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Machine learning applications to improve flavor and 
nutritional content of horticultural crops through 
breeding and genetics
Luís Felipe V Ferrão1, Rakshya Dhakal2, Raquel Dias3,  
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Carlos Messina1,2 and Márcio F R Resende Jr1,2

Over the last decades, significant strides were made in 
understanding the biochemical factors influencing the 
nutritional content and flavor profile of fruits and vegetables. 
Product differentiation in the produce aisle is the natural 
consequence of increasing consumer power in the food 
industry. Cotton-candy grapes, specialty tomatoes, and 
pineapple-flavored white strawberries provide a few examples. 
Given the increased demand for flavorful varieties, and pressing 
need to reduce micronutrient malnutrition, we expect breeding 
to increase its prioritization toward these traits. Reaching this 
goal will, in part, necessitate knowledge of the genetic 
architecture controlling these traits, as well as the development 
of breeding methods that maximize their genetic gain. Can 
artificial intelligence (AI) help predict flavor preferences, and can 
such insights be leveraged by breeding programs? In this 
Perspective, we outline both the opportunities and challenges 
for the development of more flavorful and nutritious crops, and 
how AI can support these breeding initiatives.
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Introduction
Over the last few decades, researchers have made sig
nificant strides in understanding the biochemical factors 
that influence the nutritional content and flavor profile of 
our fruits and vegetables. From the point of view of crop 
improvement, flavor, and nutrition are related in the 
sense that these are complex, consumer-oriented traits 
for which the breeding typically aims at changing me
tabolite levels in the plant. Product differentiation in the 
produce aisle is the natural consequence of increasing 
consumer power in the food industry. Cotton-candy 
grapes, specialty tomatoes, and pineapple-flavored white 
strawberries provide a few examples. Given the in
creased demand for flavorful varieties [1], and pressing 
need to reduce micronutrient malnutrition [2], we ex
pect breeding to increase its prioritization toward these 
traits, in addition to all other grower-oriented trait prio
rities. Reaching this aspirational goal will, in part, ne
cessitate the imparting of deep biological knowledge of 
the genetic architecture controlling these traits, as well 
as the development of breeding methods that can max
imize their genetic gain. Can artificial intelligence 
(AI) help predict the desired flavor niches of the future, 
and can such insights be leveraged by breeding programs 
to accentuate the desired aromatic profiles? In this Per
spective, we outline both the opportunities and chal
lenges for the development of more flavorful and 
nutritious fruits and vegetables, drawing attention to the 
fundamental role of combining multi-omics and AI to 
support breeding initiatives. Multi-omics projects in
volve the coordinated and integrated study of multiple 
omics datasets, such as genomics, transcriptomics, pro
teomics, and metabolomics. For flavor analyses, the in
clusion of layers of information has the potential to 
greatly enhance our understanding of the mechanisms 
underlying our food choices, in particular, how biological 
processes are interconnected in a holistic way.

Crop flavor and nutritional methods and analyses have 
evolved over the years. It was the rapid evolution of in
strumental analyses and statistical methods that has led to 
significant advancement in our ability to identify the key 
components affecting our preferences (Figure 1).
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Improving fruit and vegetable flavor
The genetic improvement of flavor is typically not a priority 
in plant breeding programs, which reduces the rate of 
progress obtained for this trait. In some cases, flavor has 
even deteriorated over the years of breeding for agronomic 
traits such as yield, shelf life, and disease resistance, causing 
increasing dissatisfaction among consumers [3,4]. Un
fortunately, breeding for improved flavor has proven diffi
cult, since it is a complex trait involving many flavor and 
aroma compounds and many genetic loci [1]. Recent re
search has focused on understanding the biochemical and 
genetic bases of flavor in various fruits, including tomato, 
strawberry, blueberry, apple, grape, peach, kiwi, and citrus 
fruits [5–12]. Each fruit has its own unique flavor profile, a 
unique combination of sugars, acids, and aroma volatiles. 
Typically, sugars include glucose, fructose, and sucrose, 
while common acids are citric, malic, ascorbic, and tartaric 
acids. Volatiles vary widely among fruit species and con
tribute to the unique aroma and flavor profiles of each. 
Compounds that contribute consumer-favored flavor attri
butes to some fruits can negatively affect flavor in other 
fruit species. For instance, acetate esters negatively affect 
tomato flavor, but are major positive contributors to flavor of 
melon, peach, and strawberry [1,13,14]. Gene function of 
similar genes can also be different among species. This 
diversity can make gene identification more difficult, as 

pathways to the same volatile diverge among species. For 
example, the biochemical pathway to 2-phenylethanol is 
different in tomato, where phenylalanine is converted to 
phenethylamine by a decarboxylase followed by conversion 
to phenylacetaldehyde, than in petunia or rose flowers, 
where phenylalanine is converted directly to phenylace
taldehyde by phenylacetaldehyde synthase [15–17].

