. However, surveys of residential yards show
dramatically higher numbers of species, and a higher proportion of introduced species. The
divergence between relatively natural and human-managed areas is most dramatic in arid
climates, where human preferences for introduced species have likely increased vulnerability to
reductions in natural or anthropogenic water supply. In cooler and wetter cities, the presence on
introduced species is likely decreasing ecosystem services that derive from native biodiversity

but may be increasing the resilience of services deriving from general greenness.

The clear differences that we observed between sampling in residential yards, natural
reference, and interstitial sites suggests that there is a clear need for more systematic approaches
to characterization of urban forests that account for these differences (McHale et al. 2017;
Pregitzer et al. 2019; Song et al. 2019). As global expansion of urban areas increases, systematic
and detailed characterization of urban forests is important to understanding climate adaptability

of species and native vegetation preservation in cities (Aronson et al. 2014). There is a need to
12
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consider assessments that capture the heterogeneity of urban forests, given the myriad of factors
(e.g., land-use and human preferences) that create diverse patterns of tree species distribution
across the urban environment (Cadenasso et al. 2007), to make relevant and useful comparisons
within and across cities (Davies et al. 2013; Raciti et al. 2021). Human preferences are
interwoven into the biophysical fabric of urban forests. Thus, future management of urban
forests must include adopting strategies for sustaining urban forests in a changing climate and
meeting other essential ecosystem services that benefit humans, such as equitable access to
public urban forests and designing residential yards to simultaneously reflect yard manager
values and characteristics that contribute to environmental resiliency and equity (Gerrish and

Watkins 2018; Watkins and Gerrish 2018; Locke et al. 2021; McDonald et al. 2021).
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Figures Legend

Figure 1. Panels a) total number of tree species b) percent native species determined in
interstitial areas, native reference sites, and residential yards, in cities (n = 6) across the
continental U.S. BAL = Baltimore, BOS = Boston, LAX = Los Angeles, MIA = Miami, MSP =
Minneapolis-St. Paul, PHX = Phoenix. Comparisons over all cities showed significant
differences in the total number of species and percent of native species between yards and
interstitial areas, and yards and reference areas (p < 0.001, p = 0.01, respectively).

Figure 2. Percent of total species in different drought tolerance classes found in interstitial areas,
native reference sites, and residential yards in cities (n = 6) across the continental U.S. BAL =
Baltimore, BOS = Boston, LAX = Los Angeles, MIA = Miami, MSP = Minneapolis-St. Paul,
PHX = Phoenix. Comparisons over all cities showed significant differences in species drought
tolerance between yards and interstitial areas, and yards and reference areas (p < 0.001).

Figure 3. Percent of total species in different water use capacity classes for tree species
determined in interstitial areas, native reference sites, and residential yards in cities (n = 6) across
the continental U.S. BAL = Baltimore, BOS = Boston, LAX = Los Angeles, MIA = Miami, MSP
= Minneapolis-St. Paul, PHX = Phoenix. Comparisons over all cities showed significant
differences in species water use capacity between yards and interstitial areas, and yards and
reference areas (p < 0.001).
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(a)

Number of species

Native species (%

Panels a) total number of tree species b) percent native species determined in interstitial areas, native
reference sites, and residential yards, in cities (n = 6) across the continental U.S. BAL = Baltimore, BOS =
Boston, LAX = Los Angeles, MIA = Miami, MSP = Minneapolis-St. Paul, PHX = Phoenix. Comparisons over all
cities showed significant differences in the total number of species and percent of native species between
yards and interstitial areas, and yards and reference areas (p < 0.001, p = 0.01, respectively).
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and reference areas (p < 0.001).
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Mejia et al. — Supporting Information

WebFigure 1. Species diversity interstitial, reference, and yards calculated using rarefraction
analysis showing sampling distribution in relation to species.
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