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Abstract
In The Cancer Genome Atlas (TCGA) data set, there are many interesting nonlinear dependencies 
between pairs of genes that reveal important relationships and subtypes of cancer. Such genomic 
data analysis requires a rapid, powerful and interpretable detection process, especially in a high-
dimensional environment. We study the nonlinear patterns among the expression of pairs of genes 
from TCGA using a powerful tool called Binary Expansion Testing. We find many nonlinear 
patterns, some of which are driven by known cancer subtypes, some of which are novel.
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SUPPLEMENTARY MATERIAL
More Examples for the Gene ZDHHC2 in the LumA Context for the Parabolic BID
Supplement A gives two more significant parabolic BID gene pairs with ZDHHC2 in the context of only Luminal A. ZDHHC2 is on 
different axes in these two examples. This shows the reflection property of BET and the bifurcating role of ZDHHC2.
Gene Set Enrichment Analysis Results for the Mixture Dependence of the ANKS6 Community
Supplement B gives a full list of overlapping computation (using Gene Set Enrichment Analysis, GSEA) results of the ANKS6 
Community with the gene sets in the Molecular Signatures Database (MSigDB) for the Mixture Dependence in the Five Subtypes 
context.
Gene Set Enrichment Analysis Results for the Mixture Dependence of the ZDHHC2 Community
Supplement C gives a full list of overlapping computation (using GSEA) results of the ZDHHC2 Community with the gene sets in the 
MSigDB for the Mixture Dependence in the LumA only context.
Deeper Investigation of the Bimodal Structure of RPL9
Supplement D shows that the bimodal distribution of the gene RPL9, discussed in Sections 3.6 and 4.2 is an artifact caused by the 
early gene mapping algorithm used to preprocess that data set.
The Relationships between Top Genes with respect to Five Nonlinear BIDs
Supplement E introduces a network connection plot of the relationships between the 200 most significant genes with respect to five 
nonlinear BIDs.
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1. Introduction.
A leading cause of death in the world is cancer. A lot of cancer research is currently 
analyzing larger and larger data sets. In this paper, we focus on The Cancer Genome Atlas 
(TCGA) (2012), which is a particularly important and comprehensive data set to study 
cancer biology and genomics. It is a publicly available genomics data resource that seeks 
to understand several types of cancer by collecting multiple diverse data over many people. 
In that set, an important data type is gene expression, and more specifically, RNA-seq data. 
A biologically useful task of modern genomics data analysis is detecting the dependency 
patterns among gene expression. Conventional approaches to dependency, such as Pearson’s, 
Spearman’s rank, or Kendall’s rank correlation coefficients, target linear dependence. The 
focus of this paper is a much deeper investigation of nonlinear dependence in TCGA breast 
cancer data. The dependence of two such genes was an example shown in Zhang (2019). 
Here we carry the applied analysis much further by a detailed study of all pairs of genes. 
Furthermore, we take the analysis even deeper by studying gene dependence within subtypes 
as well. We show nonlinear dependence plays a much stronger role than previously imagined 
by finding 167,173 interesting nonlinear dependent pairs in the full data set. As seen in 
Table 4 below, only 36.3% of these significant pairs were discovered by using the classical 
Hoeffding’s D statistic.

An example of the expression of two genes with strong and important nonlinear dependence 
that is not discoverable by linear methods is shown in the left panel of Figure 1. That is 
a scatter plot of expression for the genes BCL11A and F2RL2. For this pair of genes, the 
Pearson correlation coefficient is −0.0069, Spearman’s ρ is 0.088, and Kendall’s τ is 0.085. 
These correlation coefficients are all very close to zero, suggesting no linear correlation 
between these two genes, as is also visually apparent. However, there is clear nonlinear 
dependence. This dependence is explained from a biological viewpoint by labeling with 
commonly used breast cancer subtypes, which were originally discovered by clustering 
some carefully selected genes in Perou et al. (2000). As shown by the colors and symbols in 
Figure 1, the decreasing part on the right (suggesting negative correlation) is mainly caused 
by the Basal Δ  subtype observations. For gene network considerations, the increasing 
part on the left, driven by the Luminal A (+) and Luminal B *  subtypes, suggest a 
positive correlation. This important biological refinement of network analysis is unavailable 
from classical gene network approaches based on conventional correlation measures. This 
nonlinear dependence pattern has been discovered by Binary Expansion Testing (BET) 
proposed by Zhang (2019). The right panel of Figure 1 is the corresponding BET diagnostic 
plot explained in Section 2.1.

The data set studied in this paper consists of gene expression features of TCGA 
Lobular Freeze breast cancer data from Ciriello et al. (2015), containing 16615 genes. 

Note that the total number of pairwise comparisons of genes is 166152 = 138, 020, 805. 

Human visualization of all of these scatter plots is intractable (Sun and Zhao, 2014). 
An interesting early approach to this is Tukey’s scagnostics (Wilkinson, Anand and 
Grossman, 2005). The large number of pairs motivates a computationally efficient method 
for investigating pairwise dependence. Gene expression studies have revealed a large 
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number of linear dependencies between genes. In particular, in our BET analysis, we 
discover 10,110,787 pairs of (statistically significant using Bonferroni multiple comparison 
adjustment) dependencies between genes. A large number of these are well understood. This 
paper takes genomics in a new direction by investigating nonlinear dependencies of the type 
shown in Figure 1.

There are several current approaches to studying nonlinear dependence. An early measure 
was Hoeffding’s D (Hoeffding, 1948) which is not particularly powerful in the direction of 
nonlinear dependence (Zhang, 2019). More recently, Székely et al. have proposed the more 
powerful (in the direction of nonlinear dependence) method of distance correlation (Székely, 
Rizzo and Bakirov, 2007; Székely and Rizzo, 2013). Another more powerful approach 
is the k-nearest neighbor mutual information (KNN-MI) algorithm (Kraskov, Stögbauer 
and Grassberger, 2004; Kinney and Atwal, 2014), which focuses on mixtures of gaussian 
distributions. While these methods are beneficial for discovering nonlinear dependence, they 
are less suitable for extensive genomic studies for three reasons. First, they are not efficient 
for large-scale computation problems such as TCGA data (tens of thousands of genes and 
hundreds of samples). Second, they still face some power loss in the direction of nonlinear 
dependence, as noted using simulation studies in Section 6 of Zhang (2019). Third, there is 
less immediate interpretation of the type that is available from BET.

