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Abstract

We consider manifold-knot pairs (ý, ÿ), where Y is a homology 3-sphere that bounds a homology 4-ball. We show

that the minimum genus of a PL surface Σ in a homology ball X, such that ÿ (ÿ,Σ) = (ý, ÿ) can be arbitrarily

large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from (ý, ÿ) to any knot

in ÿ3 can be arbitrarily large. The proof relies on Heegaard Floer homology.
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1. Introduction

Every knot K in ÿ3 bounds a piecewise-linear (PL) disk in the 4-ball, namely, by taking the cone on

the pair (ÿ3, ÿ) (this disk in not locally flat, and throughout, we will not impose any local-flatness

conditions on our PL surfaces). Resolving a conjecture of Zeeman [12], Akbulut [1] gave an example of

a contractible 4-manifold X and a knot ÿ ⊂ ÿÿ , such that K does not bound a PL disk in X. However,

Akbulut’s K does bound a PL disk in a different contractible 4-manifold ÿ � with ÿÿ � = ÿÿ . Levine

[5] proved the stronger result that there exist manifold-knot pairs (ý, ÿ), such that Y bounds a smooth,

contractible 4-manifold X and that K does not bound a PL disk in X nor in any other integer homology

ball ÿ � with ÿÿ � = ý . In light of Levine’s [5] result, a natural question to ask is: Given a knot K in

an integer homology 3-sphere Y, such that Y bounds an integer homology 4-ball, what’s the minimum

genus of a PL surface Σ in an integer homology ball X, such that ÿ (ÿ, Σ) = (ý, ÿ)? We observe that

such a surface Σ always exists, since K is null-homologous and thus bounds a surface in Y, which may

be pushed slightly into any bounding 4-manifold.

Our main result is that this notion of PL genus can be arbitrarily large. Throughout, let (ýÿ, ÿÿ) =�
ÿ3
−1
(ÿ2ÿ,2ÿ+1)# − ÿ3

−1
(ÿ2ÿ,2ÿ+1), ÿ2ÿ−1,−1#ý

�
, where ÿ2ÿ−1,−1 denotes the (2ÿ − 1,−1)-cable of the

meridian in ÿ3
−1
(ÿ2ÿ,2ÿ+1) and U denotes the unknot in −ÿ3

−1
(ÿ2ÿ,2ÿ+1).
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Theorem 1.1. Any PL surface Σ in any integer homology ball X, such that ÿ (ÿ, Σ) = (ýÿ, ÿÿ) must

have genus at least ÿ − 1, for ÿ ∈ Z>0.

We prove Theorem 1.1 by reinterpreting PL surfaces in terms of cobordisms inside of homology

cobordisms. Recall that a homology cobordism from ý0 to ý1 is a smooth, compact 4-manifold W, such

that ÿÿ = ý0 �ý1 and that the map ÿ∗ : ÿ∗(ý ÿ ;Z) → ÿ∗(ÿ ;Z) induced by inclusion is an isomorphism

for ÿ = 0, 1. Let Σ be a genus g PL surface in an integer homology ball X, such that ÿ (ÿ, Σ) = (ýÿ, ÿÿ).

Up to isotopy, we may assume that Σ is smooth, except at finitely many singular points, each of which

is modeled on the cone of a smooth knot ýÿ in ÿ3 (see, for example, [4, Theorem A.1]). By deleting

neighborhoods of arcs in Σ connecting the cone points, we obtain a genus g cobordism from the knot

ý = ý1# . . . #ýÿ to K in a homology cobordism from ÿ3 to Y.

Let K be a knot in a homology null-bordant homology sphere Y. We consider cobordisms of pairs

(ÿ, ÿ) : (ÿ3, ý) → (ý, ÿ),

such that W is a homology cobordism from ÿ3 to Y. The cobordism distance between (ý, ÿ) and (ÿ3, ý)

is the minimal genus of S in any such pair (ÿ, ÿ). By the preceding discussion, Theorem 1.1 is an

immediate consequence of the following result.

Theorem 1.2. The cobordism distance between (ýÿ, ÿÿ) and any knot in ÿ3 is at least ÿ − 1.

We prove Theorem 1.2 using Heegaard Floer homology [8], specifically Zemke’s cobordism maps

[13]. Our obstruction relies on two key properties:

1. Consider a cobordism of pairs

(ÿ, ÿ) : (ÿ3, ý) → (ýÿ, ÿÿ),

where W is a homology cobordism and S has genus g. For any (ý1, ý2) ∈ (2Z)2, such that ý1+ý2 = −2ý

and ý1, ý2 ≤ 0, there exists a local map

ÿÿ ,ÿ : CFK(ÿ3, ý) → CFK(ýÿ, ÿÿ)

with bigrading (ý1, ý2). Similarly, we may consider a cobordism in the opposite direction, from

(ýÿ, ÿÿ) to (ÿ3, ý) (see [13, Theorems 1.4 and 1.7]).

2. The Heegaard Floer homology of ÿ3 is especially simple; namely, HF− (ÿ3) = F[ý]. In particular,

U acts nontrivally on any nontrivial element of HF−(ÿ3), or equivalently, HF− (ÿ3) contains no

U-torsion.

The proof of Theorem 1.2 relies on showing that CFK(ýÿ, ÿÿ) is sufficiently complicated so as to not

admit local maps to and from CFK(ÿ3, ý) of certain bigradings (see Section 2 for more details).

For constructing our examples (ýÿ, ÿÿ), we rely on recent work of the last author [14], which

combines work of Hedden-Levine [3] and Truong [11] to give a description of the knot Floer complex

for (ý, 1)-cables of the meridian in the image of surgery along a knot in ÿ3. Preliminaries on this filtered

mapping cone are given in Section 3 and the computation is carried out in Section 4.

2. Cobordism obstruction

In this section, we introduce a cobordism obstruction for manifold-knot pairs and prove Theorem 1.2

by applying the obstruction to the pairs (ýÿ, ÿÿ), calling upon the computational results in the later part

of the paper. In addition, we compute the values of the concordance homomorphisms ÿÿ, ÿ of [2] on the

family (ýÿ, ÿÿ), which may be of independent interest.

We start with some preliminaries on knot Floer homology. Knot Floer homology was defined by

Ozsváth-Szabó [7] and Rasmussen [10]. We associate, following the conventions of Zemke [13], to a

manifold-knot pair (ý, ÿ) a chain complex CFKF[U ,V ] (ý, ÿ) = CFK(ý, ÿ) over the polynomial ring
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F[U ,V],where F = Z/2Z, called the knot Floer complex. This chain complex is a free module generated

by intersecting points of two Lagrangians in a symmetric product of a Heegaard surface, equipped

with differentials by counting holomorphic disks, weighted over the intersection numbers with the two

basepoints. The topological invariance of CFK(ý, ÿ) up to chain homotopy equivalence over F[U ,V]

is due to Ozsváth-Szabó and Rasmussen.

The knot Floer complex CFK(ý, ÿ) comes with a bigrading, namely (grU , grV ), where U ,V , and ÿ

each have bigrading (−2, 0), (0,−2) and (−1,−1), respectively. The Alexander grading of a homoge-

neous element ý ∈ CFK(ý, ÿ) is defined by ý(ý) = 1
2
(grU (ý) − grV (ý)).

A chain map between two complexes is called a local map if it induces an isomorphism on the (U ,V)-

localized homology. Following from a special case of [13, Theorem 1.4], the next theorem provides the

main technical input for the obstruction.

