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Abstract

In The Cancer Genome Atlas (TCGA) data set, there are many interesting nonlinear dependencies
between pairs of genes that reveal important relationships and subtypes of cancer. Such genomic
data analysis requires a rapid, powerful and interpretable detection process, especially in a high-
dimensional environment. We study the nonlinear patterns among the expression of pairs of genes
from TCGA using a powerful tool called Binary Expansion Testing. We find many nonlinear
patterns, some of which are driven by known cancer subtypes, some of which are novel.
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SUPPLEMENTARY MATERIAL

More Examples for the Gene ZDHHC?2 in the LumA Context for the Parabolic BID

Supplement A gives two more significant parabolic BID gene pairs with ZDHHC2 in the context of only Luminal A. ZDHHC2 is on
different axes in these two examples. This shows the reflection property of BET and the bifurcating role of ZDHHC?2.

Gene Set Enrichment Analysis Results for the Mixture Dependence of the ANKS6 Community

Supplement B gives a full list of overlapping computation (using Gene Set Enrichment Analysis, GSEA) results of the ANKS6
Community with the gene sets in the Molecular Signatures Database (MSigDB) for the Mixture Dependence in the Five Subtypes
context.

Gene Set Enrichment Analysis Results for the Mixture Dependence of the ZDHHC2 Community

Supplement C gives a full list of overlapping computation (using GSEA) results of the ZDHHC2 Community with the gene sets in the
MSigDB for the Mixture Dependence in the LumA only context.

Deeper Investigation of the Bimodal Structure of RPL9

Supplement D shows that the bimodal distribution of the gene RPL9, discussed in Sections 3.6 and 4.2 is an artifact caused by the
early gene mapping algorithm used to preprocess that data set.

The Relationships between Top Genes with respect to Five Nonlinear BIDs

Supplement E introduces a network connection plot of the relationships between the 200 most significant genes with respect to five
nonlinear BIDs.
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1. Introduction.

A leading cause of death in the world is cancer. A lot of cancer research is currently
analyzing larger and larger data sets. In this paper, we focus on The Cancer Genome Atlas
(TCGA) (2012), which is a particularly important and comprehensive data set to study
cancer biology and genomics. It is a publicly available genomics data resource that seeks

to understand several types of cancer by collecting multiple diverse data over many people.
In that set, an important data type is gene expression, and more specifically, RNA-seq data.
A biologically useful task of modern genomics data analysis is detecting the dependency
patterns among gene expression. Conventional approaches to dependency, such as Pearson’s,
Spearman’s rank, or Kendall’s rank correlation coefficients, target linear dependence. The
focus of this paper is a much deeper investigation of nonlinear dependence in TCGA breast
cancer data. The dependence of two such genes was an example shown in Zhang (2019).
Here we carry the applied analysis much further by a detailed study of all pairs of genes.
Furthermore, we take the analysis even deeper by studying gene dependence within subtypes
as well. We show nonlinear dependence plays a much stronger role than previously imagined
by finding 167,173 interesting nonlinear dependent pairs in the full data set. As seen in
Table 4 below, only 36.3% of these significant pairs were discovered by using the classical
Hoeftding’s D statistic.

An example of the expression of two genes with strong and important nonlinear dependence
that is not discoverable by linear methods is shown in the left panel of Figure 1. That is

a scatter plot of expression for the genes BCL11A and F2RL2. For this pair of genes, the
Pearson correlation coefficient is —0.0069, Spearman’s p is 0.088, and Kendall’s 7 is 0.085.
These correlation coefficients are all very close to zero, suggesting no linear correlation
between these two genes, as is also visually apparent. However, there is clear nonlinear
dependence. This dependence is explained from a biological viewpoint by labeling with
commonly used breast cancer subtypes, which were originally discovered by clustering
some carefully selected genes in Perou et al. (2000). As shown by the colors and symbols in
Figure 1, the decreasing part on the right (suggesting negative correlation) is mainly caused
by the Basal (4) subtype observations. For gene network considerations, the increasing

part on the left, driven by the Luminal A (+) and Luminal B (*) subtypes, suggest a

positive correlation. This important biological refinement of network analysis is unavailable
from classical gene network approaches based on conventional correlation measures. This
nonlinear dependence pattern has been discovered by Binary Expansion Testing (BET)
proposed by Zhang (2019). The right panel of Figure 1 is the corresponding BET diagnostic
plot explained in Section 2.1.

The data set studied in this paper consists of gene expression features of TCGA
Lobular Freeze breast cancer data from Ciriello et al. (2015), containing 16615 genes.

.. . . (16615
Note that the total number of pairwise comparisons of genes is ( = 138,020, 805.

Human visualization of all of these scatter plots is intractable (Sun and Zhao, 2014).

An interesting early approach to this is Tukey’s scagnostics (Wilkinson, Anand and
Grossman, 2005). The large number of pairs motivates a computationally efficient method
for investigating pairwise dependence. Gene expression studies have revealed a large
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number of linear dependencies between genes. In particular, in our BET analysis, we
discover 10,110,787 pairs of (statistically significant using Bonferroni multiple comparison
adjustment) dependencies between genes. A large number of these are well understood. This
paper takes genomics in a new direction by investigating nonlinear dependencies of the type
shown in Figure 1.

There are several current approaches to studying nonlinear dependence. An early measure
was Hoeffding’s D (Hoeffding, 1948) which is not particularly powerful in the direction of
nonlinear dependence (Zhang, 2019). More recently, Székely et al. have proposed the more
powerful (in the direction of nonlinear dependence) method of distance correlation (Székely,
Rizzo and Bakirov, 2007; Székely and Rizzo, 2013). Another more powerful approach

is the k-nearest neighbor mutual information (KNN-MI) algorithm (Kraskov, Stogbauer

and Grassberger, 2004; Kinney and Atwal, 2014), which focuses on mixtures of gaussian
distributions. While these methods are beneficial for discovering nonlinear dependence, they
are less suitable for extensive genomic studies for three reasons. First, they are not efficient
for large-scale computation problems such as TCGA data (tens of thousands of genes and
hundreds of samples). Second, they still face some power loss in the direction of nonlinear
dependence, as noted using simulation studies in Section 6 of Zhang (2019). Third, there is
less immediate interpretation of the type that is available from BET.