Improving plant-based nutritional content
Globally, an estimated two billion people suffer from 
deficiencies in one or more essential micronutrients that 
include vitamins and minerals. Nutritional deficiencies 
tend to be elevated in communities that subsist on staple 
crops with insufficient levels of micronutrients as a pri
mary source of calories. Biofortification — the improve
ment of crop nutritional quality through agronomic or 
genetic approaches — has been advanced as a sustain
able way to improve human health and nutrition [18]. 
Even though we are converging to a near-complete un
derstanding of the biosynthetic pathways that synthesize 
vitamins in plants [19], the causal genes and alleles re
sponsible for natural variation in vitamin levels have yet 
to be fully cataloged for any plant system. Relatedly, 
while the genetic architectures underlying natural var
iation in mineral composition for tissues of arabidopsis 
[Arabidopsis thaliana (L.) Heynh.] have begun to be 

Figure 1  
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Statistical methods and flavor evaluation have evolved during the years. While in the 1980s most of the breeding programs focused on simple metrics 
(sugar and acid content) to assess flavor preferences, in the past 20 years, contemporaneous breeding programs have been stacking multiple layers of 
information by collecting flavor information using multiple sources of data. Metabolomics associated with genomics, for example, have been used as 
the state-of-the-art to predict consumer preferences and point out key attributes that impact our flavor predictions. With the incorporation of multi- 
omics information in flavor studies, datasets have grown in size, with the number of predictor variables often exceeding the number of observations. 
This raises challenges when fitting linear regression models, specifically due to the need to regularize parameter estimates to avoid overfitting. 
Numerous approaches have been proposed, including many based on penalized least-squares criterion, and others based on machine learning and 
Bayesian approaches. These many different methods vary in their choice of penalty function or prior distribution for the regression coefficients and in 
their choice of computational algorithms. The use of AI in the format of neural network architecture is considered the next frontier, with the possibility 
to better explore the datasets for inference and prediction.  
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unraveled [20], the translation of this knowledge to re
veal the genetic basis of mineral composition in crops 
has been incomplete and primarily focused on cer
eals [21–25].

Identifying causal genes affecting flavor 
perception and nutritional quality
With these challenges in mind, one core approach to 
learn about flavor and nutritional biology is to determine 
the biochemical compounds, their biosynthetic path
ways, and their regulatory network affecting crop flavor 
and nutritional quality. This information can guide trait 
prioritization, can lead to marker-assisted selection tar
gets, and contribute to our overall understanding of the 
trait. Genome-wide association studies (GWAS) and 
quantitative trait loci (QTL) mapping studies have been 
the main statistical methods to identify candidate genes 
affecting these pathways of interest [26–29]. For ex
ample, in the most comprehensive assessments of nat
ural variation for a vitamin in any plant, the genetic 
control of vitamin E (tocopherols and tocotrienols, col
lectively known as tocochromanols) and provitamin A 
(carotenoids) in maize grain was elucidated to near 
completion via joint linkage and GWAS in the 5000-line 
U.S. maize (Zea mays L.) nested association mapping 
panel [28,29]. The large-effect causal genes identified in 
these two studies are highly conserved throughout the 
plant kingdom and encode activities in precursor and 
core biosynthetic pathways that have been well char
acterized in model plants. Contrastingly, the Orange gene 
that is associated with higher carotenoids in nonleaf 
tissue of cauliflower [30] and carrot [31] has never been 
identified as a causal loci for natural variation in grain 
carotenoids of maize and other cereals, indicating the 
limitation of orthologous comparisons. When causal 
genes are unknown due to low-resolution genetic map
ping, the decision-making process of selecting candidate 
genes can be limited by biased approaches [32], but 
emerging machine learning approaches that use a mul
titude of genomic features have the potential to better 
prioritize genes likely to be causal as training sets be
come larger [33,34].