To demonstrate the relatively slow execution time needed for the three methods above, 
we compare their calculation speed with BET. The running time for testing all pairs of a 
randomly selected set of 100 genes is shown in Table 1. We use the default setting for each 
algorithm.

Table 1 shows that BET is around three times faster than Hoeffding’s D which has less 
power in the direction of nonlinear dependence, as seen in Section 3.2. It also shows that 
BET provides computational speed that is several orders of magnitude faster than either 
distance correlation or KNN mutual information in the context of dependence testing of 
high-dimensional data such as TCGA. Furthermore, nonlinear dependence can arise in many 
forms. As mentioned above, another advantage of BET is that it gives additional information 
on the form of nonlinear dependence, as illustrated in Figure 2.

This paper is organized as follows. Section 2 describes the main idea of the Binary 
Expansion Testing (BET) algorithm. Section 3 details the BET analysis of TCGA data 
set, revealing several interesting nonlinear patterns. Section 4 studies the validation of some 
surprising TCGA results using an independent genomics data set. Section 5 concludes the 
article.

2. Binary Expansion Testing for Nonlinear Dependency Detection.
BET is a recent and innovative approach for dependence testing that is powerful for 
detecting pairwise nonlinear dependence. Furthermore, it provides a computationally fast 
investigation process for large-scale data sets, as shown in Table 1. Finally, BET gives 
a clear interpretation for some specific nonlinear dependence patterns. These patterns are 
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formally introduced in Section 2.1. The BET algorithm and inference are given in Section 
2.2.

2.1. BET Dependence Patterns.
The first step of BET is the copula transform of the bivariate distribution to the unit 
square [0,1]2 using a marginal probability integral transformation of each variable in the 
pair, as detailed in Section 2.2. The key idea of BET is to partition the unit square into 
different patterns that indicate interesting types of dependence in terms of counts, i.e., 
densities of observations, in different regions. For fast computation, these patterns are dyadic 
in nature. The first few of these are shown in Figure 2 where unions of blue blocks 
represent one region and white blocks are the alternative. Each partition pattern is called 
a Binary Interaction Design (BID) by Zhang (2019). In our genomics data analysis, we 
consider the nine dependence BIDs shown in Figure 2. Each BID corresponds to one BET 
dependence pattern. If there is no dependence between U and V , the observations are 
randomly distributed in [0,1]2. Dependence patterns are reflected by significant differences 
between these blue and white region counts of points (density of observations). For each 
form of BID, the difference is called S (the symmetry statistic). These counts are tested 
against the null hypothesis of no difference between them. The value of S is given for 
each BID in Figure 2. Notice that S is positive if the white part is denser than the blue 
and negative otherwise. For example, the white region in the upper-left panel of Figure 2 
(the label A1B1 of that BID will be explained later) contains more points and captures a 
monotone upward dependence, which corresponds to the large positive S = 745. Had the 
linear dependence in the data been downward, there would have been greater density in the 
blue region, and S would be negative. An example where the blue region is more dense 
appears in the BID in the upper-right panel, where S = − 395. Each dependence pattern in 
Figure 2 is illustrated using a pair of genes that strongly exhibits the corresponding BID, 
particularly the pair with the maximal absolute value of S.

Figure 2 shows that BET captures several different nonlinear relationships for strongly 
dependent pairs of genes. Specific genes in these pairs are listed in Table 2, where Gene 1 
is on the horizontal axis and Gene 2 is on the vertical axis. As noted above, the symmetry 
statistic S for each BID is far from 0, indicating that strong dependence exists. For example, 
the middle-left panel highlights a surprising bimodal pattern that we will discuss in detail 
in Section 3.6 and 4.1. The bottom-left panel indicates dependence roughly following a 
downward opening parabola, which is captured by a high density in the blue region with 
corresponding negative S value. Left and right opening parabolas are captured by the BID 
in the upper-right, where this pair of genes has a leftward opening parabola. In contrast, the 
bottom-right panel looks quite different. It is fairly close to linear dependence, but clearly 
not bivariate normal. There are unusual concentrations in the upper right and the lower left.

The prevalence of these mixture patterns and some of the others frequently turns out to be 
a consequence of known breast cancer subtypes. In particular, Basal is known to be very 
distinct. The dependencies highlighted by a number of different BIDs in Figure 2 are clearly 
explained by the separation between Basal Δ  and the other subtypes. The two mixture 
patterns, in the bottom-left and the top-right BIDs, demonstrate how the mixture of Basal 
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and other subtypes can drive such patterns. The great difference between the Basal subtype 
and the rest also drives the dependency patterns in the center A2B2  and the bottom-middle 
A1A2B2  BIDs. It is important to remember that several BIDs can respond (i.e., have a 

significant absolute value of S) to a given dependence pattern in the data. However, we made 
the computational choice of only keeping the largest absolute S value for each pair of genes. 
Hence, the top 200 most significant genes shown in the graphs in Figures 6 and 8 may miss 
some overlapping pairs of genes. Potential future work of interest would be to study the 
impact of this choice.

From classical statistical viewpoints, such as those based on sparsity and correlation analysis 
of dependence, this data set has a perhaps surprising amount of nonlinear dependence, as 
seen from the numbers of significant gene pairs shown in Figure 4.

2.2. BET Algorithm and Inference.
Next we formally introduce the testing procedure and notations. For each pair of genes, 
consider the sample data as pairs of variables X1, Y 1 , …, Xn, Y n . We view these as 
realizations of two random variables X and Y . BET is a fully nonparametric method based 
on the copula transformation, which is computed from the marginal CDFs. In particular, let 
U = FX X  and V = FY Y  which are uniform on [0,1] and preserve the relative relationship 
between X and Y . Because the CDFs FX X  and FY Y  are often unknown in practice, BET 
approximates them using the empirical CDF. Thus the i th observation in the empirical 
copula is U i,V i  whose marginal distribution is uniformly distributed on the equally spaced 

support points 1n , …, n − 1
n , 1 on [0,1].