To demonstrate the relatively slow execution time needed for the three methods above,

we compare their calculation speed with BET. The running time for testing all pairs of a
randomly selected set of 100 genes is shown in Table 1. We use the default setting for each
algorithm.

Table 1 shows that BET is around three times faster than Hoeffding’s D which has less
power in the direction of nonlinear dependence, as seen in Section 3.2. It also shows that
BET provides computational speed that is several orders of magnitude faster than either
distance correlation or KNN mutual information in the context of dependence testing of
high-dimensional data such as TCGA. Furthermore, nonlinear dependence can arise in many
forms. As mentioned above, another advantage of BET is that it gives additional information
on the form of nonlinear dependence, as illustrated in Figure 2.

This paper is organized as follows. Section 2 describes the main idea of the Binary
Expansion Testing (BET) algorithm. Section 3 details the BET analysis of TCGA data

set, revealing several interesting nonlinear patterns. Section 4 studies the validation of some
surprising TCGA results using an independent genomics data set. Section 5 concludes the
article.

2. Binary Expansion Testing for Nonlinear Dependency Detection.

BET is a recent and innovative approach for dependence testing that is powerful for
detecting pairwise nonlinear dependence. Furthermore, it provides a computationally fast
investigation process for large-scale data sets, as shown in Table 1. Finally, BET gives

a clear interpretation for some specific nonlinear dependence patterns. These patterns are
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formally introduced in Section 2.1. The BET algorithm and inference are given in Section
2.2.

BET Dependence Patterns.

The first step of BET is the copula transform of the bivariate distribution to the unit

square [0,1]% using a marginal probability integral transformation of each variable in the
pair, as detailed in Section 2.2. The key idea of BET is to partition the unit square into
different patterns that indicate interesting types of dependence in terms of counts, i.e.,
densities of observations, in different regions. For fast computation, these patterns are dyadic
in nature. The first few of these are shown in Figure 2 where unions of blue blocks
represent one region and white blocks are the alternative. Each partition pattern is called

a Binary Interaction Design (BID)by Zhang (2019). In our genomics data analysis, we
consider the nine dependence BIDs shown in Figure 2. Each BID corresponds to one BET
dependence pattern. If there is no dependence between U and V, the observations are
randomly distributed in [0,1]2. Dependence patterns are reflected by significant differences
between these blue and white region counts of points (density of observations). For each
form of BID, the difference is called S (the symmetry statistic). These counts are tested
against the null hypothesis of no difference between them. The value of .S is given for
each BID in Figure 2. Notice that S is positive if the white part is denser than the blue

and negative otherwise. For example, the white region in the upper-left panel of Figure 2
(the label A, B, of that BID will be explained later) contains more points and captures a
monotone upward dependence, which corresponds to the large positive S = 745. Had the
linear dependence in the data been downward, there would have been greater density in the
blue region, and .S would be negative. An example where the blue region is more dense
appears in the BID in the upper-right panel, where .S = — 395. Each dependence pattern in
Figure 2 is illustrated using a pair of genes that strongly exhibits the corresponding BID,
particularly the pair with the maximal absolute value of .

Figure 2 shows that BET captures several different nonlinear relationships for strongly
dependent pairs of genes. Specific genes in these pairs are listed in Table 2, where Gene 1
is on the horizontal axis and Gene 2 is on the vertical axis. As noted above, the symmetry
statistic .S for each BID is far from 0, indicating that strong dependence exists. For example,
the middle-left panel highlights a surprising bimodal pattern that we will discuss in detail
in Section 3.6 and 4.1. The bottom-left panel indicates dependence roughly following a
downward opening parabola, which is captured by a high density in the blue region with
corresponding negative S value. Left and right opening parabolas are captured by the BID
in the upper-right, where this pair of genes has a leftward opening parabola. In contrast, the
bottom-right panel looks quite different. It is fairly close to linear dependence, but clearly
not bivariate normal. There are unusual concentrations in the upper right and the lower left.

The prevalence of these mixture patterns and some of the others frequently turns out to be

a consequence of known breast cancer subtypes. In particular, Basal is known to be very
distinct. The dependencies highlighted by a number of different BIDs in Figure 2 are clearly
explained by the separation between Basal (4) and the other subtypes. The two mixture
patterns, in the bottom-left and the top-right BIDs, demonstrate how the mixture of Basal
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and other subtypes can drive such patterns. The great difference between the Basal subtype
and the rest also drives the dependency patterns in the center (A,B,) and the bottom-middle
(A,A,B,) BIDs. It is important to remember that several BIDs can respond (i.e., have a
significant absolute value of S to a given dependence pattern in the data. However, we made
the computational choice of only keeping the largest absolute .S value for each pair of genes.
Hence, the top 200 most significant genes shown in the graphs in Figures 6 and 8 may miss
some overlapping pairs of genes. Potential future work of interest would be to study the
impact of this choice.

From classical statistical viewpoints, such as those based on sparsity and correlation analysis
of dependence, this data set has a perhaps surprising amount of nonlinear dependence, as
seen from the numbers of significant gene pairs shown in Figure 4.