While target biosynthetic pathways have already been 
well characterized and understood for model crop spe
cies such as tomatoes, this is not the case for many fruits 
and vegetables for which genomic and metabolic re
sources might not be available. Furthermore, even in 
well-characterized pathways, very few regulatory genes 
affecting the expression of these biosynthetic genes are 
known. We expect that GWAS will continue to have a 
key role in identifying the genes that are responsible for 
the accumulation of these compounds, and we expect 
the integration of additional multilayer omics data to 
contribute to this task. Intermediate molecular pheno
types or endophenotypes span multiple levels of 

biological organization between DNA genotype and 
terminal (target) phenotypes, offering independent in
sights into the causal mechanisms of phenotypic changes 
not revealed by genetic markers alone. Implicating the 
importance of regulatory variation in controlling quanti
tative variation for metabolite seed traits, the use of 
mRNA expression level as an endophenotype in tran
scriptome-wide association studies (TWAS) resulted in 
the identification of candidate causal genes associated 
with carotenoids or tocochromanols in fresh sweet corn 
and physiologically mature maize kernels [35–37] and 
avenanthramides — a group of phenolic anti
oxidants — in oat seed [38]. To investigate how selec
tion altered natural variation in the tomato fruit 
metabolome [39], correlated changes in gene expression 
with metabolites and integrated them with expression 
QTL and metabolite-based GWAS results, showing that 
five loci associated with a reduction in steroidal gly
coalkaloids were targets of selection to produce less- 
bitter fruits. In addition to the genetic dissection of 
metabolite traits, statistical models that incorporate 
transcriptomic and/or metabolomic data in addition to 
genome-wide markers have been shown to enhance the 
prediction of vitamin and fatty acid seed traits [35,40,41].

Predicting flavor perception and nutritional 
quality using multi-omics data
Flavor is affected by growing conditions, is expensive to 
assay, and flavor perception varies among the individuals 
tasting the fruit [42]. Therefore, a machine learning 
approach would be valuable for predicting overall flavor 
from biochemical or genetic data. Colatonio et al. [43]
evaluated the performance of different machine learning 
algorithms to predict consumer flavor perceptions of 
blueberries and tomatoes using fruit chemical composi
tion as predictors. These models offer a flexible frame
work for incorporating complex dependencies and prior 
knowledge into the prediction process and can provide 
more robust and accurate predictions than traditional 
linear models. For another example, in strawberry, a 
large sensory–chemical study was conducted to identify 
chemical drivers of consumer preference. Machine 
learning models, including 113 volatile compounds, ex
plained at least 25% more variation in sweetness than 
models incorporating sugars and acids only [44]. Both 
these results [43,44] demonstrated that not only are vo
latile compounds critical for flavor perception, but they 
are critical also for sweetness that is the primary driver of 
consumer preference in strawberry [44]. This field is 
rapidly evolving, and we expect that new methods and 
larger datasets will continue to improve our ability to 
select flavorful and nutritional varieties that can hit the 
market.

To address the issue of high-dimensional data in flavor 
prediction, modern flavor studies have shifted from 
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traditional linear regression models and focused on using 
Bayesian and mixed model approaches for predictions. 
In the field of AI, deep learning algorithms such as ar
tificial neural networks (ANN) are well suited to model 
the complex, nonlinear relationships between genotypes 
and phenotypes [45–47]. More specialized ANNs such as 
convolutional neural networks (CNNs) and long–short- 
term memory networks are well known for being able to 
capture local features of phrases as well as global and 
temporal sentence semantics [48–50] (Figure 2). Ad
ditionally, ANNs have shown to be particularly useful 
for integrating data from different sources without the 
need for feature engineering (e.g. genotype-by-en
vironment interactions) [51]. However, ANNs have not 
been fully explored in the field of genomic selection, 
and deeper model optimization and testing may be ne
cessary to explore their full potential.

Explainable artificial intelligence unifies 
prediction and inference
Recently, there has been debate on the interpretability 
of complex AI models [52–54]. AI models have been 
labeled as ‘black boxes’, models that produce accurate 
predictions based on a dataset, but the end user does not 
know how these predictions are made. Contrary to 
widely held concerns, these methods are not ‘black 
box’ predictors: pre-/post hoc feature selection and 

feature importance quantification techniques allow for 
the identification of input features contributing to pre
dictive accuracy [55–57]. SHapley Additive exPlanations 
(SHAP), [56] for example, is an explainable AI (XAI) 
method that can be used for interpreting the prediction 
of any model by quantifying the contribution of each 
feature to the prediction, and ranking predictor features 
based on their importance for the model’s outputs. Ad
ditionally, SHAP can be applied simultaneously across 
multiple input features for identifying global feature 
relationships and dependencies. XAI techniques have 
been applied for the analysis and discovery of genome- 
wide associations between genotypes and phenotypes 
[58], as well as for identifying gene–gene and gene–en
vironment interactions [59]. These XAI techniques can 
play a key role in shedding new light on how different 
omics attributes correlate and are influenced by en
vironmental effects (e.g. demographic information).

