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1. INTRODUCTION

One of the key symmetry reduction techniques for mechanical
systems can be found in the work of Marsden and Weinstein
[20] on symplectic reduction for Hamiltonian systems. In a
nutshell, given a Hamiltonian action of a Lie group G on a
symplectic manifold, one considers a level set of a momen-
tum map modulo the action of a suitable subgroup to form a
new symplectic manifold. Since then, a number of papers have
been devoted to the geometrization and generalization of this
reduction technique. One remarkable approach is the Poisson
reduction technique [19], that allows the construction of new
Poisson structures out of a given one by combination of a
restriction to some submanifolds that satisfy certain compati-
bility assumptions, and the passage to a quotient space where
degeneracies can be eliminated.

Hybrid systems are dynamical systems with continuous-time
and discrete-time components of its dynamics. These dynam-
ical systems are capable of modeling several physical sys-
tems, such as, multiple UAV systems [ 18], [24], bipedal robots
[22], [23] and embedded computer systems [25], [11], among
others. Simple hybrid systems are a class of hybrid system
introduced in [16], denoted as such because of their simple
structure. A simple hybrid system is characterized by a tuple
H = (D,X,8,R) where D is a smooth manifold, X is a
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smooth vector field on D, 8 is an embedded submanifold of D
with co-dimension 1, and R : § — D is a smooth embedding.
This type of hybrid system has been mainly employed for the
understanding of locomotion gaits in bipeds and insects [3],
[13], [26]. In the situation where the vector field X is asso-
ciated with a mechanical system (Lagrangian or Hamiltonian),
alternative approaches for mechanical systems with unilateral
constraints have been considered in [9], [10], [14] and [15], and
hybrid port-hamiltonian systems in [21], but to the best of our
knowledge, the hybrid analogue for symmetry reduction has not
been widely discussed in the literature.

A hybrid scheme for Routh reduction for hybrid Lagrangian
systems with cyclic variables is found in [2] and [8], inspired
to gain a better understanding of bipedal walking models (see
also [3] and references therein). Symplectic reduction for hy-
brid Hamiltonian systems has been introduced in [1] and ex-
tended to time-dependent systems in [7]. This paper attempts
to go one step further and to consider symmetry reduction of
simple hybrid Hamiltonian systems with continuous-time dy-
namics described in terms of a Poisson bracket and symplectic
reduction for simple hybrid Lagrangian systems. Thus reduc-
tion by symmetries can be seen as the hybrid version of the
Poisson reduction theorem of [19] and the Lagrangian picture
of symplectic reduction is obtained from the Hamiltonian one
by adapting the scheme developed in [17] to the hybrid setting.

The paper is organized as follows. Sec. II presents the neces-
sary background on the geometry of mechanical systems. Sec.
IIT introduces the class of hybrid Lagrangian and Hamiltonian
systems under consideration and the corresponding relation be-
tween both formalisms. The existence of symmetries and their
associated conserved quantities are derived in Section IV to
present the symplectic reduction forsimple hybrid Lagrangian
systems, Finally, Sec. V derive sufficient conditions for the
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reduction of hybrid Poisson manifolds for simple hybrid Hamil-
tonian systems.

2. BACKGROUND AND NOTATION

Let (@ be the configuration space of a mechanical system, an
n-dimensional differentiable manifold. If (¢*, ..., ¢") are local
coordinates on (), the corresponding standard coordinates on
the tangent bundle 7'Q) and the cotangent bundle 7*() are, re-
SpeCtively’ (q17 ) qn7q.17 A 7q.n) and (q17 et q”?pl? AR 7p7l)5
where v, = qi(% and p, = p;dq’ for any v, € T,Q and
pq € T,Q (the cotangent space at ¢ € @, the dual of 7;Q).
Throughout the paper, we use these induced coordinates.

Definition 2.1. Consider a differentiable function f : Q — M
where () and M are smooth manifolds. The tangent lift (or
tangent map) of f at q € Q is the map T, f : T,Q — Ty yM
and the cotangent lift (or cotangent map) of f is the map
Tyf:T3M — T;Q defined by

(T f(as),vg) = (s, Ty f(vg)) (1)

where s € TS M, v, € T,Q, s = f(g) and (-, -) denotes how
tangent covectors act on tangent vectors.

