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Abstract

We consider manifold-knot pairs (Y, K), where Y is a homology 3-sphere that bounds a homology 4-ball. We show
that the minimum genus of a PL surface ¥ in a homology ball X, such that d(X,X) = (¥, K) can be arbitrarily
large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from (Y, K) to any knot
in $3 can be arbitrarily large. The proof relies on Heegaard Floer homology.

Contents

1 Introduction 1
2 Cobordism obstruction 2
3 Preliminaries on the filtered mapping cone formula 8
4 Cables of the knot meridian of —75; 2,41 10

1. Introduction

Every knot K in S% bounds a piecewise-linear (PL) disk in the 4-ball, namely, by taking the cone on
the pair (S3, K) (this disk in not locally flat, and throughout, we will not impose any local-flatness
conditions on our PL surfaces). Resolving a conjecture of Zeeman [12], Akbulut [1] gave an example of
a contractible 4-manifold X and a knot K C 90X, such that K does not bound a PL disk in X. However,
Akbulut’s K does bound a PL disk in a different contractible 4-manifold X’ with dX’ = 0X. Levine
[5] proved the stronger result that there exist manifold-knot pairs (Y, K), such that ¥ bounds a smooth,
contractible 4-manifold X and that K does not bound a PL disk in X nor in any other integer homology
ball X’ with X’ = Y. In light of Levine’s [5] result, a natural question to ask is: Given a knot K in
an integer homology 3-sphere Y, such that Y bounds an integer homology 4-ball, what’s the minimum
genus of a PL surface X in an integer homology ball X, such that (X, X) = (¥, K)? We observe that
such a surface X always exists, since K is null-homologous and thus bounds a surface in ¥, which may
be pushed slightly into any bounding 4-manifold.

Our main result is that this notion of PL genus can be arbitrarily large. Throughout, let (¥;,, K,,) =
(S? | (Tonone))# = 2 (Tan2ns1)s Hon-1,-1#U), where piz,_1,-1 denotes the (2n — 1,—1)-cable of the
meridian in $* | (T 2n4+1) and U denotes the unknot in —$3 | (T 2n41).

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
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2 J. Hom, M. Stoffregen and H. Zhou

Theorem 1.1. Any PL surface T in any integer homology ball X, such that (X, %) = (Y, Ky,) must
have genus at least n — 1, for n € Z-.

We prove Theorem 1.1 by reinterpreting PL surfaces in terms of cobordisms inside of homology
cobordisms. Recall that a homology cobordism from Y to Y] is a smooth, compact 4-manifold W, such
that 9W = Yy L'Y; and that the map i..: H.(Y;;Z) — H.(W;Z) induced by inclusion is an isomorphism
for j =0, 1. Let X be a genus g PL surface in an integer homology ball X, such that 9(X, %) = (Y, K,,)-
Up to isotopy, we may assume that X is smooth, except at finitely many singular points, each of which
is modeled on the cone of a smooth knot J; in S3 (see, for example, [4, Theorem A.1]). By deleting
neighborhoods of arcs in X connecting the cone points, we obtain a genus g cobordism from the knot
J =Ji#...#J,, to K in a homology cobordism from $° to Y.

Let K be a knot in a homology null-bordant homology sphere Y. We consider cobordisms of pairs

(W,S): (§%,7) = (Y,K),

such that W is a homology cobordism from S> to Y. The cobordism distance between (Y, K) and (S3, J)
is the minimal genus of S in any such pair (W, S). By the preceding discussion, Theorem 1.1 is an
immediate consequence of the following result.

Theorem 1.2. The cobordism distance between (Y, K,,) and any knot in S° is at least n — 1.

We prove Theorem 1.2 using Heegaard Floer homology [8], specifically Zemke’s cobordism maps
[13]. Our obstruction relies on two key properties:

1. Consider a cobordism of pairs
(W, 8): (8°,7) = (Y, Ky),

where W is ahomology cobordism and S has genus g. Forany (c1, ¢2) € (2Z)?,suchthat ci+cs = —2g
and ¢, ¢ < 0, there exists a local map

fw.s: CFK(S?,J) — CFK(Y,,K,)

with bigrading (ci, cp). Similarly, we may consider a cobordism in the opposite direction, from
(Y, Ky) to (S3,J) (see [13, Theorems 1.4 and 1.7]).

2. The Heegaard Floer homology of S3 is especially simple; namely, HF~(S%) = F[U]. In particular,
U acts nontrivally on any nontrivial element of HF~(S3), or equivalently, HF~(S®) contains no
U-torsion.

The proof of Theorem 1.2 relies on showing that CFK (Y}, K},) is sufficiently complicated so as to not
admit local maps to and from CFK(S3, J) of certain bigradings (see Section 2 for more details).

For constructing our examples (¥, K,,), we rely on recent work of the last author [14], which
combines work of Hedden-Levine [3] and Truong [11] to give a description of the knot Floer complex
for (p, 1)-cables of the meridian in the image of surgery along a knot in S3. Preliminaries on this filtered
mapping cone are given in Section 3 and the computation is carried out in Section 4.

2. Cobordism obstruction

In this section, we introduce a cobordism obstruction for manifold-knot pairs and prove Theorem 1.2
by applying the obstruction to the pairs (¥, K,,), calling upon the computational results in the later part
of the paper. In addition, we compute the values of the concordance homomorphisms ¢; ; of [2] on the
family (Y}, K,,), which may be of independent interest.