A key motivation for BET is that each decimal fraction number in the interval [0,1] has 
a binary representation. The computation of binary white and blue dyadic subinterval 
patterns that underlie Figure 2 is motivated by the useful probabilistic binary expansions 
of the continuous uniform random variables U and V . These binary expansions (Kac, 1959) 

are U = ∑k = 1
∞ Ak/2k and V = ∑k′ = 1

∞ Bk′/2k′, where Ak
iidBernoulli 1/2  and Bk′

iidBernoulli 1/2 . 
Similarly, each observation in the empirical copula U i and V i also has a binary expansion: 

U i = ∑k = 1
∞ Ak, i/2k and V i = ∑k′ = 1

∞ Bk′, i/2k′. Note that the binary expansion of an observation 
U i is the binary representation of this number. Thus, Ak and Bk′ can be regarded as the 0–1 
indicator functions containing the randomness of U i and V i, for example, A1 = I U i ∈ 1/2, 1

and Ak = I U i ∈ ∪j = 1
2k − 1 2j − 1 /2k, 2j/2k .

The blue and white regions underlying the BET statistic are based on the truncation of 
these binary expansions at some finite depths d1 and d2, respectively, Ud1 = ∑k = 1

d1 Ak/2k and 

V d2 = ∑k′ = 1
d2 Bk′/2k′. The discrete variables Ud1 and V d2 take on at most 2d1 and 2d2 values. 

Hence, there are 2d1 + d2 − 1 binary variables resulting from interactions between Ak and Bk′. 
These variables are sufficient statistics to study interesting dependence (Zhang, 2019). In 
order to present these interaction variables in the form of products and reflect dependence 
between these products, we use the binary variables Ȧk = 2Ak − 1 and Ḃk′ = 2Bk′ − 1 to 
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replace Ak and Bk. Thus, the interaction events between Ak and Bk′ can be written as the 
products ȦkḂk′. For example, the events A1 = 1,B1 = 1  and A1 = 0,B1 = 0  lead to the same 

interaction event Ȧ1Ḃ1 = 1 . Out of these 2d1 + d2 − 1 interactions, there are 2d1 − 1 2d2 − 1

variables of product form Ȧk1…ȦkrḂk′1…Ḃk′t for some r, t > 0. We call these variables cross 
interactions, each of which results from the product of at least one Ȧk and one Ḃk′ and 
reflects a BET partition (the BID mentioned earlier) in [0,1]2, i.e., each product results 
in one type of white and blue regions partition. For example, in Figure 2, the BID A1B1

represents the cross interaction variable Ȧ1Ḃ1, where the observation i in the white region 
reflects the event Ȧ1, iḂ1, i = 1  and in the blue region reflects the event Ȧ1, iḂ1, i = − 1 . 
Thus, the depth parameters d1 and d2 decide the amount and type of BIDs considered in 
BET. The choice d1 = d2 = 2 is the right resolution to find the most dependence patterns 
of biological interest (as the nine BIDs shown in Figure 2). We do not consider larger 
choices of d for two reasons. First, since d = 2 cuts each interval into quarters and d = 3
cuts each interval into eighths, most of these patterns from larger depths which can not 
be seen at depth d = 2 capture relationships that are not expected to give useful insights 
into the dependence inherent to gene expression. Second, it would entail a considerable 
computational cost: when given d1 = d2 = 3, we have a total of 49 BIDs including these nine 
patterns, meaning the computational cost is raised by a factor of more than five. Zhang 
(2019) gives more discussion about depth selection. Let a and b denote vectors of length 
d1 and d2 with 1’s at k1…kr and k1

'…kt
' respectively and 0 ‘s otherwise, thus we can denote 

the cross interaction Ȧk1 …ȦkrḂk′ 1 …Ḃk′ t as ȦaḂb. For simplicity of notation, the labels AaBb in 
most figures represent the cross interactions ȦaḂb.

Now we define the symmetry statistic S for a given cross interaction ȦaḂb as the difference 
of counts in white and blue regions in the corresponding BID. Since the value of the cross 
interaction of the observation is 1 in white regions and −1 in blue regions, we can calculate 
S as the sum of the observed binary interaction variables S = ∑i = 1

n Ȧa, iḂb, i. The Ud1 and V d2

are strongly dependent when the absolute value S  is far from zero for at least one BID, 
according to the following fundamental observation of Zhang (2019): If Ud1 and V d2 are 
independent, the symmetry statistic S satisfies S + n /2 Binomial n, 1/2 , for a ≠ 0 and b ≠ 0. 

If the empirical copula transformation is used, we can use S = ∑i = 1
n Ȧa, iḂb, i as the symmetry 

statistic and (S + n)/4 Hypergeometric n, n/2, n/2 , for a ≠ 0 and b ≠ 0.

The issue of multiple comparisons across BIDs is handled by the Max BET procedure 
of Zhang (2019), at depths d1 and d2. This is described as follows for a given pair of 
variables. First, we compute all symmetry statistics S with cross interactions for the given 
d1 and d2. Then we look for the symmetry statistic with the strongest asymmetry and record 
its p-value and z-statistic S / n. Finally, for this pair of variables, we use a Bonferroni 
adjustment across the cross interactions (BIDs) to obtain the corresponding family-wise 
error rate p-value for this maximum S . The dependence relationship is represented by the 
most significant BID.
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Notice that Figure 2 reveals a reflection property among the BIDs. For example, the BIDs 
A1B1B2 (top-right) and A1A2B1 (bottom-left) represent the same relationship up to a switch of 
the axis positions (i.e., reversal of the roles of the two genes) for the two random variables 
U and V . There are three pairs of such off diagonal reflected patterns. Identifying such pairs 
results in six BID patterns: five nonlinear and one linearity. This reflection property will be 
further discussed in Section 3.3.