Definition 2.2. Let P be a smooth manifold. A Poisson bracket
on P is a bilinear, skew-symmetric operator {-,-} : C*°(P) x
C>(P) — C°°(P) satisfying the Jacobi identity and Leibniz
rule. The pair (P,{-,-}) is called Poisson manifold. For any
Hamiltonian function H : P — R the Hamiltonian vector field,
X, describing the equations of motion, is uniquely determined
by F' = {F, H} for all smooth functions F' : P — R.

Consider the cotangent bundle of a manifold Q. For F, G €

C>*(T*Q) the pair (T*Q,{-,-}) is a Poisson manifold with
"~ (OF F

Poisson bracket { F, G} = ; (ng . g—g - g—pz : gg).This

bracket is called the canonical Poisson bracket [4].

3. SIMPLE HYBRID MECHANICAL SYSTEMS

Next, we recall some definitions about simple hybrid La-
grangian and Hamiltonian systems [2] and [1]. We also show
how trajectories of both types of hybrid system are related. For
more details on the class of hybrid system considered in this
work we refer to [16], [26].

3.1 Simple hybrid systems

Definition 3.1. A simple hybrid system is characterized by the
4-tuple 7 = (D,8, R, X), where D is a smooth manifold
(the domain), § is an embedded submanifold of D with co-
dimension one (the switching surface), R : § — D is a smooth
embedding (the impact map), and X is a smooth vector field on
D. The tuple D? := (D, 8, R) is called hybrid manifold.

The dynamics associated with a simple hybrid system is de-
scribed by an autonomous system with impulse effect as in
[26]. We denote by X, the simple hybrid dynamical system
generated by .7, that is,

S = {fb(t) = X(2(t)), = (t) ¢8
at(t) = Rz~ (1), a~(t) €8
ICR — D,and 27 (t) :=

lim+x(7-) are the left and right limits of the state trajectory
T—1

2

where x : lim z(7), 27 (t) :=
Tt~

x(t), respectively. These limits describe the states immediately
before and after the times when integral curves of X intersects
8 (i.e., pre and post impact of the solution z(¢) with §).

Definition 3.2. A solution for the simple hybrid system X » is
acurve x : [to,ty) — D, withty € RU {oo}, t; > o unique
from a given initial condition, depending continuously on it,
and satisfying:

i) = is right continuous on [to, ),

ii) left and right limits, denoted by ~ (¢) := lim x(7) and
T—1t"

xt(t) = lim+x(7), exist at each point ¢ € [to,ty),
T—>t
iii) there exists a closed discrete subset T C [to,ty), the
impact times, closed and discrete, such that
a) Vt ¢ T, a(t) is differentiable, 222 = X (2(t)) and

x(t) &8,
b) Vte T, 27 (t) € Sy a™(t) = R(x(t)).

Note that to exclude Zeno behavior, as in [26], we require that
8N R(8) = (), where R(8) denotes the closure as a set of R(S)
and the set of impact times is closed and discrete.

Definition 3.3. Let L : T(Q — R be a Lagrangian function. A
simple hybrid system 7 with D = T'QQ and X = X, where
X : TQ — T(TQ) is the Lagrangian vector field associated
with L is called simple hybrid Lagrangian system, and it will
be denoted by 77, = (T'Q, Sv, RL, X1.).

Definition 3.4. Let H : T*(@) — R be a Hamiltonian function.
A simple hybrid system 57 with D = T*Q and X = Xp,
where Xy : T*Q — T(T*Q) is the Hamiltonian vector field
associated with H is called simple hybrid Hamiltonian system,
and it will be denoted by #y = (T*Q, Su, Ru, Xu).

3.2 Relation between simple hybrid Hamiltonian and Lagrangian
systems

In the following we introduce hybrid flows and we provide a
Legendre transformation between the classes of simple hybrid
Lagrangian systems and simple hybrid Hamiltonian systems.