We start with some preliminaries on knot Floer homology. Knot Floer homology was defined by
Ozsvath-Szabé [7] and Rasmussen [10]. We associate, following the conventions of Zemke [13], to a
manifold-knot pair (¥, K) a chain complex CFKg[;/,1(Y, K) = CFK(Y, K) over the polynomial ring
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F[U, V], where F = Z/27Z, called the knot Floer complex. This chain complex is a free module generated
by intersecting points of two Lagrangians in a symmetric product of a Heegaard surface, equipped
with differentials by counting holomorphic disks, weighted over the intersection numbers with the two
basepoints. The topological invariance of CFK(Y, K) up to chain homotopy equivalence over F[U, V]
is due to Ozsvath-Szab6 and Rasmussen.

The knot Floer complex CFK(Y, K) comes with a bigrading, namely (gr,,, gry,), where ¢, V, and 9
each have bigrading (-2,0), (0, —-2) and (-1, —1), respectively. The Alexander grading of a homoge-
neous element x € CFK(Y, K) is defined by A(x) = %(gru (x) — gry(x)).

A chain map between two complexes is called a local map if it induces an isomorphism on the (¢4, V)-
localized homology. Following from a special case of [13, Theorem 1.4], the next theorem provides the
main technical input for the obstruction.

Theorem 2.1 (Theorem 1.4 in [13]). Suppose that (W, S): (Y1,K) — (Y2, K>) is a cobordism between
the manifold-knot pairs (Y1, K1) and (Y2, K3), such that W is a homology cobordism and S is of genus
g. Then, for any given (c1, ¢2) € (2Z)?, such that ¢\ +c> = =2g and ¢, ¢2 < 0, there exists a local map

fw.s: CFK(Y1,K;) — CFK(Y», K»)

with bigrading (cy, ¢3).

In particular, when g(S) = 0, namely, when (Y}, K1) and (Y», K3) are homology concordant, then the
cobordism map fw s is a local map that preserves the bigrading.

Definition 2.2. Two bigraded chain complexes C; and C, over F[U, V] are locally equivalent if there
exist bigrading-preserving local maps

f:C—> G and g:Cy, — Cy.

It is straightforward to verify that local equivalence is an equivalence relation. By turning the
cobordism around, we thus obtain that homology concordance induces local equivalence of the knot
Floer complexes. Since the cobordism distance is invariant over the homology concordance class, we
study the local equivalence class of the knot Floer complexes of the interested manifold-knot pairs.

Due to computational reasons, it is somewhat easier to first consider

(Y Kn) = = (82, (Tanpns)# = S, (Tan 2041) s pran-1,-1#U),

that is, the orientation reversal of the manifold-knot pairs that appear in the Section 1. Observe that
—(8? | (Tan2n41): Hon-1,-1) is equivalent to (S3(~T2n2n+1), H2n-1,1). According to Lemma 4.3, over
the ring F[U, U], the complex X5 (=Tan 2n+1)(2n — 1) represents the local equivalence class of
CFK“(S?(—TZH,Z,HI), ton-1,1) for all n > 3 (see the beginning of Section 3 for more about the knot
Floer complex CFK*® (Y, K) defined over the ring F[U, U~']).

Recall that the knot Floer complex enjoys a Kiinneth principle by [7, Theorem 7.1]. Since
—(Yn. Kn) = (S3(~Tan2n41) H2n-1,1)#(S? | (Tan,2n41), U), the knot Floer complex of the pair —(Y,,, K,)
is locally equivalent to CFK“(S? (=Tan.2n+1), Hon-1.1) tensored with a trivial complex, with the Maslov
grading adjusted such that the tensored complex has d—invariant equal to 0. Translate this into the ring
F[U,V]; for n > 1, let C,, denote the complex corresponding to X3° | (=T2n,2n+1)(2n — 1), with a
(d (Si1 (Tonons1)), d(S° { (T2n,20+1))) bigrading shift. Then C,, represents the local equivalence class of
the complex CFKgy/,v1(—=(Yy, K,)) (see Figure 3 for an example when n = 3).
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4 J. Hom, M. Stoffregen and H. Zhou

Figure 1. The complex C;, defined to be the dual complex of Cs. The axes indicate the U and V
actions. The solid dots are generators, marked abstractly, missing actual U,V decorations, and the
edges represent the differentials.

Proposition 2.3. For n > 3, the complex C,, is characterized by

n(n-1) n(n-1) (1) _
Uyt s=1

n(n+])_s+ Vn(n+l) b(s_l) Z/{n(nz—]) n(n 1) b(‘i)l’ 2 S s S n_ 2
6as _ un(n l)+n ‘+1Vn(n+1) b(s 1) z/{n(ﬂ;l) Vn(n ) n+§+lb(s) n—1 <s<n+ 1 (l)
n(n2 1) n(n 1) b(s ]) n(nz+]) n(nz—l) —n+3+lb’(15)’ n +2 <s< 2n _ 2
n(n 1) n(n 1) (2n 2) _
U=2v-z215o.,7, s=2n-1
_ unbils) +Vn7sflb(5) , 1<s<n-=2
day = us—nb(s) nb(Sr)l_l 1 2 ) 2
we1 TV 007, n+l<s<2n-2.
Proof. This is a direct translation from Lemma 4.4. O

This allows us to compute the values of the family of concordance homomorphisms ¢; ; defined in
[2, Definition 8.1], as follows.