Theorem 2.1 (Theorem 1.4 in [13]). Suppose that (ÿ, ÿ) : (ý1, ÿ1) → (ý2, ÿ2) is a cobordism between

the manifold-knot pairs (ý1, ÿ1) and (ý2, ÿ2), such that W is a homology cobordism and S is of genus

ý. Then, for any given (ý1, ý2) ∈ (2Z)2, such that ý1 + ý2 = −2ý and ý1, ý2 ≤ 0, there exists a local map

ÿÿ ,ÿ : CFK(ý1, ÿ1) → CFK(ý2, ÿ2)

with bigrading (ý1, ý2).

In particular, when ý(ÿ) = 0, namely, when (ý1, ÿ1) and (ý2, ÿ2) are homology concordant, then the

cobordism map ÿÿ ,ÿ is a local map that preserves the bigrading.

Definition 2.2. Two bigraded chain complexes ÿ1 and ÿ2 over F[U ,V] are locally equivalent if there

exist bigrading-preserving local maps

ÿ : ÿ1 → ÿ2 and ý : ÿ2 → ÿ1.

It is straightforward to verify that local equivalence is an equivalence relation. By turning the

cobordism around, we thus obtain that homology concordance induces local equivalence of the knot

Floer complexes. Since the cobordism distance is invariant over the homology concordance class, we

study the local equivalence class of the knot Floer complexes of the interested manifold-knot pairs.

Due to computational reasons, it is somewhat easier to first consider

−(ýÿ, ÿÿ) = −
�
ÿ3
−1 (ÿ2ÿ,2ÿ+1)# − ÿ3

−1 (ÿ2ÿ,2ÿ+1), ÿ2ÿ−1,−1#ý
�
,

that is, the orientation reversal of the manifold-knot pairs that appear in the Section 1. Observe that

−(ÿ3
−1
(ÿ2ÿ,2ÿ+1), ÿ2ÿ−1,−1) is equivalent to (ÿ3

1
(−ÿ2ÿ,2ÿ+1), ÿ2ÿ−1,1). According to Lemma 4.3, over

the ring F[ý,ý−1], the complex ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1)"2ÿ − 1" represents the local equivalence class of

CFK∞(ÿ3
1
(−ÿ2ÿ,2ÿ+1), ÿ2ÿ−1,1) for all ÿ ≥ 3 (see the beginning of Section 3 for more about the knot

Floer complex CFK∞ (ý, ÿ) defined over the ring F[ý,ý−1]).

Recall that the knot Floer complex enjoys a Künneth principle by [7, Theorem 7.1]. Since

−(ýÿ, ÿÿ) =
�
ÿ3

1
(−ÿ2ÿ,2ÿ+1), ÿ2ÿ−1,1

�
#
�
ÿ3
−1
(ÿ2ÿ,2ÿ+1),ý

�
, the knot Floer complex of the pair −(ýÿ, ÿÿ)

is locally equivalent to CFK∞(ÿ3
1
(−ÿ2ÿ,2ÿ+1), ÿ2ÿ−1,1) tensored with a trivial complex, with the Maslov

grading adjusted such that the tensored complex has d–invariant equal to 0. Translate this into the ring

F[U ,V]; for ÿ ≥ 1, let ÿÿ denote the complex corresponding to ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1)"2ÿ − 1", with a

(ý (ÿ3
−1
(ÿ2ÿ,2ÿ+1)), ý (ÿ

3
−1
(ÿ2ÿ,2ÿ+1))) bigrading shift. Then ÿÿ represents the local equivalence class of

the complex CFKF[U ,V ] (−(ýÿ, ÿÿ)) (see Figure 3 for an example when ÿ = 3).
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Figure 1. The complex ÿ∗
3
, defined to be the dual complex of ÿ3. The axes indicate the U and V

actions. The solid dots are generators, marked abstractly, missing actual U ,V decorations, and the

edges represent the differentials.

Proposition 2.3. For ÿ ≥ 3, the complex ÿÿ is characterized by

ÿÿý =

⎧⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

U
ÿ(ÿ−1)

2 V
ÿ(ÿ−1)

2 ÿ
(1)

ÿ−1
, ý = 1

U
ÿ(ÿ+1)

2
−ý+1V

ÿ(ÿ+1)
2 ÿ

(ý−1)
ÿ + U

ÿ(ÿ−1)
2 V

ÿ(ÿ−1)
2 ÿ

(ý)

ÿ−1
, 2 ≤ ý ≤ ÿ − 2

U
ÿ(ÿ−1)

2
+ÿ−ý+1V

ÿ(ÿ+1)
2 ÿ

(ý−1)
ÿ + U

ÿ(ÿ+1)
2 V

ÿ(ÿ−1)
2

−ÿ+ý+1ÿ
(ý)
ÿ ÿ − 1 ≤ ý ≤ ÿ + 1

U
ÿ(ÿ−1)

2 V
ÿ(ÿ−1)

2 ÿ
(ý−1)

ÿ+1
+ U

ÿ(ÿ+1)
2 V

ÿ(ÿ−1)
2

−ÿ+ý+1ÿ
(ý)
ÿ , ÿ + 2 ≤ ý ≤ 2ÿ − 2

U
ÿ(ÿ−1)

2 V
ÿ(ÿ−1)

2 ÿ
(2ÿ−2)

ÿ+1
, ý = 2ÿ − 1

(1)

ÿ�ÿý =
�
Uÿÿ

(ý)
ÿ + Vÿ−ý−1ÿ

(ý)

ÿ−1
, 1 ≤ ý ≤ ÿ − 2

U ý−ÿÿ
(ý)

ÿ+1
+ Vÿÿ

(ý)
ÿ , ÿ + 1 ≤ ý ≤ 2ÿ − 2.

(2)

Proof. This is a direct translation from Lemma 4.4. �

This allows us to compute the values of the family of concordance homomorphisms ÿÿ, ÿ defined in

[2, Definition 8.1], as follows.

Proposition 2.4. For each ÿ ≥ 3, we have

ÿÿ,0(ÿÿ) =

�
−1, 1 ≤ ÿ ≤ ÿ − 2

−ÿ + 2, ÿ = ÿ.
(3)

ÿ ÿ(ÿ−1)
2

,
ÿ(ÿ−1)

2

(ÿÿ) = −ÿ + 2, (4)

ÿ ÿ(ÿ+1)
2

, ÿ
(ÿÿ) = −1,

ÿ(ÿ − 1)

2
≤ ÿ ≤

ÿ(ÿ + 1)

2
− 1, (5)

and ÿÿ, ÿ (ÿÿ) = 0 for all other i and ÿ .
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Proof. The complexes over F[U ,V] can be translated to complexes over the ring X defined in [2] using

the maps

U ↦−−−−−→ ýý +ÿÿ ,0

V ↦−−−−−→ ýÿ +ÿý,0.

Due to its simple form, it is not hard to formulate a change of a basis under whichÿÿ becomes a standard

complex (see [2, Section 5.1]). In particular, the invariants ÿÿ of ÿÿ with i odd (see [2, Definition 6.1])

are given by the sequence

�
−
�ÿ(ÿ − 1)

2
,
ÿ(ÿ − 1)

2

�
,−(ÿ, 0),

����������������������������������������������������������������������������
repeats ÿ−2 times

· · · ,−
�ÿ(ÿ + 1)

2
,
ÿ(ÿ − 1)

2

�
,−

�ÿ(ÿ + 1)

2
,
ÿ(ÿ − 1)

2
+ 1

�
,

−
�ÿ(ÿ + 1)

2
,
ÿ(ÿ − 1)

2
+ 2

�
,−(1, 0), · · · ,−

�ÿ(ÿ + 1)

2
,
ÿ(ÿ − 1)

2
+ ý + 1

�
,−(ý, 0)

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
for 1≤ý≤ÿ−2

, · · ·

�
.

The computations for the values of ÿÿ, ÿ (ÿÿ) immediately follow. �

Similarly, for the case ÿ = 2, Lemma 4.5 yields the following.