2.2. BET Algorithm and Inference.

Next we formally introduce the testing procedure and notations. For each pair of genes,
consider the sample data as pairs of variables (X, Y)), ..., (X,,Y,). We view these as
realizations of two random variables X and Y. BET is a fully nonparametric method based
on the copula transformation, which is computed from the marginal CDFs. In particular, let
U = Fx(X) and V = Fy(Y) which are uniform on [0,1] and preserve the relative relationship
between X and Y. Because the CDFs Fy(X) and F,(Y) are often unknown in practice, BET
approximates them using the empirical CDF. Thus the i th observation in the empirical

copula is (17 - 17,) whose marginal distribution is uniformly distributed on the equally spaced

support points % "n;l 1 on [0,1].

A key motivation for BET is that each decimal fraction number in the interval [0,1] has

a binary representation. The computation of binary white and blue dyadic subinterval
patterns that underlie Figure 2 is motivated by the useful probabilistic binary expansions
of the continuous uniform random variables U and V. These binary expansions (Kac, 1959)

are U =Y A/2Kand v = ¥ B./2¥, where A, Bernoulli(1/2) and B, "% Bernoulli(1/2).
Similarly, each observation in the empirical copula U, and V, also has a binary expansion:
U=, A2k and v, = o, B,../2¥. Note that the binary expansion of an observation
U, is the binary representation of this number. Thus, A, and B, can be regarded as the 0—1

indicator functions containing the randomness of U, and 17,», for example, A =1 (17,» e (1/2, 1])

Sk =1

and A= 1(U, € Ui, ((2) - 1)/2%,2j124)).

The blue and white regions underlying the BET statistic are based on the truncation of

these binary expansions at some finite depths d, and d,, respectively, U,, = Yo AJ2* and

Vi = ¥ B./2¥ . The discrete variables U,, and V,, take on at most 2% and 2% values.

k=1

Hence, there are 2di+d_

1 binary variables resulting from interactions between A, and B,.
These variables are sufficient statistics to study interesting dependence (Zhang, 2019). In
order to present these interaction variables in the form of products and reflect dependence

between these products, we use the binary variables A, =2A,—1and B, =2B, —1to
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replace A, and B,. Thus, the interaction events between A, and B, can be written as the
products A,B,. For example, the events {A,=1,B, =1} and {A, =0, B, = 0} lead to the same
interaction event {A,Bl = 1}. Out of these 2% * % _ 1 interactions, there are (2d‘ - 1)(2"2 - 1)
variables of product form Akl...Akervl...Bkr, for some r,t > 0. We call these variables cross
interactions, each of which results from the product of at least one A, and one B, and
reflects a BET partition (the BID mentioned earlier) in [0,1]3, i.e., each product results

in one type of white and blue regions partition. For example, in Figure 2, the BID A, B,
represents the cross interaction variable A, B, where the observation i in the white region
reflects the event {A, B, , = 1} and in the blue region reflects the event {4, ,B,, = —1}.
Thus, the depth parameters d, and d, decide the amount and type of BIDs considered in
BET. The choice d, = d, = 2 is the right resolution to find the most dependence patterns

of biological interest (as the nine BIDs shown in Figure 2). We do not consider larger
choices of d for two reasons. First, since d = 2 cuts each interval into quarters and d = 3
cuts each interval into eighths, most of these patterns from larger depths which can not

be seen at depth d = 2 capture relationships that are not expected to give useful insights
into the dependence inherent to gene expression. Second, it would entail a considerable
computational cost: when given d, = d, = 3, we have a total of 49 BIDs including these nine
patterns, meaning the computational cost is raised by a factor of more than five. Zhang
(2019) gives more discussion about depth selection. Let a and b denote vectors of length

d, and d, with 1’s at k,...k, and k,...k, respectively and 0 ‘s otherwise, thus we can denote
the cross interaction Ay, ... A, By, ... By, as A,B,. For simplicity of notation, the labels 4,B, in

most figures represent the cross interactions A,B,.

Now we define the symmetry statistic .S for a given cross interaction A,B, as the difference
of counts in white and blue regions in the corresponding BID. Since the value of the cross
interaction of the observation is 1 in white regions and —1 in blue regions, we can calculate
S as the sum of the observed binary interaction variables S = >'_, A,.B,.. The U, and V,,
are strongly dependent when the absolute value || is far from zero for at least one BID,
according to the following fundamental observation of Zhang (2019): If U,, and V,, are
independent, the symmetry statistic S satisfies (S + n)/2~Binomial(n, 1/2), for a # 0 and b # 0.
If the empirical copula transformation is used, we can use S = >, X,,,IA'BI,_, as the symmetry

statistic and (§ + n)/4~Hypergeometric(n,n/2,n/2), for a # 0 and b # 0.

The issue of multiple comparisons across BIDs is handled by the Max BET procedure

of Zhang (2019), at depths d, and d,. This is described as follows for a given pair of
variables. First, we compute all symmetry statistics .S with cross interactions for the given
d, and d,. Then we look for the symmetry statistic with the strongest asymmetry and record
its p-value and z-statistic |.S|/y/n. Finally, for this pair of variables, we use a Bonferroni
adjustment across the cross interactions (BIDs) to obtain the corresponding family-wise
error rate p-value for this maximum |S|. The dependence relationship is represented by the
most significant BID.
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Notice that Figure 2 reveals a reflection property among the BIDs. For example, the BIDs
A, B, B, (top-right) and A, A,B, (bottom-left) represent the same relationship up to a switch of
the axis positions (i.e., reversal of the roles of the two genes) for the two random variables
U and V. There are three pairs of such off diagonal reflected patterns. Identifying such pairs
results in six BID patterns: five nonlinear and one linearity. This reflection property will be
further discussed in Section 3.3.

3. Results From TCGA.

3.1.

In this section, we first expand on the data preprocessing of TCGA data set in Section 3.1.
Then we summarize the analysis results in Section 3.2. Finally, we discuss some specific
nonlinear dependency patterns in the last few subsections.

Data Preprocessing.

