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Abstract—Multi-band operation in wireless networks can
improve data rates by leveraging the benefits of propaga-
tion in different frequency ranges. Distinctive beam man-
agement procedures in different bands complicate band
assignment because they require considering not only the
channel quality but also the associated beam management
overhead. Reinforcement learning (RL) is a promising
approach for multi-band operation as it enables the system
to learn and adjust its behavior through environmental
feedback. In this paper, we formulate a sequential decision
problem to jointly perform band assignment and beam
management. We propose a method based on hierarchical
RL (HRL) to handle the complexity of the problem by
separating the policies for band selection and beam man-
agement. We evaluate the proposed HRL-based algorithm
on a realistic channel generated based on ray-tracing
simulators. Our results show that the proposed approach
outperforms traditional RL approaches in terms of reduced
beam training overhead and increased data rates under a
realistic vehicular channel.

Keywords—mmWave MIMO, 3GPP NR V2X, band as-
signment, deep reinforcement learning

I. INTRODUCTION

Multi-band systems can achieve high data rates while
maintaining coverage and reliability [1]. The integration
of mmWave and sub-6 GHz transceivers means that
a single device can leverage the high bandwidths and
data rates of mmWave communication and the resilient
and wide coverage of sub-6 GHz communication [2].
3GPP continues to work on multi-band in recent Release
18, aiming to extend functionality such as the sidelink
from frequency range 1 (FR1, 0.4 GHz – 7.1 GHz)
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to frequency range 2 (FR2, 24 GHz – 52 GHz) [3].
Multi-band operations can be realized into two direc-
tions: simultaneous transmission and band assignment.
Allowing simultaneous usage of bands in a single time
slot offers greater data rate potential but higher radio-
frequency (RF) complexity.

Beam management establishes and maintains beam-
formed links and is a critical component of both
mmWave and sub-6 GHz communication. In the
mmWave band, beam management is a standard pro-
cedure to overcome misalignments and outages caused
by mobility and blockages [4]. The beam management
procedure in sub-6 GHz 5G employs a precoder matrix
indicator (PMI) codebook and feedback, categorized as
Type-1 and Type-2. Type-1 codebooks, with shorter
training overhead and predefined precoders per antenna
geometry, are commonly used for spatial multiplexing
compared to Type-2 codebooks. The overhead from
beam management, which deteriorates the data rate, can
be excessive when exhaustive beam alignment methods
that use narrow beam codebooks [5]. In highly dynamic
scenarios such as 5G vehicular networks, low overhead
beam management is paramount for ensuring high data
rate with resilient links [6].

Beam management overhead influences the rate per-
formance of band assignment but has been overlooked
in existing solutions [7]–[10]. Prior work has studied
various objectives such as throughput maximization [7],
[10], jammer interference minimization [8], and outage
ratio minimization [9], but they typically assume instant
evaluation of a selected band. When accounting for
beam management, the objective of minimizing the beam
management overhead becomes an additional factor that
can influence band selection. In the case of through-
put maximization, while the mmWave band offers high
throughput, the sub-6 GHz band can be more favorable
due to its shorter beam management overhead, despite
having lower throughput. High mobility and non-line-of-
sight (NLOS) operation are other examples in which the
sub-6 GHz band could outperform the mmWave band.
This highlights the need for a joint formulation of band
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assignment and beam management, where the tradeoff
between throughput and overhead is carefully balanced.

Recent work has shown that reinforcement learning
(RL) is an effective framework to address the overhead
of beam training in mmWave vehicular networks [11]–
[13]. The RL framework, including partially observable
environments and contextual bandits in the wide sense,
is capable of reducing control overhead by using the ac-
cumulated deployment history to effectively balance the
exploration of new control actions with the exploitation
of actions that have yielded the highest expected return
in the past. In our prior work [11], we have studied deep
RL (DRL) with threshold-based actions to reduce beam
training overhead in mmWave MIMO vehicular networks
with relay selection. In [12], the incoming vehicle di-
rection was used as input to apply contextual bandits
for beam selection in mmWave vehicular networks. In
[13], an autoencoder was employed to predict vehicle
mobility then to find beam training policies based on
RL with partial observability. RL has also been used in
band assignment, where WiFi traffic demands are learned
from WiFi channel activity observations [14].