Lemma 2.5. We have

ÿ3,1 (ÿ2) = ÿ3,2 (ÿ2) = −1,

and ÿÿ, ÿ (ÿ2) = 0 for all other i and ÿ .

As a consequence, we can compute the ÿ invariant of the manifold-knot pair (ýÿ, ÿÿ).

Proposition 2.6. For all ÿ ≥ 1,

ÿ(ýÿ, ÿÿ) = 2ÿ2 − 3ÿ + 1.

Proof. The ÿ invariant can be computed from ÿÿ, ÿ by [2, Proposition 1.4]. For ÿ ≥ 3,

ÿ(ÿÿ) = ÿ(−ÿ + 2) −

ÿ−2�

ÿ=1

ÿ −

ÿ�

ÿ=1

ÿ

= −2ÿ2 + 3ÿ − 1.

When ÿ = 2,

ÿ(ÿ2) = −1 − 2 = −3.

The complex ÿ1 is locally trivial, so ÿ(ÿ1) = 0. The result now follows from the fact that ÿ is additive

in the concordance group. �

According to [7, Proposition 3.8], the knot Floer complex of the mirror knot is the dual complex to

the original knot. Therefore, the local equivalence class of CFK(ýÿ, ÿÿ) is given by the dual complex

of ÿÿ; denote it by ÿ∗
ÿ. Denote by ÿ∗ý and �ÿ∗ý the dual of ÿý ,�ÿý , respectively, and similarly denote by

ÿ
∗, (ý)
ÿ

the dual of ÿ
(ý)
ÿ

.

Proposition 2.7. For ÿ ≥ 3, the complex ÿ∗
ÿ is characterized by the following

ÿÿ
∗, (ý)

ÿ−1
= U

ÿ(ÿ−1)
2 V

ÿ(ÿ−1)
2 ÿ∗ý + V

ÿ−ý−1�ÿ∗ý , 1 ≤ ý ≤ ÿ − 2 (6)
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ÿÿ
∗, (ý)
ÿ =

⎧⎪⎪⎪«
⎪⎪⎪¬

U
ÿ(ÿ+1)

2
−ýV

ÿ(ÿ+1)
2 ÿ∗

ý+1
+ Uÿ�ÿ∗ý , 1 ≤ ý ≤ ÿ − 2

U
ÿ(ÿ+1)

2 V
ÿ(ÿ−1)

2
−ÿ+ý+1ÿ∗ý + U

ÿ(ÿ+1)
2

−ýV
ÿ(ÿ+1)

2 ÿ∗
ý+1
, ÿ − 1 ≤ ý ≤ ÿ

U
ÿ(ÿ+1)

2 V
ÿ(ÿ−1)

2
−ÿ+ý+1ÿ∗ý + Vÿ�ÿ∗ý , ÿ + 1 ≤ ý ≤ 2ÿ − 2

(7)

ÿÿ
∗, (ý)

ÿ+1
= U

ÿ(ÿ−1)
2 V

ÿ(ÿ−1)
2 ÿ∗ý+1 + U

ý−ÿ�ÿ∗ý , ÿ + 1 ≤ ý ≤ 2ÿ − 2. (8)

Proof. This follows from Proposition 2.3 and the fact that ÿ∗
ÿ is the dual complex of ÿÿ. �

We record a few salient features of the complex ÿ∗
ÿ for ÿ ≥ 3 from Proposition 2.7:

Lemma 2.8. We have the inequalities

grV ÿ
∗
ý , grV �ÿ∗ý ≤ grV ÿ

∗
ÿ − 2ÿ, for ý ≤ ÿ − 1.

Similarly,

grU ÿ
∗
ý , grU �ÿ∗ý ≤ grU ÿ

∗
ÿ − 2ÿ, for ý ≥ ÿ + 1.

Proof. We have

grV ÿ
∗
ÿ−1 = grV ÿ

∗
ÿ − 2ÿ.

Note also the equalities:

grV �ÿ∗ý = grV ÿ
∗
ý+1 − ÿ(ÿ + 1) for 1 ≤ ý ≤ ÿ − 2 (9)

grV �ÿ∗ý = grV ÿ
∗
ý − ÿ(ÿ − 1) + 2(ÿ − ý − 1) for 1 ≤ ý ≤ ÿ − 2. (10)

In particular,

grV ÿ
∗
ý ≤ grV ÿ

∗
ý+1 − 2ÿ − 2

for 1 ≤ ý ≤ ÿ − 2.

From here, the claim of the lemma follows for ÿ∗ý for all 1 ≤ ý ≤ ÿ − 1. The statement for �ÿ∗ý follows

from (9).

The case of grU follows similarly, where we use

grU ÿ
∗
ÿ+1 = grU ÿ

∗
ÿ − 2ÿ,

and also calculate:

grU �ÿ∗ý = grU ÿ
∗
ý − ÿ(ÿ + 1) for ÿ + 1 ≤ ý ≤ 2ÿ − 2 (11)

grU �ÿ∗ý = grU ÿ
∗
ý+1 − ÿ(ÿ − 1) + 2(ý − ÿ) for ÿ + 1 ≤ ý ≤ 2ÿ − 2. (12)

In particular,

grU ÿ
∗
ý+1 ≤ grU ÿ

∗
ý − 2ÿ − 2

for ÿ + 1 ≤ ý ≤ 2ÿ− 2. From here, the claim of the lemma follows for ÿ∗ý for all ÿ + 1 ≤ ý ≤ 2ÿ − 1. The

statement for �ÿ∗ý follows from (11). �

Lemma 2.9. For ÿ ≥ 3, let ÿ : ÿ∗
ÿ → ÿ∗

ÿ be a chain map of bigrading (ý1, ý2), where ý1 > −2ÿ and

ý2 > −2ÿ. Then, ÿ(ÿ∗ÿ) is either an F[U ,V]-multiple of ÿ∗ÿ or 0.

https://doi.org/10.1017/fms.2023.126 Published online by Cambridge University Press



Forum of Mathematics, Sigma 7

Proof. By Lemma 2.8, all of the other generators of ÿ∗
ÿ, which are cycles, have either U -grading or

V-grading less than that of ÿ(ÿ∗ÿ). No linear combination of the ÿ∗-type terms is a cycle, and so ÿ(ÿ∗ÿ)

is supported only by "ÿ∗ÿ". �

Lemma 2.10. For ÿ ≥ 3, let ÿ : ÿ∗
ÿ → ÿ∗

ÿ be a homogeneous chain map with degree as in Lemma 2.9

and so that ÿ(ÿ∗ÿ) is a boundary in ÿ∗
ÿ ⊗ F[U ,V = 1]/(Uÿ−1). Then, ÿ(ÿ∗ÿ) must be divisible by Uÿ−1.

Proof. From Lemma 2.9, ÿ(ÿ∗ÿ) = ýÿ
∗
ÿ for some ý ∈ F[U ,V]. Considering the differential of ÿ∗

ÿ mod

V = 1,Uÿ−1 = 0, we obtain that ýÿ∗ÿ is a boundary over this quotient ring if and only if Uÿ−1 | ý. �

We say that a chain complex D over F[U ,V] is ÿ3-knotlike if ÿ∗(ÿ ⊗ F[U ,V = 1]) = F[U ]. Recall

that for a knot ÿ ⊂ ý, by setting V = 1 in CFK(ý, ÿ) and taking the homology, one recovers the

Heegaard Floer homology HF−(ý ). In particular, if D is the knot Floer complex of a knot in ÿ3, then D

is ÿ3-knotlike.

Lemma 2.11. For ÿ ≥ 3, let f be a map from ÿ∗
ÿ to an ÿ3-knotlike complex D, and let g be a map from

D to ÿ∗
ÿ. Then, ý ÿ (ÿ∗ÿ) is a boundary in ÿ∗

ÿ ⊗ F[U ,V = 1]/(Uÿ−1).

