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Introduction

Over the last few decades, researchers have made sig-
nificant strides in understanding the biochemical factors
that influence the nutritional content and flavor profile of
our fruits and vegetables. From the point of view of crop
improvement, flavor, and nutrition are related in the
sense that these are complex, consumer-oriented traits
for which the breeding typically aims at changing me-
tabolite levels in the plant. Product differentiation in the
produce aisle is the natural consequence of increasing
consumer power in the food industry. Cotton-candy
grapes, specialty tomatoes, and pineapple-flavored white
strawberries provide a few examples. Given the in-
creased demand for flavorful varieties [1], and pressing
need to reduce micronutrient malnutrition [2], we ex-
pect breeding to increase its prioritization toward these
traits, in addition to all other grower-oriented trait prio-
rities. Reaching this aspirational goal will, in part, ne-
cessitate the imparting of deep biological knowledge of
the genetic architecture controlling these traits, as well
as the development of breeding methods that can max-
imize their genetic gain. Can artificial intelligence
(AI) help predict the desired flavor niches of the future,
and can such insights be leveraged by breeding programs
to accentuate the desired aromatic profiles? In this Per-
spective, we outline both the opportunities and chal-
lenges for the development of more flavorful and
nutritious fruits and vegetables, drawing attention to the
fundamental role of combining multi-omics and Al to
support breeding initiatives. Multi-omics projects in-
volve the coordinated and integrated study of multiple
omics datasets, such as genomics, transcriptomics, pro-
teomics, and metabolomics. For flavor analyses, the in-
clusion of layers of information has the potential to
greatly enhance our understanding of the mechanisms
underlying our food choices, in particular, how biological
processes are interconnected in a holistic way.

Crop flavor and nutritional methods and analyses have
evolved over the years. It was the rapid evolution of in-
strumental analyses and statistical methods that has led to
significant advancement in our ability to identify the key
components affecting our preferences (Figure 1).
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Each chemical Chemicals

is modelled are simultaneously : : are included
individually to modelled to predict using linear and to improve sensory
predict sensory sensory preferences non»llpear predictions
preferences functions
. Partial Parametric Bayesian .
R Llnesgir Leastsquares Parna??l_etric yMi')‘(eg . predlirltt?czzr:;zbilsf::énce
egre on (PLS) 000 of individual chemical
and their interactions
Stat| t|cal
Artificial
Intelligence
Flavor
Evaluation Multi-omics
Multi-omics as multiple
SUQaI’ Org\a/l?ll:at"e Metabolomlcs Metab°|°n]|cs layers of data used for
Acids Compounds Genomics prediction and inference
VOCs Target and "
Flavor selection ( ) non-target of Inet:g:i::s:r;nd
based on simple Aroma: secondary metaboliites used mgetabolomics
metrics related metabolites used for for flavor for a chemical
to sugar and acids flavor studies improvement

Beyond linearity:

: Prior information
chemicals modelled

genetic roadmap

Current Opinion in Biotechnology

Statistical methods and flavor evaluation have evolved during the years.

While in the 1980s most of the breeding programs focused on simple metrics

(sugar and acid content) to assess flavor preferences, in the past 20 years, contemporaneous breeding programs have been stacking multiple layers of
information by collecting flavor information using multiple sources of data. Metabolomics associated with genomics, for example, have been used as

the state-of-the-art to predict consumer preferences and point out key

attributes that impact our flavor predictions. With the incorporation of multi-

omics information in flavor studies, datasets have grown in size, with the number of predictor variables often exceeding the number of observations.
This raises challenges when fitting linear regression models, specifically due to the need to regularize parameter estimates to avoid overfitting.

Numerous approaches have been proposed, including many based on penalized least-squares criterion, and others based on machine learning and
Bayesian approaches. These many different methods vary in their choice of penalty function or prior distribution for the regression coefficients and in
their choice of computational algorithms. The use of Al in the format of neural network architecture is considered the next frontier, with the possibility

to better explore the datasets for inference and prediction.