Proposition 2.4. For each n > 3, we have

1, 1<i<n-2
%o(C)—{ . 3)
-n+2, i=n.
(pn(nzfl) ’n("{l) (Cl’l) =-n+ 2, (4)
nn-1 nn+1
Pty (C)—— (2 )_j_ (2 )—1, 5

and ¢; ;j(C,) =0 for all other i and j.
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Proof. The complexes over F[/, V] can be translated to complexes over the ring X defined in [2] using
the maps
Ur—— Up+ Wr 0
Vi—— VT + WB,O-
Due to its simple form, it is not hard to formulate a change of a basis under which C,, becomes a standard

complex (see [2, Section 5.1]). In particular, the invariants a; of C,, with i odd (see [2, Definition 6.1])
are given by the sequence

(_(n(nz— 1)’ n(nz— 1))’ —(n.0). - ’_(n(n2+ 1)’ n(nz— 1))’_(n(n2+ 1)’ n(nz— 1) N l),

repeats n—2 times

nn+1) n(n-1) nn+1) n(n-1)
- s 2)5_ 1’ a“'3_( ) 1)’_ s DR
( - — +2).-(1.0) . — +s5+1).=(5.0)
for 1<s<n-2
The computations for the values of ¢; ;(C,) immediately follow. O

Similarly, for the case n = 2, Lemma 4.5 yields the following.

Lemma 2.5. We have

©3,1(C2) = 32(C2) = —1,

and ¢; j(C) = 0 for all other i and j.
As a consequence, we can compute the 7 invariant of the manifold-knot pair (¥;,, K3,).

Proposition 2.6. Foralln > 1,
T(Y,, K,) = 2n® = 3n+1.

Proof. The 7 invariant can be computed from ¢; ; by [2, Proposition 1.4]. For n > 3,

n-2 n
7(Cp) = n(-n+2) —Zi— Zi
i=1 i=1
=-2n%+3n-1.

Whenn =2,

T(Cy) =-1-2=-3.
The complex C; is locally trivial, so 7(C;) = 0. The result now follows from the fact that 7 is additive
in the concordance group. O

According to [7, Proposition 3.8], the knot Floer complex of the mirror knot is the dual complex to
the original knot. Therefore, the local equivalence class of CFK(Y,,, K,,) is given by the dual complex
of C,; denote it by C;;. Denote by «} and @; the dual of a, @, respectively, and similarly denote by
b the dual of 5.

Proposition 2.7. For n > 3, the complex C,, is characterized by the following

n(n-1) n(n-1)
7 Y2

o5 ~u G VT, d<s<n-2 ©
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6 J. Hom, M. Stoffregen and H. Zhou

n(n+l) n(n+l)

U7 Sy 2 a:+1+u"52f, 1<s<n-2
n(n+l) n(n-1) n(n+l) n(n+l)
L e s R A A T T Py @)
n(n+l) n(n-1) _ s+l % ~
2 T Tl + Vg, n+l<s<2n-2
#, () nn-y) ~ on(n-l) S—n~%
b, =U7 ag, +UT ag, n+l<s<2n-2. ®)
Proof. This follows from Proposition 2.3 and the fact that C;, is the dual complex of C,,. O

We record a few salient features of the complex C;, for n > 3 from Proposition 2.7:

Lemma 2.8. We have the inequalities
gry, ay, gry, ay < gryp,a, —2n, fors<n-1.
Similarly,
gr, oy, 8, @y < gty a, —2n, fors>n+l.
Proof. We have
gry @, = gry @, — 2n.
Note also the equalities:
gry, ay =gryap,, —n(n+1) forl<s<n-2 ©)
groay=grpay—nn—-1)+2(n-s-1) forl <s<n-2. (10)
In particular,
grya; <grpas, —2n-2

forl <s<n-2.

From here, the claim of the lemma follows for ¢ for all 1 < s < n — 1. The statement for a; follows
from (9).

The case of gr;, follows similarly, where we use

8y @y = 8y @y = 21,
and also calculate:
gr =g, —n(n+1) forn+1<s<2n-2 (11)
gy, =gty a0y, —n(n—1)+2(s —n) forn+1<s<2n-2. (12)
In particular,
8y @gyy < gy g —2n =2

forn+1 < s < 2n—2. From here, the claim of the lemma follows for @ foralln+1 < s < 2n—1. The
statement for o follows from (11). O

Lemma 2.9. Forn > 3, let ¢: C;, — C;, be a chain map of bigrading (c1, c2), where ¢; > —2n and
¢z > —2n. Then, ¢(a;},) is either an F[U, V]-multiple of «}, or 0.
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Proof. By Lemma 2.8, all of the other generators of C;, which are cycles, have either /-grading or
V-grading less than that of ¢(«;},). No linear combination of the b*-type terms is a cycle, and so ¢(c;},)
is supported only by (). O

Lemma 2.10. Forn > 3, let ¢: C,, — C;, be a homogeneous chain map with degree as in Lemma 2.9
and so that ¢(a’) is a boundary in C;; @ F[U,V = 1]/(U"""). Then, ¢(ai,) must be divisible by U"".