The RNA-seq gene expression features of TCGA Lobular Freeze breast cancer data set from
Ciriello et al. (2015) contain 16615 genes of 817 primary tumor samples, including five
subtypes (proportion in the sample): Basal-like (16.6%), HER2 (8.0%), Luminal A (50.8%),
Luminal B (21.5%), and Normal-like (3.1%). Intrinsic breast cancer subtyping was done
using the PAMS50 classifier (Parker et al., 2009).

This gene expression data was preprocessed as described in Ciriello et al. (2015). This
included normalization and logarithms. During this genomics data preprocessing, each
sample was normalized to a fixed upper quartile and then /og2 transformed. Genes with
more than 20% zero counts were excluded. Other genes with zero counts had their zeros
recorded as missing. A questionable choice made in that preprocessing was to replace these
missing values by the median for that gene. However, such data was the beginning of our
analysis. The poor consequences of this approach are illustrated in the left panel of Figure 3.
In particular, it shows the raw data of a pair of example genes in our TCGA data set, which
has many points piled up at the median representing missing values (zero counts). This is

an inappropriate way of handling the zeros, because all these data are based on counts, so a
zero count represents a small level of gene expression. As an alternative, we first considered
moving the median values to be the same as the smallest value. In the case of no zero counts,
this is inappropriate because the median corresponds to a non-zero count. A simple fix to
this is to take the first non-zero count and leave it at the median. Thus, we address this by
setting all but the first of the median values to the minimum value. Some experimentation
revealed that this has a minimal impact. The result of this process is shown in the middle
panel of Figure 3. This causes many ties for the smallest value. Since BET is based on a
copula transform that essentially assumes continuous variables, a large number of ties will
cause severe non-continuity and strongly impact the BET inference. Therefore, these points
are spread out in the interval of the minimum and the second unique minimum, using a jitter
approach. Specifically, to preserve the ranks, a small random value (uniformly distributed
between 0 and the difference between the second unique minimum and minimum) is added
to the non-unique minimum observations. Jittering has no impact on the BET significance
because the jitter points are within the first 20% of the data (recall that genes with more than
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20% missing were excluded). Finally, we apply the empirical copula transformation. See the
right panel in Figure 3.

As noted in Parker et al. (2009), these subtypes play a critical role in many aspects of
breast cancer. Our analysis in Section 3.3 confirms that the Basal subtype tends to be

quite different from the rest. Hence, we also investigate the context of LumA/LumB/Her2,
which tends to be dominated by the most numerous subtype LumA. We further investigate
the non-LumA group, meaning the union of Her2/LumB, and LumA separately. Hence

our analysis focuses on the four different contexts shown in Table 3 which are chosen to
highlight important aspects. Note that the BET analysis focuses on detecting nonlinearity
but not subtypes. However, there is a relationship between nonlinearity and subtypes. We set
the depth parameters in the BET algorithm d,, d, to be 2, and only focus on five nonlinear
BIDs, as discussed in Section 2.2. To control for multiple comparisons, in each context, we
use the Bonferroni adjustment across genes to modify the BET output p-value of each pair,
which has already been adjusted across the nine BIDs. Specifically, we use the total number
of pairwise comparisons of genes in TCGA (138,020,805) to do the Bonferroni correction.
Then we use the level 0.05.

The BET detection results of TCGA breast cancer data for these four different contexts and
five nonlinear BIDs are summarized in Section 3.2. More detailed descriptions are in Section
3.3 through Section 3.6.

3.2. Summary of BET Analysis.

As we discussed at the end of Section 2.2, there are three pairs of reflected nonlinear BIDs

in all nine BIDs. Identifying such pairs results in five nonlinear BIDs. see the five columns
of Figure 4. From this point on, the Parabolic BID shown in the first column refers to the
union of this A,A,B, BID and its reflection A, B, B,. In our TCGA analysis, this Parabolic BID
frequently finds a Mixture data pattern. Similarly, the W BID in the second column refers

to the union of this A, B, BID and its reflection A,B,, since the shape of this BID looks like
the letter W. This W BID tends to find a particular bimodal pattern in our TCGA data. The
rows of Figure 4 are the four contexts. The top gene pairs are shown for each. The number of
significant pairs for each BID is displayed at the top of each panel. No pair is shown for the
Her2/LumB context with the BID A,4,B, because there is no significant pair of genes.

Figure 4 shows the Parabolic BID in the first column, which contains the largest number

of significant pairs for each context. In those cases, some obviously show mixtures of
different subtype distributions, such as the red Basal subtype in the lower right region of

the top Five Subtypes panel and the magenta Her2 cases in the lower right region of the
Her2/LumB panel. The other relationships look strong but are not explained by subtypes,
perhaps motivating additional genomic research. In particular, gene expression is indicative
of many biological phenomena. Some are related to cancer subtypes, and some are not. A
more detailed discussion of the gene pair in the upper left appears in Section 3.3; of the gene
pair in the lower left in Section 3.4.

Some surprising bimodal patterns in column 2 are captured by the W BID, which seem not
to be driven by the breast cancer subtype information. In Section 3.6, we discuss the gene
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pair on the top row of column 2. To investigate the potential biological relevance of this
bimodal dependence, an independent data set is used and discussed in Section 4.2.

In column 3, some approximately linear pairs of genes are detected by the BID A4,4,B,B,. In
Section 3.5, we analyze the top pair in column 3 to discuss the connection between linearity
and this nonlinear dependence pattern.

In column 4, as discussed in Section 2.1, we find an interesting biological separation

in the Five Subtypes panel (top), which exists between the red Basal subtype and other
breast cancer subtypes. Moreover, in the LumA context (bottom), this checkerboard pattern
suggests that while many points are along the main diagonal, two small clusters lie off the
main diagonal. This dependence pattern is not explained by the breast cancer subtypes and
might be worth deeper biological investigations.