Improving fruit and vegetable flavor

The genetic improvement of flavor is typically not a priority
in plant breeding programs, which reduces the rate of
progress obtained for this trait. In some cases, flavor has
even deteriorated over the years of breeding for agronomic
traits such as yield, shelf life, and disease resistance, causing
increasing  dissatisfaction among consumers [3,4]. Un-
fortunately, breeding for improved flavor has proven diffi-
cult, since it is a complex trait involving many flavor and
aroma compounds and many genetic loci [1]. Recent re-
search has focused on understanding the biochemical and
genetic bases of flavor in various fruits, including tomato,
strawberry, blueberry, apple, grape, peach, kiwi, and citrus
fruits [5-12]. Each fruit has its own unique flavor profile, a
unique combination of sugars, acids, and aroma volatiles.
T'ypically, sugars include glucose, fructose, and sucrose,
while common acids are citric, malic, ascorbic, and tartaric
acids. Volatiles vary widely among fruit species and con-
tribute to the unique aroma and flavor profiles of each.
Compounds that contribute consumer-favored flavor attri-
butes to some fruits can negatively affect flavor in other
fruit species. For instance, acetate esters negatively affect
tomato flavor, but are major positive contributors to flavor of
melon, peach, and strawberry [1,13,14]. Gene function of
similar genes can also be different among species. This
diversity can make gene identification more difficult, as

pathways to the same volatile diverge among species. For
example, the biochemical pathway to 2-phenylethanol is
different in tomato, where phenylalanine is converted to
phenethylamine by a decarboxylase followed by conversion
to phenylacetaldehyde, than in petunia or rose flowers,
where phenylalanine is converted directly to phenylace-
taldehyde by phenylacetaldehyde synthase [15-17].

Improving plant-based nutritional content

Globally, an estimated two billion people suffer from
deficiencies in one or more essential micronutrients that
include vitamins and minerals. Nutritional deficiencies
tend to be elevated in communities that subsist on staple
crops with insufficient levels of micronutrients as a pri-
mary source of calories. Biofortification — the improve-
ment of crop nutritional quality through agronomic or
genetic approaches — has been advanced as a sustain-
able way to improve human health and nutrition [18].
Even though we are converging to a near-complete un-
derstanding of the biosynthetic pathways that synthesize
vitamins in plants [19], the causal genes and alleles re-
sponsible for natural variation in vitamin levels have yet
to be fully cataloged for any plant system. Relatedly,
while the genetic architectures underlying natural var-
iation in mineral composition for tissues of arabidopsis
[Arabidopsis thaliana (L..) Heynh.] have begun to be
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unraveled [20], the translation of this knowledge to re-
veal the genetic basis of mineral composition in crops
has been incomplete and primarily focused on cer-
eals [21-25].

Identifying causal genes affecting flavor
perception and nutritional quality

With these challenges in mind, one core approach to
learn about flavor and nutritional biology is to determine
the biochemical compounds, their biosynthetic path-
ways, and their regulatory network affecting crop flavor
and nutritional quality. This information can guide trait
prioritization, can lead to marker-assisted selection tar-
gets, and contribute to our overall understanding of the
trait. Genome-wide association studies (GWAS) and
quantitative trait loci (QTL) mapping studies have been
the main statistical methods to identify candidate genes
affecting these pathways of interest [26-29]. For ex-
ample, in the most comprehensive assessments of nat-
ural variation for a vitamin in any plant, the genetic
control of vitamin E (tocopherols and tocotrienols, col-
lectively known as tocochromanols) and provitamin A
(carotenoids) in maize grain was elucidated to near
completion via joint linkage and GWAS in the 5000-line
U.S. maize (Zea mays 1..) nested association mapping
panel [28,29]. The large-effect causal genes identified in
these two studies are highly conserved throughout the
plant kingdom and encode activities in precursor and
core biosynthetic pathways that have been well char-
acterized in model plants. Contrastingly, the Orange gene
that is associated with higher carotenoids in nonleaf
tissue of cauliflower [30] and carrot [31] has never been
identified as a causal loci for natural variation in grain
carotenoids of maize and other cereals, indicating the
limitation of orthologous comparisons. When causal
genes are unknown due to low-resolution genetic map-
ping, the decision-making process of selecting candidate
genes can be limited by biased approaches [32], but
emerging machine learning approaches that use a mul-
titude of genomic features have the potential to better
prioritize genes likely to be causal as training sets be-
come larger [33,34].