Proof. We have, by considering ÿ
∗, (ÿ−1)
ÿ , that

U
ÿ(ÿ−1)/2+1

V
ÿ(ÿ+1)/2ÿ∗ÿ + U

ÿ(ÿ+1)/2
V
ÿ(ÿ−1)/2ÿ∗ÿ−1

is a boundary. Setting V = 1,

U
ÿ(ÿ−1)/2+1 ( ÿ (ÿ∗ÿ) + U

ÿ(ÿ+1)/2−ÿ(ÿ−1)/2−1 ÿ (ÿ∗ÿ−1)) is a boundary in ÿÿ/(V = 1).

Since any cycle in an ÿ3-knotlike complex that is U -torsion in (V = 1) homology is actually zero in

homology, we have that

ÿ (ÿ∗ÿ) + U
ÿ−1 ÿ (ÿ∗ÿ−1)

is a boundary in ÿ/(V = 1). So ÿ (ÿ∗ÿ) is a boundary in ÿ/(V = 1,Uÿ−1 = 0). Since g is a chain map,

the same holds for ý ÿ (ÿ∗ÿ). �

Lemma 2.12. For ÿ ≥ 3, let f be a local map from ÿ∗
ÿ to a knotlike complex D. There does not exist a

local map ý : ÿ → ÿ∗
ÿ, so that ý ◦ ÿ is of bigrading (ý1, ý2) with ý1 > −2ÿ + 2 and ý2 > −2ÿ.

Proof. Suppose such a g exists. Since f and g are local and ÿ∗ÿ generates the (U ,V)-localized homology,

it follows that ý ÿ (ÿ∗ÿ) ≠ 0. Hence, by Lemma 2.9, we obtain that

ý ÿ (ÿ∗ÿ) = U
−ý1/2V

−ý2/2ÿ∗ÿ.

By Lemma 2.11, ý ÿ (ÿ∗ÿ) is a boundary mod Uÿ−1 = 0,V = 1, and so by Lemma 2.10, we have

ÿ − 1 ≤ −ý1/2. That is, −2ÿ + 2 ≥ ý1 > −2ÿ + 2, a contradiction. �

Proof of Theorem 1.2. When ÿ = 2, for any knot ý ⊂ ÿ3, by [2, Theorem 10.1], we have ÿÿ, ÿ (ÿ
3, ý) = 0

for any ÿ ≠ 0, so Lemma 2.5 obstructs the existence of a homology concordance between (ý2, ÿ2) and

(ÿ3, ý).

Now suppose ÿ ≥ 3. Say that there is a pair (ÿ, ÿ) as in the discussion preceding Theorem 1.2,

with S of genus ý ≤ ÿ − 2. Then, for any choice of (ý1, ý2), (ý1, ý2) ∈ (2Z)2 so that ýÿ , ýÿ ≤ 0

and ý1 + ý2 = −2ý = ý1 + ý2, there exist local maps ÿ : ÿÿ → CFK(ý) and ý : CFK(ý) → ÿÿ of

bigrading (ý1, ý2), (ý1, ý2), respectively. Let f be of bigrading (0,−2ý) and g be of bigrading (−2ý, 0).

By hypothesis, −2ý ≥ −2ÿ + 4, and so Lemma 2.12 applies to show that such ÿ , ý do not exist, a

contradiction. �
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3. Preliminaries on the filtered mapping cone formula

We start by reviewing the original definition of the knot Floer complex over the ring F[ý,ý−1]

by Ozsváth and Szabó, as this is the setting where the filtered mapping cone formula can be most

conveniently defined.

In the original definition, the knot Floer complex is freely generated by the intersecting points of

the two Lagrangians over the ring F[ý,ý−1], where the differentials similarly count the holomorphic

disks but are weighted over the intersection number with only one of the basepoints. The datum of

the other basepoint is encoded in the Alexander grading. This version of the knot Floer complex is

denoted by CFK∞ (ý, ÿ), and commonly depicted in an (ÿ, ÿ)–plane, where the j–coordinate is given by

the Alexander grading, and the i–coordinate is the normalized filtration level naturally induced by the

U–action. We will often think of CFK∞ (ý, ÿ) as a chain complex with an extra filtration given by the

Alexander grading. By collapsing the Alexander filtration, one recovers a chain complex associated to

the underlying three-manifold, CF∞ (ý ).

There is a Maslov grading on CFK∞ (ý, ÿ), corresponding to grU ; multiplication by U on

CFK∞(ý, ÿ) is equivalent to multiplication by UV on CFKF[U ,V ] (ý, ÿ). Although the setting is

slightly different, CFK∞ (ý, ÿ) contains the same information as CFKF[U ,V ] (ý, ÿ) does. In the setting

of CFK∞ (ý, ÿ), the local equivalence reads as follows.

Definition 3.1. Two filtered chain complex ÿ1 and ÿ2 over F[ý,ý−1] are locally equivalent if there

exist Maslov grading-preserving filtered local maps

ÿ : ÿ1 → ÿ2 and ý : ÿ2 → ÿ1.

For the rest of the paper, we will always use the knot Floer complex CFK∞(ý, ÿ). Next, we recall

the filtered mapping cone formula from [14] for the reader; this is our main computational tool.

Let ÿ ⊂ ÿ3 be a knot with genus equal to ý. For a given positive integer p, let ÿý,1 denote the

(ý, 1)-cable of the meridian of K in the +1-surgery on ÿ. According to [14, Theorem 1.9], the knot

Floer complex CFK∞(ÿ3
1
(ÿ), ÿý,1) is a filtered chain homotopy equivalent to the doubly filtered chain

complex ÿ∞
ý (ÿ), defined to be the mapping cone of

ý+ý−1�

ý=−ý+1

ýý
ÿý+ℎý
−−−−→

ý+ý−1�

ý=−ý+2

ýý , (13)

where each ýý and ýý are isomorphic to CFK∞ (ÿ3, ÿ), coming with the (ÿ, ÿ) coordinate. The map

ÿý : ýý → ýý is the identity, and the map ℎý : ýý → ýý+1 is the reflection along ÿ = ÿ precomposed

with ýý . Note that there are corresponding versions of the filtered mapping cone formula for the hat,

minus, and infinity flavors of knot Floer homology. In the following computation, we will consistently

use the infinity version of the ýý and ýý complexes and ÿý and ℎý maps, so we repress the superindices.

Let I and J be the double filtrations, and let grý be the absolute Maslov grading on the filtered

mapping cone complex ÿ∞
ý (ÿ). We will reserve letters I and J solely for this purpose throughout the

paper. We have

for [x, ÿ, ÿ] ∈ ýý ,

I ([x, ÿ, ÿ]) = max{ÿ, ÿ − ý} (14)

J ([x, ÿ, ÿ]) = max{ÿ − ý, ÿ − ý} + ýý −
ý(ý − 1)

2
(15)

grý ([x, ÿ, ÿ]) = �gr([x, ÿ, ÿ]) + ý(ý − 1) (16)
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and for [x, ÿ, ÿ] ∈ ýý ,

I ([x, ÿ, ÿ]) = ÿ (17)

J ([x, ÿ, ÿ]) = ÿ − ý + ýý −
ý(ý − 1)

2
(18)

grý ([x, ÿ, ÿ]) = �gr([x, ÿ, ÿ]) + ý(ý − 1) − 1. (19)

Here, �gr denotes the absolute Maslov grading on the original chain complex CFK∞ (ÿ3, ÿ). It is

straightforward to check that for ý < −ý + 1, the map ℎý induces an isomorphism on the homology; for

ý > ý + ý − 1, the map ÿý (ÿ) induces an isomorphism on the homology, which justifies the truncation

of the mapping cone.