Proof. From Lemma 2.9, ¢(a;},) = ca;, for some ¢ € F[U, V]. Considering the differential of C;; mod
V = 1,U""! = 0, we obtain that ca? is a boundary over this quotient ring if and only if /"~ | c. O

We say that a chain complex D over F[U, V] is S3-knotlike if H,(D ® F[U,V = 1]) = F[U]. Recall
that for a knot K c Y, by setting V = 1 in CFK(Y, K) and taking the homology, one recovers the
Heegaard Floer homology HF~(Y). In particular, if D is the knot Floer complex of a knot in 3, then D
is S3-knotlike.

Lemma 2.11. For n > 3, let f be a map from C; to an S>-knotlike complex D, and let g be a map from
D to C}.. Then, gf(a}) is a boundary in C: @ F[U,V = 1]/(U").

Proof. We have, by considering b that

un(n—l)/2+lvn(n+l)/2a>:l + Z/{n(n+1)/2Vn(n—1)/2a,:<k1

is a boundary. Setting V =1,
UMD (@) + YD 2enn=D 271 £ )Y s a boundary in Gy /(V = 1),

Since any cycle in an S3-knotlike complex that is Z/-torsion in (V = 1) homology is actually zero in
homology, we have that

flag) +U" f(ay))

is a boundary in D/(V = 1). So f(«%) is a boundary in D/(V = 1,U"~! = 0). Since g is a chain map,
the same holds for g f(a};). O

Lemma 2.12. For n > 3, let f be a local map from C,, to a knotlike complex D. There does not exist a
local map g: D — C;,, so that g o f is of bigrading (c1, c2) with ¢y > =2n+2 and ¢y > —2n.

Proof. Suppose such a g exists. Since f and g are local and «}, generates the ({/, V)-localized homology,
it follows that g f (@},) # 0. Hence, by Lemma 2.9, we obtain that

* —c1/2vVy—c2 /2 *
gf(ey,) =U 12yl a,.

By Lemma 2.11, gf(a}) is a boundary mod /"' = 0,V = 1, and so by Lemma 2.10, we have
n—1<—c;/2. Thatis, —2n +2 > ¢; > —2n + 2, a contradiction. O

Proof of Theorem 1.2. When n = 2, for any knot J C S°, by [2, Theorem 10.1], we have ¢; ;(S3,J) = 0
for any j # 0, so Lemma 2.5 obstructs the existence of a homology concordance between (Y, K;) and
(S3,J).

Now suppose n > 3. Say that there is a pair (W, S) as in the discussion preceding Theorem 1.2,
with S of genus g < n — 2. Then, for any choice of (cy,c2),(dy,d2) € (2Z)* so that ¢;,d; < 0
and ¢ + ¢cp = —2g = dj + dy, there exist local maps f: C,, — CFK(J) and g: CFK(J) — C, of
bigrading (¢, ¢2), (d1, d2), respectively. Let f be of bigrading (0, —2g) and g be of bigrading (—2g, 0).
By hypothesis, —2g > —2n + 4, and so Lemma 2.12 applies to show that such f, g do not exist, a
contradiction. O
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3. Preliminaries on the filtered mapping cone formula

We start by reviewing the original definition of the knot Floer complex over the ring F[U,U™!]
by Ozsvath and Szabd, as this is the setting where the filtered mapping cone formula can be most
conveniently defined.

In the original definition, the knot Floer complex is freely generated by the intersecting points of
the two Lagrangians over the ring F[U, U~'], where the differentials similarly count the holomorphic
disks but are weighted over the intersection number with only one of the basepoints. The datum of
the other basepoint is encoded in the Alexander grading. This version of the knot Floer complex is
denoted by CFK* (Y, K), and commonly depicted in an (i, j)—plane, where the j—coordinate is given by
the Alexander grading, and the i—coordinate is the normalized filtration level naturally induced by the
U-action. We will often think of CFK* (Y, K) as a chain complex with an extra filtration given by the
Alexander grading. By collapsing the Alexander filtration, one recovers a chain complex associated to
the underlying three-manifold, CF*(Y).

There is a Maslov grading on CFK™(Y,K), corresponding to gr;,;; multiplication by U on
CFK™(Y,K) is equivalent to multiplication by ¢/} on CFKg(y y(Y,K). Although the setting is
slightly different, CFK* (Y, K) contains the same information as CFKgy, (Y, K) does. In the setting
of CFK™ (Y, K), the local equivalence reads as follows.

Definition 3.1. Two filtered chain complex C; and C, over F[U,U™'] are locally equivalent if there
exist Maslov grading-preserving filtered local maps

f:Ci— G and g:Cy—> (.

For the rest of the paper, we will always use the knot Floer complex CFK* (Y, K). Next, we recall
the filtered mapping cone formula from [14] for the reader; this is our main computational tool.

Let K ¢ S° be a knot with genus equal to g. For a given positive integer p, let u p,1 denote the
(p, 1)-cable of the meridian of K in the +1-surgery on K. According to [14, Theorem 1.9], the knot
Floer complex CFK® (S ? (K), pp,1) is a filtered chain homotopy equivalent to the doubly filtered chain
complex X7’ (K), defined to be the mapping cone of

g+p-1 g+p-1

P a2 D s, (13)

s=—g+1 s=—g+2

where each A, and B; are isomorphic to CFK® (83, K), coming with the (7, j) coordinate. The map
vs: Ag — By is the identity, and the map hy: Ay — By is the reflection along i = j precomposed
with U®. Note that there are corresponding versions of the filtered mapping cone formula for the hat,
minus, and infinity flavors of knot Floer homology. In the following computation, we will consistently
use the infinity version of the Ay and B complexes and v, and i, maps, so we repress the superindices.