Collecting more data and ‘boosting model power’
The ability to analyze and learn from data is limited by 
the quantity of information that is fed into the AI- 
powered model. By harnessing big data resources, AI 
models can make more informed predictions, but well- 
defined data collection plans and data structure must be 
in place before AI implementation, since models are 
only as predictive as the data that we use to train them. 

Figure 2  
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Schematic representation of how AI models can integrate several datatypes (e.g. multi-omics, environment, etc.) into a single prediction model for 
identifying flavor attributes. The example consists of one layer of subnetworks, one for each data type, that will learn meaningful features from their 
respective datatypes. Each subnetwork is implemented separately with its own parameters and architecture that performs better for its respective 
data type. Each subnetwork is then connected to one neural network that merges all features and learns to predict a target phenotype or outcome 
from them. For the feature extraction or feature learning layer, CNNs are commonly used for grid-like data structure such as images, while recurrent 
neural network (RNN) is often used for sequence data such as a DNA sequence or time-series data. CNNs are the most often-utilized NN architecture 
across metabolomics data as well. In this example, the prediction layer is represented by a fully connected NN (e.g. feed-forward neural network), 
which connects all layers of subnetwork features extracted from all datatypes into a single integrative architecture that outputs the predicted flavor 
attributes.  
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With the continuing development of low-cost, non
destructive imagers, and spectrometers, it is becoming 
more feasible to eventually analyze the environmentally- 
and developmentally labile spectral signatures of plant 
tissues with machine learning algorithms for phenomic 
prediction and selection [60,61] of potentially correlated 
quality traits [62]. Similarly, targeted metabolomics has 
reduced in price, enabling the collection of larger sample 
sizes for a fixed budget. In addition to collecting more 
data, there are two common techniques for boosting 
model power that have not been explored to its full 
potential in the field of plant genomics: transfer learning 
and data augmentation. With transfer learning techni
ques, AI models can store knowledge gained while sol
ving one problem and apply it to a different but related 
problem. For example, AI models that were already 
trained for predicting flavor using metabolomics data can 
be fine-tuned for predicting flavor in a different species, 

using a different dataset, and performing better than the 
same trained from scratch.

In data augmentation, AI can be utilized as a data pre
processing tool, in a process of artificially increasing the 
amount of data by generating new data points from ex
isting data. The new in silico samples are used to represent 
the latent space of the original data to amplify the dataset. 
In genomics, the augmentation can be obtained by simu
lating genomic breeding, selection, and recombination 
events, resulting in new populations of unrelated or ad
mixed genomes. Generative adversarial networks (GANs) 
are a class of ANN architecture that specialized for data 
augmentation. Generative models compute a distribution 
of the data itself, generate new examples, and estimate the 
likelihood of a new given example existing in the dataset. 
For example, models that predict the next word in a se
quence are typically generative models. GANs have been 

Figure 3  
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Dynamical CGM are cognitive mathematical representations of the physiological processes underpinning resource use, transformation efficiencies, 
and yield in horticultural crops [66]. For each hour in the growing season, carbon assimilation, and its allocation to organ growth and respiration is 
calculated. This time dependency determines temporal patterns of carbon, water and nutrient demand, and supply. Competition for carbon 
determines the distribution of fruit size and number [67]. Discrepancy between water supply and demands affects turgor, organ expansion, and thus 
light interception, fertilization, fruit size, and yield [68]. Integration of this knowledge with genomic selection proved useful in breeding [74]. Prediction 
accuracy improvement relative to GS along increase with increasing complexity of the genotype x trait x environment system [75,76]. Advances in 
chemical phenomics and the ability to identify prediction networks consistent with the underpinning biochemistry of flavor [43] suggests that a 
process-based approach to prediction can further increase prediction skill in fruit flavor. While modules to simulate the biochemistry of flavor will be 
needed, CGMs provide the framework to build such module, and the key inputs such as duration of fruit development, carbon fluxes, and water status 
of the plant and the fruit. Metabolic flux analyses can provide the toolkit to model the metabolism of flavor based on these inputs and current 
knowledge of the biochemistry of flavor [69,77]. Current CGM uses similar approaches to estimate respiration costs [71,72] and carbon assimilation 
[73]. A degree of empiricism and assumptions of steady state will be required to address the limitations of incomplete knowledge. However, as in the 
case of maize breeding, the integration of current knowledge and estimation procedures such as GS can enable increasing prediction skill, genotype x 
environment interactions, and thus harness knowledge to hasten genetic gain for yield and flavor.  
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extremely successful for data augmentation in image clas
sification problems [63,64], but have not been fully ex
plored in the field of genomics.