The general strategy for computation involves finding a reduced basis for ÿ∞
ý (ÿ), where every term

in the differential strictly lowers at least one of the filtrations. This can be achieved through a cancellation

process (see, for example [6, Proposition 11.57]) as follows: suppose ÿýÿ = ÿÿ + lower filtration terms,

where the double filtration of ÿÿ is the same as ýÿ , then the subcomplex of ÿ∞
ý (ÿ) generated by all such

{ýÿ , ÿýÿ} is acyclic, and the ÿ∞
ý (ÿ) quotient by this complex is reduced. Alternatively, one can view the

above process as a change of basis, that splits off acyclic summands which individually lie entirely in

one double-filtration level.

There is an apparent symmetry on the mapping cone as follows. Let [x, ÿ, ÿ] ↦→ [ÿ(x), ÿ , ÿ] be a

homotopy equivalence that realizes the symmetry on the original chain complex CFK∞ (ÿ3, ÿ). In the

following lemma, we use a subindex to mark elements from ýý or ýý .

Proposition 3.2. Let Ψ : ÿ∞
ý (ÿ) −→ ÿ∞

ý (ÿ) be the map, defined as

for [x, ÿ, ÿ]ý ∈ ýý ,

Ψ([x, ÿ, ÿ]ý) = ý
(ý−1) (ý−2ý)

2 [ÿ(x), ÿ , ÿ]ý−ý ∈ ýý−ý (20)

for [x, ÿ, ÿ]ý ∈ ýý ,

Ψ([x, ÿ, ÿ]ý) = ý
ý (ý−2ý+1)

2 [x, ÿ , ÿ]ý−ý+1 ∈ ýý−ý+1. (21)

Then, Ψ is a chain map that realizes a homotopy equivalence on the doubly filtered chain complex

CFK∞(ÿ3
1
(ÿ), ÿý,1) that switches the I and J filtrations.

Proof. By definition, Ψ is U–equivariant, so it suffices to show Ψ realizes the symmetry for any one I

and J value.

Over each chain complex ýý , by (14) and (15), we have {I = 0} = max{ÿ, ÿ − ý} and {J =

ýý −
ý (ý−1)

2
} = max{ÿ − ý, ÿ − ý}. Compute

Ψ({I = 0}ý) = ý
(ý−1) (ý−2ý)

2 max{ÿ − ý, ÿ}ý−ý

= ý
(ý−1) (ý−2ý)

2
+(ý−ý) max{ÿ − ý, ÿ − (ý − ý)}ý−ý

= ý
ý2+ý−2ýý

2 {J = ý(ý − ý) −
ý(ý − 1)

2
}ý−ý

= {J = 0}ý−ý

Ψ({J = ýý −
ý(ý − 1)

2
}ý) = ý

(ý−1) (ý−2ý)
2 max{ÿ − ý, ÿ − ý}ý−ý

= ý
(ý−1) (ý−2ý)

2
−ý max{ÿ, ÿ − (ý − ý)}ý−ý

= {I = ýý −
ý(ý − 1)

2
}ý−ý,
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while the computations for ýý are similar and left for the reader. Moreover, by definition, we have

Ψ ◦ ÿý = ℎý ◦ Ψ, and Ψ ◦ ℎý = ÿý ◦ Ψ, therefore, Ψ is a chain map. �

4. Cables of the knot meridian of −ÿ2ÿ,2ÿ+1

In this section, we perform the filtered mapping cone computation, which determines the knot Floer

complex in Proposition 2.3 and Lemma 2.5.

Given ÿ ≥ 1, let ÿ2ÿ,2ÿ+1 be the (2ÿ, 2ÿ + 1)-torus knot, with genus equal to ÿ(2ÿ − 1). It is a fun

exercise to compute its Alexander polynomial as follows

(ý2ÿ(2ÿ+1) − 1) (ý − 1)

(ý2ÿ − 1) (ý2ÿ+1 − 1)
=
ý (2ÿ−1) (2ÿ+1) + ý (2ÿ−2) (2ÿ+1) + · · · + 1

ý2ÿ−1 + ý2ÿ−2 + · · · + 1
=

1 +

2ÿ−2�

ÿ=0

�
ý (2ÿ−ÿ) (2ÿ−1)−ÿ − ý (2ÿ−ÿ) (2ÿ−1)−2ÿ−1

�
.

For example, if we let ÿ2ÿ (ÿ) =
�
ý (2ÿ−ÿ) (2ÿ−1)−ÿ − ý (2ÿ−ÿ) (2ÿ−1)−2ÿ−1

� �
ý2ÿ−1 + ý2ÿ−2 + · · · + 1

�
for

ÿ = 0, 1, · · · , 2ÿ − 2, by induction, we obtain that for 0 ≤ ℓ ≤ 2ÿ − 2

ℓ�

ÿ=0

ÿ2ÿ (ÿ) = ý
(2ÿ−1) (2ÿ+1) + · · · + ý (2ÿ−ℓ−1) (2ÿ+1) − ý (2ÿ−ℓ) (2ÿ−1)−ℓ−1 − · · · − ý (2ÿ−ℓ) (2ÿ−1)−2ℓ−1.

Taking ℓ to be 2ÿ − 2 leads to the answer.

Torus knots are L–space knots. Therefore, according to [9, Theorem 1.2], the knot Floer complex

CFK∞(ÿ3, ÿ2ÿ,2ÿ+1) is generated by ÿ∗ÿ with coordinate (0,
(2ÿ−ÿ) (2ÿ−ÿ+1)

2
−

ÿ (ÿ−1)
2

) for ÿ ∈ {1, · · · , 2ÿ}

and ÿ∗ÿ with coordinate (0,
(2ÿ−ÿ) (2ÿ−ÿ+1)

2
−

ÿ (ÿ+1)
2

) for ÿ ∈ {1, · · · , 2ÿ − 1} (this is, in fact, a set of

generators coming from a !ÿýÿ model), where the differentials are given by

ÿÿ∗ÿ = ý
ÿÿ∗ÿ + ÿ

∗
ÿ+1.

It follows from [7, Proposition 3.8], that the knot Floer complex of the mirror knot is the dual

complex to the original knot. Therefore, CFK∞(ÿ3,−ÿ2ÿ,2ÿ+1) is generated by ÿÿ with coordinate

(0,−
(2ÿ−ÿ) (2ÿ−ÿ+1)

2
+

ÿ (ÿ−1)
2

) for ÿ ∈ {1, · · · , 2ÿ} and ÿÿ with coordinate (0,−
(2ÿ−ÿ) (2ÿ−ÿ+1)

2
+

ÿ (ÿ+1)
2

) for

ÿ ∈ {1, · · · , 2ÿ− 1} (simply by taking ÿÿ to be the dual of ÿ∗ÿ and ÿÿ to be the dual of ÿ∗ÿ ). As a notational

shorthand, we will let ýÿ (ÿ, ÿ) � −
(2ÿ−ÿ) (2ÿ−ÿ+1)

2
+

ÿ (ÿ−1)
2

and ýÿ (ÿ, ÿ) � −
(2ÿ−ÿ) (2ÿ−ÿ+1)

2
+

ÿ (ÿ+1)
2
. Note

that ýÿ (ÿ, ÿ) + ÿ = ýÿ (ÿ, ÿ). The differentials are given by

ÿÿÿ =

⎧⎪⎪⎪«
⎪⎪⎪¬

ýÿÿ , ÿ = 1

ÿÿ−1, ÿ = 2ÿ

ýÿÿÿ + ÿÿ−1, otherwise.

