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ABSTRACT Beam management is a strategy to unify beamforming and channel state information (CSI)
acquisition with large antenna arrays in 5G. Codebooks serve multiple uses in beam management including
beamforming reference signals, CSI reporting, and analog beam training. In this paper, we propose and
evaluate a machine learning-refined codebook design process for extremely large multiple-input multiple-
output (X-MIMO) systems. We propose a neural network and beam selection strategy to design the initial
access and refinement codebooks using end-to-end learning from beamspace representations. The algorithm,
called Extreme-Beam Management (X-BM), can significantly improve the performance of extremely large
arrays as envisioned for 6G and capture realistic wireless and physical layer aspects. Our results show
an 8dB improvement in initial access and overall effective spectral efficiency improvements compared to

traditional codebook methods.

INDEX TERMS Beam Management, Codebook Design, Extreme MIMO, Machine Learning

I. Introduction

Large-scale or Massive MIMO (M-MIMO) has been an im-
portant technology in mobile broadband since the first inves-
tigations on 3D beamforming in 3GPP release 13 [1]. Since
then, larger arrays have been envisioned with extremely large
arrays (> 64 antennas) for 6G [2]. Effectively employing M-
MIMO or X-MIMO, however, requires obtaining accurate
CSI. With the inception of 5G, M-MIMO was supported
through a process called beam management which integrated
beamforming for control signaling, hierarchical codebooks
for beam training, and enabled multiple configurations of
feedback [1]. Notably, beam management supports hybrid
arrays where the number of antenna ports visible to digital
communication systems and the number of antennas in the
array might be vastly different, as found in the so-called
hybrid MIMO architecture [3]. While the beam management
framework is designed to be flexible, there has been limited
research on optimizing beam management codebooks for
this flexible framework, leading to expensive overhead and
underperformance [4], [5].

Beam management is a multi-step process that includes
transmitting beamformed reference signals and obtaining
multiple forms of CSI to balance the overhead, latency, and
accuracy [1], [4], [6]. In 5G, the first step is synchronization
which requires transmitting one or more synchronization sig-
nal blocks (SSB) with a beamformer from a codebook (de-
noted as the SSB codebook). These are typically understood
as wide-area coverage beams because synchronization does
not require a high signal-to-noise ratio (SNR), but wide-area
beamforming improves cell coverage and aids the subsequent
beam search. From the set of SSBs, user equipment (UE)
provides a small feedback message identifying the strongest
SSB and the power received from the transmission [6].
Based on the SSB feedback, the base station (BS) selects
a refined beamforming codebook (identified as the CSI-RS
codebook) for transmitting CSI reference signals (CSI-RS),
which contain pilot signals for channel estimation. These two
beamforming codebooks support different functions (initial
access and synchronization compared to beam refinement
and channel estimation) and operate over different time-
frequency resource allocations to support these roles. Fol-
lowing CSI-RS reception, UEs estimate the effective channel
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and quantize it according to another codebook (the feedback
codebook) based on the BS array geometry. Finally, the CSI
feedback is provided to the BS and data transmission can
begin with an appropriately designed precoder to serve one
Or more users.

Optimizing the various codebooks is challenging due to
the difficulty in mathematically capturing the relationships
between the channel, mobile users, and the codebook inter-
relationships. In fact, there is no standardized technique for
optimizing codebooks because of the difficulty in accurately
capturing and modeling the distributions and roles served
by codebooks in 5G. One possible solution is applying
artificial intelligence or machine learning (AI/ML) to learn
these underlying characteristics directly from data. While
AI/ML has become an integral part of domains like computer
vision and language modeling, mobile broadband has not
seen as many benefits due to the well-known structure and
strict timing requirements of wireless communications [7],
[8]. Recently, 3GPP has announced investigations for the
integration of AI/ML targeting 3GPP Release 18 and beyond
[9]. In particular, beam management and CSI feedback
are identified as key areas where learning strategies are
envisioned because of the lack of performance and potential
for realistic applications [9].

With the initial proposals for 6G underway, new research on
AI/ML for extremely large arrays, equipped with hundreds
of antennas, is a critical topic, especially operating in new
communication bands [2]. 5G initially began supporting mas-
sive MIMO in a hybrid format, where analog beam training
was performed using the SSB and CSI-RS beamformers, and
digital precoding was based on the CSI feedback. Given the
support and success of these formats, it is valuable to design
and optimize strategies for X-MIMO within this formulation.
Successfully accomplishing this task paves the way for beam
management with AI/ML in 6G.

There are three directions of work related to AI/ML beam
management: 1) beam training, 2) codebook design, and
3) CSI feedback. First, we review a set of relevant prior
work incorporating machine learning and beam training.
Beam training has received the most attention of the three
directions when it comes to machine learning applications.
Classical data-driven techniques were explored in [10], [11]
using historical beam training data. While the codebooks and
algorithms rely on more traditional techniques, the concept
of “learning” a reduced codebook from site-specific data
is a foundational concept for more recent deep learning
techniques [12]-[15]. These papers ( [12]-[15]) focus on
millimeter-wave (mmWave) channels and typically exploit
the sparsity to aid the beam training process. Furthermore,
the codebooks within these papers are standard codebooks
like DFT which are unlikely to perform as well in rich
scattering environments as seen in upper-mid bands (7-
20GHz) envisioned for 6G [2]. In addition, that work [12]—
[15] does not consider a MIMO format with multiple UE

antennas and streams of data, instead limiting the setting to
analog beamforming. In this paper, we consider a scenario
with multiple users, multiple data streams, and frequency
selective, OFDM channels in rich multipath environments.

Codebook and beamformer design using machine learning
has received some focus in recent years [13], [16]-[19].
Hierarchical codebooks, which are a core concept in 5G,
were proposed in [20]-[22] to separate the beam search
process into multiple resolutions to reduce the overhead
of beam search. Deep reinforcement learning for broad-
cast beam pattern transmission was shown to be effective
in small-scale MIMO [16]. Supervised learning for SSB
codebook design in narrowband MIMO was also shown
to improve over standard codebooks [19]. Unsupervised
learning was applied to beamformer design from narrowband
channel measurements [17] but required perfect channel
state information. Broadcast probing beam patterns were
learned using channel state information in [18] which is
one of the only papers to consider a hierarchical strategy
similar to 5G based on SSB and CSI-RS codebooks. This
work [18] provides motivation for researching realistic deep
learning codebook methods, but it remains unclear how the
integration of ML impacts the overall system performance as
opposed to simply improving the beam alignment. Our work
addresses this question while further increasing the role that
data-driven algorithms play in codebook operations.