DRL has recently seen partial advancements in ad-
dressing resource allocation tasks for wireless networks
that are characterized by expanding scale, versatility,
and heterogeneity. In light of the increasing scale and
complexity of upcoming wireless networks, DRL ap-
proaches leveraging measurements based on observation
are preferred over conventional signal processing meth-
ods, which may face challenges in obtaining complete or
quasi-complete knowledge of the wireless environment
[15]. The work presented in [16] exploits the learning
model of DRL to efficiently estimate system states in
scenarios involving discrete, continuous, or hybrid states,
providing scalability benefits compared to decentral-
ized allocation schemes. Additionally, the work in [17]
addresses the complexity arising from heterogeneous
communication nodes and link types in a vehicular
edge network by employing asynchronous application of
DRL algorithms to each agent. Despite these successful
applications, the quality of the reward becomes a critical
factor influencing the performance of DRL algorithms,
as the aforementioned methods rely on deterministic
rewards [18]. In this paper, we focus on band assignment
that refers to the selection of operating bands over time
slots in a sequential manner. Band assignment can be
understood as a subproblem of the frequency resource
allocation in multi-band systems [19]. Solving band
assignment using traditional RL approaches can still be
challenging, hence motivating a dedicated structure in
the learning approach, because beam training can only
be performed in one band at a time and the sample
efficiency in each band will be low.

Hierarchical reinforcement learning (HRL) is a

promising approach for addressing the joint band as-
signment and beam management problem, improving
sample efficiency compared to DRL by learning policies
separately for tasks at different decision hierarchy levels.
The idea of hierarchy resembles intelligence observed
in nature where learning agents only necessitate a few
examples [20]. The minimal example requirement, also
known as few-shot learning capabilities, allows general-
ization across different levels of abstraction. One of the
main benefits of exploiting hierarchy is that the shortened
episodes, owing to the abstracted tasks, makes both
exploration and learning easier [21]. While HRL is still
a relatively new approach in wireless communication,
it has shown promising results outperforming the tradi-
tional DRL methods in resource allocation [22], channel
sensing [23], and scheduling [24]. Relevant work on
HRL applications in wireless communication, however,
rely on discrete action spaces that can limit their general-
ization to real-world problems. For example, the discrete
action space only represent the quantized transmission
power constraint in the power allocation problem [22].
We employ HRL using continuous actions, which can
improve the scalability of the learning algorithm and
enhance its applicability to real-world deployments.

In this paper, we propose an HRL-based algorithm
for joint band assignment and beam management that
leverages the band characteristics of sub-6 GHz and
mmWave. We presume the communication nodes employ
codebook-based beamforming, co-located sub-6 GHz
and mmWave arrays, and Orthogonal Frequency Divi-
sion Multiplexing (OFDM). We also assume a fully
digital sub-6 GHz array and a hybrid mmWave array
with analog and digital beamformers. The system can
either perform digital beam training at the sub-6 GHz
band, analog beam training at the mmWave band, or
digital beam training at the mmWave band. We assume
perfect spectral efficiency feedback from the user to
the base station, free from quantization or overhead,
during both digital beam training at the sub-6 GHz band
and analog beam training at the mmWave band. This
feedback may be transmitted through a dedicated channel
in the unoccupied band or sent on the reverse link
with reduced coding and spreading. For the digital beam
training at the mmWave band, we assume the quality of
the feedback can be modeled using the number of bits in
the user codebook. The algorithm employs two policies:
an upper-level policy for band selection and a lower-
level policy to determine the beam training method. The
choice of beam training is guided by comparing the
spectral efficiency feedback and two adaptive thresholds
determined by the lower-level policy. We use one thresh-
old to separate analog and digital beam training and the
other threshold to decide between digital beam training
and data transmission. The band selection is made by the
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upper-policy, which aggregates state, goal, and reward
over an adaptive period. The HRL-based method uses the
best known band until the spectral efficiency feedback
deteriorates below the learned threshold, in which case
the algorithm tries out different band or beam training
indicated by the upper-level and lower-level policies.