3. Results From TCGA.
In this section, we first expand on the data preprocessing of TCGA data set in Section 3.1. 
Then we summarize the analysis results in Section 3.2. Finally, we discuss some specific 
nonlinear dependency patterns in the last few subsections.

3.1. Data Preprocessing.
The RNA-seq gene expression features of TCGA Lobular Freeze breast cancer data set from 
Ciriello et al. (2015) contain 16615 genes of 817 primary tumor samples, including five 
subtypes (proportion in the sample): Basal-like (16.6%), HER2 (8.0%), Luminal A (50.8%), 
Luminal B (21.5%), and Normal-like (3.1%). Intrinsic breast cancer subtyping was done 
using the PAM50 classifier (Parker et al., 2009).

This gene expression data was preprocessed as described in Ciriello et al. (2015). This 
included normalization and logarithms. During this genomics data preprocessing, each 
sample was normalized to a fixed upper quartile and then log2 transformed. Genes with 
more than 20% zero counts were excluded. Other genes with zero counts had their zeros 
recorded as missing. A questionable choice made in that preprocessing was to replace these 
missing values by the median for that gene. However, such data was the beginning of our 
analysis. The poor consequences of this approach are illustrated in the left panel of Figure 3. 
In particular, it shows the raw data of a pair of example genes in our TCGA data set, which 
has many points piled up at the median representing missing values (zero counts). This is 
an inappropriate way of handling the zeros, because all these data are based on counts, so a 
zero count represents a small level of gene expression. As an alternative, we first considered 
moving the median values to be the same as the smallest value. In the case of no zero counts, 
this is inappropriate because the median corresponds to a non-zero count. A simple fix to 
this is to take the first non-zero count and leave it at the median. Thus, we address this by 
setting all but the first of the median values to the minimum value. Some experimentation 
revealed that this has a minimal impact. The result of this process is shown in the middle 
panel of Figure 3. This causes many ties for the smallest value. Since BET is based on a 
copula transform that essentially assumes continuous variables, a large number of ties will 
cause severe non-continuity and strongly impact the BET inference. Therefore, these points 
are spread out in the interval of the minimum and the second unique minimum, using a jitter 
approach. Specifically, to preserve the ranks, a small random value (uniformly distributed 
between 0 and the difference between the second unique minimum and minimum) is added 
to the non-unique minimum observations. Jittering has no impact on the BET significance 
because the jitter points are within the first 20% of the data (recall that genes with more than 
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20% missing were excluded). Finally, we apply the empirical copula transformation. See the 
right panel in Figure 3.

As noted in Parker et al. (2009), these subtypes play a critical role in many aspects of 
breast cancer. Our analysis in Section 3.3 confirms that the Basal subtype tends to be 
quite different from the rest. Hence, we also investigate the context of LumA/LumB/Her2, 
which tends to be dominated by the most numerous subtype LumA. We further investigate 
the non-LumA group, meaning the union of Her2/LumB, and LumA separately. Hence 
our analysis focuses on the four different contexts shown in Table 3 which are chosen to 
highlight important aspects. Note that the BET analysis focuses on detecting nonlinearity 
but not subtypes. However, there is a relationship between nonlinearity and subtypes. We set 
the depth parameters in the BET algorithm d1, d2 to be 2, and only focus on five nonlinear 
BIDs, as discussed in Section 2.2. To control for multiple comparisons, in each context, we 
use the Bonferroni adjustment across genes to modify the BET output p-value of each pair, 
which has already been adjusted across the nine BIDs. Specifically, we use the total number 
of pairwise comparisons of genes in TCGA (138,020,805) to do the Bonferroni correction. 
Then we use the level 0.05.

The BET detection results of TCGA breast cancer data for these four different contexts and 
five nonlinear BIDs are summarized in Section 3.2. More detailed descriptions are in Section 
3.3 through Section 3.6.

3.2. Summary of BET Analysis.
As we discussed at the end of Section 2.2, there are three pairs of reflected nonlinear BIDs 
in all nine BIDs. Identifying such pairs results in five nonlinear BIDs. see the five columns 
of Figure 4. From this point on, the Parabolic BID shown in the first column refers to the 
union of this A1A2B1 BID and its reflection A1B1B2. In our TCGA analysis, this Parabolic BID 
frequently finds a Mixture data pattern. Similarly, the W  BID in the second column refers 
to the union of this A2B1 BID and its reflection A1B2, since the shape of this BID looks like 
the letter W. This W BID tends to find a particular bimodal pattern in our TCGA data. The 
rows of Figure 4 are the four contexts. The top gene pairs are shown for each. The number of 
significant pairs for each BID is displayed at the top of each panel. No pair is shown for the 
Her2/LumB context with the BID A1A2B2 because there is no significant pair of genes.

Figure 4 shows the Parabolic BID in the first column, which contains the largest number 
of significant pairs for each context. In those cases, some obviously show mixtures of 
different subtype distributions, such as the red Basal subtype in the lower right region of 
the top Five Subtypes panel and the magenta Her2 cases in the lower right region of the 
Her2/LumB panel. The other relationships look strong but are not explained by subtypes, 
perhaps motivating additional genomic research. In particular, gene expression is indicative 
of many biological phenomena. Some are related to cancer subtypes, and some are not. A 
more detailed discussion of the gene pair in the upper left appears in Section 3.3; of the gene 
pair in the lower left in Section 3.4.

Some surprising bimodal patterns in column 2 are captured by the W BID, which seem not 
to be driven by the breast cancer subtype information. In Section 3.6, we discuss the gene 
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pair on the top row of column 2. To investigate the potential biological relevance of this 
bimodal dependence, an independent data set is used and discussed in Section 4.2.

In column 3, some approximately linear pairs of genes are detected by the BID A1A2B1B2. In 
Section 3.5, we analyze the top pair in column 3 to discuss the connection between linearity 
and this nonlinear dependence pattern.

In column 4, as discussed in Section 2.1, we find an interesting biological separation 
in the Five Subtypes panel (top), which exists between the red Basal subtype and other 
breast cancer subtypes. Moreover, in the LumA context (bottom), this checkerboard pattern 
suggests that while many points are along the main diagonal, two small clusters lie off the 
main diagonal. This dependence pattern is not explained by the breast cancer subtypes and 
might be worth deeper biological investigations.