While codebook design is typically focused on improving
the received signal power, codebooks are also employed for
quantizing channel state information into discrete feedback.
ML has also been applied to improve feedback quantiza-
tion in recent work [23]-[26]. In general, ML methods
propose encoder-decoder structures [23]-[26], that employ
jointly-trained models at the UE and BS. This type of
application involves significant overhead, however, to ensure
both terminals have synchronized neural network weights or
parameters. Furthermore, the system effects in MU-MIMO
settings are not considered, even though high resolution
CSI feedback is primarily designed for improving MU-
MIMO performance [27]. Throughout these investigations,
CSI optimization is treated as a separate task beam training
and channel estimation, thereby neglecting the relationships
throughout the system. In this paper, we incorporate beam-
formed channel feedback as a result of beam management
to study the effects of ML codebooks on the overall system
performance.

In our prior work [28], we focused on a 5G, fully digital
sub-6GHz system. From that investigation, we found that
notable gains can be achieved with improvements to the
beam management framework using deep learning. While the
strategy was effective for SSB transmission, we now extend
the consideration to a new system configuration that supports
hybrid, upper-mid band systems with jointly-learned SSB
and CSI-RS codebooks. Throughout the process, the overall
goal is to balance the computational complexity, cost, and
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FIGURE 1. A depiction of the timing and interaction between the codebooks and data transmission. The SSB and CSI-RS codebooks are used to
determine an effective analog precoding that is combined with the precoding determined by the CSI-RS report.

performance of CSI acquisition to maximize system-level
performance. Our contributions in this manuscript are as
follows:

e First, we precisely define the beam management pro-
cess for an envisioned hybrid, X-MIMO system. The
process unifies traditional hybrid array formulations
with standardized beam management to support large-
scale MIMO arrays. The system includes all relevant
steps from initial access up through achievable network
spectral efficiency calculation. This formulation enables
a holistic evaluation of codebooks that captures the
interdependencies of a realistic beam management strat-
egy for 6G and is a natural evolution of that supported
in 5G.

Second, we design a multi-task neural network architec-
ture and processing pipeline to design SSB and CSI-RS
codebooks. The pipeline starts by converting the current
SSB codebook and SSB feedback into the beamspace.
Then the input is fed into two neural networks that are
jointly trained in an end-to-end fashion to output an
SSB and a set of candidate CSI-RS codebooks. End-
to-end training allows for incorporating the hierarchical
beam search from the system model into the gradient
calculations to enable robust and efficient learning. The
joint architecture is formulated to fit the strict timing
requirements of beam training. The joint neural network
formulation is able to learn codebooks that achieve

VOLUME ,

beam training results similar to if perfect CSI were
known a priori.

Third, we rigorously evaluate the capabilities of the
beam management framework in X-MIMO using vari-
ous codebooks, physically array geometries, and feed-
back strategies. The most important result we find
is that the proposed system, with limited feedback,
can achieve comparable performance to DFT-codebook
systems with full feedback in MU-MIMO settings.
Furthermore, we find that the X-BM design transfers
efficiently between new environments, antenna arrays,
and frequency ranges.

Notation: A is a matrix, a and {a[i]}}; are column
vectors and a, A denote scalars. AT, A, A* and Af
represent the transpose, conjugate, conjugate transpose, and
psuedo-inverse of A. A[k, f] denotes the entry of A in the k™
row and the /" column. The same meaning is also associated
with Ay ,. Similarly, A[:, k] refers to the k™ column of A.
Unspecified norm equations are ||a||, = a*a for vectors and
the Frobenius norm ||A|l, = 1/Tr(AA*) for matrices. We
use the notation |-] for rounding to the nearest integer. We
define j = \/—1. The operator E[-] is used for the expectation
of a random variable. Due to the notational complexity of
MU-MIMO with OFDM, we will always use u to refer to a
specific UE, ¢ as a specific time, k as a specific frequency
resource, and n/n, to refer to a specific transmit or receive
antenna. We use the superscript (-)RF to refer to the analog
component of hybrid variables within the MIMO system.



The remainder of our paper is organized as follows. First,
we introduce the system model and briefly highlight the
SSB and CSI-RS beam management processes. We con-
clude this section with an overview of PMI and define the
data transmission stage. We pay particular attention to the
beam training as we integrate the beam training into our
learning algorithm as an end-to-end model. We introduce
the proposed algorithm, X-BM, that includes beamspace
preprocessing, a multi-stage neural network, and end-to-end
learning. In the final sections, we present the simulation
setup and a rigorous evaluation of the various codebooks,
feedback formats, and overall performance achieved by our
proposed method.

Il. System model
We consider one region served by a single X-MIMO base
station. The BS is equipped with an NRF = NRF x N§F
planar array in a hybrid architecture such that antenna
elements are connected with phase shifters to radio frequency
chains to form a digital dimension of size Nt = Nx X Ny.
The phase shifters are limited to bypase bits resolution but we
assume a fully-connected structure such that every digital
port is connected to each physical antenna with a separate
phase shifter [29], [30]. On the other side of the radio
link, there are U UEs, where U is a random variable, each
equipped with an Ng uniform linear array which we assume
to be fully digital for this investigation. This reduces the
notational complexity and allows us to focus on the BS
operations, whereas UE-side optimization is left to future
work. All antennas are half-wavelength spaced in the YZ
planes. It remains to be seen what bands and configurations
will be standardized in 6G, so we will assume channels
are generated according to a model but rely on machine
learning to capture channel structures rather than incorporate
a specific channel model into the system. The OFDM MU-
MIMO channel is defined for U users, over T time slots,
and K subcarriers between each of the terminals as

He (CU><T><K><NR><NTRF‘ (1)

Note that we can generate this channel model us-
ing a clustered channel model as typically done by
Sionna [31], 3GPP, and other raytracing or statisti-
cal models and array response vectors ay(6,¢) =
ﬁ[17 el cos«9>1n¢’ eJ27r cos@smqﬁ7 . eJ(N—l)ﬂ' cos 0 sin qb}T for
the path direction (6, ¢).