We summarize our contributions as follows:
1) We formulate a joint band assignment and beam

management problem for wireless networks operat-
ing on sub-6 GHz and mmWave that accounts for
the effect of the beam management overhead on
the cumulative data rate. We devise a hierarchical
sequential decision-making model of the joint band
assignment and beam management problem, avoid-
ing the non-stationary Markov decision process
(MDP) by separately learning policies for band
selection and beam management.

2) We propose an HRL-based algorithm to solve the
joint band assignment and beam management prob-
lem. The proposed algorithm uses the spectral effi-
ciency feedback from the receiver to learn thresh-
olds that determines the beam training method.

3) We numerically evaluate the proposed algorithm
compared to baseline learning algorithms on a re-
alistic vehicular channel. The HRL-based proposed
algorithm outperforms the heuristic owing to the
reduced horizon for policy computation from ab-
stracted subtasks.

The rest of the paper is structured as follows. In
Section II, we present the system model used to represent
the multi-band wireless network. In Section III, we for-
mulate the joint band assignment and beam management
problem and discuss the challenges of designing an
learning algorithm. In Section IV, we describe a DRL
algorithm that can partially address the challenges of the
joint band assignment and beam management problem.
In Section V, we develop an HRL algorithm to solve
the joint band assignment and mode selection problem.
In Section VI, we numerically evaluate the proposed
algorithm compared to baselines. Finally, we conclude
the paper in Section VII.

We use the following notation throughout this paper:
A is a matrix, a is a vector, a is a scalar, and A is a
set. We denote aT the transpose of a, a∗ the conjugate
transpose, ∥a∥2 the 2-norm, and ∥a∥F the Frobenius
norm. We underline the sub-6 GHz variables as a to
distinguish them from mmWave.

II. SYSTEM MODEL

In this section, we describe the system model for
a wireless network operating both on the sub-6 GHz
and mmWave bands. As shown in Fig. 1, the system
can operate on one band at a time. We assume that

the communication nodes are equipped with co-located
sub-6 GHz and mmWave arrays. We provide the signal
model in the mmWave band in Section II-A. We then
outline the codebooks and beam training procedure in
the mmWave band in Section II-B. We summarize the
sub-6 GHz signal model and beam training process in
Section II-C and Section II-D. For the convenience of
readers, we summarize the system model parameters in
Table I with sub-6 GHz parameters omitted for brevity.

TABLE I
SUMMARY OF SYSTEM MODEL PARAMETERS

Notation System model parameter
m Time index of decision horizon
k Subcarrier index

b[m] Band assignment variable
MBT Time length of beam training
MDT Time length of data transmission
K Total number of subcarriers at mmWave
B Bandwidth at mmWave
NBS Number of antennas at the base station

NBS,RF Number of RF chains at the base station
NUE Number of antennas at the user

NUE,RF Number of RF chains at the user
NS Number of streams

s[k,m] Symbol vector
FBB[k,m] Frequency-selective baseband precoder
FRF[m] Frequency-flat RF precoder
H[k,m] Wideband channel
WRF[m] Frequency-flat RF combiner

WBB[k,m] Frequency-selective baseband combiner
P [k,m] Transmit power
G[m] Large-scale fading
σn Standard deviation of noise

S[k,m] Spectral efficiency per the subcarrier k
νBS Analog codebook size at the base station
νUE Analog codebook size at the user
NSS Number of SS blocks per burst
MSS Periodicity between SS burst exchangement
MRF Analog beam training overhead
βRF Ratio of pilots per symbol transmission
ζRF Number of OFDM frames