In column 5, the biological explanation of the most significant gene pairs shown in each 
context is not particularly clear. However, in Figure 2, the bottom-middle panel gives 
another example of this BID, which does contain an interesting biological pattern. We notice 
that the Basal points are clustered in the upper-left corner, which are well separated from 
other subtypes. Furthermore, the Luminal B (cyan star) subtype appears mostly at a cluster 
in the bottom center.

Figure 4 also allows the comparison of BET with Hoeffding’s D and Pearson correlation. In 
particular, the symbols “H” and “P” at the top of each panel indicate that the corresponding 
most significant gene pair is also eeHoeffding’s D independence/Pearson correlation testing 
Bonferroni significant across all 1.38 × 108 possible pairs. From Figure 4, we find that 
many interesting nonlinear pairs of genes discovered by BET are not Bonferroni significant 
when using Hoeffding’s D or Pearson correlation, especially some biologically interesting 
Parabolic patterns (Column 1). Hoeffding’s D and Pearson tend to discover approximately 
linear dependence patterns. Based on this observation, an interesting question is how many 
of these nonlinear significant dependence pairs found by BET can not be discovered by 
conventional methods. This is studied in Table 4. The pairs discovered by BET are assessed 
for significance by both classical linear Pearson correlation and the nonlinear Hoeffding’s 
D. Recall that according to Table 1, Hoeffding’s D is about three times slower than BET. 
We compare these three methods over the significant pairs of genes of five nonlinear BIDs 
shown in Figure 4 in the Five Subtypes context. Specifically, for the Parabolic BID A1A2B1

in the Five Subtypes context, we apply Hoeffding’s D over the 130,274 BET significant 
pairs of genes and record the count of Pearson correlation and Hoeffding’s D significant 
results after the Bonferroni adjustment for p-values across all pairs. Then we calculate the 
proportion of Pearson correlation and Hoeffding’s D significant pairs in the BET significant 
pairs in each BID. Table 4 summarizes the number of BET significant pairs (first row), the 
number (second row) and the proportion (third row) of Pearson correlation significant pairs, 
the number (fourth row) and the proportion (fifth row) of Hoeffding’s D significant pairs for 
each BID.

Note that less than 30% of the pairs discovered by the Parabolic BID A1A2B1  were detected 
by Pearson correlation. For other patterns, the performances of Pearson correlation are 

Xiang et al. Page 9

Ann Appl Stat. Author manuscript; available in PMC 2023 December 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



better. On the other hand, about the comparison with Hoeffding’s D, we notice that only 
30%–50% BET significant pairs are detected by Hoeffding’s D test in each of the five 
BIDs. Overall, 92,410 and 106,468 BET Significant Pairs are not discoverable by Pearson 
correlation and Hoeffding’s D. This result indicates that BET is substantially more powerful 
against these particular types of nonlinear dependence.

3.3. Mixture Pattern for Five Subtypes.
In this section, we discuss the pair of genes shown in the top panel of Figure 5: ANKS6 
and JAM3, which has the most significant mixture dependence pattern. The dependence of 
these two genes is captured by the blue region of this BID. From the log-scale scatter plot 
(top-right) and BET diagnosis plot (top-left) in Figure 5, it is visually apparent that the Basal 
subtype group is separated from the other subtypes. In particular, the non-Basal cases look 
like a classical bivariate Gaussian distribution with a positive correlation between ANKS6 
and JAM3 (larger values of ANKS6 lead to more expression of JAM3). However, the Basal 
cases behave very differently: larger ANKS6 goes along with smaller JAM3, indicating a 
negative correlation. Ignoring this important difference in direction of correlation can have a 
serious impact on gene network analysis. ANKS6 in this example is the main driver of the 
separation between Basal and the others.

Here we revisit the reflection issue from the end of Section 2.2. As discussed above, the 
BIDs A1A2B1 and A1B1B2 are identical if we switch the genes on the x-axis and the y-axis. 
Since the pair of genes in this example (ANKS6 and JAM3) is detected by the A1A2B1

BID, reversing the ordering of these two genes will give the reflected pattern A1B1B2 . This 
example explains why only five nonlinear BIDs are considered here.

Further insight comes from splitting the blue region into three rectangular regions (see the 
numerical labels in the top-left panel) and calculating the respective proportions of the four 
breast cancer subtypes (ignoring the Normal-like) in each blue rectangle (bottom panels). 
These proportions reveal how the subtypes drive this relationship.

In the proportion bar plots, LumA and LumB subtypes have high proportions in Regions 
1 and 2. Those two subgroups account for 88.7% and 92% in the two regions separately, 
where the Basal subgroup only accounts for 5.4% and 2.8%. However, in Region 3, the 
proportion of Basal reaches 67%, and the total proportion of LumA and LumB is 21%. This 
observation indicates that the positive correlation of the LumA and LumB domains are in 
Regions 1 and 2, and the differing Basal correlation is in Region 3. The Pearson Chi-square 
test of independence is used to confirm this observation, for the counts of points in Table 5.

The p-value of this Chisq test is smaller than 2.2 × 10−16 (i.e., smaller than floating-point 
round-off error), and it shows a strong significance that these four subtypes are not 
homogeneously distributed in the blue regions. To more directly validate the separation 
between Basal and the others, all others are combined into a single group and the Chi-
square test gives another small p-value less than round-off error. This result confirms the 
observation that this dependence pattern captured by the blue regions is very strongly 
significant and is influenced by the mixture of Basal and other subtype distributions.
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The relationships between pairs of genes with respect to this same BID A1B1B2 is shown by 
a network connection plot in Figure 6 (a similar network plot with respect to five nonlinear 
BIDs is given in Supplement E). Nodes in Figure 6 represent genes. This particular pattern 
of nonlinear BET dependence is highlighted by edges, which show Bonferroni statistical 
significance between genes. Furthermore, genes are ranked by their maximum BET z-scores. 
As noted in Zhang (2019), z-scores, reflecting the number of standard deviations above 
the mean, are more interpretable when p-values are extremely small. As shown in Figure 
4, there are 130,274 significant pairs of genes for this BID and its reflection. To avoid a 
too cluttered network graphic, only the top 200 genes are shown in Figure 6. These two 
hundred genes have 311 significant dependence edges for this Parabolic BID. Genes at the 
center of some visually important communities are labeled. Each community is a set of 
genes that shows this relationship with the center gene. Notice there are a number of gene 
communities representing different biological dependencies that are significant with respect 
to this BID. Figure 5 suggests that much of this nonlinear dependence may be due to the 
Basal subtype which is well known to be quite different from the others. However, there can 
be other causes of this pattern. For example, Figure 8 shows that the gene ZDHHC2 has 
such dependence even when the Basal subtype is left out of the analysis. This gene appears 
in Figure 6 as the point represented by the black triangle.