With this setup in mind, we work with the following generic
received signal model for signals s transmitted with digital
and analog precoders F, ; 1, FfF and received with combin-
ers Wy, ¢ 1

u=0

U-1
1
Yu,tk = \/T Z,t,k (Hu,t,kFﬁF E Fu,t,ksu,t,k + Nt,k) .
T

(2)
The noise N is modeled as independent complex Gaussian
random values to account for thermal noise and the noise

figure of the receiver. Our model assumes that timing and
frequency synchronization have been performed, which is
supported through the embedded primary synchronization
and secondary synchronization sequences contained within
the SSB signals. During the next subsections, we will specify
how W/ F, and s are determined during the SSB, CSI-RS,
and data transmission stages according to an SSB codebook
BB ¢ C, a CSI-RS codebook BRS¢ C, and a pre-
defined feedback codebook. We will assume throughout the
paper that all digital beamformers are normalized according
to a per-symbol power constraint, i.e. |F|> = Nr and all
analog beamformers are constant modulus |F}%[> = 1/Nf*
for all elements (4,j) to ensure comparable results across
array sizes and to reflect the per-antenna power constraint
that is common in practice. In addition, the analog phase
shifters have a limited resolution such that each can only
apply a quantized phase shift with resolution 20

We will assume a working knowledge of the beam manage-
ment stages and will only briefly highlight the key equations.
Readers are encouraged to review [1], [6], [28] for an in-
depth review of these processes in 5G. Given the identified
focus on beam management for 6G [9], we will assume
the same three phases (SSB, CSI-RS, and feedback) as in
5G. We also assume UEs operate similarly to sub-6GHz
5G implementations, although such simplifications are only
assumed to as a simplification to focus on the BS operation.
Much of the beam training and hybrid operations are not
specified in the standards, so we will assume a formulation
similar to classical hybrid implementations found in litera-
ture i.e. [3], [32], [33].

A. Synchronization Signal Burst

The SSB process is an initial access procedure where a lim-
ited number of broadcast beams are transmitted periodically
to allow UEs to connect to the network [1], [6]. Although the
first SSB codebooks were designed for wide-area coverage,
the concepts of “narrow” and “wide” beams do not make
sense in multipath environments, especially with extremely
large arrays. Instead, the SSB and CSI-RS codebooks should
be designed in a hierarchical format to find more precise
beamformers that improve metrics such as the received signal
power or data rate. With this in mind, we overview the SSB
signal model.

The SSB signals are transmitted over a consistent band K558

and predefined timeslots 758 for each SSB i up to the total

SSB size Lpy.x. The received signal during SSB reception

before combining can be simplified from (2) to a single-

stream representation of the demodulation reference signals
DMRS

spr > € Cas

. 1
Yotk = K Ny H, ¢ ifispn 4 N 3)

where f; € BSSB is the analog beamformer controlled from
a single digital port. Note that a digital beamformer can
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FIGURE 2. A timing diagram indicating the connection between an ML/AIl
codebook algorithm, the BS operation, and the UE role in a downlink
configuration. Deep neural networks are capable of being deployed in
near real-time roles like codebook generation with time spans on the
order of 5-20ms. Real-time operations like precoder determination and

feedback quantization are challenging due to the strict < 1ms latency
requirements.

also be used but it is most reasonably achieved through an
analog rank-1 beamformer. While the limited resolution of
the phase shifters bphase in the hybrid array has a noticeable
effect during multi-stream precoder design, the effects are
almost imperceptible and nearly neglectable during rank-1
beamforming, even with low-resolution phase shifters [29].
Because the focus is on the BS operation, we will assume
the UE performs digital combining to maximize the SSB
reference signal received power (RSRP) as

RSRP, = > > [v5%

kE KSSB e TSSB

2

“

It is common at high frequencies to employ beam training
at the UE instead of digital combining, but we leave such
a scenario to future work as it is unclear whether upper-
mid band 6G will operate more like sub-6GHz 5G or
millimeter-wave 5G. Similarly, it is unknown if additional
SSB feedback will be added in 6G, but the minimum SSB
feedback corresponds to the best beam index and the RSRP
of that beam. This can be aggregated at the base station as

U
{max RSRPLU} (®)]
? u=1
U
{arg max RSRP; ,, } . (6)

u=1

p:
m =

The vectors p and m correspond to the best beam index (6)
and the corresponding RSRP (5) for all U users. After the
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SSB feedback, the BS can transmit CSI-RS to obtain more
accurate beam alignment and channel estimates in the form
of PMI.

B. CSI-RS

CSI-RS is the second beamforming stage where the previous
SSB feedback is used to refine the beamformers to achieve
a high SNR for analog beam training and channel estima-
tion. In the current specifications (3GPP R17), the CSI-RS
codebook is large, and a subset of the candidate beamformers
are selected based on the SSB feedback [28]. We define Bs"™®
as the active CSI-RS codebook and the selection algorithm,
Sel(-), that determines the Ncg; active beamformers from
BCSIRS pased on the SSB codebook and SSBRI feedback
m. The subset selection can be formalized as

Bsub _ Sel(m, BSSB, BCSI»R57 NCSI) (7)

CSI-RS subset selection: An important challenge during
CSI-RS is that the selection operates on a short timescale—on
the order of 1ms or less. Because of this limitation, neural
networks cannot easily be employed for selection; typical
neural network execution times with modern hardware are on
the order of 10us to 100ms [34], [35]. Historically, the CSI-
RS selection simply divides the angular space of the SSB
into a proportional number of beams compared to the total
allocation of CSI-RS beams, although the exact selection
algorithm is left up to private implementations. Given that
the learned beams do not represent simple angular spaces,
we propose a novel proportional selection process using the
cross-correlations of the SSB and CSI-RS codebooks. In
the case of DFT beams, the proposed proportional selection
produces the same results as angular division but it also
extends to arbitrary, learned codebooks as well. The propor-
tional selection algorithm begins by calculating the cross-
correlations C between each of codebook entries, which can
be performed while awaiting SSB feedback

C = (B}*", B{>™%) i, j. (8)

Then the number of CSI-RS beams to be allocated to each
SSB reference beam is determined as a proportion of the
total number of CSI-RS based on how many users reported
a given SSB beam selection m

i=Lmax—1
(&8

=0

Finally, for each of the SSB beams, the mjel most correlated
beams are assigned to the active subset. In other words,
the selection algorithm first determines how many of the
total CSI-RS beams should “correspond” to each of the
SSB beams, and then the most correlated CSI-RS beams for
each SSB beam are selected. This can be done based on a
column-wise argsort operation, the cumulative sum operation



(cumsum) and vectorized selection

A — argsort(C) (10)
; = cumsum(m%') Vi € {0,1,..., Lypax — 1} (11)
le]lb . BCSI -RS [Asortem] (12)

The result is a subset of Ncs; CSI-RS beams that are propor-
tionally selected to be highly correlated with the active SSB
beams reported. Although calculating the cross-correlations
involves significant computation, these operations can be
performed as soon as the codebooks are available rather than
waiting for SSB feedback. The timing critical operations
only require at most UL, + 1 FLOPs for proportioning
(9) and Lp,x FLOPs for the cumulative sum with negligible
operations for indexing in (12). Therefore, even resource-
constrained systems are capable of performing the propor-
tional selection in real time.