H̄[k,m] Digital effective channel
Ĥ[k,m] Quantized effective channel
κRVQ Number of quantization bits
κchannel Number of bits available via feedback channel
MBB Digital beam training overhead

Consider a downlink scenario in a multi-band MIMO-
OFDM wireless network, where a single base station
serves a single mobile user. For each OFDM time frame,
we assume the base station selects a transmission mode
of either beam training or data transmission. We also
assume the base station sends pilots only during beam
training for MBT discrete time slots. Whenever the mode
is data transmission, the base station sends only data
symbols for MDT discrete time slots. The sequence of
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(a) (b)
Fig. 1. Illustration of an example system model showing two snapshots: (a) the base station operates on the sub-6 GHz band to serve the user
due to a large truck posing as a mobile blockage, and (b) the base station operates on the mmWave band when LOS is available.

modes can be consecutive beam training, consecutive
data transmissions, or alternating with an arbitrary num-
ber of consecutive modes. The band selection occurs
when a new transmission mode is deployed. When the
system uses the sub-6 GHz band, denoted by a binary
variable b = 0, the system operates over a bandwidth B
with K subcarriers. Similarly, we use b = 1 to denote
that the system operates in the mmWave band. In this
case, the system uses a bandwidth B with K subcarriers.

A. Millimeter wave signal model

In the mmWave band, we assume the system employs
a fully connected hybrid beamforming architecture. We
denote NBS as the number of antennas and NBS,RF as
the number of RF chains at the base station. At the
user, we denote NUE as the number of antennas and
NUE,RF as the number of RF chains. The base station
and the user communicate via NS data streams, where
NS ≤ NBS,RF ≤ NBS and NS ≤ NUE,RF ≤ NUE. For
simplicity, we focus on a fully connected hybrid beam-
forming architecture in mmWave. Partially connected ar-
chitectures can reduce power consumption and hardware
cost, though beam training can be more complex as
the whole channel may need to be reconstructed from
subarray measurements. We leave the extension to a
partially connected architecture for future work.

At each OFDM time frame m and subcarrier k, the
base station sends a symbol vector s[k,m] of size NS×1
to the user. The symbol vector is assumed to be normal-
ized such that E[|s[k,m]|2] = 1. The base station pre-
codes the symbol vector with the NBS,RF×NS frequency-
selective baseband precoder FBB[k,m] followed by the
NBS × NBS,RF frequency-flat RF precoder FRF[m]. We
assume the precoded signal propagates through a time-
varying wideband channel model H[k,m] with large-
scale fading denoted as G[m] and the noise denoted
as n[k,m]. We assume the noise is independently and

identically distributed (IID) following the distribution
NC(0, σ

2
n ). At the user, the received signal is pro-

cessed with the NUE × NUE,RF frequency-flat RF com-
biner WRF[m] followed by the NUE,RF ×NS frequency-
selective baseband combiner WBB[k,m]. We set power
constraint on the base station by denoting P [k,m] as
the transmit power and constraining FBB[k,m] such that
∥FRF[k,m]FBB[k,m]∥2F = NS.

The end-to-end input-to-output relation in the
mmWave band is

y[k,m] =
√

P [k,m]G[m]W∗
BB[k,m]W∗

RF[m]H[k,m]

× FRF[m]FBB[k,m]s[k,m]

+W∗
BB[k,m]W∗

RF[m]n[k,m]. (1)

We define the spectral efficiency per the subcarrier k in
the mmWave band as

S[k,m] = log det
(
INS + P [k,m]G[m]σ−2

n W∗
BB[k,m]

×W∗
RF[m]H[k,m]FRF[m]FBB[k,m]F∗

BB[m]

×F∗
RF[m]H∗[k,m]WRF[m]WBB[k,m]) . (2)

Note that the spectral efficiency in the mmWave band at
time m can be written as

∑K
k=1 S[k,m].