In column 5, the biological explanation of the most significant gene pairs shown in each
context is not particularly clear. However, in Figure 2, the bottom-middle panel gives
another example of this BID, which does contain an interesting biological pattern. We notice
that the Basal points are clustered in the upper-left corner, which are well separated from
other subtypes. Furthermore, the Luminal B (cyan star) subtype appears mostly at a cluster
in the bottom center.

Figure 4 also allows the comparison of BET with Hoeffding’s D and Pearson correlation. In
particular, the symbols “H” and “P” at the top of each panel indicate that the corresponding
most significant gene pair is also eeHoeffding’s D independence/Pearson correlation testing
Bonferroni significant across all 1.38 x 108 possible pairs. From Figure 4, we find that

many interesting nonlinear pairs of genes discovered by BET are not Bonferroni significant
when using Hoeffding’s D or Pearson correlation, especially some biologically interesting
Parabolic patterns (Column 1). Hoeffding’s D and Pearson tend to discover approximately
linear dependence patterns. Based on this observation, an interesting question is how many
of these nonlinear significant dependence pairs found by BET can not be discovered by
conventional methods. This is studied in Table 4. The pairs discovered by BET are assessed
for significance by both classical linear Pearson correlation and the nonlinear Hoeffding’s
D. Recall that according to Table 1, Hoeffding’s D is about three times slower than BET.
We compare these three methods over the significant pairs of genes of five nonlinear BIDs
shown in Figure 4 in the Five Subtypes context. Specifically, for the Parabolic BID(A,4,B;)
in the Five Subtypes context, we apply Hoeffding’s D over the 130,274 BET significant
pairs of genes and record the count of Pearson correlation and Hoeffding’s D significant
results after the Bonferroni adjustment for p-values across all pairs. Then we calculate the
proportion of Pearson correlation and Hoeffding’s D significant pairs in the BET significant
pairs in each BID. Table 4 summarizes the number of BET significant pairs (first row), the
number (second row) and the proportion (third row) of Pearson correlation significant pairs,
the number (fourth row) and the proportion (fifth row) of Hoeffding’s D significant pairs for
each BID.

Note that less than 30% of the pairs discovered by the Parabolic BID(A,A4,B,) were detected
by Pearson correlation. For other patterns, the performances of Pearson correlation are
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better. On the other hand, about the comparison with Hoeffding’s D, we notice that only
30%—-50% BET significant pairs are detected by Hoeffding’s D test in each of the five
BIDs. Overall, 92,410 and 106,468 BET Significant Pairs are not discoverable by Pearson
correlation and Hoeffding’s D. This result indicates that BET is substantially more powerful
against these particular types of nonlinear dependence.

3.3. Mixture Pattern for Five Subtypes.

In this section, we discuss the pair of genes shown in the top panel of Figure 5: ANKS6

and JAM3, which has the most significant mixture dependence pattern. The dependence of
these two genes is captured by the blue region of this BID. From the log-scale scatter plot
(top-right) and BET diagnosis plot (top-left) in Figure 5, it is visually apparent that the Basal
subtype group is separated from the other subtypes. In particular, the non-Basal cases look
like a classical bivariate Gaussian distribution with a positive correlation between ANKS6
and JAM3 (larger values of ANKSG6 lead to more expression of JAM3). However, the Basal
cases behave very differently: larger ANKS6 goes along with smaller JAM3, indicating a
negative correlation. Ignoring this important difference in direction of correlation can have a
serious impact on gene network analysis. ANKS6 in this example is the main driver of the
separation between Basal and the others.

Here we revisit the reflection issue from the end of Section 2.2. As discussed above, the
BIDs A,A,B, and A, B, B, are identical if we switch the genes on the x-axis and the y-axis.
Since the pair of genes in this example (ANKS6 and JAM3) is detected by the A,A4,B,

BID, reversing the ordering of these two genes will give the reflected pattern (A, B, B,). This

example explains why only five nonlinear BIDs are considered here.

Further insight comes from splitting the blue region into three rectangular regions (see the
numerical labels in the top-left panel) and calculating the respective proportions of the four
breast cancer subtypes (ignoring the Normal-like) in each blue rectangle (bottom panels).
These proportions reveal how the subtypes drive this relationship.

In the proportion bar plots, LumA and LumB subtypes have high proportions in Regions

1 and 2. Those two subgroups account for 88.7% and 92% in the two regions separately,
where the Basal subgroup only accounts for 5.4% and 2.8%. However, in Region 3, the
proportion of Basal reaches 67%, and the total proportion of LumA and LumB is 21%. This
observation indicates that the positive correlation of the LumA and LumB domains are in
Regions 1 and 2, and the differing Basal correlation is in Region 3. The Pearson Chi-square
test of independence is used to confirm this observation, for the counts of points in Table 5.

The p-value of this Chisq test is smaller than 2.2 x 10~ 16

(i.e., smaller than floating-point
round-off error), and it shows a strong significance that these four subtypes are not
homogeneously distributed in the blue regions. To more directly validate the separation
between Basal and the others, all others are combined into a single group and the Chi-
square test gives another small p-value less than round-off error. This result confirms the
observation that this dependence pattern captured by the blue regions is very strongly

significant and is influenced by the mixture of Basal and other subtype distributions.
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The relationships between pairs of genes with respect to this same BID A, B, B, is shown by
a network connection plot in Figure 6 (a similar network plot with respect to five nonlinear
BIDs is given in Supplement E). Nodes in Figure 6 represent genes. This particular pattern
of nonlinear BET dependence is highlighted by edges, which show Bonferroni statistical
significance between genes. Furthermore, genes are ranked by their maximum BET z-scores.
As noted in Zhang (2019), z-scores, reflecting the number of standard deviations above

the mean, are more interpretable when p-values are extremely small. As shown in Figure

4, there are 130,274 significant pairs of genes for this BID and its reflection. To avoid a

too cluttered network graphic, only the top 200 genes are shown in Figure 6. These two
hundred genes have 311 significant dependence edges for this Parabolic BID. Genes at the
center of some visually important communities are labeled. Each community is a set of
genes that shows this relationship with the center gene. Notice there are a number of gene
communities representing different biological dependencies that are significant with respect
to this BID. Figure 5 suggests that much of this nonlinear dependence may be due to the
Basal subtype which is well known to be quite different from the others. However, there can
be other causes of this pattern. For example, Figure 8 shows that the gene ZDHHC2 has
such dependence even when the Basal subtype is left out of the analysis. This gene appears
in Figure 6 as the point represented by the black triangle.