While target biosynthetic pathways have already been
well characterized and understood for model crop spe-
cies such as tomatoes, this is not the case for many fruits
and vegetables for which genomic and metabolic re-
sources might not be available. Furthermore, even in
well-characterized pathways, very few regulatory genes
affecting the expression of these biosynthetic genes are
known. We expect that GWAS will continue to have a
key role in identifying the genes that are responsible for
the accumulation of these compounds, and we expect
the integration of additional multilayer omics data to
contribute to this task. Intermediate molecular pheno-
types or endophenotypes span multiple levels of
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biological organization between DNA genotype and
terminal (target) phenotypes, offering independent in-
sights into the causal mechanisms of phenotypic changes
not revealed by genetic markers alone. Implicating the
importance of regulatory variation in controlling quanti-
tative variation for metabolite seed traits, the use of
mRNA expression level as an endophenotype in tran-
scriptome-wide association studies (TWAS) resulted in
the identification of candidate causal genes associated
with carotenoids or tocochromanols in fresh sweet corn
and physiologically mature maize kernels [35-37] and
avenanthramides — a group of phenolic anti-
oxidants — in oat seed [38]. To investigate how selec-
tion altered natural variation in the tomato fruit
metabolome [39], correlated changes in gene expression
with metabolites and integrated them with expression
QTL and metabolite-based GWAS results, showing that
five loci associated with a reduction in steroidal gly-
coalkaloids were targets of selection to produce less-
bitter fruits. In addition to the genetic dissection of
metabolite traits, statistical models that incorporate
transcriptomic and/or metabolomic data in addition to
genome-wide markers have been shown to enhance the
prediction of vitamin and fatty acid seed traits [35,40,41].

Predicting flavor perception and nutritional
quality using multi-omics data

Flavor is affected by growing conditions, is expensive to
assay, and flavor perception varies among the individuals
tasting the fruit [42]. Therefore, a machine learning
approach would be valuable for predicting overall flavor
from biochemical or genetic data. Colatonio et al. [43]
evaluated the performance of different machine learning
algorithms to predict consumer flavor perceptions of
blueberries and tomatoes using fruit chemical composi-
tion as predictors. These models offer a flexible frame-
work for incorporating complex dependencies and prior
knowledge into the prediction process and can provide
more robust and accurate predictions than traditional
linear models. For another example, in strawberry, a
large sensory—chemical study was conducted to identify
chemical drivers of consumer preference. Machine
learning models, including 113 volatile compounds, ex-
plained at least 25% more variation in sweetness than
models incorporating sugars and acids only [44]. Both
these results [43,44] demonstrated that not only are vo-
latile compounds critical for flavor perception, but they
are critical also for sweetness that is the primary driver of
consumer preference in strawberry [44]. This field is
rapidly evolving, and we expect that new methods and
larger datasets will continue to improve our ability to
select flavorful and nutritional varieties that can hit the
market.

T'o address the issue of high-dimensional data in flavor
prediction, modern flavor studies have shifted from
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Schematic representation of how Al models can integrate several datatypes (e.g. multi-omics, environment, etc.) into a single prediction model for
identifying flavor attributes. The example consists of one layer of subnetworks, one for each data type, that will learn meaningful features from their
respective datatypes. Each subnetwork is implemented separately with its own parameters and architecture that performs better for its respective
data type. Each subnetwork is then connected to one neural network that merges all features and learns to predict a target phenotype or outcome
from them. For the feature extraction or feature learning layer, CNNs are commonly used for grid-like data structure such as images, while recurrent
neural network (RNN) is often used for sequence data such as a DNA sequence or time-series data. CNNs are the most often-utilized NN architecture
across metabolomics data as well. In this example, the prediction layer is represented by a fully connected NN (e.g. feed-forward neural network),
which connects all layers of subnetwork features extracted from all datatypes into a single integrative architecture that outputs the predicted flavor

attributes.

traditional linear regression models and focused on using
Bayesian and mixed model approaches for predictions.
In the field of Al, deep learning algorithms such as ar-
tificial neural networks (ANN) are well suited to model
the complex, nonlinear relationships between genotypes
and phenotypes [45-47]. More specialized ANNs such as
convolutional neural networks (CNNs) and long—short-
term memory networks are well known for being able to
capture local features of phrases as well as global and
temporal sentence semantics [48-50] (Figure 2). Ad-
ditionally, ANNs have shown to be particularly useful
for integrating data from different sources without the
need for feature engineering (e.g. genotype-by-en-
vironment interactions) [51]. However, ANNs have not
been fully explored in the field of genomic selection,
and deeper model optimization and testing may be ne-
cessary to explore their full potential.