Let 7 and J be the double filtrations, and let gr,, be the absolute Maslov grading on the filtered
mapping cone complex X7 (K). We will reserve letters 7 and J solely for this purpose throughout the
paper. We have

for [x,1, j] € Ay,

Z([x,i,j]) = max{i,j — s} (14)
J([x,4,j]) = max{i — p, j — s} + ps — ”(”T_l) (15)
gy ([%,7, /1) = 8 ([x,4, j]) + s(s = 1) (16)
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and for [x, i, j] € By,

Z([x.i, j]) =i (17)
J([x,i,j])=i—p+ps—@ (18)
gy (%0, 1) = g([x,0, j]) +s(s = 1) = 1. (19)

Here, gr denotes the absolute Maslov grading on the original chain complex CFK*(S3, K). It is
straightforward to check that for s < —g + 1, the map 4 induces an isomorphism on the homology; for
s > g+ p — 1, the map v;(K) induces an isomorphism on the homology, which justifies the truncation
of the mapping cone.

The general strategy for computation involves finding a reduced basis for X7’ (K), where every term
in the differential strictly lowers at least one of the filtrations. This can be achieved through a cancellation
process (see, for example [6, Proposition 11.57]) as follows: suppose dx; = y; + lower filtration terms,
where the double filtration of y; is the same as x;, then the subcomplex of X7 (K ) generated by all such
{xi, 0x;} is acyclic, and the X7 (K) quotient by this complex is reduced. Alternatively, one can view the
above process as a change of basis, that splits off acyclic summands which individually lie entirely in
one double-filtration level.

There is an apparent symmetry on the mapping cone as follows. Let [x,i, j] — [¥(X),/,i] be a
homotopy equivalence that realizes the symmetry on the original chain complex CFK® (53, K). In the
following lemma, we use a subindex to mark elements from A or Bj.

Proposition 3.2. Let ¥: X7 (K) — X7 (K) be the map, defined as
for [X’ i’ .]]S e AS!

(p=1)(p-2s)
2

Y([x,i, J]S) =U [lﬁ(X)’ j’i]pfs € Apfs (20)

for [X,1, j]s € By,

p(p-2s+l)

\P([X7 8 J]v) =U 2 [X, j7i]p—x+1 € Bp—s+1~ 2D

Then, ¥ is a chain map that realizes a homotopy equivalence on the doubly filtered chain complex
CFKW(S? (K), pp,1) that switches the T and J filtrations.

Proof. By definition, ¥ is U—equivariant, so it suffices to show W realizes the symmetry for any one Z
and J value.

Over each chain complex Ay, by (14) and (15), we have {Z = 0} = max{i,j — s} and {J =
ps— W} = max{i — p, j — s}. Compute

(p=1) (p-25)

Y{Z=0})=U "7 max{i-s,j}p-s

= U max(i = p, = (p - )} pes
pXp-2ps -1
:UP lzl{j:p(p_s)_%}P_s
={T =0},
pp-1) @1 (p-25) , .
YT = ps = FE00) =0 maxti . = phys
= U maxdij - (p - 5)}p-s
-1
= {I: ps —_ %}p—s,
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10 J. Hom, M. Stoffregen and H. Zhou

while the computations for B are similar and left for the reader. Moreover, by definition, we have
Yovg=hsoW,and ¥ o hy = vg o P, therefore, ¥ is a chain map. |

4. Cables of the knot meridian of —75, 2,11

In this section, we perform the filtered mapping cone computation, which determines the knot Floer
complex in Proposition 2.3 and Lemma 2.5.

Given n > 1, let T, 2041 be the (21,21 + 1)-torus knot, with genus equal to n(2n — 1). It is a fun
exercise to compute its Alexander polynomial as follows

(t2n(2n+1) _ 1)(t _ 1) t(2n—1)(2n+1) + t(2n—2)(2n+1) +o+1

(t2n _ 1)(t2n+l _ 1) t2n—l + t2n—2 +o-41
2n-2
1+ Z (t(Zn—i)(Zn—l)—i _ z‘(Zn—i)(Zn—l)—Zi—l)-
i=0
For example, if we let Sy, (i) = (t@r=DCn=D=i _;@n=0@n=D=2i=1)(2n=1 (202 4 ... 4 1) for
i=0,1,---,2n -2, by induction, we obtain that for 0 < £ < 2n -2
¢
Z Son (i) = (@n=D@ntl) | Qnet-D)@ntl) _2n=0)Qn=1)=0=1 _ | _ ,(2n=0)(2n-1)-20-1

i=0

Taking ¢ to be 2n — 2 leads to the answer.