Note that the (horizontal) arrow from ÿÿ to ÿÿ is of length i, while the (vertical) arrow from ÿÿ to ÿÿ−1 is

of length 2ÿ − ÿ + 1 (see Figure 2 for an example of CFK∞ (ÿ3,−ÿ2ÿ,2ÿ+1) when ÿ = 3).

The interesting examples are given by the pair (ÿ3
1
(−ÿ2ÿ,2ÿ+1), ÿ2ÿ−1,1), where ÿ2ÿ−1,1 is the

(2ÿ − 1, 1)-cable of the dual knot. To compute the knot Floer complex of said examples, we apply

the filtered mapping cone formula for the cables of the dual knot on −ÿ2ÿ.2ÿ+1, with the surgery

coefficient equal to +1. Following the recipe described in Section 3, the filtered chain complex

CFK∞(ÿ3
1
(−ÿ2ÿ,2ÿ+1), ÿ2ÿ−1,1) is filtered homotopy equivalent to the filtered complex ÿ∞

2ÿ−1
(−ÿ2ÿ,2ÿ+1)
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Figure 2. The knot Floer complex CFK∞(ÿ3,−ÿ6,7). The solid dots are generators. The differentials

point to lower filtration levels, and the numbers indicate their lengths.

defined by the mapping cone of

(ÿ+1) (2ÿ−1)−1�

ý=−ÿ(2ÿ−1)+1

ýý
ÿý+ℎý
−−−−→

(ÿ+1) (2ÿ−1)−1�

ý=−ÿ(2ÿ−1)+2

ýý .

Through the isomorphism with CFK∞ (ÿ3,−ÿ2ÿ,2ÿ+1), denote the corresponding generators in ýý by

ÿ
(ý)
ÿ

and ÿ
(ý)
ÿ

, and the generators in ýý by ÿ
�(ý)
ÿ

and ÿ
�(ý)
ÿ

, for suitable i and s. Recall that we use I and

J specifically for the double filtrations on the entire mapping cone complex. Using the formulas given

by (14), (15), (17), and (18), the computations for the I and J filtrations of the generators described

above are quite straightforward. We collect the result in a following lemma, with ýÿ (ÿ, ÿ) and ýÿ (ÿ, ÿ)

the quantities defined in the previous paragraph. Also define a notational shorthand

ÿ (ÿ, ý) � −
(ÿ − 1)ÿ

2
+ ÿý. (22)

Note that ÿ (ÿ, ý − 1) + ÿ = ÿ (ÿ, ý).

Lemma 4.1. In the complex ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1), we have

J (ÿ
(ý)
ÿ

) =

�
ÿ (ÿ, ý) + ýÿ (ÿ, ÿ) − ý, ý ≤ ýÿ (ÿ, ÿ) + 2ÿ − 1

ÿ (ÿ, ý − 1), ý > ýÿ (ÿ, ÿ) + 2ÿ − 1
(23)

J (ÿ
(ý)
ÿ

) =

�
ÿ (ÿ, ý) + ýÿ (ÿ, ÿ) − ý, ý ≤ ýÿ (ÿ, ÿ) + 2ÿ − 1

ÿ (ÿ, ý − 1), ý > ýÿ (ÿ, ÿ) + 2ÿ − 1;
(24)
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I (ÿ
(ý)
ÿ

) = I (ÿ
(ý)
ÿ

) = I (ÿ
�(ý)
ÿ

) = I (ÿ
�(ý)
ÿ

) = 0; (25)

J (ÿ
�(ý)
ÿ

) = J (ÿ
�(ý)
ÿ

) = ÿ (ÿ, ý − 1). (26)

For the rest of the computation, we assume that ÿ ≥ 3 (the case when ÿ = 1, 2 does not fit into the

following model. Instead, the results of those two cases are recorded in Lemma 4.5.).

We first aim to obtain a reduced model of the generators of ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1). Up to filtered homotopy

equivalence (as a subcomplex of ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1)), each ýý is one-dimensional. Indeed, quotienting

out {ÿ
�(ý)
ÿ
, ÿÿ

�(ý)
ÿ

}2≤ÿ≤2ÿ leaves us with a sole generator ÿ
�(ý)

1
in each ýý .

Each ýý is a subcomplex of the quotient complex
�

ý ýý , which inherits the (I,J ) filtration

naturally. We would like to obtain a reduced model for each ýý . For the next part, let ÿ temporarily

denote the differential restricted to each subquotient-complex ýý , as opposed to the differential on the

entire chain complex ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1). There are two types of complex ýý , depending on the dimension

of the reduced model.

When ý ∈ [−ÿ(2ÿ − 1),−ÿ(2ÿ − 1) + 2ÿ] ∪ {−ÿ(2ÿ − 1) + 2 ÿÿ − 1,−ÿ(2ÿ − 1) + 2 ÿÿ}1≤ ÿ≤2ÿ−2 ∪

[ÿ(2ÿ − 1) − 1, (ÿ + 1) (2ÿ − 1) − 1], after quotienting out {ÿ
(ý)
ÿ
, ÿÿ

(ý)
ÿ

}2≤ÿ≤2ÿ−1, the reduced model of

ýý is three-dimensional.

◦ When ý ∈ [−ÿ(2ÿ − 1),−ÿ(2ÿ − 1) + 2ÿ], the reduced model is generated by {ÿ
(ý)

2ÿ
, ÿ

(ý)

1
, ÿ

(ý)

1
} with

modified differentials:

ÿÿ
(ý)

1
= ýÿ

(ý)

1
, ÿÿ

(ý)

2ÿ
= ý−ÿ(2ÿ−1)+1ÿ

(ý)

1
.

◦ When ý ∈ {−ÿ(2ÿ − 1) + 2 ÿÿ − 1,−ÿ(2ÿ − 1) + 2 ÿÿ}1≤ ÿ≤2ÿ−2,the reduced model is generated by

{ÿ
(ý)

2ÿ
, ÿ

(ý)
ÿ
, ÿ

(ý)

1
} and modified differentials are

ÿÿ
(ý)

1
= ý

ÿ ( ÿ+1)
2 ÿ

(ý)
ÿ
, ÿÿ

(ý)

2ÿ
= ý−ÿ(2ÿ−1)+

ÿ ( ÿ+1)
2 ÿ

(ý)
ÿ
.

◦ When ý ∈ [ÿ(2ÿ − 1) − 1, (ÿ + 1) (2ÿ − 1) − 1], the reduced model is generated by {ÿ
(ý)

2ÿ
, ÿ

(ý)

2ÿ−1
, ÿ

(ý)

1
}

with modified differentials

ÿÿ
(ý)

1
= ýÿ(2ÿ−1)ÿ

(ý)

2ÿ−1
, ÿÿ

(ý)

2ÿ
= ÿ

(ý)

2ÿ−1
.

When ý ∈
�

1≤ ÿ≤2ÿ−2 [−ÿ(2ÿ − 1) + 2 ÿÿ + 1,−ÿ(2ÿ − 1) + 2( ÿ + 1)ÿ − 2], the reduced model of ýý

is five-dimensional. Indeed, quotienting out {ÿ
(ý)
ÿ
, ÿÿ

(ý)
ÿ

} ÿ∈[2, ÿ ]∪[ ÿ+2,2ÿ−1] leaves us with generators

{ÿ
(ý)

2ÿ
, ÿ

(ý)

ÿ+1
, ÿ

(ý)

ÿ+1
, ÿ

(ý)
ÿ
, ÿ

(ý)

1
}. The difference here from the previous case is that both terms in ÿÿ

(ý)

ÿ+1

strictly decrease I or J grading, and therefore survive into the reduced complex. The modified differ-

entials are given by

ÿÿ
(ý)

1
= ý

ÿ ( ÿ+1)
2 ÿ

(ý)
ÿ
, ÿÿ

(ý)

ÿ+1
= ÿ

(ý)
ÿ

+ý ÿ+1ÿ
(ý)

ÿ+1
,

ÿÿ
(ý)

2ÿ
= ý−ÿ(2ÿ−1)+

( ÿ+1) ( ÿ+2)
2 ÿ

(ý)

ÿ+1
.