B. Millimeter wave beam management procedure

In this section, we outline the beam management
procedure used in the mmWave band. The purpose of
the beam management procedure is to determine the
beamforming matrices—FRF[m], FBB[k,m], WRF[m],
and FBB[k,m]—adaptive to the dynamic channel con-
ditions using feedback from the user to the base station.
We assume that beam training can be split into two
stages: analog beam training and digital beam training.
The analog beam training is based on beam codebooks,
such that the base station and the user select beam pairs.
We further assume the analog beam training involves
exchanging synchronization signals (SSs) between the
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base station and the user [5]. In the digital beam training,
the user estimates the digital effective channel and com-
putes the digital combiner then feeds back the quantized
effective channel to the base station.

We first describe the analog beam training procedure
in the mmWave band. Let us denote the base station ana-
log codebook with size νBS as F = {v1, v2, . . . , vνBS}.
We similarly denote the user analog codebook with size
νUE as W = {g1, g2, . . . , gνUE

}. To obtain the analog
precoder FRF[m] and the analog combiner WRF[m], the
base station and the user exhaustively sweep RF beams
over νBS νUE time slots simultaneously for all RF chains.

The analog beam management procedure is performed
by exchanging SS bursts, where a single SS burst com-
prises multiple SS blocks [5]. We denote NSS as the
number of SS blocks per burst and MSS as the periodicity
between two SS burst exchangements. The total number
of beams, νBSνUE, is divided into bursts of size NSS
that are exchanged every MSS time slots such that the
overhead of the analog beam training procedure is [11]

MRF = MSS

⌈
νBSνUE

NSS

⌉
. (3)

During the analog beam training, where the transmit and
receive beam pair are being swept simultaneously for
RF chains, the user feeds back the spectral efficiency
for each transmit and receive beam pair to the base
station. We use the MMSE estimator for the effective
channel, which accounts for the measurement error in
its estimation, under a rectangular Doppler spectrum
as outlined in [25, Sec. 4.8]. The signal-to-noise-ratio
(SNR) prior to beamforming is P [k,m]G[m]σ−2

n due
to the normalization E[|s[k,m]|2] = 1. The MMSE
estimator is expressed in terms of the ratio of pilots per
symbol transmission, which we denote as βRF, and the
total number of OFDM frames during the analog beam
training, which we denote as ζRF. Then, the MMSE can
be expressed as

MMSE =
1

1 + βRFζRFSNR
, (4)

and the effective SNR as

SNReff =
SNR(1−MMSE)
1 + SNR ·MMSE

. (5)

The effective SNR is applied to the spectral efficiency
feedback from the user to the base station. This means
that the base station uses the effective SNR to compute
the spectral efficiency given codebook vectors g[m] and
v[m]. The resulting spectral efficiency can be written as

SUE[m; g[m], v[m]]

=
1

K

K∑
k=1

log2(1 + SNReff|g∗[m]H[k,m]v[m]|2). (6)

We presume a greedy approach to configure the
analog beamformers FRF[m] and WRF[m]. For RF
chain pair (nBS,RF, nUE,RF) ranging from nBS,RF =
1, . . . , NBS,RF and nUE,RF = 1, . . . , NUE,RF, the system
obtains {g⋆

nBS,RF
[m], v⋆nUE,RF

[m]} by solving

max
∀g∈W,∀v∈F

SUE[m; g[m], v[m]] (7a)

subject to g ̸= g1, . . . , g ̸= gnBS,RF−1, (7b)
v ̸= v1, . . . , v ̸= vnUE,RF−1. (7c)

The system then sets the RF beamforming matrices as
FRF[m] = [v⋆1[m], v⋆2[m],. . . , v⋆NBS,RF

[m]] and WRF[m] =
[g⋆

1[m], g⋆
2[m], . . . , g⋆

NUE,RF
[m]]. Note that the constraints

g ̸= g1, . . . , g ̸= gnBS,RF−1 and v ̸= v1, . . . , v ̸=
vnUE,RF−1 ensure that distinct beams are used for separate
RF chains, achieving spatial multiplexing gain [26].