Good insights into any of these gene communities and their functions come from finding
where they appear among published gene signatures, such as those shown in The Molecular
Signatures Database (MSigDB), a collection of annotated gene sets for use with Gene Set
Enrichment Analysis (Subramanian et al., 2005; Liberzon et al., 2011, 2015). For example,
we performed gene set enrichment analysis on the labeled communities. The gene set in the
largest (ANKS6) community is strongly associated with stromal or immune features. This
is consistent with the previous finding that basal-like breast cancer has increased immune
signature expression (Iglesia et al., 2016). The gene analysis of the other label communities
did not give such good biological interpretations.

3.4. Mixture Pattern for Only Luminal A subtype.

While subtypes have played an important role in the diagnosis and treatment of breast
cancer, the heterogeneity of the disease motivates deeper investigation within subtypes. Here
we focus only on the Luminal A breast cancer subtype observations. Figure 7 shows an
additional interesting mixture dependence pattern in both the BET diagnosis (left panel) and
log-scale scatter (right panel) plots. The right panel contains a positively correlated Gaussian
point cloud on the left. There is a more diffuse cluster towards the lower right. This seems

to indicate a mixture behavior. In particular, the gene ZDHHC?2 bifurcates the data into a
cluster where it is strongly positively correlated with CELF2, and another cluster where
large values of ZDHHC?2 correspond to small values of CELF2. Hence this pair of genes
highlights potentially interesting subgroups, which merits a deeper investigation.

The connection plot in Figure 8 shows which genes have many significant pairs within the
200 most significant genes in the LumA only context with the Parabolic BID. There are
190 significant dependence edges. This can be less than 200 because there are many pairs
that only connect with each other. ZDHHC2 and FGF10 are two central genes having large
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communities, which motivate a deeper investigation. Checking carefully the individual plots
reveals in all of these pairs, ZDHHC2 and FGF10 play the bifurcating role shown in Figure
7 in the dependence with each of these other genes. To further illustrate this bifurcation
property, we show more examples of pairs about ZDHHC?2 for this pattern in Supplement A.

To investigate the corresponding gene function, we use gene set enrichment analysis again to
compute overlaps between these communities and gene sets from MSigDB. This ZDHHC2
community has overlaps with some gene sets related to breast cancer, and in particular the
luminal subtype, such as CHARAFE _BREAST CANCER_LUMINAL VS _MESENCHY-
MAL DN and CHARAFE BREAST CANCER LUMINAL VS BASAL DN (Charafe-
Jauffret et al., 2006). A full list of overlapping results for ZDHHC?2 is in the Supplement

C. This confirms that ZDHHC?2 and its community are an important player at luminal
breast cancer and could motivate a deeper investigation into the role played by the
ZDHHC2 community. On the other hand, a similar investigation of FGF10 doesn’t show
the connection with research to date on luminal breast cancer, again possibly motivating
further biological work.

3.5. Connection between Linear and Nonlinear Patterns.

In column three of the summary plot Figure 4, some approximately linear pairs of genes
with a second-order structure are detected by the BID A, A,B, B,. The left panel of Figure 9
gives the BID diagnosis of the top row pair of genes in Column 3 (PROSC and ASH2L) with
the largest symmetry statistic value and z-score in all nine BIDs. As discussed in Section
2.1, this BET diagnosis plot shows that this pair is not bivariate normal with concentrations
in both ends of the diagonal. A deeper investigation of the structure of this pair of genes

is from the scatter plot in the middle panel of Figure 9. It reflects an approximate linear
relationship with strong skewness along the major axis. To analyze the connection between
this pair and the linear dependence BID A,B,, we show the linear BID in the right panel.
The corresponding counts of white and blue regions for BID A, A,B, B, in the left panel

are 607 and 210, so that the symmetry statistic S and the z-score are 397 and 13.89; the
corresponding counts for the linear BID in the right panel are 599 and 218, so that the
symmetry statistic S and the z-score are rather close, but slightly smaller values of 381 and
13.33. These numbers reflect the unusual pattern of greater variation in the middle of the
distribution, with relatively less variation from the diagonal for the rest of it. This suggests a
different type of mixture model which may merit deeper investigation.

3.6. Bimodal Pattern.

The second column of Figure 4 shows a perhaps surprising bimodal dependence pattern that
is shared by many pairs of genes.

To more deeply investigate this bimodal dependence, we take the top pair in the context

of Five Subtypes as an example. Figure 10 shows the BET diagnosis (left panel) and
log-scale scatter (right panel) plots of the most significant pair of this pattern in the
context of Five Subtypes: RPL9 and RPL32. RPL9 in this pair separates the group into
two positively correlated Gaussian clusters, suggesting this surprising bimodal dependence
pattern perhaps is related to the gene RPL9. To investigate whether this is an important
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biological phenomenon or an artifact of some particular preprocessing steps in the Lobular
Freeze TCGA data, we consider an additional completely separate data set in Section 4.2.