Good insights into any of these gene communities and their functions come from finding 
where they appear among published gene signatures, such as those shown in The Molecular 
Signatures Database (MSigDB), a collection of annotated gene sets for use with Gene Set 
Enrichment Analysis (Subramanian et al., 2005; Liberzon et al., 2011, 2015). For example, 
we performed gene set enrichment analysis on the labeled communities. The gene set in the 
largest (ANKS6) community is strongly associated with stromal or immune features. This 
is consistent with the previous finding that basal-like breast cancer has increased immune 
signature expression (Iglesia et al., 2016). The gene analysis of the other label communities 
did not give such good biological interpretations.

3.4. Mixture Pattern for Only Luminal A subtype.
While subtypes have played an important role in the diagnosis and treatment of breast 
cancer, the heterogeneity of the disease motivates deeper investigation within subtypes. Here 
we focus only on the Luminal A breast cancer subtype observations. Figure 7 shows an 
additional interesting mixture dependence pattern in both the BET diagnosis (left panel) and 
log-scale scatter (right panel) plots. The right panel contains a positively correlated Gaussian 
point cloud on the left. There is a more diffuse cluster towards the lower right. This seems 
to indicate a mixture behavior. In particular, the gene ZDHHC2 bifurcates the data into a 
cluster where it is strongly positively correlated with CELF2, and another cluster where 
large values of ZDHHC2 correspond to small values of CELF2. Hence this pair of genes 
highlights potentially interesting subgroups, which merits a deeper investigation.

The connection plot in Figure 8 shows which genes have many significant pairs within the 
200 most significant genes in the LumA only context with the Parabolic BID. There are 
190 significant dependence edges. This can be less than 200 because there are many pairs 
that only connect with each other. ZDHHC2 and FGF10 are two central genes having large 
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communities, which motivate a deeper investigation. Checking carefully the individual plots 
reveals in all of these pairs, ZDHHC2 and FGF10 play the bifurcating role shown in Figure 
7 in the dependence with each of these other genes. To further illustrate this bifurcation 
property, we show more examples of pairs about ZDHHC2 for this pattern in Supplement A.

To investigate the corresponding gene function, we use gene set enrichment analysis again to 
compute overlaps between these communities and gene sets from MSigDB. This ZDHHC2 
community has overlaps with some gene sets related to breast cancer, and in particular the 
luminal subtype, such as CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHY-
MAL_DN and CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN (Charafe-
Jauffret et al., 2006). A full list of overlapping results for ZDHHC2 is in the Supplement 
C. This confirms that ZDHHC2 and its community are an important player at luminal 
breast cancer and could motivate a deeper investigation into the role played by the 
ZDHHC2 community. On the other hand, a similar investigation of FGF10 doesn’t show 
the connection with research to date on luminal breast cancer, again possibly motivating 
further biological work.

3.5. Connection between Linear and Nonlinear Patterns.
In column three of the summary plot Figure 4, some approximately linear pairs of genes 
with a second-order structure are detected by the BID A1A2B1B2. The left panel of Figure 9 
gives the BID diagnosis of the top row pair of genes in Column 3 (PROSC and ASH2L) with 
the largest symmetry statistic value and z-score in all nine BIDs. As discussed in Section 
2.1, this BET diagnosis plot shows that this pair is not bivariate normal with concentrations 
in both ends of the diagonal. A deeper investigation of the structure of this pair of genes 
is from the scatter plot in the middle panel of Figure 9. It reflects an approximate linear 
relationship with strong skewness along the major axis. To analyze the connection between 
this pair and the linear dependence BID A1B1, we show the linear BID in the right panel. 
The corresponding counts of white and blue regions for BID A1A2B1B2 in the left panel 
are 607 and 210, so that the symmetry statistic S and the z-score are 397 and 13.89; the 
corresponding counts for the linear BID in the right panel are 599 and 218, so that the 
symmetry statistic S and the z-score are rather close, but slightly smaller values of 381 and 
13.33. These numbers reflect the unusual pattern of greater variation in the middle of the 
distribution, with relatively less variation from the diagonal for the rest of it. This suggests a 
different type of mixture model which may merit deeper investigation.

3.6. Bimodal Pattern.
The second column of Figure 4 shows a perhaps surprising bimodal dependence pattern that 
is shared by many pairs of genes.

To more deeply investigate this bimodal dependence, we take the top pair in the context 
of Five Subtypes as an example. Figure 10 shows the BET diagnosis (left panel) and 
log-scale scatter (right panel) plots of the most significant pair of this pattern in the 
context of Five Subtypes: RPL9 and RPL32. RPL9 in this pair separates the group into 
two positively correlated Gaussian clusters, suggesting this surprising bimodal dependence 
pattern perhaps is related to the gene RPL9. To investigate whether this is an important 
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biological phenomenon or an artifact of some particular preprocessing steps in the Lobular 
Freeze TCGA data, we consider an additional completely separate data set in Section 4.2.