After analog training, the system finds the digital
precoder and combiner by estimating the digital effective
channel H̄[k,m], for all subcarriers k = 1, . . . ,K . We
choose to represent the measurement error from pilot-
based estimation using the mean squared error (MSE)
[25, Sec. 3.7]

MSE =
1

βBBζBB
NBS

SNR
, (8)

where βBB is the ratio of pilots per symbol transmission
and ζBB is the total number of OFDM frames in the
digital training. Let us denote δ[k,m] ∼ CN (0, I) as
a complex Gaussian random variable independent from
the digital effective channel. We model the estimated
effective channel using uncertainty of the form [27]

H̄[k,m] = W∗
RF[m]H[k,m]FRF[m]

+
1√

βBBζBB
NBS

SNR
δ[k,m]. (9)

With the effective channel H̄[k,m], the user can compute
the least squares digital combiner as

WBB[k,m] = H̄[k,m](H̄
∗
[k,m]H̄[k,m])−1. (10)

We further assume the effective channel is quantized
with random vector quantization (RVQ) codebook, de-
noted as H, constructed with Lloyd’s algorithm, follow-
ing [28]. We note the PMI codebook that is used for
sub-6 GHz is not currently implemented in mmWave.
RVQ codebooks can be randomly generated indepen-
dently from the channel realization, and are known to be
asymptotically optimal regarding the number of transmit
antennas and codebook size [29]. Then, the quantized
effective channel fed back from the user to the base
station can be written as

Ĥ[k,m] = argmax
H̃∈H

∥H̄∗
[k,m]H̃[k,m]∥2. (11)
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Finally, the base station computes the MMSE digital
precoder as

FBB[k,m] = Ĥ
∗
[k,m](Ĥ[k,m]Ĥ

∗
[k,m])−1. (12)

The overhead of digital beam training, which we de-
note as MBB, only involves the feedback (11) and the
matrix manipulations throughout (10), (9), and (12).
The feedback involves channel access unlike matrix
manipulations, hence, the dominant factor in MBB is the
number of quantization bits of H. Let us denote κRVQ
as the number of quantization bits of H and κchannel as
the number of bits that can be sent through the feedback
channel over a single time slot. Then, the overhead of
the digital beam training procedure can be written as

MBB =

⌈
κRVQ

κchannel

⌉
. (13)

Compared to the analog beam training overhead, MBB ≪
MRF because digital beam training requires far fewer
feedback procedures than the multiple SS burst ex-
changes required in analog beam training. The gap
between MBB and MRF will increase when the number
of antennas in the system increases.

C. Sub-6 GHz system model

In the sub-6 GHz band, we assume the system em-
ploys the fully digital beamforming architecture. The
base station is equipped with NBS antennas and RF
chains to send NS data streams. The user is equipped
with NUE antennas and RF chains. The size of sym-
bol vector s[k,m] is NS × 1. The symbol vector is
assumed to be normalized such that E[|s[k,m]|2] = 1.
The base station precodes the symbol vector with an
NBS ×NS frequency-selective precoder FBB[k,m]. The
precoded signal propagates through the channel denoted
as H[k,m] and the noise denoted as n[k,m]. We assume
the noise is IID following the distribution NC(0, σ

2
n)

At the user, we assume the received signal is decoded
with NUE×NS frequency-selective decoder WBB[k,m].
We set power constraint on the base station by denoting
P [k,m] as the transmit power and as ∥FBB[k,m]∥2F =
NS. Then, the end-to-end input-to-output relation in the
sub-6 GHz band is

y[k,m] =
√

P [k,m]G[m]W∗
BB[k,m]H[k,m]

× FBB[k,m]s[k,m] +W∗
BB[k,m]n[k,m], (14)

and the spectral efficiency per the subcarrier k in the
sub-6 GHz band can be written as

S[k,m] = log det
(
INS

+ P [k,m]G[m]σ−2
n W∗

BB[k,m]

×H[k,m]FBB[k,m]F∗
BB[m]

×H∗[k,m]WBB[k,m]) . (15)

Due to the normalization of the symbol vector, the
SNR prior to beamforming in the sub-6 GHz band is
P [k,m]G[m]σ−2

n .