Finally, consider the entire chain complex ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1), using the reduced models for both ýý and

ýý .Let ÿ denote the differential on the entire mapping cone complex (including ÿý and ℎý maps). Observe

that ℎý (ý
−ýÿ

(ý)

2ÿ
) = ÿ

�(ý+1)

1
= ÿý+1(ÿ

(ý+1)

1
) for −ÿ(2ÿ − 1) + 1 ≤ ý ≤ ÿ(2ÿ − 1), while I (ý−ýÿ

(ý)

2ÿ
) =

I (ÿ
�(ý+1)

1
) = I (ÿ

(ý+1)

1
) and J (ý−ýÿ

(ý)

2ÿ
) = J (ÿ

�(ý+1)

1
) ≤ J (ÿ

(ý+1)

1
), where the last equality is reached

when ý ≥ −(ÿ−1) (2ÿ−1). Thus, we may quotient out {ÿ
(ý)

2ÿ
, ÿÿ

(ý)

2ÿ
} for −ÿ(2ÿ−1) +1 ≤ ý ≤ ÿ(2ÿ−1).
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If we let ÿý denote the image of ÿ
(ý)

1
in the quotient for −ÿ(2ÿ − 1) + 1 ≤ ý ≤ ÿ(2ÿ − 1) + 1, notice that

for −ÿ(2ÿ − 1) + 2 ≤ ý ≤ ÿ(2ÿ − 1) + 1, this amounts to a change of basis ÿ
(ý)

1
↦→ ý−ý+1ÿ

(ý−1)

2ÿ
+ ÿ

(ý)

1

followed by a homotopy equivalence. Similarly, we may quotient out {ÿ
(ý)

1
, ÿÿ

(ý)

1
} for ÿ(2ÿ − 1) + 2 ≤

ý ≤ (ÿ + 1) (2ÿ − 1) − 1.

We have obtained a reduced model for ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1). Observe that no generator in ýý survives

into the reduced basis. Moreover, from the viewpoint of the quotient complex, the induced differential

ÿ restricted to ýý is a map ÿ : ýý → ýý ⊕ ýý−1 for −ÿ(2ÿ − 1) + 2 ≤ ý ≤ ÿ, viewing ÿý as an element

of ýý . However, we will generally adopt the viewpoint of a change of basis, and view ÿý as an element

of ýý ⊕ ýý−1, mainly because this plays well with the symmetry on the mapping cone complex.

Considering the symmetry on ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1) (see Proposition 3.2), our strategy would be to focus

on the “first half” of the complex, namely, the mapping cone of

ÿ−1�

ý=−ÿ(2ÿ−1)+1

ýý
ÿý+ℎý
−−−−→

ÿ�

ý=−ÿ(2ÿ−1)+2

ýý ,

which under the current basis is simply the chain complex

ÿ−1�

ý=−ÿ(2ÿ−1)+1

ýý .

So, let us summarize the generators and relations of this first half complex in the following lemma (we

also include those ýý where s is in the interval [ÿ, 2ÿ − 1] for the continuity). Let �ÿý denote ÿ
(ý)

ÿ+1
when

ý ∈ [−ÿ(2ÿ − 1) + 2 ÿÿ + 1,−ÿ(2ÿ − 1) + 2( ÿ + 1)ÿ − 2] for each 1 ≤ ÿ ≤ ÿ.

Lemma 4.2. Under the reduced basis chosen above, we have

◦ For ý ∈ [−ÿ(2ÿ − 1) + 1,−ÿ(2ÿ − 1) + 2ÿ], the complex ýý is generated by ÿý and ÿ
(ý)

1
, where the

differentials are given by

ÿÿý =

�
ýÿ

(ý)

1
, ý = −ÿ(2ÿ − 1) + 1

ý−ý+2ÿ
(ý−1)

1
+ýÿ

(ý)

1
, ý > −ÿ(2ÿ − 1) + 1.

(27)

◦ For ý ∈ [−ÿ(2ÿ − 1) + 2 ÿÿ + 1,−ÿ(2ÿ − 1) + 2( ÿ + 1)ÿ − 2] with some 1 ≤ ÿ ≤ ÿ, the complex ýý is

generated by ÿý ,�ÿý , ÿ (ý)ÿ
and ÿ

(ý)

ÿ+1
, where the differentials are given by

ÿÿý =

�
ý−ý+1+

ÿ ( ÿ+1)
2 ÿ

(ý−1)
ÿ

+ý
ÿ ( ÿ+1)

2 ÿ
(ý)
ÿ
, ý = −ÿ(2ÿ − 1) + 2 ÿÿ + 1,

ý−ý+1+
( ÿ+1) ( ÿ+2)

2 ÿ
(ý−1)

ÿ+1
+ý

ÿ ( ÿ+1)
2 ÿ

(ý)
ÿ
, ý > −ÿ(2ÿ − 1) + 2 ÿÿ + 1,

(28)

ÿ�ÿý = ÿ (ý)ÿ
+ý ÿ+1ÿ

(ý)

ÿ+1
. (29)

◦ For ý ∈ {−ÿ(2ÿ− 1) + 2 ÿÿ− 1,−ÿ(2ÿ− 1) + 2 ÿÿ} with some 2 ≤ ÿ ≤ ÿ, the complex ýý is generated

by ÿý and ÿ
(ý)
ÿ

, where the differentials are given by

ÿÿý = ý
−ý+1+

ÿ ( ÿ+1)
2 ÿ

(ý−1)
ÿ

+ý
ÿ ( ÿ+1)

2 ÿ
(ý)
ÿ
. (30)

Proof. This follows from the earlier discussion. �
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We prove in the next lemma that, up to local equivalence, we can further truncate the mapping cone.

Define ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1)"ℓ" for ℓ ∈ Z to be the filtered mapping cone

ℓ�

ý=−ℓ+2ÿ−1

ýý
ÿý+ℎý
−−−−→

ℓ�

ý=−ℓ+2ÿ

ýý ,

which under the reduced basis simplifies to the filtered chain complex

ℓ�

ý=−ℓ+2ÿ−1

ýý .

Note that under this notation ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1) = ÿ
∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1)"(ÿ + 1) (2ÿ − 1) − 1".

Lemma 4.3. Up to a change of basis, the filtered complex ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1) is isomorphic to

ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1)"2ÿ − 1" ⊕ ÿ, where ÿ∗(ÿ) = 0.

Proof. It suffices to show for any 2ÿ ≤ ℓ ≤ (ÿ + 1) (2ÿ − 1) − 1, the complex ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1)"ℓ" is

isomorphic to ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1)"ℓ − 1" ⊕ ÿ � up to a change of basis, where ÿ∗(ÿ
�) = 0. For every such

ℓ, we will demonstrate a filtered change of basis, such that the complex ý−ℓ+2ÿ−1 becomes a summand.

Following from the symmetry given by Proposition 3.2, there is also a filtered change of basis, such that

ýℓ becomes a summand under the new basis as required. Let ý = −ℓ + 2ÿ − 1. Recall that we view ÿý
as an element in ýý ⊕ ýý−1.

◦ For ý ∈ [−ÿ(2ÿ − 1) + 2,−ÿ(2ÿ − 1) + 2ÿ + 1], perform the change of basis

ÿý ↦−−−−−→ÿý +ý
−ý+1ÿý−1.

According to (27) and (28), this splits off an acyclic summand as required. Since J (ÿý) = J (ÿý
1
) >

J (ÿý−1
1

) = J (ÿý−1), by (23), this change of basis is clearly filtered.