4. Biological Reproducibility of TCGA Results.
An essential issue with exploratory data analyses, as shown in Section 3 is their 
reproducibility. To investigate this for the interesting results shown in Sections 3.3 and 
3.6, we consider an independent genomic data set: the Sweden Cancerome Analysis 
Network-Breast (SCAN-B) (Brueffer et al., 2018). This data set came from the NCBI Gene 
Expression Omnibus (GSE96058). The Data set was preprocessed as described in (Saal et 
al., 2015). We use a subset of the gene expression data set which contains 2969 samples 
with full clinical data and 30865 genes. There are 15,197 genes existing in both the SCAN-B 
and TCGA data sets. We only consider these common genes during this validation process. 
There was no further processing step in the SCAN-B set for our reproducibility analysis. 
First, in Section 4.1, we study the reproducibility of the Mixture patterns in the contexts of 
the Five Subtypes, as shown in Section 3.3. Then in Section 4.2, we find that the bimodal 
distribution of the gene RPL9 in Section 3.6 is not observed in SCAN-B. This discrepancy is 
explained in Supplement D.

4.1. Biological Reproducibility of the Mixture Pattern.
In Section 3.3, we find an interesting mixture pattern detected by the Parabolic BID in the 
context of the Five Subtypes. To investigate whether this mixture pattern is reproducible in 
the SCAN-B data, we chose the most significant 200 genes for this context in TCGA results, 
as shown in the network connection plot Figure 6. To understand the relationship between 
pairs over the two data sets, we rerun BET for these pairs in the SCAN-B data set and record 
the corresponding z-scores for the Parabolic BID. Thus, we compare the significance for 
only the mixture pattern in these two data sets, as shown in Figure 11.

Within these top 200 genes, 7 genes do not exist in the SCAN-B. Considering only 
the remaining 193 genes resulted in 298 significant (in TCGA) mixture pairs. The 
corresponding SCAN-B significance for each pair is compared in Figure 11. In particular, 
each point is one mixture pair whose TCGA z-score is shown on the vertical axis and 
SCAN-B z-score is shown on the horizontal axis.

Because the sample size is much larger for SCAN-B, stronger significance is expected for 
most pairs. This is highlighted using the dark line y = x showing which pairs are equal. As 
expected, most SCAN-B z-scores are larger, reflected as circle points to the right of the line 
y = x.

Points to the left of the line y = x seem to fall into two different types. For the triangle 
points, the TCGA z-score is not much bigger than the SCAN-B z-score, suggesting this 
could be just random variation. This is more carefully investigated in Figure 12. The square 
ones are investigated in Figure 13. These are gene pairs with substantial missing values in 
the SCAN-B version of the data.
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Typical behavior of the triangle points is studied in Figure 12 by showing the pair 
represented as a dark triangle in Figure 11. The BET diagnosis (left panel) and the SCAN-B 
scatter (middle panel) plots definitely show the same behavior as in Figure 5, which is a 
clear separation between Basal and the other subtypes. However, the separation of the Basal 
is more distinct in TCGA, as shown in the TCGA scatter plot (right panel) of the same two 
genes, which is consistent with the more significant TCGA z-scores. We observed similar 
behavior for each of the pairs represented as triangles in Figure 11.

Figure 13 shows the pair highlighted with the dark square in Figure 11, which illustrates a 
different phenomenon represented by the pairs symbolized by squares. The BET diagnosis 
(left panel) and the SCAN-B scatter (middle panel) plots reveal a data threshold issue in 
the SCAN-B data set. The corresponding TCGA scatter plot (right panel) of this same pair 
does not have this issue. This threshold effect apparently is caused by missing values in the 
SCAN-B data set being replaced by the minimum of their values. This same phenomenon 
occurred for each of the pairs represented by squares in Figure 11. As discussed in Section 
3.1, we recommend handling such threshold data by jittering.

4.2. Lack of Reproducibility of the Bimodal Pattern.
Here we study the pair of genes that gives the strongest bimodal pattern signal in TCGA data 
set, which are RPL9 and RPL32 as shown in Figure 10. We rerun BET on this pair of genes 
in the SCAN-B data, and the strongest BID for this pair is linear, as shown in the left panel 
of Figure 14. Both the BET diagnosis (left panel) and the scatter (middle panel) plots show 
a relatively standard positively correlated linear dependence between RPL9 and RPL32. The 
right panel of Figure 14 gives the BET diagnosis plot for the W BID for this pair, which 
is much less significant than the linear pattern (z = 30.85 vs. z = 10.96). This shows that 
the surprising bimodal dependence observed in Figure 10 is not biologically reproducible. 
Instead, it seems to be a processing artifact. As noted above, deeper investigation of the 
artifact is given in Supplement D.

5. Conclusion.
TCGA gene expression data set is an important genomics data resource that shows 
many dependence patterns among genes, especially some interesting nonlinear dependence 
patterns. We use the computationally fast and powerful dependence testing method 
called BET to discover significant nonlinear dependence relationships in various contexts 
using the breast cancer subtypes information. We find that some interesting nonlinear 
dependence patterns are explained biologically by the mixture of the given breast cancer 
subtype distributions, such as the Mixture pattern for the context of Five Subtypes. Some 
relationships motivate further biological work, such as the Mixture pattern for the LumA 
only context. We also investigate the reproducibility of these results using an independent 
genomics data set. This shows that the mixture pattern is reproducible while the bimodal 
pattern related to the gene RPL9 is not and is apparently caused by some preprocessing 
steps.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG 1. 
Left: The scatter plot comparing expression of two genes in TCGA breast cancer data in 
the normalized log count scale; Right: The scatter plot of the same two genes using the 
copula transformation with the nonlinear dependence pattern from BET. Strong statistical 
significance is indicated by the BET Z-statistic of 12.84. These pairwise genes exhibit an 
interesting nonlinear dependence pattern which is explained by showing the breast cancer 
subtypes.
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FIG 2. 
The first nine low-resolution dyadic binary interaction designs (BIDs) used by BET and one 
example pair of expression data shown for every BID, with S indicating the difference of 
counts in white and blue regions. Each BID is aimed at detecting a particular dependence 
relationship between two [0,1] uniform random variables. Size of S indicates the strength of 
nonlinear dependence in each BID. A number of biologically relevant patterns are shown.