Definition 3.5. A hybrid flow for s, is a tuple Yt =
(A, J,%), where

i) A={0,1,2,...} C Nis a finite (or infinite) indexing set,
il) 3 = {I;}iea a set of intervals, called hybrid intervals,
where [; = [TiaTi-l—l] ifi,i+1 € Aand In_1 =
[TnN—1,7N] Or [TN—1,7N) OF [TN_1,00) if [A] = N, N
finite, with 7;, Ti+1,TN € Rand 7; < Tit1s
iil) € = {ci}ien is a collection of solutions for the vector
field X, specifying the continuous-time Lagrangian dy-
namics, i.e., ¢; = X (c;(¢)) for all ¢ € A, and such that
foreachi,i+ 1 € A,
@  ci(Ti41) € Sw,
(b) RL(Ci(Ti+1)) = Ci+1(7'¢+1)~

Analogously, one can define the notion of hybrid flow x”*# for
a simple hybrid Hamiltonian system, 7.

We will assume in this paper that the Lagrangian is hyper-
regular, i.e. that the Legendre transformation FL is a diffeo-
morphism between T'Q) and T (this is always the case for
mechanical Lagrangians). One can then work out the velocities
¢ in terms of (g,p) using the inverse of FL and define the
Hamiltonian function H: T*() — R as
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Definition 3.6. Given 1, = (TQ, SL, RL, Xr) and S =
(T*Q, Su, Ru, Xg) we define the Legendre transformation
between simple hybrid system FL zp : 547, — 77 as the appli-
cation between simple hybrid system satisfying the following
conditions:

i) FL(Dy) = Dg where FL : TQ — T*Q is the usual
Legendre transformation, i.e., FL : TQ — T*(Q is define
by (FL(vq),wq) = % t*OL(Uq + twg), with vy, w, €
T,Q.

ii) FL(SL) = Su.

111) FLo RL = RH o FL|SL-
iV) (FL)*XL = XH,

where (FL), X denotes the push forward of the Lagrangian
vector field by FL (see [4], Ch. 2).

Next, we show the relation between the hybrid flows for simple
hybrid Lagrangian and Hamiltonian systems.

Proposition 1. Given x”*= = (A, J, @) a hybrid flow for /3,
with initial condition (qo, do), then x”# = (A,d, (FL)(%¥))
with (FL)(%) = {(FL)(¢;) }iea is a hybrid flow for %3 with
initial condition (qo, po = FL(qo)).

Proof: As X; and Xy are FL-related by condition (iv), if
¢i(t) is an integral curve for Xy, ¢;(t) = (FL o ¢;)(t) is an
integral curve for X . By considering cq(¢) a solution with
initial condition ¢ = (qo,qo) defined on [rg, 71|, then &y (%)
is a solution with initial condition ¢y = (qo,po) defined on
[T0, 71]- In the same way, by taking ¢ (¢) to be a solution with
initial condition ¢; = (g1, ¢1) defined on [y, 72|, then & (¢) is
a solution with initial condition ¢; = (g1, p1) defined on the
same hybrid interval.

Proceeding inductively, one finds ¢;(t) = (g;, ¢;) defined on
[Ti, Ti+1]- We can observe that ¢ (t) satisfies that ¢;(m;11) € Su
and Ry (¢;(7i+1)) = €i+1(7i41). For the property of FL, we
have that

(1) EZ'(Ti+1) = (FLOCi)(TiJrl) = FL(C,L'(TZ'+1)) and giVCH that
¢i(Ti41) € Sy then ¢;(7;41) € Sm, because of condition
(ii) in Definition 3.6.

(11) RH(Ei(TiJrl)) = RH oFL o Ci(Ti+1) = FLo RL o
ci(Tit1) = FL o cip1(Tig1) = i1 (Tigr). O

Note that Proposition 1 implies, in particular, that the hybrid
flow 777, is mapped onto the hybrid flow .77 .The converse is
also true by using that FL is a diffeomorphism.

4. SYMPLECTIC REDUCTION OF SIMPLE HYBRID
SYSTEMS

In the following we provide some definitions and results about
hybrid actions [1] and we describe the symplectic reduction
for simple hybrid systems in the Hamiltonian and Lagrangian
pictures by employing Proposition 1.

4.1 Hybrid actions

Let 74, = (TQ, Si, R, X 1) be a simple hybrid Lagrangian
system. The starting point for symmetry reduction is a Lie
group action ¥: G x Q — @ of some Lie group G on the
manifold (). We will assume that all the actions satisfy some
regularity conditions so as to be able to carry out reduction (for
instance, one can consider free and proper actions).