Explainable artificial intelligence unifies
prediction and inference

Recently, there has been debate on the interpretability
of complex Al models [52-54]. Al models have been
labeled as ‘black boxes’, models that produce accurate
predictions based on a dataset, but the end user does not
know how these predictions are made. Contrary to
widely held concerns, these methods are not ‘black
box’ predictors: pre-/post hoc feature selection and

feature importance quantification techniques allow for
the identification of input features contributing to pre-
dictive accuracy [55-57]. SHapley Additive exPlanations
(SHAP), [56] for example, is an explainable Al (XAI)
method that can be used for interpreting the prediction
of any model by quantifying the contribution of each
feature to the prediction, and ranking predictor features
based on their importance for the model’s outputs. Ad-
ditionally, SHAP can be applied simultaneously across
multiple input features for identifying global feature
relationships and dependencies. XAl techniques have
been applied for the analysis and discovery of genome-
wide associations between genotypes and phenotypes
[58], as well as for identifying gene—gene and gene—en-
vironment interactions [59]. These XAl techniques can
play a key role in shedding new light on how different
omics attributes correlate and are influenced by en-
vironmental effects (e.g. demographic information).

Collecting more data and ‘boosting model power’

The ability to analyze and learn from data is limited by
the quantity of information that is fed into the Al-
powered model. By harnessing big data resources, Al
models can make more informed predictions, but well-
defined data collection plans and data structure must be
in place before Al implementation, since models are
only as predictive as the data that we use to train them.

Current Opinion in Biotechnology 2023, 83:102968
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Figure 3
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Dynamical CGM are cognitive mathematical representations of the physiological processes underpinning resource use, transformation efficiencies,
and yield in horticultural crops [66]. For each hour in the growing season, carbon assimilation, and its allocation to organ growth and respiration is
calculated. This time dependency determines temporal patterns of carbon, water and nutrient demand, and supply. Competition for carbon
determines the distribution of fruit size and number [67]. Discrepancy between water supply and demands affects turgor, organ expansion, and thus
light interception, fertilization, fruit size, and yield [68]. Integration of this knowledge with genomic selection proved useful in breeding [74]. Prediction
accuracy improvement relative to GS along increase with increasing complexity of the genotype x trait x environment system [75,76]. Advances in
chemical phenomics and the ability to identify prediction networks consistent with the underpinning biochemistry of flavor [43] suggests that a
process-based approach to prediction can further increase prediction skill in fruit flavor. While modules to simulate the biochemistry of flavor will be
needed, CGMs provide the framework to build such module, and the key inputs such as duration of fruit development, carbon fluxes, and water status
of the plant and the fruit. Metabolic flux analyses can provide the toolkit to model the metabolism of flavor based on these inputs and current
knowledge of the biochemistry of flavor [69,77]. Current CGM uses similar approaches to estimate respiration costs [71,72] and carbon assimilation
[73]. A degree of empiricism and assumptions of steady state will be required to address the limitations of incomplete knowledge. However, as in the
case of maize breeding, the integration of current knowledge and estimation procedures such as GS can enable increasing prediction skill, genotype x

environment interactions, and thus harness knowledge to hasten genetic gain for yield and flavor.

With the continuing development of low-cost, non-
destructive imagers, and spectrometers, it is becoming
more feasible to eventually analyze the environmentally-
and developmentally labile spectral signatures of plant
tissues with machine learning algorithms for phenomic
prediction and selection [60,61] of potentially correlated
quality traits [62]. Similarly, targeted metabolomics has
reduced in price, enabling the collection of larger sample
sizes for a fixed budget. In addition to collecting more
data, there are two common techniques for boosting
model power that have not been explored to its full
potential in the field of plant genomics: transfer learning
and data augmentation. With transfer learning techni-
ques, Al models can store knowledge gained while sol-
ving one problem and apply it to a different but related
problem. For example, Al models that were already
trained for predicting flavor using metabolomics data can
be fine-tuned for predicting flavor in a different species,

using a different dataset, and performing better than the
same trained from scratch.