◦ For ý ∈ [−ÿ(2ÿ − 1) + 2 ÿÿ + 2,−ÿ(2ÿ − 1) + 2( ÿ + 1)ÿ − 1] for some 1 ≤ ÿ ≤ ÿ − 1, and when ý ≤ 1,

perform the change of basis

ÿý ↦−−−−−→ÿý +ý
−ý+1

�
ÿý−1 +ý

ÿ ( ÿ+1)
2 �ÿý−1

�
.

According to (28), (29), and (30), this splits off an acyclic summand as required. This change of basis

is clearly filtered when ý ≤ 1 (the equality is reached in the interval associated to ÿ = ÿ − 1).

◦ For ý ∈ {−ÿ(2ÿ− 1) + 2 ÿÿ,−ÿ(2ÿ− 1) + 2 ÿÿ + 1} with some 2 ≤ ÿ ≤ ÿ− 1 (noting that ý < 0 always

holds), perform the change of basis

ÿý ↦−−−−−→ÿý +ý
−ý+1ÿý−1.

This change of basis is again clearly filtered. �

Therefore, the local equivalence class of ÿ∞
2ÿ−1

(−ÿ2ÿ,2ÿ+1) is given by
�2ÿ−1

ý=0 ýý under the reduced

basis. The differentials in this complex are already given by Lemma 4.2, and the filtrations of the

generators are given by Lemma 4.1. In the following lemma, we will work out the J –filtration shifts

between the generators that are related by a differential.

Suppose ýýÿ is a nontrivial term in ÿÿ, where ÿ is used to represent some ÿ
(ý)
ÿ

and ÿ is used to

represent some ÿý or �ÿý . Define

ΔI,J (ÿ, ÿ) = (I,J ) (ÿ) − (I,J ) (ýýÿ) (31)

and, similarly define ΔI and ΔJ .
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Table 1. The filtrations of the generators in the reduced basis of�2ÿ−1
ý=0 ýý ..

Generators The J –filtrations Range

ÿý ÿ (ÿ, ý − 1) 1 ≤ ý ≤ 2ÿ − 1

�ÿý ÿ (ÿ, ý − 1) + ÿ − 1 − ý 1 ≤ ý ≤ ÿ − 2

ÿ (ÿ, ý − 1) ÿ + 1 ≤ ý ≤ 2ÿ − 2

ÿ
(ý)
ÿ ÿ (ÿ, ý) − ý 1 ≤ ý ≤ 2ÿ − 2

ÿ
(ý)

ÿ−1
ÿ (ÿ, ý − 1) 1 ≤ ý ≤ ÿ − 2

ÿ
(ý)

ÿ+1
ÿ (ÿ, ý) + 2ÿ + 1 − ý ÿ + 1 ≤ ý ≤ 2ÿ − 2

Lemma 4.4. Generators in the reduced basis of
�2ÿ−1

ý=0 ýý satisfy the following.

ΔI,J (ÿý , ÿ
(ý)

ÿ−1
) =

�ÿ(ÿ − 1)

2
,
ÿ(ÿ − 1)

2

�
, 1 ≤ ý ≤ ÿ − 2 (32)

ΔI,J (ÿý , ÿ
(ý−1)

ÿ+1
) =

�ÿ(ÿ − 1)

2
,
ÿ(ÿ − 1)

2

�
, ÿ + 2 ≤ ý ≤ 2ÿ − 1 (33)

ΔI,J (ÿý , ÿ
(ý−1)
ÿ ) =

�ÿ(ÿ + 1)

2
− ý + 1,

ÿ(ÿ + 1)

2

�
, 2 ≤ ý ≤ ÿ (34)

ΔI,J (ÿý , ÿ
(ý)
ÿ ) =

�ÿ(ÿ + 1)

2
,
ÿ(ÿ − 1)

2
+ ý − ÿ + 1

�
, ÿ ≤ ý ≤ 2ÿ − 2 (35)

ΔI,J (ÿÿ−1, ÿ
(ÿ−1)
ÿ ) =

�ÿ(ÿ + 1)

2
,
ÿ(ÿ − 1)

2

�
, (36)

ΔI,J (ÿÿ+1, ÿ
(ÿ)
ÿ ) =

�ÿ(ÿ − 1)

2
,
ÿ(ÿ + 1)

2

�
, (37)

ΔI,J (�ÿý , ÿ (ý)ÿ−1
) =

�
0, ÿ − 1 − ý

�
, ΔI,J (�ÿý , ÿ (ý)ÿ ) =

�
ÿ, 0

�
, 1 ≤ ý ≤ ÿ − 2 (38)

ΔI,J (�ÿý , ÿ (ý)ÿ ) =
�
0, ÿ

�
, ΔI,J (�ÿý , ÿ (ý)ÿ+1

) =
�
ý − ÿ, 0

�
, ÿ + 1 ≤ ý ≤ 2ÿ − 2. (39)

Proof. We collect in Table 1 the filtrations of the generators in the reduced basis of
�2ÿ−1

ý=0 ýý from

Lemma 4.1. Note that ýÿ (ÿ, ÿ) = 0 and ýÿ (ÿ, ÿ) = −ÿ. The I filtrations of the generators are all 0 (so

this is, in fact, a reduced model of !ÿýÿ.)
To show (32) and (33), first, by (28), we have ΔI (ÿý , ÿ

(ý)

ÿ−1
) =

ÿ(ÿ−1)
2

. Compute

ΔJ (ÿý , ÿ
(ý)

ÿ−1
) = J (ÿý) − J (ÿ

(ý)

ÿ−1
) +

ÿ(ÿ − 1)

2

=
ÿ(ÿ − 1)

2
,

which proves (32), and (33) follows from the symmetry given by Proposition 3.2.

To show (34) and (35), first, by (28) and (30), we have ΔI (ÿý , ÿ
(ý−1)
ÿ ) =

ÿ(ÿ+1)
2

− ý + 1. Compute

ΔJ (ÿý , ÿ
(ý−1)
ÿ ) = J (ÿý) − J (ÿ

(ý−1)
ÿ ) +

ÿ(ÿ + 1)

2
− ý + 1

=
ÿ(ÿ + 1)

2
,

which proves (34), and (35) follows from the symmetry given by Proposition 3.2.

The rest of the results follow from similar computations and are left for the reader. �

When ÿ = 1 and 2, the local equivalence class of the complex ÿ∞
ÿ (−ÿ2ÿ,2ÿ+1) can be decided

following a similar vein. We record the result in the next lemma, and the computations are left to the

reader as an exercise.
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Figure 3. A reduced basis for the complex ÿ∞
5
(−ÿ6,7)"5", where the coordinates are given by I and J

filtrations. The generators are marked abstractly, without U powers. The edges represent the differentials;

the edge with ∗ depicts an instance of the fact that ΔI (ÿÿ, ÿ
(ÿ)
ÿ ) = ΔI (ÿÿ+1, ÿ

(ÿ)
ÿ ) + ÿ.

Lemma 4.5. When ÿ = 1, the complex ÿ∞
1
(−ÿ2,3) is locally trivial.

When ÿ = 2, the complex ÿ∞
2
(−ÿ4,5) has a local complex characterized by the following.

ÿÿ1 = ý3ÿ
(1)

2
,

ÿÿ2 = ý2ÿ
(1)

2
+ý3ÿ

(2)

2
,

ÿÿ3 = ýÿ
(1)

2
;

ΔI,J (ÿ1, ÿ
(1)

2
) = (3, 1),

ΔI,J (ÿ2, ÿ
(1)

2
) = (2, 3),

ΔI,J (ÿ2, ÿ
(2)

2
) = (3, 2),

ΔI,J (ÿ3, ÿ
(2)

2
) = (1, 3).
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