Xiang et al. Page 18

Ann Appl Stat. Author manuscript; available in PMC 2023 December 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



FIG 3. 
Left: The scatter plot comparing expression of two genes in the TCGA breast cancer data 
in the normalized log count scale with zero value imputation by the median; Middle: The 
scatter plot of the same two genes in the normalized log count scale with the median values 
reset to the minimum and jittering applied to nonunique values; Right: The scatter plot of the 
same two genes in the copula distribution scale.
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FIG 4. 
BET diagnostic plots where the four contexts are the rows and the four nonlinear BIDs are 
the columns. The most significant pair is shown for each. The number of significant pairs 
for each BID is shown at the top. The symbols “H” and “P” at the top show that this most 
significant pair is Hoeffding’s D and Pearson correlation respectively Bonferroni significant.
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FIG 5. 
Top-left: BET diagnosis plot for the pair of genes: ANKS6 and JAM3, which shows a 
strong surprising dependency with large z-statistic value and three blue rectangular regions; 
Top-right: the scatter plot of the same two genes in the normalized log count scale after 
pre-processing. Bottom: the proportions for each breast cancer subtype (except normal-like) 
in each blue rectangular region.
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FIG 6. 
Network connection plot of 200 most significant genes (nodes) with 311 edges for the BID 
A1B1B2. Each node represents one gene and each edge represents a significant dependence 
between those genes. The large community illustrated there are many genes having 
significant mixture dependence pattern with the center gene, such as ANKS6. The point 
represented by the black triangle is the gene ZDHHC2 featured in Figure 8.
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FIG 7. 
Left: BET diagnosis plot for a pair of genes which shows the mixture dependence within 
only the Luminal A subgroup; Right: The scatter plot of the same two genes in the 
normalized count scale. A point cloud with a strong positive correlation is on the left of 
the entire group and the remaining cases form a more diffuse cluster on the bottom-right.
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FIG 8. 
Connection plot of 200 most significant genes (nodes) with 190 edges for the Parabolic 
BID in the context of only Luminal A. ZDHHC2 and FGF10 are central genes in two large 
communities. The ZDHHC2 gene community has overlaps with some luminal gene sets in 
The Molecular Signatures Database (MSigDB).
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FIG 9. 
Left: The most significant BID diagnosis plot for a pair of genes: PROSC and ASH2L; 
Middle: The scatter plot of the same two genes in the normalized count scale; Right: The 
corresponding linear BID A1B1 for the same two genes. The value of the BET statistic for the 
linear BID is slightly smaller than that for the most significant BID.
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FIG 10. 
Left: BET diagnosis plot for a pair of genes that shows a bimodal dependence pattern; 
Right: The scatter plot of the same two genes in the normalized count scale. This nonlinear 
relationship seems to be driven by the bimodal distribution of gene RPL9.
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FIG 11. 
Scatter plot comparing the Parabolic BID z-scores between the SCAN-B and TCGA data 
sets for the significant Mixture pairs within the top 200 genes in the Five Subtypes context 
of TCGA. The dark square and dark triangle points are illustrated in Figures 12 and 13.
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FIG 12. 
Left: BET diagnosis plot for a pair of genes in the SCAN-B data set that is shown as a 
dark triangle in Figure 11; Middle: The scatter plot of the same two genes in the original 
SCAN-B scale; Left: The scatter plot of the same two genes in the normalized TCGA count 
scale. This example represents gene pairs which tend to be less significant in the SCAN-B 
data set but still have the mixture pattern.

Xiang et al. Page 28

Ann Appl Stat. Author manuscript; available in PMC 2023 December 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



FIG 13. 
Left: BET diagnosis plot for a pair of genes in the SCAN-B that is shown as a dark square 
in Figure 11 revealing a data threshold issue; Middle: The scatter plot of the same two genes 
in the original SCAN-B scale; Left: The scatter plot of the same two genes in the normalized 
TCGA count scale. This example represents a type of gene pairs which tend to be less 
significant in the SCAN-B data set.
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FIG 14. 
Left: BET diagnosis plot of the most significant BID A1B1  for RPL9 and RPL32 in the 
SCAN-B data set; Middle: The scatter plot of the same two genes in the original SCAN-B 
scale; Right: BET diagnosis plot of the W BID for the same two genes. This shows the 
bimodal pattern observed for RPL9 in TCGA data is not biologically reproducible.
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Table 1

The running time of the pairwise comparison of 100 genes. The more powerful nonlinear detection methods 
are orders of magnitude slower than BET.

Algorithms BET Hoeffding’s D Distance Correlation KNN Mutual Information

Times 8.96 secs 24.05 secs 17.51 mins 4.91 hours
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Table 2

Gene names for each pair in Figure 2

Location Gene 1 U Gene 2 V
top-left C17orf81 C17orf61

top-middle RPL24 RPL9

top-right JAM 3 ANKS6

middle-left RPL9 RPL32

center PRR15 CA12

middle-right CDH5 ZNF883

bottom-left ANKS6 DCN

bottom-middle CT62 FAM174A

bottom-right PROSC ASH2L
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Table 3

Four contexts and the corresponding sample sizes.

Contexts All five subtypes LumA/LumB/Her2 Her2/LumB LumA

Sample Sizes 817 656 241 415
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Table 4

Comparison of BET, Hoeffding’s D and Pearson Correlation over BET significant pairs of five BIDs in the 
Five Subtypes Context

BIDs A1A2B1 A2B1 A1A2B1B2 A2B2 A1A2B2 Total

Number of BET Significant Pairs 130,274 34,485 2,160 105 149 167,173

Number of Pearson Correlation Significant Pairs 38,834 34.064 1,662 105 98 74,763

Proportion of Pearson Correlation Significant Pairs 29.8% 98.8% 76.9% 100.0% 65.8% 44.7%

Number of Hoeffding’s D Significant Pairs 41,292 18,228 1,071 56 58 60,705

Proportion of Hoeffding’s D Significant Pairs 31.7% 52.9% 49.6% 53.3% 38.9% 36.3%
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Table 5

Observed counts for four breast cancer subtypes in three blue regions.

Subtypes region 1 region 2 region 3

Basal 9 8 90

LumA 86 229 6

LumB 63 37 22

Her 2 10 15 16
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