In data augmentation, Al can be utilized as a data pre-
processing tool, in a process of artificially increasing the
amount of data by generating new data points from ex-
isting data. The new z sifico samples are used to represent
the latent space of the original data to amplify the dataset.
In genomics, the augmentation can be obtained by simu-
lating genomic breeding, selection, and recombination
events, resulting in new populations of unrelated or ad-
mixed genomes. Generative adversarial networks (GANSs)
are a class of ANN architecture that specialized for data
augmentation. Generative models compute a distribution
of the data itself, generate new examples, and estimate the
likelihood of a new given example existing in the dataset.
For example, models that predict the next word in a se-
quence are typically generative models. GANs have been
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extremely successful for data augmentation in image clas-
sification problems [63,64], but have not been fully ex-
plored in the field of genomics.

Flavor and nutrition into dynamical crop growth and
development models

Finally, we have so far approached the use of machine
learning to learn and predict better genetics. However,
flavor and nutritional content are also a function of the
environment in which the plants are grown. For example,
a negative genetic correlation between sugars and yield
has been observed in some environments for strawberry
[65]. The strength of this trade-off suggests that it is
controlled by basic physiological constraints, particularly
under high temperatures. The field of crop modeling can
be leveraged to estimate and account for metabolic flux,
combined with information on sugar biosynthesis path-
ways and sugar transport mechanisms. This approach
could potentially identify yield components with minimal
effects of fruit sugar content or otherwise inform ways to
weaken or even break such correlations.

Dynamical crop growth and development models (CGM)
are cognitive mathematical representations of the phy-
siological processes underpinning resource use, transfor-
mation efficiencies, and vyield in horticultural crops [66].
For each hour in the growing season, carbon assimilation
and its allocation to organ growth and respiration is cal-
culated. This time dependency determines temporal
patterns of carbon, water and nutrient demand, and
supply. Competition for carbon determines the distribu-
tion of fruit size and number [67]. Discrepancy between
water supply and demands affects turgor, organ expan-
sion, and thus light interception, fertilization, fruit size,
and yield [68]. Advances in chemical phenomics, the
application of GS for flavor, and the ability to identify
prediction networks consistent with the underlying bio-
chemistry of flavor [43] suggests that a process-based
dynamical approach to prediction can further increase
prediction skill. While modules to simulate the bio-
chemistry of flavor will be needed, CGMs provide the
framework to build such a module, and for including the
key inputs such as duration of fruit development, carbon
fluxes, and water status of the plant and the fruit. Meta-
bolic flux analyses can provide the toolkit to model the
metabolism of flavor based on these inputs and current
knowledge of the biochemistry of flavor [69,70]. Current
CGM uses similar approaches to estimate respiration costs
[71,72] and carbon assimilation [73]. A degree of empiri-
cism and assumptions of steady state will be required to
address the limitations of incomplete knowledge. How-
ever, as in the case of maize breeding, where this area is
mostly advanced, the integration of current knowledge
and estimation procedures such as GS can enable in-
creasing prediction skill, genotype x environment inter-
actions, and thus harness knowledge to hasten genetic
gain for yield and flavor (Figure 3).

Conclusions and perspectives applied to plant
breeding

In summary, we envision that adoption of these new
methodologies discussed in this paper will enable
breeding programs to answer more sophisticated ques-
tions, including the influence of demographic informa-
tion on our predictions, the impact of genotype-by-
environment interactions, and associate flavor to our
healthy lifestyles. As more knowledge is learned about
these traits, synthetic biology, and metabolic en-
gineering open new avenues for the redesign or de novo
construction of gene-regulatory circuits and altering the
form and function of metabolites for virtually any plant
species. Such approaches could enable the modification
of specialized metabolites to enhance their stability and
change the cellular location in which they are seques-
tered, as has been proposed for carotenoids in plants
[78]. With a deep collection of publicly available multi-
omics data for an ever-increasing number of plant spe-
cies, the integration of machine learning and genome-
scale metabolic models offers the potential to identify
-omics factors with high importance in the light of a
mechanistic framework [79]. Existing software offer
functions to potentially integrate genome-scale meta-
bolic models and crop growth models [80], enabling the
modeling of nutritional phenotypes across multiple
scales to better understand how metabolism is shaped by
genotype, environment, and their interaction over the
life history of a plant. These activities will ultimately
require high-throughput instrumentation combined with
robotics to facilitate sampling of tissues at informative
developmental time points and post-sampling proces-
sing if performing them on large plant populations for
nonvolatile metabolites that cannot be scored with
nondestructive analytical methods [77].
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