Before discussing the received CSI-RS, it is important to
understand the role of logical ports when it comes to hybrid
arrays and CSI-RS. Logical ports simply correspond to a set
of ports that transmit a signal over a consistent channel. It
does not correspond to a specific or unique subset of analog
or digital ports in a hybrid system, but rather, allows for
a separation between the hardware and a representation of
the channel. Although this logical-physical port separation is
flexible, this formulation leaves many implementation details
out of the specifications. In order to follow traditional hybrid
systems, while still keeping the flexibility, we associate three
parameters with the CSI-RS: Np is the total number of
ports that can be configured which is typically the digital
dimension of the hybrid array, Ncg; is the number of CSI-RS
beamformers to be transmitted, and an additional parameter
B, which is the number of ports and beams assigned to one
CSI-RS allocation. The connection between the parameters
is that B, CSI-RS beams are transmitted within one resource
so that [ Ncsi/B,| total CSI-RS resources must be allocated
and up to | Np/B,] users can be multiplexed together during
the subsequent data transmission. The separation here allows
for “assigning” portions of the logical array of size B, to
each user and users can select from | Ncsi/B, | resources to
feedback beamformed channel estimates from.

With the active CSI-RS codebook determined, the CSI-RS
process involves transmitting training symbols s, € CBe*1
for channel estimation using each selected béamforming
codeword, grouped into B, beams i.e. F; C B for each
CSI-RS allocation . Note that the symbols and beamformers
may be one-hot or code-division multiplexed across the time-
frequency resources of the CSI-RS depending on the BS-
selected settings. The received signal for each UE is then

CSI-RS;

1
Yotk Ho ok Fis ) + Not .

7KNT (13)

From the received signal, the UE can determine Athe RSRP,
estimated SNR, and select the CSI-RS indicator i as

RSRPCS™S = max >~ > [y yid [NET
nr k€ KCSIRS; 4 CSIRS;
2
. |HLoFs
SNR,, = max e >y L
ke I CSIRS; £ TCSIRS;
5)
F = argmaxSNRi,u (16)

Ty

The noise power, 0% = E[||N,, |I?] can be estimated from
the system parameters and zero-power CSI-RS. Compared
to the SSB model (3), the CSI-RS received model is multi-
layer due to the need for sounding each of the B, ports. The
CSI-RS therefore must have at least Ng beams for a full-
rank beamformed channel, assuming Ng < Nr. There is a
significant benefit to using groupings of a small number of
beams to sound the channel as the overhead for both CSI-
RS transmission and feedback quantization are reduced, and
users can be multiplexed using different analog beams and
well-designed digital precoders.

The SNR (15) impacts the channel estimation efficacy and
is useful for determining the initial modulation and coding
scheme (MCS) for data transmission. The beamformed chan-
nel estimate is defined for a channel estimation algorithm
w(-) as

= wlya s").
There is no standardized channel estimation algorithm, but,
given the limited time and power budget of mobile UEs,
a least squares method is assumed herein. The resulting
channel estimate at the UE is frequency selective over a
set of frequency subbands b € {1,...Sg}. In the final step,
the channel estimates are quantized according to a feedback
codebook and transmitted to the BS [1], [36].

HFA

1y

a7

C. Feedback

CSI feedback is a highly configurable process to achieve a
careful balance of overhead and CSI accuracy. In 5G there
were two categories of feedback: type-I and type-1I [1],
[36]. In 3GPP Release 16 an additional format of type-II
called “enhanced type-II” was standardized that included
additional, frequency-domain compression. In general, the
feedback formats are methods for quantizing the channel
estimate according to a shared feedback codebook BFB.
Type-II in particular is designed for high-resolution, MU-
MIMO settings where the channel information is quantized
as a set of Lcgr oversampled DFT components, with over-
sampling factors Oy x Oy. We refer readers to [36] for a
general description of the feedback formats and [5] for a
fast implementation of type-II quantization that is important
for large arrays and high resolution feedback considered in
X-MIMO.
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The BS receives a set of codebook indices A €
WSsxNexLesi—1 and cophasing factors K € CS8*NexLesi—1
that enable a reconstruction of the beamformed channel.
Channels are reconstructed in the same way as [28] i.e.

Lcs
HypnF; =Y Kon B Y n.  (18)
{=1

The quantization error, therefore, can be reduced with large
Lcsy, but this introduces additional overhead. In addition,
the frequency domain quantization introduces overhead that
increases with a larger number of subband elements Sg. The
actual overhead is compressed so that the frequency-domain
scaling is minimal, although the overhead of this signaling
is a significant part of the precoder matrix indicator (PMI)
section of the feedback report. In addition, the feedback will
include information describing the rank indicator R (RI),
the best CSI-RS beam index i, (CRI), and other subfields
not critical to this work. The base station should then use
the information from both the beam training and channel
feedback to design precoders to best serve the users.

D. Data transmission

In the final steps, the BS uses the CSI acquired through the
UE feedback to determine the precoders to serve a set of
users. The exact process is not standardized; we take a stan-
dard approach here inspired by MIMO fundamentals [37].
The analog beamforming for the hybrid array is controlled
through the CRI from the feedback packet while the digital
precoder is used to mitigate interference between users and
streams. A typical precoder formulation is a regularized zero-
forcing precoder (RZF) determined to maximize the signal-
to-leakage noise ratio [37, section 9.9]. The RZF precoder
with perfect channel state information is

(X By Hiyp + UNTE[NZ , ) 7UH

Fu,t,k = .
‘ Hzﬂ,t,kHi,t’k + UNT]E[Ni,t,kD_lHZ,t,k ‘
19)
In the case of realistic, hybrid arrays the perfect channel
state information H is replaced with the selected _beam-
formed channels, redefined for ease of notation as (HF) =
{H,m;u Yubn, € CUXSeXNexBe The beamformed chan-
nels arise from the beam grouping and port assignments
from Section B. Without loss of generality, we assume the
first U, < Nr1q/B, users are allocated for data transmission
so that the analog {F; } and digital precoders {F.} are
designed in a subarray-formulation [3] as

RF __ N . N
F = [F; F; .. F; ] (20)
F07t7k 0 O
0 Fi.rn O
Foe=| . . @1
0 0 Fu, itk

This formulation neatly unifies hybrid arrays, traditional pre-
coding, and beam management techniques with the received
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signal model from (2). Because data transmission is not
standardized, we propose this formulation as an intersection
of traditional hybrid operations and the information available
during beam management.