D. Sub-6 GHz beam management procedure

The 5G NR beam management procedure in the sub-
6 GHz band uses channel state information reference
signals (CSI-RSs), a technique inherited from 4G, and
precoding matrix indicator (PMI) feedback. We presume
that the Type-1 PMI codebook is employed and the PMI
feedback indicates the PMI table index, which includes
both candidate precoders and the channel quantization
[30]. Let us denote β as the ratio of pilots per symbol
transmission, ζ as the total number of OFDM frames
in the sub-6 GHz band beam training, and δ[k,m] ∼
CN (0, I) as a complex Gaussian random variable inde-
pendent from the channel H[k,m]. We model the CSI
before quantization with the error model [27]

P[k,m] = H[k,m] +
1√

β·ζ
NBS

SNR
δ[k,m]. (16)

The precoder selection based on the PMI feedback can
be written as

FBB[k,m] = argmax
∀F∈H

∥P[k,m]F[k,m]∥ (17)

where H denotes the PMI codebook. We further assume
the PMI feedback includes the spectral efficiency feed-
back

SUE[m] =
1

K

K∑
k=1

log2

(
1 + SNR

×
∣∣∣∣W∗

BB[k,m]P[k,m]FBB[k,m]

∣∣∣∣2), (18)

where the combiner W∗
BB[k,m] is computed based on

zero-forcing. Let us denote νPMI as the size of the PMI
codebook and κchannel as the number of bits that can be
sent through the sub-6 GHz feedback channel over a
single time slot. The overhead from the beam training
procedure in the sub-6 GHz band, which we denote as
MBB, can be written as

MBB =

⌈
log2 νPMI

κchannel

⌉
. (19)

Typically, the beam training overhead in the sub-6 GHz
band is between the analog beam training overhead and
digital beam training overhead in the mmWave band such
that MBB < MBB < MRF. It is noteworthy that the beam
training overhead in the sub-6 GHz can be reduced by
grouping multiple antennas in the base station to a single
port to reduce the beam training overhead [31].
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III. REINFORCEMENT LEARNING FORMULATION OF
THE JOINT BAND ASSIGNMENT AND BEAM

MANAGEMENT PROBLEM

In this section, we formulate the joint band assign-
ment and beam management problem for the multi-band
wireless network as an RL problem. We first describe the
underlying learning model as an MDP. We then discuss
the challenges of the RL formulation by describing
the inconsistent action space over different bands. We
describe a baseline approach of the RL formulation using
action masking in Section IV. We further detail the
remedies on the challenges by proposing an algorithm
based on HRL in Section V.

The base station aims to maximize the system’s data
rate by selecting the best band of operation and precoder
at each time slot. For each time slot m, we denote the
actions that the transmitter can take as A[m]. The action
dictates a chosen band and also whether to perform beam
training or data transmission. We say the action is a set
including a chosen band b[m] and a beam management
mode nmode[m]. Specifically, we set b[m] = 1 to imply
the mmWave band being the band of operation and
b[m] = 0 to imply the sub-6 GHz band being the band
of operation. We also set nmode[m] = 1 to indicate
analog beam training and nmode[m] = 0 to indicate
digital beam training. The system’s data rate, which is
the performance metric of interest, can be written as

R[m] =

(
(1− b[m])

B

K

K∑
k=1

S[k,m]

+b[m]
B

K

K∑
k=1

S[k,m]

)
. (20)

We assume that M is finite to keep the cumulative data
rate finite. Denoting the binary variable c(A[m]) = 0
when beam training is in progress and c(A[m]) = 1
when data transmission is performed, the optimization
problem can be written as

max
{A[m]}

M∑
m=1

c(A[m])R[m] (21a)

s.t. A[m] = · · · = A[m+MRF],

if b[m] = 1 and nmode[m] = 1, (21b)
A[m] = · · · = A[m+MBB],

if b[m] = 1 and nmode[m] = 0, (21c)
A[m] = · · · = A[m+MBB],

if b[m] = 0 and nmode[m] = 0. (21d)