Torus knots are L-space knots. Therefore, according to [9, Theorem 1.2], the knot Floer complex
CFK*® (8%, Ton,2n+1) is generated by a} with coordinate (0, (2n—i)(22n—i+1) - i(iz_])) fori € {1,---,2n}
and b} with coordinate (0, (2"_i)(22"_i+]) - [(i;])) for i € {I,---,2n — 1} (this is, in fact, a set of

generators coming from a H F K model), where the differentials are given by

ob; =U'a; +aj,,.
It follows from [7, Proposition 3.8], that the knot Floer complex of the mirror knot is the dual
complex to the original knot. Therefore, CFK°°(S3, —Tonon+1) is generated by a; with coordinate
(0, —(2"7‘)(22"7”1) + ’(’;1)) fori € {1,---,2n} and b; with coordinate (0, —(2"7’)(22"7’”) + ’(’;1)) for
i€{l,---,2n~1} (simply by taking a; to be the dual of a} and b; to be the dual of 7). As a notational

shorthand, we will let g, (n,7) = —(2"_5)(22"_i+1) + i(iz_l) and g, (n,i) = —(2"_i)(22"_i+1) + i(‘gl). Note
that g, (n,i) +i = gp(n,i). The differentials are given by
Ub;, i=1
da; ={b;_1, i=2n
U'b; + b;_, otherwise.

Note that the (horizontal) arrow from a; to b; is of length i, while the (vertical) arrow from a; to b;_ is
of length 21 — i + 1 (see Figure 2 for an example of CFK* (53, —Ton.2n+1) When n = 3).

The interesting examples are given by the pair (S?(_Tzn’zn.'.l),/lzn_]’l), where po,-1,1 is the
(2n — 1, 1)-cable of the dual knot. To compute the knot Floer complex of said examples, we apply
the filtered mapping cone formula for the cables of the dual knot on —T73, 2,+1, With the surgery
coefficient equal to +1. Following the recipe described in Section 3, the filtered chain complex
CFK™ (S ? (=Tan.2n+1)> H2n-1.1) is filtered homotopy equivalent to the filtered complex X5 | (=T2n,20+1)
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U'ag
Il 5 U0gs
15
U~’bs 9 ]
4 Ulay
U10b4
3
3
Ugag
USbs
4
2 Uas
U3by
5
1
——o (]
Uby

Figure 2. The knot Floer complex CFK®(S®, ~Tg 7). The solid dots are generators. The differentials
point to lower filtration levels, and the numbers indicate their lengths.

defined by the mapping cone of

(n+1) (2n—1)—1 (n+1) 2n-1)—1
Vsths

Ay ——
s=—n(2n—1)+1 s=—n(2n-1)+2

B;.

Through the isomorphism with CFK*® (S°, —T5,,.2,+1), denote the corresponding generators in A by
al(s) and bfs) , and the generators in By by a;(‘y) and b;(s), for suitable i and s. Recall that we use Z and
J specifically for the double filtrations on the entire mapping cone complex. Using the formulas given
by (14), (15), (17), and (18), the computations for the Z and 7 filtrations of the generators described
above are quite straightforward. We collect the result in a following lemma, with g, (n, ) and g (n, )

the quantities defined in the previous paragraph. Also define a notational shorthand

f(n,s) = —@ + ns. (22)

Note that f(n,s — 1) +n = f(n,s).

Lemma 4.1. In the complex X3, | (=Tan2n+1), we have

(s)y _ f(n’s)+ga(n,i)—s, sSga(n’i).;,.zn_l
J(a; )_{f(n,s—l), o> gu(mi) 42— 1 (23)
j(b(s)) _ f(n,s)+gp(n,i)—s, s<gp(ni)+2n-1 o
i f(n,s=1), s> gp(ni)+2n—1;
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12 J. Hom, M. Stoffregen and H. Zhou

@) = (b)) = 7(a}") = (b)) = 0; 25)
J(“;(S)) =Ty = f(n,s - 1). (26)

For the rest of the computation, we assume that n > 3 (the case when n = 1,2 does not fit into the
following model. Instead, the results of those two cases are recorded in Lemma 4.5.).

We first aim to obtain a reduced model of the generators of X;:, —1 (=T2n.2n+1)- Up to filtered homotopy
equivalence (as a subcomplex of Xé’; _1(—T2n,2n+1)), each B; is one-dimensional. Indeed, quotienting
out {a;(‘y), 6al/.(s) }2<i<2n leaves us with a sole generator a;(s) in each Bj.

Each Ag is a subcomplex of the quotient complex EB ¢ As, which inherits the (Z,J) filtration
naturally. We would like to obtain a reduced model for each Ag. For the next part, let 0 temporarily
denote the differential restricted to each subquotient-complex Ay, as opposed to the differential on the
entire chain complex X357 (=T2n,2n+1)- There are two types of complex Ay, depending on the dimension
of the reduced model.

When s € [-n(2n—1),-n(2n - 1) +2n] U {-n(2n - 1) +2jn - 1,-n(2n - 1) + 2jn}1<j<on-2 U
[n(2n—1) = 1,(n+ 1)(2n — 1) — 1], after quotienting out {at@, Bag‘v)}zgiszn_l, the reduced model of
Ay is three-dimensional.

o When s € [-n(2n — 1), -n(2n — 1) + 2n], the reduced model is generated by {aéi), bgs), ai”} with
modified differentials:

8a\" =Ub\Y, dals) = ymenDHp(s),
n

o When s € {-n(2n - 1) +2jn - 1,-n(2n — 1) + 2jn}1<j<on-2,the reduced model is generated by
{agfl), b;s), a}s)} and modified differentials are

aa(s) — wa(s) aa(s) — U—n(Zn—l)+wb(_S).
1 Jj 2n J

o Whens € [n(2n—-1) =1, (n+1)(2n— 1) — 1], the reduced model is generated by {aéi), béi)fl , ais)}
with modified differentials

aa(s) — Un(Zn—l)b(S)
1

(s) _ 3.(s)
2n-1° day, =b

2n—-1°
When s € Ui<j<na[-n(2n = 1) +2jn+1,-n(2n — 1) + 2(j + 1)n — 2], the reduced model of A
is five-dimensional. Indeed, quotienting out {ais),ﬁalgs) }iel2,jlulj+2,2n-1] leaves us with generators
{aéfl), bﬁ?l,a;.i)l, b;s), ags)}. The difference here from the previous case is that both terms in 0aj.i)]
strictly decrease Z or J grading, and therefore survive into the reduced complex. The modified differ-
entials are given by
(s) _ pA0 (s) () _ 1 (s) j+1 1 (s)
day” =U bV, dalyy =b + U b,
(8) _ y7r-n(2 _1)+(j+1)(j+2) (s)
da,, =U"" 2 bj+1.

Finally, consider the entire chain complex X;:l 1 (=Tan.2n+1), using the reduced models for both A and
B;. Let 0 denote the differential on the entire mapping cone complex (including v and sy maps). Observe
that by (Ual)) = @/ = vi (@) for —n(2n = 1) + 1 < 5 < n(2n - 1), while Z(Ua) =
I(a;(ﬁl)) = I(ai”l)) and j(U’SaéfL)) = j(a;(ﬁl)) < j(ai””), where the last equality is reached
when s > —(n—1)(2n—1). Thus, we may quotient out {aéi), 6a§i)} for-n(2n—-1)+1 < s < n(2n-1).
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If we let @5 denote the image of a, ’ in the quotient for —n(2n — 1) + 1 < s < n(2n — 1) + 1, notice that

for —-n(2n — 1) +2 < s < n(2n — 1) + 1, this amounts to a change of basis ais) — U‘”laé‘:l_l) + a}s)

followed by a homotopy equivalence. Similarly, we may quotient out {ags), aa{”} forn(2n—-1)+2 <
s<(n+1)2n-1)-1.

We have obtained a reduced model for X;:L 1 (=Tan.2n+1). Observe that no generator in By survives
into the reduced basis. Moreover, from the viewpoint of the quotient complex, the induced differential
0 restricted to Agisamap 9: Ay — Ay ® As_) for —n(2n — 1) + 2 < s < n, viewing a; as an element
of As. However, we will generally adopt the viewpoint of a change of basis, and view @, as an element
of Ay ® As_1, mainly because this plays well with the symmetry on the mapping cone complex.

Considering the symmetry on X7 | (=T2,2n+1) (see Proposition 3.2), our strategy would be to focus
on the “first half” of the complex, namely, the mapping cone of

(s)
1

n-1 n n
Vs+h,
b A== D s
s=—n(2n—1)+1 s=—n(2n-1)+2

which under the current basis is simply the chain complex

n-1

P A

s=—n(2n—1)+1

So, let us summarize the generators and relations of this first half complex in the following lemma (we
also include those Ay where s is in the interval [n, 2n — 1] for the continuity). Let a; denote a}i)l when
se€[-n2n-1)+2jn+1,-n(2n—-1)+2(j+ 1)n—-2] foreach 1 < j < n.

Lemma 4.2. Under the reduced basis chosen above, we have

o Fors € [-n(2n—1) + 1,—n(2n — 1) + 2n], the complex Ay is generated by a; and bi‘v), where the
differentials are given by

) =—n(n—-1)+1
dar, = {Ub] , s n2n—1) + 27

U=2p5 Y L Up', s>-n(2n—1)+1.

o Forse[-n(2n—-1)+2jn+1,-n(2n— 1) +2(j + 1)n — 2] with some 1 < j < n, the complex Ay is
generated by ay, @y, bﬁ.s) and b;.i)l, where the differentials are given by

a U_S+l+@ b%s—]) + U@ bé'S)’ S = —n(zn - 1) + 2Jn + 1, (28)
ag = j+1) (j+ o j(J+ s /
s U—s+1+%b;~lll)+U%b}‘), s>-n(2n—-1)+2jn+1,
~ _g(s) j+1 1 ()
a&’s — bJ + Uj+ b]'+1' (29)

o Fors e {-n(2n—1)+2jn—1,-n(2n—1) +2jn} with some 2 < j < n, the complex Ay is generated
by a5 and bﬁ.s), where the differentials are given by

iU

= b, (30)

iU

Dy

] @ = U—s+1+
Proof. This follows from the earlier discussion. m}
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14 J. Hom, M. Stoffregen and H. Zhou

We prove in the next lemma that, up to local equivalence, we can further truncate the mapping cone.
Define X357 | (=T2n,2n+1)(¢) for £ € Z to be the filtered mapping cone

é A, s é B,

s=—{+2n-1 s=—{+2n
which under the reduced basis simplifies to the filtered chain complex

¢
As.

s=—t+2n-1
Note that under this notation X3, | (=Ton2n+1) = X5, | (=Ton2n+1){(n + 1)(2n = 1) = 1).

Lemma 4.3. Up to a change of basis, the filtered complex X3, |(=Tanon+1) is isomorphic to
X5 _1(=Tan2n+1){2n = 1) & D, where H.(D) = 0.