On the receiver side, the UEs also perform a combining
strategy based on the embedded DMRS within the signal
allowing for decoding each data stream without knowing the
exact precoder. In this work, we will assume an LMMSE
receiver is used to maximize the signal-to-interference noise
ratio (SINR) for any precoder, although the actual SINR and
subsequent data rate calculations are not actually performed
by the UE but are necessary to evaluate the achievable
spectral efficiency in simulation. The choice of LMMSE
receiver here makes sense to ensure allocated users have high
performance for receiving the signal while still balancing the
computational cost. The SINR at resource element (¢, k) for
a given user v and data stream r with equal power allocation
per user is

Dy = Hy 1 F; Firk (22)
U-1 -1
Ltk = ( > DuisDy g+ UNTE[Ni,t,k])
i=0
(23)
1 D::/ TI'U. Du T
SINR, 4, = ey b (24)

K1- Dz,t,k,rlu7t,kDu,t,k,r

The SINR expression (24) is a ratio between the signal power
of the desired data stream (u, ) compared to the noise and
interference power of all other streams in (23).

We evaluate the performance in the network by the sum
spectral efficiency (SSE), which is reasonable when there
is not more complicated scheduling, fairness constraints,
and resource allocation. The sum spectral efficiency can be
multiplied by the bandwidth to get the sum rate. Assuming
Gaussian signaling and treating interference as Gaussian
noise, the achievable spectral efficiency, SE,, , is

K-1R-1

SE,: = Z Z logy (1 + SINRy, ¢ &.-)-

k=0 r=0

The SSE is a sum over the active users, but it does not
account for the overhead of beam management or CSI
acquisition. In the final step, we consider the effective SSE
(ESSE), which accounts for the overhead due to beam train-
ing by removing the corresponding time/frequency resources
due to training and feedback of the entire beam management
system (Tpm, Kpm) from the spectral efficiency calculation

U-1 R—-1
ESSE=Y > ) logy(1+SINRyks).  (26)

u=0 t¢Tgmy =0
k¢ Kpm

Although presented in a linear fashion, the SSB, CSI-RS,
feedback, and data transmission typically occur over separate
resources so that there are no periods of waiting in a full-
buffer scenario. With the system model defined, we now
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present the core machine learning architecture, X-BM that
integrates ML within the codebook design process. The
proposed strategy integrates in a realistic fashion such that
the system does not require additional side information
and the overall architecture is designed to meet the timing
constraints implicit within beam management.

lll. Neural codebook design

We propose a novel approach for jointly designing the
SSB and CSI-RS codebooks using AI/ML. The primary
challenges with integrating machine learning into wireless
domains ultimately come down to the tight timing constraints
(see Figure 2) and generalizing across varying numbers of
users and system configurations. Timing constraints are not
particularly concerning for SSB codebook generation, as the
periodicity is typically 20ms with a minimum of 5ms. In
comparison, the CSI-RS codebook needs to be available
within 1ms following the SSB feedback, however, the CSI-
RS selection depends on the SSB feedback. It is extremely
challenging for modern hardware to employ deep neural
networks with such tight, sequential timing constraints [34],
[35]. Therefore, we propose the neural architecture, shown in
Figure 3, to output the SSB codebook and a set of candidate
CSI-RS codebooks in parallel at each SSB period. Then
we employ the proportional selection technique from (8)-
(12) to determine the CSI-RS codebook from the candidate
options, allowing the joint algorithm to overcome the timing
limitation and still incorporate the SSB feedback. In prepa-
ration for 6@, this operation is similar to current 5G CSI-RS
codebooks but extends to arbitrary and time-varying SSB and
CSI-RS codebooks. The entire structure is trained in an end-
to-end fashion with the goal of minimizing the power loss
with respect to singular value decomposition beamforming,
which is the power-maximizing strategy for a single user
with perfect CSI and rank-1 beamforming. This ensures that
we do not have to define a specific beamforming pattern train
against, but rather have the network learn patterns that are
close to power-maximizing.

The input to X-BM is prepared by converting the prior
SSB codebook and SSB feedback to the beamspace. The
input only contains previously known users, so the learning
algorithm is partially regularized by new users who join the
network in the upcoming SSB cycle and therefore are not
included in the prior observation. The beamspace is a simple
and highly extensible conversion where beamformers are
converted to the angular domain with fixed resolution. This
format is beneficial for translating beamformer information
over time, antenna geometries, and UE numbers because the
beamspace is largely unaffected by these parameters [23],
[28], [38]. This ensures that the input from a set of previous
beamformers represents a consistent two-dimensional grid of
projections. This step was originally developed in our prior
work [28].

First, we define an angular transformation matrix for antenna
size Ny and N, angular directions as a series of array
responses

Oy, = l[0, 1., Ny —1]7 (27)
T
Un, N, £ [an,(60), .-.an,(0n,-1)]- (28)

The beamspace conversion for N,y azimuth directions and
Nyo elevation direction is calculated as

SSB _ SSB SSB

F’L - [BO:N}}F,i’ "”B(N)%F—I)N\BF:N}?FN%}F,I’] (29)
BSC _ * SSB .

Oi = N)I({F,N,EOF’L' UN$F,Ny0 VZ. (30)

The codebook must be reshaped from a vector of size NXF
to the planar dimensions NEF x NXF in (29) before the
beamspace conversion in (30) that produces the beamspace
observation, OBSC. Note that the beamspace conversion is
a reversible operation via the pseudo inverse so long as the
number of samples in each direction is equal to or greater
than the number of antennas, so we also train the network
to predict the beamspace of the desired output, rather than
direct beamforming coefficients to aid the learning process.
The predicted beamformers are obtained within the training
loop, and the computational complexity can be controlled
by changing the observation sizes N.o and N,. In addition
to the angular representation, the input is also concatenated
with the feedback corresponding to the number of users
reporting each beam and the sum RSRP. We can express
this using the notation 1. to refer to a vector with all 0
entries except the indices where the subscript is true contain
a 1 and resulting in the input

OBSC — {[OBSC [, Z Lones, 151:1'1)} }Lmax

=0

-1
(31

This input is generated during each SSB period and fed into
the X-BM algorithm as shown in Figure 3. The output of the
algorithm is an SSB codebook and a CSI-RS codebook that
can be subset using the proportional selection algorithm.