Flavor and nutrition into dynamical crop growth and 
development models
Finally, we have so far approached the use of machine 
learning to learn and predict better genetics. However, 
flavor and nutritional content are also a function of the 
environment in which the plants are grown. For example, 
a negative genetic correlation between sugars and yield 
has been observed in some environments for strawberry 
[65]. The strength of this trade-off suggests that it is 
controlled by basic physiological constraints, particularly 
under high temperatures. The field of crop modeling can 
be leveraged to estimate and account for metabolic flux, 
combined with information on sugar biosynthesis path
ways and sugar transport mechanisms. This approach 
could potentially identify yield components with minimal 
effects of fruit sugar content or otherwise inform ways to 
weaken or even break such correlations.

Dynamical crop growth and development models (CGM) 
are cognitive mathematical representations of the phy
siological processes underpinning resource use, transfor
mation efficiencies, and yield in horticultural crops [66]. 
For each hour in the growing season, carbon assimilation 
and its allocation to organ growth and respiration is cal
culated. This time dependency determines temporal 
patterns of carbon, water and nutrient demand, and 
supply. Competition for carbon determines the distribu
tion of fruit size and number [67]. Discrepancy between 
water supply and demands affects turgor, organ expan
sion, and thus light interception, fertilization, fruit size, 
and yield [68]. Advances in chemical phenomics, the 
application of GS for flavor, and the ability to identify 
prediction networks consistent with the underlying bio
chemistry of flavor [43] suggests that a process-based 
dynamical approach to prediction can further increase 
prediction skill. While modules to simulate the bio
chemistry of flavor will be needed, CGMs provide the 
framework to build such a module, and for including the 
key inputs such as duration of fruit development, carbon 
fluxes, and water status of the plant and the fruit. Meta
bolic flux analyses can provide the toolkit to model the 
metabolism of flavor based on these inputs and current 
knowledge of the biochemistry of flavor [69,70]. Current 
CGM uses similar approaches to estimate respiration costs 
[71,72] and carbon assimilation [73]. A degree of empiri
cism and assumptions of steady state will be required to 
address the limitations of incomplete knowledge. How
ever, as in the case of maize breeding, where this area is 
mostly advanced, the integration of current knowledge 
and estimation procedures such as GS can enable in
creasing prediction skill, genotype x environment inter
actions, and thus harness knowledge to hasten genetic 
gain for yield and flavor (Figure 3).

Conclusions and perspectives applied to plant 
breeding
In summary, we envision that adoption of these new 
methodologies discussed in this paper will enable 
breeding programs to answer more sophisticated ques
tions, including the influence of demographic informa
tion on our predictions, the impact of genotype-by- 
environment interactions, and associate flavor to our 
healthy lifestyles. As more knowledge is learned about 
these traits, synthetic biology, and metabolic en
gineering open new avenues for the redesign or de novo 
construction of gene-regulatory circuits and altering the 
form and function of metabolites for virtually any plant 
species. Such approaches could enable the modification 
of specialized metabolites to enhance their stability and 
change the cellular location in which they are seques
tered, as has been proposed for carotenoids in plants 
[78]. With a deep collection of publicly available multi- 
omics data for an ever-increasing number of plant spe
cies, the integration of machine learning and genome- 
scale metabolic models offers the potential to identify 
-omics factors with high importance in the light of a 
mechanistic framework [79]. Existing software offer 
functions to potentially integrate genome-scale meta
bolic models and crop growth models [80], enabling the 
modeling of nutritional phenotypes across multiple 
scales to better understand how metabolism is shaped by 
genotype, environment, and their interaction over the 
life history of a plant. These activities will ultimately 
require high-throughput instrumentation combined with 
robotics to facilitate sampling of tissues at informative 
developmental time points and post-sampling proces
sing if performing them on large plant populations for 
nonvolatile metabolites that cannot be scored with 
nondestructive analytical methods [77].
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