Proof. It suffices to show for any 2n < ¢ < (n+1)(2n — 1) — 1, the complex X" | (=T2,20+1)({) is
isomorphic to X357 | (=T2n,2n+1){€ — 1) ® D’ up to a change of basis, where H..(D’) = 0. For every such
¢, we will demonstrate a filtered change of basis, such that the complex A_¢42,-1 becomes a summand.
Following from the symmetry given by Proposition 3.2, there is also a filtered change of basis, such that
Ay becomes a summand under the new basis as required. Let s = —€ + 2n — 1. Recall that we view
as an elementin Ag @ A_;.

o Fors € [-n(2n—1) +2,-n(2n — 1) + 2n + 1], perform the change of basis

g ——as + U gy,
According to (27) and (28), this splits off an acyclic summand as required. Since J (as) = J (a]) >
J(ai‘l) = J (as-1), by (23), this change of basis is clearly filtered.

o Forse [-n(2n—1)+2jn+2,-n(2n—1)+2(j+1)n—1] forsome 1 < j <n—-1,and whens < 1,
perform the change of basis

JU+D)
2 (Zs_l).

ay ——as + U™ (a5 + U

According to (28), (29), and (30), this splits off an acyclic summand as required. This change of basis
is clearly filtered when s < 1 (the equality is reached in the interval associated to j = n — 1).

o Fors € {-n(2n—1)+2jn,-n(2n—1)+2jn+ 1} with some 2 < j < n—1 (noting that s < 0 always
holds), perform the change of basis

s —a + U_S+las—1~

This change of basis is again clearly filtered. O

Therefore, the local equivalence class of X;:l 1 (=Tan.on+1) is given by @fza ! A, under the reduced
basis. The differentials in this complex are already given by Lemma 4.2, and the filtrations of the
generators are given by Lemma 4.1. In the following lemma, we will work out the J—filtration shifts
between the generators that are related by a differential.

Suppose U°p is a nontrivial term in da, where (8 is used to represent some bgs) and « is used to
represent some @; or @. Define

Az g(a.p) =(Z,T)(a) = (Z,T)(UB) €2V

and, similarly define Az and A 7.
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Table 1. The filtrations of the generators in the reduced basis of

2n-1

@szo AS‘

Generators The J—filtrations Range
s f(n,s—-1) 1 <s<2n-1
@ fn,s=1)+n—-1-s l<s<n-2

f(n,s-1) n+l <s<2n-2

b,(,s) f(n,s)—s 1 <s<2n-2
b fns—1) l<s<n-2
bZi)l f(n,s)+2n+1-s n+l <s<2n-2

Lemma 4.4. Generators in the reduced basis of @iza 'A s satisfy the following.

nn—1) n(n-1)

o)y _
Az, g(as. b)) = ( I ), l<s<n-2 (32)
) 1 1
Az, (a5, b%7V) = (n(n2 ), "("2 )), n+2<s<2n-1  (33)
) 1 1
N ) S LG +1,@), 2<s<n (34)

nn+1) n(n-1) N

Az, 7(ag, b)) = ( Sy s ), n<s<2n-2 (35)
_ nn+1) n(n-1
Az g, b0y = (D 202Dy (36)
nn—-1) n(n+1
Az (e, by = (2 20 D)) G37)
Azg7@ b)) = (0,n—1-5), Ars(@.by)=(n0), 1<s<n-2 (38)
Az.7(@s, b)) = (0,n), Az.7 (@@, bY) = (s-n0), n+l<s<2n-2. (39)

Proof. We collect in Table 1 the filtrations of the generators in the reduced basis of @326 ! A, from
Lemma 4.1. Note that g5 (n,n) = 0 and g,(n,n) = —n. The Z filtrations of the generators are all 0 (so
this is, in fact, a reduced model of HFK.)
To show (32) and (33), first, by (28), we have Az (as, bflsjl) = —"("2_1) . Compute
n(n—1)
Ag(as b)) = T (@) = T (b)) + =——
n(n-1)
= >
which proves (32), and (33) follows from the symmetry given by Proposition 3.2.
To show (34) and (35), first, by (28) and (30), we have Az (as, by ™) = 22 _ s 1 1. Compute

Ag(as, by ™) = T(as) = T (b V) + @ s+l
_n(n+1)
-2,

which proves (34), and (35) follows from the symmetry given by Proposition 3.2.
The rest of the results follow from similar computations and are left for the reader. m}

When n = 1 and 2, the local equivalence class of the complex X;°(—T2,.2x+1) can be decided
following a similar vein. We record the result in the next lemma, and the computations are left to the
reader as an exercise.
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b

Figure 3. A reduced basis for the complex X5°(~T,7)(5), where the coordinates are given by T and J
filtrations. The generators are marked abstractly, without U powers. The edges represent the differentials;
the edge with * depicts an instance of the fact that Az (a,, b;n)) = Az(an+1, b,({')) +n.

Lemma 4.5. When n = 1, the complex X}°(~T,3) is locally trivial.
When n = 2, the complex X3° (=T 5) has a local complex characterized by the following.

day = U3b§1),

day = UbS" + UPb?,

daz = Ubél);
Azg(ar, b)) = (3,1),
Az g2, b)) = (2,3),
Az.g(a2,bP) = (3,2),
Az.z(a3.byY) = (1.3).
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