The overall system is designed and trained in an end-to-end
fashion with respect to maximizing the RSRP. End-to-end
training changes the learning goal with data-driven methods
to maximize or minimize a system-level metric, rather than
training toward a specific output [39]. In particular, we
do not identify the exact beamformers we want the neural
network to learn, instead relying on the network to learn the
beamformers that achieve the highest RSRP. It is difficult
to exactly define an “optimal” beamformer formulation in
general for the SSB and CSI-RS steps. This arises from the
fact that even with perfect CSI, the broadcast beamformers
that achieve the highest SNR with a limited number of beams
depend heavily on the system parameters, user channels,
and number of beamformers used. By employing end-to-
end learning, we instead train the neural network to learn
beamformers that achieve the highest performance relative
to single-user singular value decomposition (SVD) beam-
forming with perfect CSI. This formulation is even more
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FIGURE 3. A depiction of the X-BM algorithm and gradient propagation. The beamspace is prepared using the previous SSB codebook and known UE

feedback and fed into two parallel networks that generate the new SSB codebook and CSI-RS codebook. The CSI-RS codebook is then quantized and a
proportional selection according to the new SSB feedback is used to determine the active CSI-RS codebook. Gradients are calculated according to the
difference between the UE-received power and the achievable SVD received power for all users.

advantageous in the initial access scenario where not all users
are known by the system prior to codebook generation. The
general learning framework is shown in Figure 3 with a loss
function comparing the SVD power and the reported RSRP
for each user as

Uu7 Suavu =
L(S,p) =

H, Vue{l,.U} (32)

1
U 2(1010g10(8370) - 10108‘10(1’3))
' (33)

where p is the RSRP from (5) or (14) for the SSB or
CSI-RS codebooks. Gradients are calculated from the loss
function (33) throughout the network and parameters are
updated using an Adam optimizer [40] with cyclic learning
rate scheduling between 102 and 107°.

One challenge of codebook design for X-MIMO is the mas-
sive physical array size, which results in a significant number
of parameters for generating codebooks. We mitigate this
with efficient neural structures like convolutional layers (See
Table 1) that share parameters and efficiently operate over
the beamspace representation (30). In fact, this formulation
allows the neural network to learn from a universal pattern
that allows for training and testing on any array geometries,
so long as the beamspace dimensions are equal or greater to
the antenna dimensions to prevent aliasing [28]. We examine
how the network generalizes across geometries in Figure
8. It is noteworthy that further parameter reduction can be
achieved using convolution transpose layers instead of a fully
connected layer within the network, although we found this
caused a slight performance drop in our previous work [28].
Refining, distilling, or pruning the network are techniques
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that can be employed to minimize the hardware resource
needed during deployment [41].

In addition to hardware considerations for deployment, al-
gorithm periodicity is also a potential source of operator
modification. The current formulation is set up to enable a
fast, supervised learning strategy where each training step
can be performed independently, rather than treated as a
sequential time series [28]. This means that the codebooks
can be generated every SSB period, or after a series of
periods if the channel time dynamics are slow compared to
the SSB period. For example, fixed wireless is an application
where the codebooks would not need to be updated. Even
running the algorithm at every period, as it’s used here,
would produce the same codebook given that the inputs
would be constant over time.

IV. Data generation framework

The system-level simulation requires two stages: 1) spatially
and consistent channel generation for multiple users and 2)
beam management integration of the iterative steps for initial
access, beam refinement, feedback, and data transmission.
We start by generating raytraced channels using Sionna [31].
In our simulations, we consider two environments (labeled A
and B) with 10000 potential users scattered over a BS sector
site. The BS is equipped with an NI = 16, N&F = 16
planar array using a 3GPP 3D antenna model with half-
wavelength spacing and Nx = 8 and Ny = 4 with bppaee = 2
bit phase shifters facing the serving sector region. Each
user has Ng = 4 antennas tuned for a 10GHz carrier
frequency in environment A and tuned for a 20GHz carrier



TABLE 1. XBM neural architectures

Layer Primary Parameter | Activation Output Dimension
Conv+Max Pool 128 Filters ReLU [(Nzo 4+ 2)/2] X [(Nyo +2)/2] x 128
Conv+Max Pool 96 Filters ReLU [(Nzo + 2)/4] X [(Nyo + 2)/4] x 96

Dropout 0.3 Rate [(Nzo +2)/4] x [(Nyo +2)/4] x 96

Conv 320 Filters ReLU [(Nzo + 2)/4] x [(Nyo + 2)/4] x 320

Flatten ([(Nao +2)/41)([(Nyo + 2)/41)(320)

Dropout 0.1 Rate ([(Ngo + 2)/47)([(Nyo + 2)/41)(320)
Fully Conn. 2NzoNyoN Neurons 2NzoNyo N
Reshape Nzo X Nyg x 2N

frequency in environment B to consider low-band and high-
band frequencies for upper-mid bands [2]. Users are assumed
to have random mobility patterns with an average speed of
3m/s in environment A and 10m/s in environment B and
arrays oriented vertically. Environment A models the area
around the Frauenkirche in Munich with a BS placed on
a building 40m tall and Environment B models the area
around the Arc de Triomphe in Paris with the BS at a
height of 27m [31] (See Figure 4. The user channels are
sampled at 1ms intervals over 100MHz with 270 resource
blocks assuming 30kHz subcarrier spacing. After a database
of channels is generated, the neural network is integrated
into a processing pipeline following the system model. The
neural network is trained on 40,000 training samples with
a random number of users and varied locations throughout
the scene. The validation dataset is drawn from the same
distribution and used to determine when the network training
is complete. All test results come from newly generated
channels according to the test environment, which may be
the same or a different environment from the training set.

The data processing begins by first selecting a random
number of active users U ~ U[4,16] for the subsequent
timestep and drawing that many users’ channels randomly
from the channel database. Then, the beamspace is calculated
using the prior SSB codebook (initially set as random DFT
codebook beams) with 80% of the active users reporting.
The remaining 20% are assumed to be new users that are
not known prior to the current SSB cycle and helps prevent
the neural network from overfitting to known users. The new
SSB and CSI-RS codebooks are generated and the current
iteration begins with the SSB transmission and feedback
(p, m) according to Section A. Then, the active CSI-RS
codebook B* is selected according to the proportional
correlation selection, beams are grouped into sets of length
FPcs1 to form beamformed channels and transmitted. During
data transmission, we assume the network calculates the RZF
precoders based on the feedback and estimates the expected
SSE for each combination of UEs, and selects the highest
SSE user set. This information is used as a simple, realistic
scheduling algorithm using the CSI available. The resulting
SSB RSRP, CSI-RS SNR, and ESSE metrics are used to

evaluate the proposed X-BM from a modular and system-
level context.

V. Simulation results

Given the capabilities for overfitting with neural networks,
we carefully evaluate the proposed system across different
scenarios, array geometries, and out-of-distribution settings.
From these evaluations, we seek to better understand the
advantages and limitations of a neural codebook algorithm.
Unless specified, the default parameters for the results are
Lmax = 16 SSB beams, Ncs1 = 16 CSI-RS beams, B; = 4
logical ports or CSI-RS beams per CSI-RS resource, Ngrg =
24 resource blocks occupied by a CSI-RS resource, and S =
8 subbands for PMI.