There is a natural lift U7 of the action ¢ to T*Q, the
cotangent lift action, defined by \IJgT Q = T*1g-1. It enjoys
the following properties:

o UT"Q is a symplectic action, meaning that (\I'Z*Q)*Q =
Q, being €2 the canonical symplectic 2-form on 7% Q).

e It admits an Ad"-equivariant momentum map J: T*Q —
g* given by

<J(Qap)7£> = <p7 £Q>7 v€ €g,

where g denotes the Lie algebra of G and {p(q) =
d(Wexp(te)q)/dt is the infinitesimal generator of § € g.

Likewise, ¥7% denotes the tangent lift action on T'Q, defined
by WT9 = T,(q,q) (see [12] Ch. 6 for instance).

To perform hybrid reduction one needs to impose some compat-
ibility conditions between the action and the hybrid system (see
e.g. [2]). By an hybrid action on the simple hybrid Lagrangian
system .77, we mean a Lie group action ¢/: G X Q — @ such
that

e [ is invariant under U9 je. L o UTQ = [

e UTQ regtricts to an action G on Si..

e Ry is equivariant with respect to the previous action,
namely Ry, o U9 |5, = UT@ o Ry,

Note that U'7% admits an Ad*-equivariant momentum map .J, :
TQ — g* given by J, = J o FL. This follows directly from
the invariance of L, since it implies that FL is an equivariant
diffeomorphism, i.e. FL o \IIEQ = \115*@ oFL.

The hybrid equivalent of momentum map is the notion of hybrid
momentum map introduced in [1]. Denoting by i: Sy — T*Q
the canonical inclusion, J is an hybrid momentum map if the
following diagram commutes

J .nsfﬂ 7 3

TQ U Su TQ

4.2 Symplectic reduction of simple hybrid Lagrangian systems

For the Lagrangian side, one needs a further regularity condi-
tion, sometimes referred to as G-regularity, which is satisfied
by mechanical Lagrangians. Precisely, one has the following
definition (see [17]):

Definition 4.1. Let L be an invariant Lagrangian on 7'Q) and
denote by £ the infinitesimal generator for the associated
action. We say that L is G-regular if, for each v, € T'Q), the
map

I e—g,
E—Jp (Uq + gQ(Q)) y Vg € TqQa

is a diffeomorphism.

In a nutshell, G-regularity amounts to regularity “with respect
to the group variables”. From now on we will assume that the
Lagrangian is G-regular.

Consider a simple hybrid Lagrangian system 7, equipped
with an hybrid action ¥. We begin by analyzing the reduction
of the associated hybrid Hamiltonian system .77 given by
Proposition 1.
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Consider a hybrid regular value n € g* of J: T*Q —
g*, which means that g is a regular value of both J and
J |su: Su — g*. When we combine this definition with the
commutative diagram (3), we obtain that the following diagram

Ryl sy

T ) —— T |5, (1) T ()
T'Q ———— Sy — " T"Q

commutes, where J () and J |§f11 (1) are embedded sub-
manifolds of 7%() and Sy, respectively.

We can apply a hybrid analog of the symplectic reduction
Theorem given in [20] to the hybrid Hamiltonian system .77 .
Note that, since L is invariant under ¥7'9, so is the Hamiltonian
H under ¥7" @ The main conclusions are:

(i) The reduced space J~'(u)/G,, (with G, the isotropy
group of p under the coadjoint action) is a symplectic
manifold, and the reduced symplectic structure €, is
characterized in terms of the submersion 7, : J () —
J~1(u)/G,, and the inclussion i, : J~'(u) < T*Q by
means of the relation 7, €2, = iy, (2.

(ii) If we denote by H, the reduction of H | J-1(p) 1o
J~1(u)/G ., the evolution vector field Xy projects onto
Xn,.

(iii) J |§p11 (n) C Su is G-invariant and hence reduces
to a submanifold of the reduced space which we denote
(Su)u C J7H(1)/G.

(iv) Again, using invariance Ry reduces to a map

(Rax)pu: (Se)u — T~ (1)/ G-

The reduction picture on the Lagrangian side can now be
obtained from the Hamiltonian one by adapting the scheme
developed in [17] to the symplectic setting. The key idea
is that, since L is invariant and hyperregular, the Legendre
transformation FL is a diffeomorphism such that:

e It is equivariant with respect to W79 and U7 @,

e Preserves the level sets of the momentum map, that is,
FL(J, (1) = T~ (),

e Relates both symplectic structures, that is, (FL)*Q = Q,
where (2, is the Poincaré-Cartan two-form.