4. Biological Reproducibility of TCGA Results.

An essential issue with exploratory data analyses, as shown in Section 3 is their
reproducibility. To investigate this for the interesting results shown in Sections 3.3 and

3.6, we consider an independent genomic data set: the Sweden Cancerome Analysis
Network-Breast (SCAN-B) (Brueffer et al., 2018). This data set came from the NCBI Gene
Expression Omnibus (GSE96058). The Data set was preprocessed as described in (Saal et
al., 2015). We use a subset of the gene expression data set which contains 2969 samples
with full clinical data and 30865 genes. There are 15,197 genes existing in both the SCAN-B
and TCGA data sets. We only consider these common genes during this validation process.
There was no further processing step in the SCAN-B set for our reproducibility analysis.
First, in Section 4.1, we study the reproducibility of the Mixture patterns in the contexts of
the Five Subtypes, as shown in Section 3.3. Then in Section 4.2, we find that the bimodal
distribution of the gene RPL9 in Section 3.6 is not observed in SCAN-B. This discrepancy is
explained in Supplement D.

4.1. Biological Reproducibility of the Mixture Pattern.

In Section 3.3, we find an interesting mixture pattern detected by the Parabolic BID in the
context of the Five Subtypes. To investigate whether this mixture pattern is reproducible in
the SCAN-B data, we chose the most significant 200 genes for this context in TCGA results,
as shown in the network connection plot Figure 6. To understand the relationship between
pairs over the two data sets, we rerun BET for these pairs in the SCAN-B data set and record
the corresponding z-scores for the Parabolic BID. Thus, we compare the significance for
only the mixture pattern in these two data sets, as shown in Figure 11.

Within these top 200 genes, 7 genes do not exist in the SCAN-B. Considering only

the remaining 193 genes resulted in 298 significant (in TCGA) mixture pairs. The
corresponding SCAN-B significance for each pair is compared in Figure 11. In particular,
each point is one mixture pair whose TCGA z-score is shown on the vertical axis and
SCAN-B z-score is shown on the horizontal axis.

Because the sample size is much larger for SCAN-B, stronger significance is expected for
most pairs. This is highlighted using the dark line y = x showing which pairs are equal. As
expected, most SCAN-B z-scores are larger, reflected as circle points to the right of the line

y=x.

Points to the left of the line y = x seem to fall into two different types. For the triangle
points, the TCGA z-score is not much bigger than the SCAN-B z-score, suggesting this
could be just random variation. This is more carefully investigated in Figure 12. The square
ones are investigated in Figure 13. These are gene pairs with substantial missing values in
the SCAN-B version of the data.
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Typical behavior of the triangle points is studied in Figure 12 by showing the pair
represented as a dark triangle in Figure 11. The BET diagnosis (left panel) and the SCAN-B
scatter (middle panel) plots definitely show the same behavior as in Figure 5, which is a
clear separation between Basal and the other subtypes. However, the separation of the Basal
is more distinct in TCGA, as shown in the TCGA scatter plot (right panel) of the same two
genes, which is consistent with the more significant TCGA z-scores. We observed similar
behavior for each of the pairs represented as triangles in Figure 11.

Figure 13 shows the pair highlighted with the dark square in Figure 11, which illustrates a
different phenomenon represented by the pairs symbolized by squares. The BET diagnosis
(left panel) and the SCAN-B scatter (middle panel) plots reveal a data threshold issue in
the SCAN-B data set. The corresponding TCGA scatter plot (right panel) of this same pair
does not have this issue. This threshold effect apparently is caused by missing values in the
SCAN-B data set being replaced by the minimum of their values. This same phenomenon
occurred for each of the pairs represented by squares in Figure 11. As discussed in Section
3.1, we recommend handling such threshold data by jittering.

4.2. Lack of Reproducibility of the Bimodal Pattern.

Here we study the pair of genes that gives the strongest bimodal pattern signal in TCGA data
set, which are RPL9 and RPL32 as shown in Figure 10. We rerun BET on this pair of genes
in the SCAN-B data, and the strongest BID for this pair is linear, as shown in the left panel
of Figure 14. Both the BET diagnosis (left panel) and the scatter (middle panel) plots show

a relatively standard positively correlated linear dependence between RPL9 and RPL32. The
right panel of Figure 14 gives the BET diagnosis plot for the W BID for this pair, which

is much less significant than the linear pattern (z = 30.85 vs. z = 10.96). This shows that

the surprising bimodal dependence observed in Figure 10 is not biologically reproducible.
Instead, it seems to be a processing artifact. As noted above, deeper investigation of the
artifact is given in Supplement D.

5. Conclusion.

TCGA gene expression data set is an important genomics data resource that shows

many dependence patterns among genes, especially some interesting nonlinear dependence
patterns. We use the computationally fast and powerful dependence testing method

called BET to discover significant nonlinear dependence relationships in various contexts
using the breast cancer subtypes information. We find that some interesting nonlinear
dependence patterns are explained biologically by the mixture of the given breast cancer
subtype distributions, such as the Mixture pattern for the context of Five Subtypes. Some
relationships motivate further biological work, such as the Mixture pattern for the LumA
only context. We also investigate the reproducibility of these results using an independent
genomics data set. This shows that the mixture pattern is reproducible while the bimodal
pattern related to the gene RPL9 is not and is apparently caused by some preprocessing
steps.
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FIG 1.

Left: The scatter plot comparing expression of two genes in TCGA breast cancer data in
the normalized log count scale; Right: The scatter plot of the same two genes using the
copula transformation with the nonlinear dependence pattern from BET. Strong statistical
significance is indicated by the BET Z-statistic of 12.84. These pairwise genes exhibit an
interesting nonlinear dependence pattern which is explained by showing the breast cancer
subtypes.
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FIG 2.
The first nine low-resolution dyadic binary interaction designs (BIDs) used by BET and one

example pair of expression data shown for every BID, with S indicating the difference of
counts in white and blue regions. Each BID is aimed at detecting a particular dependence
relationship between two [0,1] uniform random variables. Size of S indicates the strength of
nonlinear dependence in each BID. A number of biologically relevant patterns are shown.
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Left: The scatter plot comparing expression of two genes in the TCGA breast cancer data

in the normalized log count scale with zero value imputation by the median; Middle: The
scatter plot of the same two genes in the normalized log count scale with the median values
reset to the minimum and jittering applied to nonunique values; Right: The scatter plot of the
same two genes in the copula distribution scale.
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FIG 4.
BET diagnostic plots where the four contexts are the rows and the four nonlinear BIDs are

the columns. The most significant pair is shown for each. The number of significant pairs
for each BID is shown at the top. The symbols “H” and “P” at the top show that this most
significant pair is Hoeffding’s D and Pearson correlation respectively Bonferroni significant.
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FIG 5.