A. SSB Performance

The first evaluation focuses on the RSRP performance of
the proposed algorithm. The RSRP is evaluated using both
the SSB and CSI-RS codebooks, although the CSI-RS relies
on the SSB feedback and should in general outperform the
SSB beamforming given the additional information available
to the system. In Figure 5 we show the empirical probability
distribution function (PDF) of the reported RSRP using the
proposed X-BM, DFT codebooks, and the neural architecture
from our prior work [28]. To compare the results, we show
the relative power-loss of the RSRP achieved with the code-
book method compared to SVD beamforming with perfect
CSI (CSI-SVD). In the first results, we show the RSRP
performance with Ly,,x = 16, which is more than supported
in sub-6GHz 5G, but less than the L,,x = 64 supported
by mmWave 5G. It can be seen that the performance of
X-BM is almost always within 3dB of SVD beamforming
and achieves a gain of over 6dB on average compared to DFT
codebooks. Especially interesting, we see that there is very
little gain from the CSI-RS with N¢g; = 32 for the majority
of users, with only the bottom 20% of users seeing noticeable
improvements. We also note that the performance of the
beamspace codex (BSC) is modestly more performant than
DFT codebooks, but ultimately suffers from the difference in
learning objective. In particular, learning SVD beamformers
is more challenging so reducing the training data to the
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(a) Environment A

(b) Environment B

FIGURE 4. A comparison of the powermaps in two environments with different base station heights and carrier frequencies. Environment A
corresponds to Munich, Germany operating at 10GHz and with the BS mounted at 40m high. The alternate setting in Environment B is Paris, France
operating at 20 GHz, with a 27m high BS. A low resolution power map is rendered on each scene to highlight possible user locations.

current 40,000 samples limits performance while showing
the X-BM sample efficiency.

In Fig. 6, the performance with respect to different SSB
codebook sizes L,y is plotted. An interesting result of these
simulations (Figures 5-6) is that the X-BM SSB performance
often outperforms even the CSI-RS performance of DFT
codebooks. From a beam training perspective, there appears
limited need for using CSI-RS beams when employing
X-BM codebooks, because the SSB codebooks are already
well-performing. Although a hierarchical search provides
significant gains with DFT codebooks, it can be seen that
the X-BM SSB codebook typically achieve a sufficient beam
alignment. In particular, X-BM achieves better beam training
RSRP with L;,x = 8 beamformers than the CSI-RS beams
achieve from a 4 times larger DFT codebook, although these
results can still be improved with a larger X-BM codebook
as shown in Figure 6.

B. CSI-RS SNR

Following the SSB transmission, the candidate CSI-RS code-
book is selected based on the SSBRI and transmitted. The
first goal is to achieve a high channel estimation SNR,
while also ensuring the beamformer can be employed for
hybrid beamforming with digital precoding. An inherent
challenge of the design and operation of CSI-RS codebooks
is the dependence on the SSB codebook and the extensive
overhead associated with larger active codebooks. It is often
advantageous to employ a larger number of SSB beams,
which require relatively low overhead, in combination with
a limited number of CSI-RS beams that consume significant
wireless resources. At the same time, the SSB periodicity is
higher than CSI-RS-typically about 4 times faster—so there
is additional overhead to consider. Furthermore, the design
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FIGURE 5. Comparison of the beamforming codebook performance
relative to perfect CSI beamforming with L,,,x = 16 and N¢s; = 16 beams.
5000 sets of active users are drawn and each codebook method is used to
select the SSB (solid lines) and CSI-RS (dashed lines) codebooks. The
RSRP is then calculated and the difference from SVD beamforming is
shown as an estimated density function. The X-BM codebooks are
extremely effective, with more than 75% of users within 3dB of perfect CSI
and outperforming the prior work on ML codebook algorithms [28]. Even
compared to much larger DFT codebooks for CSI-RS, there is a
substantial performance improvement with the proposed X-BM method.

challenge is not simply to maximize SNR, but also to obtain
an analog precoder that performs well for the hybrid data
transmission.

We begin by addressing the first question of achieving a
high-gain CSI-RS codebook. In Figure 7 we compare the
CSI-RS SNR obtained from classic DFT codebooks with
varying sizes compared to the number of active users. We
can see that when the number of users is much larger
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proportional selection algorithm with the reported SSBRI. The proposed
X-BM SSB codebooks outperform 4 times larger SSB+CSI-RS DFT
codebooks.
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FIGURE 7. A heatmap of the average SNR during CSI-RS reception with
different numbers of active CSI-RS beams Ncgs; and active users U. While
increasing the DFT codebook size provides a significant gain for more
than 4 users, the rich multipath environment enables better performance
with X-BM codebooks, even with 1/16 as many CSI-RS beams. This is a
limitation of DFT beamformers in low- and mid-band environments.

than the number of beams, the X-BM method performs
significantly better than DFT codebooks. We can see that
with just 1 beam per active user, the X-BM codebooks
reach a consistent performance gain of about 4dB over
DFT codebooks of any size. This can be attributed to the
multipath propagation environment that does not match DFT
beamformers in general.

C. Geometry translation

One of the beneficial aspects of the X-BM structure is a
natural translation across array geometries. In particular, the
neural network size and parameters do not depend on the
antenna array, so the same neural network can be employed
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FIGURE 8. A comparison of two X-BM networks for geometry translation.
The X-BM models are trained using data from arrays equipped with

Nx = {8,16} and Ny = {8, 16} and beamspaces of size

Ngzo = 16, N,o = 16, but both are evaluated with Nx = 16, Ny = 16 and
L = 16. Initially, there is a performance drop of about 4dB, but
fine-tuning restores the performance to that of a model trained
specifically for the array geometry. This highlights the effectiveness and
generalization capability of the beamspace conversion.

or trained across geometries. Figure 8 shows a comparison
of the performance of geometry translation, assuming the
arrays are placed in the same scene and location. We focus
on the more difficult setting of training a neural network
on data from a smaller array than it is tested on. It can
be seen that there is a drop in performance when testing
models trained on 8 x 8 arrays in 16 x 16 settings, although
the performance is still better than the DFT codebooks in
Figure 5. In general, this is a limitation of deep learning
in that it does not automatically generalize well, even with
carefully designed formulations. At the same time, there is a
distinct advantage over traditional codebooks, showing that
the beamspace formulation is capturing consistent patterns in
the beamspace. By applying domain knowledge to convert
codebooks to the beamspace and back, the neural architec-
ture can naturally capture patterns through the lens of the
MIMO arrays.