It follows that the map FL reduces to a symplectomorphism
(FL)rea between the reduced spaces. Therefore we get the
following commutative diagram of hybrid manifolds:

(TQ, St, Ry,) ———~—— (T*Q, S, Ru)

Redi J{Red.

(]FL)red

Let us denote: (1) p; the momentum of the system in I; =

[7i, Tit1], (2) Ry, the reduction of (Rg),,, and (3) S, the

reduction of J | ¢-1 (p;). There is a sequence of reduced HHS’s
H

[7-0»7—1] id} (J_l(/J/O)/G,um HlthMov RMO)

Colli lColl‘

[71»7—2] Redy (Jil(:ul)/vaHM?SHNRM)

Colll lColl.

() —Rd ()

The same can be stated for Lagrangian hybrid flows by employ-
ing Proposition 1. As was remarked in [1], the reconstruction
procedure from the reduced hybrid flow to the Hamiltonian
hybrid flow involves a recursive integration at each stage in
the previous diagram using the solution of the reduced HHS.
Roughly speaking, this accounts to imposing the momentum
constraint on the reconstructed solution.

5. POISSON REDUCTION OF SIMPLE HYBRID
SYSTEMS

Next, we present the reduction by symmetries for simple hybrid
Hamiltonian systems as the reduction of hybrid Poisson mani-
folds.

Definition 5.1. A hybrid Poisson manifold is determined by
a 4-tuple 55 = (D,8,R,{-,-}), where D is a smooth
manifold, the domain, $ is an embedded submanifold of D
with co-dimention one, the switching surface, R : § — D is
a smooth embedding, the impact map and {-,-} is a Poisson
bracket on D.

The dynamics associated with a hybrid Poisson manifold is
described by an autonomous system with impulse effect. We
denote by X ¢ ... the dynamics generated by the hybrid Pois-

son manifold 77,5, that is,
v _ [ =1{a0).H} 2 (1) ¢S,
poise () = R(z~ (1), 2~ (t) €8
Definition 5.2. Let Hpiss = (D,8,R,{-,-}) be a hybrid
Poisson manifold, and ¢ : G x D — D be an action of a Lie

group G on D. v is a hybrid Poisson action if ¢|s is a Poisson
action of G on 8 and for all g € G and F, W € F(D) satisfies

{F,Whoty ={F o1y, Wot}
together with
{M,N}otpy|ls = {Mopy|s, Noyyls}, forall M, N € F(8).

The action 1 is called a hybrid Poisson free and proper action,
if ¢ is a free and proper action and it is also a hybrid Poisson
action.

(JL_l(u)/GM, (SL) s (RL)p) = (J () /G, (Su) iy (Re),.) Given a hybrid Poisson manifold 54,55 = (D,S,R,{-,-}),a

Special care should be taken when translating the reduction
technique to hybrid systems. The reason is that the collisions
with the switching surface will, in general, modify the value of
the momentum map. Therefore, if J = {I;};ca is the hybrid
interval (see Definition 3.5), the reduced hamiltonian has to
be defined in each I; taking into account the value of the
momentum ; after the collision at time 7;. Note that this also
has influence on the way the impact map R is reduced.

Lie group of G and a hybrid Poisson action 1, we define the
hybrid orbit space associated to the hybrid Poisson action by
(D/G)iss .= (D/@G,S/G, R) where D/G and S/G are
the orbit spaces obtained through ¢ and 1)|g, respectively, and
R:8/G — D/G is the impact map induced in the orbit space.
That is, if 7 : D — D/G is given by w(x) = [z] € D/G (the
application shifting « in the ¢-orbit of z, i.e., x ~ 94(x) for
all g € G, being ~ the equivalence relation defining the orbit
space), then R([z]) = [R(z)] = m(R(x)).
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Proposition 2. Let G be a Lie group and ¢ a hybrid Poisson
action which acting on the hybrid Poisson manifold .72;ss.
Assume that D/G and 8§/G are differentiable manifolds and,
m:D — D/Gand r|g : 8§ — 8§/G are submersions, on D/G
and 8/G respectively. Then, there is a unique Poisson bracket
{", }red on D /@ called reduced Poisson bracket, such that
{F,K},eqom:={Fom, Kor} 4)

and

{M,N}redo7T|S Z:{MOTFLS,NO’/T‘S} (5)
forall F, K € F(D/G)and M, N € F(8/G) so that 7,55 =
(D/G,8/G, R,{-, }reaq) is a hybrid Poisson manifold.