Top-left: BET diagnosis plot for the pair of genes: ANKS6 and JAM3, which shows a
strong surprising dependency with large z-statistic value and three blue rectangular regions;
Top-right: the scatter plot of the same two genes in the normalized log count scale after
pre-processing. Bottom: the proportions for each breast cancer subtype (except normal-like)
in each blue rectangular region.
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o MAGED4B

FIG 6.
Network connection plot of 200 most significant genes (nodes) with 311 edges for the BID

A,B,B,. Each node represents one gene and each edge represents a significant dependence
between those genes. The large community illustrated there are many genes having
significant mixture dependence pattern with the center gene, such as ANKS6. The point
represented by the black triangle is the gene ZDHHC?2 featured in Figure 8.
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FIG 7.

Left: BET diagnosis plot for a pair of genes which shows the mixture dependence within
only the Luminal A subgroup; Right: The scatter plot of the same two genes in the

normalized count scale. A point cloud with a strong positive correlation is on the left of
the entire group and the remaining cases form a more diffuse cluster on the bottom-right.
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Connection plot of 200 most significant genes (nodes) with 190 edges for the Parabolic
BID in the context of only Luminal A. ZDHHC2 and FGF10 are central genes in two large
communities. The ZDHHC2 gene community has overlaps with some luminal gene sets in
The Molecular Signatures Database (MSigDB).
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FIG 9.
Left: The most significant BID diagnosis plot for a pair of genes: PROSC and ASH2L,;

Middle: The scatter plot of the same two genes in the normalized count scale; Right: The
corresponding linear BID A, B, for the same two genes. The value of the BET statistic for the
linear BID is slightly smaller than that for the most significant BID.
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Left: BET diagnosis plot for a pair of genes that shows a bimodal dependence pattern;

T
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Right: The scatter plot of the same two genes in the normalized count scale. This nonlinear

relationship seems to be driven by the bimodal distribution of gene RPL9.
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FIG 11.
Scatter plot comparing the Parabolic BID z-scores between the SCAN-B and TCGA data

sets for the significant Mixture pairs within the top 200 genes in the Five Subtypes context
of TCGA. The dark square and dark triangle points are illustrated in Figures 12 and 13.
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FIG 12.
Left: BET diagnosis plot for a pair of genes in the SCAN-B data set that is shown as a

,
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dark triangle in Figure 11; Middle: The scatter plot of the same two genes in the original

SCAN-B scale; Left: The scatter plot of the same two genes in the normalized TCGA count

scale. This example represents gene pairs which tend to be less significant in the SCAN-B

data set but still have the mixture pattern.
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Left: BET diagnosis plot for a pair of genes in the SCAN-B that is shown as a dark square

in Figure 11 revealing a data threshold issue; Middle: The scatter plot of the same two genes

in the original SCAN-B scale; Left: The scatter plot of the same two genes in the normalized

TCGA count scale. This example represents a type of gene pairs which tend to be less

significant in the SCAN-B data set.
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FIG 14.
Left: BET diagnosis plot of the most significant BID(4, B,) for RPL9 and RPL32 in the

SCAN-B data set; Middle: The scatter plot of the same two genes in the original SCAN-B
scale; Right: BET diagnosis plot of the W BID for the same two genes. This shows the
bimodal pattern observed for RPL9 in TCGA data is not biologically reproducible.
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Table 1

The running time of the pairwise comparison of 100 genes. The more powerful nonlinear detection methods
are orders of magnitude slower than BET.

Algorithms BET Hoeffding’s D  Distance Correlation ~KNN Mutual Information

Times 8.96 secs 24.05 secs 17.51 mins 4.91 hours
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Table 2

Gene names for each pair in Figure 2

Location Gene1(U) Gene2 (V)
top-left Cl170rf81 Cl7orf61
top-middle RPL24 RPL9
top-right JAM 3 ANKS6
middle-left RPL9 RPL32
center PRR15 CA12
middle-right CDH5 ZNF883
bottom-left ANKS6 DCN
bottom-middle CT62 FAM174A
bottom-right PROSC ASH2L
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Table 3
Four contexts and the corresponding sample sizes.
Contexts All five subtypes LumA/LumB/Her2 Her2/LumB LumA
Sample Sizes 817 656 241 415
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Table 4

Page 34

Comparison of BET, Hoeffding’s D and Pearson Correlation over BET significant pairs of five BIDs in the

Five Subtypes Context

BIDs AAB  AB AABB AB, A AB, Total
Number of BET Significant Pairs 130,274 34,485 2,160 105 149 167,173
Number of Pearson Correlation Significant Pairs 38,834 34.064 1,662 105 98 74,763
Proportion of Pearson Correlation Significant Pairs 29.8%  98.8% 76.9%  100.0% 65.8% 44.7%
Number of Hoeffding’s D Significant Pairs 41,292 18,228 1,071 56 58 60,705
Proportion of Hoeffding’s D Significant Pairs 31.7%  52.9% 49.6% 53.3% 38.9% 36.3%
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Table 5

Observed counts for four breast cancer subtypes in three blue regions.

Subtypes region1 region2 region3

Basal 9 8 90
LumA 86 229 6
LumB 63 37 22
Her 2 10 15 16
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