While the performance loss is noticeable, the benefit to the
X-BM architecture is that the same neural network can be
trained with data from different array sizes. This allows
network operators to only need to collect data once and then
fine-tune after selecting the hardware to maximize perfor-
mance. To show the fine-tuning performance, we include the
original 8 x 8 model that has been retrained on the 16 x 16
data for 30s, highlighting how effective fine-tuning is for
resolving the geometry translation loss. In this setting, fine-
tuning is performed by simply training on new data with the
same training steps, however, we will consider fine-tuning
on imperfect CSI in Section E.
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D. Feedback

The previous results have shown that ML codebooks are
extremely effective for beam training, but beam alignment
is not the ultimate goal of wireless networks. Effective beam
training naturally ensures that a strong rank-1 wireless link
exists, however, the actual MU-MIMO performance is less
clear from the beam alignment results. In this subsection, we
incorporate type-II feedback and multi-stream data transmis-
sion to determine the system-level impact of ML codebooks.
We first address the general impact of the CSI-RS parameters
for hybrid arrays, then look at a comparison between tradi-
tional codebooks and X-BM codebooks. Throughout these
results, the most important metric is always the effective sum
spectral efficiency, which describes the actual performance
after accounting for the overhead.

First, we investigate the feedback parameters using tradi-
tional DFT codebooks and hybrid arrays in Fig. 9. These re-
sults show an interesting result: using higher rank CSI-RS re-
quires more feedback and typically reduces the performance
compared to lower rank CSI-RS. This means there is little
benefit to configuring the system with many CSI-RS ports.
In fact, MU-MIMO with at least one user receiving 4 data
layers is unlikely to maximize performance so even smaller
beam groupings can be used. These results are specific to the
simulated scenario, which includes many UEs to multiplex
between and encourages scheduling more users with lower
rank channels and less overhead. The total overhead depends
on the number of CSI-RS resources allocated Ncsi/B,,
the beams per group B,, and the feedback and overhead
associated with each CSI-RS.

In the next investigation, we compare how the SSB and CSI-
RS codebooks impact the overall system ESSE. The results
in Figure 10 are compared again using DFT and X-BM
codebooks with three feedback settings from the previous
results, (LCSI = 2, Bg = 2), (LCSI = 2, Bg = 4), and
(Lcst = 4, By = 4). It can be seen that the X-BM codebooks
result in roughly a 10% effective spectral efficiency im-
provement over DFT codebooks using the standard feedback
formats. Furthermore, the gain from using limited feedback
is increased with X-BM codebooks due to the more effective
beam alignment.

E. Model updating

For the final evaluation, we evaluate how the model performs
as a result of distribution shift. We consider the case that the
model is initially trained in the first environment, but then the
scene changes significantly causing the channel distributions
to be out-of-distribution [42] or arising from a new context.
We evaluate the model in the new environment (environment
B) and then again after retraining the model using only
the available CSI at the BS. In particular, we retrain on
potentially erroneous CSI to characterize how effective live-
model updating is using imperfect CSI. Because of the lack
of perfect CSI, we employ an unsupervised learning strategy
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FIGURE 9. An empirical CDF chart of the ESSE performance with PMI
type-ll using different ratios of feedback resolution L¢s; and CSl rank B,.
Each ratio is plotted with different line formats. It can be seen that there is
no gain from using larger beam groupings which require more overhead,
more feedback, and reduces the number of UEs that can be multiplexed.
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FIGURE 10. ESSE performance with CSI parameters (Lcs = 2, B, = 2),
(Lest = 2, Bg = 4),and (Lcs; = 4, By = 4). The X-BM codebooks provide
a noticeable improvement over DFT codebooks, especially for the lowest
20% of users. While the significant gain in beam training does result in
improved ESSE, it is not expected to see gains on the order of 4 times
larger ESSE, especially with greedy scheduling.

to maximize the RSRP (or minimize the negative RSRP)

1
L(p) =— U Z 1010%10(1%)2-

(34)

This formulation is less stable as the training only seeks
to maximize the RSRP without a reference point so a low
RSRP is more penalizing, even if that UE cannot achieve a
much higher RSRP due to the location/channel. Additionally,
the gradients are calculated with respect to the quantized,
estimated beamformed CSI which can include estimation and
quantization error. At the same time, the training considers a
very practical scenario where only the available information
obtained from a live network is used for fine-tuning.
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The results of the fine-tuning are shown in Figure 11 which
characterizes the difference between a site-specific model,
the site-agnostic model, and the fine-tuned model perfor-
mance between the scenarios. It can be seen that there is
a significant drop in performance when deploying the initial
model (site-agnostic) in the new environment, but that using
the imperfect CSI and retraining with 20000 samples for
30s can provide an improvement, especially for the bottom
50% of users. The imperfect CSI and unsupervised fine-
tuning strategy, however, is not able to recover the results that
could be achieved with perfect CSI shown by the site-specific
results. The flexibility of deploying pre-trained models and
then quickly fine-tuning is a valuable benefit for network
operators, even during cyclic changes in distributions i.e.
rush hour or during sporting events.

VI. Conclusion

In this paper, we proposed a machine learning-assisted
beam management strategy (X-BM) for extreme MIMO. The
proposed solution integrates machine learning into all stages
of beam management while maintaining realistic timing and
computation constraints. ML codebooks provide significant
gains during beam training, especially for hybrid arrays,
with an average improvement of 6dB in received power
compared to traditional methods. In fact, the learned initial
access codebooks outperform two-step hierarchical search
DFT codebooks in all scenarios.

The proposed X-BM algorithm is built upon a beamspace
conversion that translates beamformers into a consistent
grid representation. We integrate the beamspace conversion,
quantization, transmission, and feedback into the model
learning to enable an end-to-end learning framework. The
proposed algorithm naturally generalizes across array ge-
ometries, user distributions, and entirely new environments.
Furthermore, X-BM does not require changes to UE op-
eration while increasing the achievable spectral efficiency
by 10%. We also show that it is also capable of efficiently
updating using only the partial CSI available to the network.

Synthesizing the results of our study, we draw the following
conclusions about the evolution of the upper-mid band (so-
called FR3) in the next releases of 5G and into 6G. First,
we find that the beam training framework can be extended to
the upper midband and X-MIMO arrays. Second, DFT beams
have worse performance as their narrower beamwidths (com-
pared to sub-6GHz bands) become even more suboptimal in
multipath environments. Finally, AI/ML approaches are able
to design both SSB and CSI-RS codebooks that can sub-
stantially improve beam training and sum spectral efficiency
within the network. Future investigations on multi-cell and
interference-aware codebook design are necessary for further
characterizing the benefits of AI/ML in realistic, network-
level beam management. We expect future evaluations using
different hardware architectures and hybrid formulations will
also be important as 6G refines the physical layer support
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