Proof: For each F, K € F(D/G) and g € G, since ) is a
hybrid Poisson action and 7 is G-invariant, it follows that
{Fom,Korn}ot, = {Fomot)y, Komoip,} = {Fom, Kor},
and therefore {F o 7, K o 7} is G-invariant.

Observe that for each M, N € F(8/G) and g € G, since ¢
is a hybrid Poisson action and 7|g is G-invariant, we have that
{Mom|s, Nom|s}otpy = {Mom|soryy, Nom|gothy} = {Mo
7|s, N om|s} and therefore {M o 7|g, N o7|s} is G-invariant.
The functions {F o w, K o w} and {M o 7|g, N o m|g} can
be expressed as 5 o 7 and (g o 7|s, respectively, for 8 €
F(D/G)and B|s € F(8/G). We denote (3 as { F, K },.q, which
defines a Poisson bracket {-, - },eq on D/G, since it satisfies the
equations (4) and (5). Note that {-, -},.q is the unique Poisson
bracket on D /G defined by 7. Then (D/G, S/G, R, {-, -} req)
is a hybrid Poisson manifold. (|
Definition 5.3. If H : D — R is a G-invariant function on
D, then the reduced function H,.q : D/G — R on D/G is
determined univocally by the relation H,.q 0o m = H.

Proposition 3. Consider %05 and L%%m-ss as in Proposition
2. If x7eeiss (1) is a hybrid flow for 7,5 with zq €
D, then the hybrid flow y”%»oiss associated with a reduced

hybrid Poisson manifold %%,m»ss is given by X‘%A}wiss (m(x0)) =
(A, d,7(C)), where 7(C) := {m(c;) : ¢; € C}and C, A, J are
given as in Definition 3.5.

Proof: Let c°d(t) = 7|s(c;(t)). We must check that 74 (7; 1) €

s
8/G and R(cj*(7i11)) = ¢4 (Tig1):
i) cr(1;11) = 7|s(ci(mi41)) and given that ¢;(7;41) € 8
then C;—Acd(TH_ﬁ S S/G
i) R(cj*!(rit1)) = R(r[s(ci(rit1))) = m(R(ci(Ti41))) =
(Cir1(Tit1)) = 51 (Tie1). O
Remark 1. Let s = (D,8,R,{-,-}) a hybrid Poisson
manifold, and J : D — g* an Ad"-equivariant hybrid mo-
mentum map. Let ;1 € D be a hybrid regular value of J. If D
is a symplectic manifold then the reduced Poisson structure on
J=1(p)/G,, is just the reduced symplectic structure €2, defined
on Section 4.2.

Remark 2. We are using the notion of hybrid Poisson manifold
and not deriving a hybrid Poisson bracket. The non-existence
of a hybrid Poisson bracket has been commented in [6]

5.1 Example: Spherical pendulum hitting a surface
Consider an inverted spherical pendulum with length R hitting

on a surface. The configuration space is Q = S? with local
coordinates ¢ = (6, ) € S?. The associated momentum for q is

denoted by p € Ty S%, p = (ps, ;). The Hamiltonian function
H : T*S? — R for the system is given by H (6, ¢, pg, p,) =

2
e (P + sy ) — myRcos(6).

Consider the function h : S?> — R given by hp(f,¢) =
R cos(f) describing the impact of the pendulum with the sur-
face. Then, the associated simple hybrid Hamiltonian system
Ay is given by #y = (D, Su, Ru, Xy ) where

i) D ={(6,¢,pg,py,) € T*S?: cos(f) > 0} is the domain,

i) Su = {(0,¢,p0,pp) € T*S? | cos(d) =0 and pg > 0}
is the switching surface,

iii) Ry (0,9, p0,p,) = (0,9, —€ps, ) is obtained by using
the so-called impact equation [1; 5] where 0 < e < 11is the
coefficient of restitution, which is a measure of the energy
dissipated through the impact, e.g., for a perfectly elastic
impact e = 1, and for a perfectly plastic impact e = 0.

iv) The Hamiltonian vector field Xz is given by

2
p2, cos(0)
XH(g,p) = Po_. Pe L
mR2 mR2sin2(0) mR2sin3(0)

The Poisson bracket {-, -}g2 : F(S?) x F(S?) — F(S?) is
ol 2000 0f 00 0709 Of 0
DI T 90 Opy | DpOp,  Ops 00 Op, Op

Therefore ;0i5s = (D, Su, Ru, {+, - }s2) is a hybrid Poisson
manifold and by using the Poisson bracket and the fact that
¢ ={q,H} and p = {p, H}, Hamilton equations are

— mgRsin(6), 0 ) .

A Do . Py
0 == 97H = 5 = )H =,
t J mR? # = {o M} mR2 sin® 0
2
. P, cos 6 ) )
Po ={pe, H} = Lp73 —mgRsiné, p, = {p,, H} = 0.
mR?sin” 0

Let G = S! which acts by rotations about the vertical axis, i.e.,
1+ St x §? — S? is the action given by ¥ (c, (6, ¢)) = (0, a+
). The cotangent lift action on T*S?, ie. WT™* . S x
T*S? — T*S?, is given by U7 (a, (6, ¢, pp, p,))) = (0. ¢ +
a, pg,pw). Let’s check it is also a hybrid Poisson action, i.e.,
{,9}s2 0 UTF = {fo 0T gouT T}, (6)
for functions f,g : T*S? — R. Denote by Fy (0, ¢, pg, py) =

0, F5(0, ¢, po,py) = ¢, F3(6, ¢, p9,pp) = py and
Fy(0,¢,p0,p,) = p,. Then, for the left side of equation (6),

{ sz [0 [ [ po|pp
0 0]0 1 0
%) 0]01]0 1
0 TT0 0] 0
Dy 0[-T[0] 0

Therefore,

L [LiEf=0,9=poor f=p, g=p,
{f,9}s200™ ™% = ¢ —1if f=pg, g=0or f =p,, g=¢
0, in another case

For the right side of equation (6) we have

{, sz 00 wTs? <po\IlT*S2 Do 0 gT™s” ptpo\IlT*S2
90 wT s 0 0 1 0
powT’s 0 0 0 1
pg o WT™S? -1 0 0 0
p, o WIS 0 I 0 0
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Therefore, T*S? is an hybrid Poisson action.

Next, we describe the reduced hybrid Poisson manifold. Let

D/G = T*S*/S* ~ T*(S?/Z'), where S?/Z' ~ (0,27).

The reduced Hamilton H, .4 : T*S? / S! — R is obtain by
Hyea(0,p0,1p) = H(0,0,p0,0,) 0 T(0, 0, P8, D),

and it is given by

2
Hrea(0,00,0p) = sz (pg + gﬂ‘%) — mgR cos(6),

where 7 : T*S? — T*S?/S! is the projection map given by
(8, ,p0,P,) = (6,00, p,). The reduced Poisson bracket is
. ghea =0 00010505 05

pg 0 Op, Op
Using the reduced Poisson bracket, we obtain the reduced
Hamilton equations

; Po .

0 :{07 Hred} = W» Py = {pgo; Hred} =0. (7
pi cos 6
mR2 sin® 6
Therefore %,0iss = (D/G,S/G,R,{-, }red) 1s a reduced

hybrid Poisson manifold with
i) D/G ={(0,0,pg,p,) € T*S?/S" : cos(0) >
i) S/G ={(6,0,pp,p,) € T*S?*/S' : cos(h) =
111) R(97 07p97p<,0) = (95 —€p9).
Note that, by using equation (7), we have that p, = p = cte,
and by using this conserved quantity we can recover the same

expression for the reduced equations as the ones given in the
symplectic reduction of hybrid Hamiltonian systems in [1].

Po ={po, Hyea} = —mgRsin 6. (®)

0},
0, pg > 0},

CONCLUSION

In this paper we have described symmetry reduction of simple
hybrid Lagrangian and Hamiltonian systems with symmetries.
In particular, we provided sufficient conditions for the symplec-
tic reduction of simple hybrid Lagrangian systems and Poisson
reduction of simple hybrid Hamiltonian systems.
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