The constraints in (21b), (21c), and (21d) represent that
each action takes the dedicated time slots to terminate
as described in Section II-B and Section II-D. We solve
(21) by formulating an MDP, which has been shown to

be an effective approach for many resource allocation
problems [32]. The crucial elements in an MDP are the
state space, action space, and the reward function. The
design of the action space poses a significant challenge
in the MDP formulation, as the choice between discrete
and continuous action spaces plays a crucial role in
determining scalability. On the one hand, discrete action
spaces may lead to scalability issues due to the need
for defining separate actions for various combinations of
bands and beam management modes. On the other hand,
continuous action spaces partially address scalability
concerns by substituting discrete actions with continuous
variables that function as decision boundaries [11]. We
first describe the MDP of the DRL approach using
continuous action space in Section IV. The distinct beam
management procedures in the mmWave band and sub-
6 GHz band pose limitations on the performance of
continuous RL algorithms, as decision boundaries are
applied uniformly across all bands. In this regard, we
further specify the MDP of the HRL-based algorithm in
Section V.

IV. REINFORCEMENT LEARNING APPROACH OF THE
JOINT BAND ASSIGNMENT AND BEAM MANAGEMENT

PROBLEM USING ACTION MASKING

In this section, we present a DRL-based method for
solving the joint band assignment and beam management
problem using threshold-based actions. The DRL-based
approach serves as a baseline to the HRL-based algo-
rithm and an example application of continuous action
spaces with action masking, later used in the HRL-based
algorithm as well.

A naive approach to addressing inconsistent action
spaces is through action masking, where the total action
space includes all possible actions conservatively, and
invalid action probabilities are forced to zero [33], [34].
We describe the MDP formulation of the brute-force
approach using action space masking, which we later
set as a baseline in the experiments under the name
three-threshold policy. The state T [m], action A[m],
and reward r[m] of the three-threshold policy can be
described as the following.

1) States: The state space incorporates the selected
beamformers and feedback used throughout the beam
management procedures as discussed in Section II-B and
Section II-C. In the mmWave band, the analog beam
training determined the analog beamformers based on
spectral efficiency feedback followed by digital effective
channel estimation. In the sub-6 GHz band, the PMI
feedback determines the precoder computation. The state
can be written as

T [m] =
{
FRF[m],WRF[m], SUE[m],

{
Ĥ[k,m]

}K
k=1

,{
FBB[k,m]

}K
k=1

,
{
P[k,m]

}K
k=1

}
. (24)
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Note that the codebook assumption for constructing
the analog beamformers FRF[m],WRF[m], the quantized
feedback channel

{
Ĥ[k,m]

}K
k=1

in the mmWave band,
and the precoder

{
FBB[k,m]

}K
k=1

in sub-6 GHz band
can be used to reduce the state space dimension.

2) Actions: The action space consist of three contin-
uous variables

A[m] = {τ [m], τRF[m], τBB[m]}. (25)

The spectral efficiency feedback of the operating band
is compared with the thresholds. At mmWave, the
spectral efficiency feedback SUE[m] is compared with
each threshold to perform one of the following. When
SUE[m] < τ [m], the base station switches band to
the sub-6 GHz. When τ [m] < SUE[m] < τRF[m], the
base station tries analog beam training. When τRF[m] <
SUE[m] < τBB[m], the base station triggers digital beam
training. When τBB[m] < SUE[m], the base station keeps
both the analog and digital precoders and transmits
data. In the sub-6 GHz band, the threshold τRF[m] is
masked to compare the spectral efficiency to determine
band switching and transmission mode. When SUE[m] <
τ [m], the base station switches band to the mmWave.
When τ [m] < SUE[m] < τBB[m], the base station tries
beam training. When τBB[m] < SUE[m], the base station
keeps the precoder and transmits data.

3) Reward: The reward can be written as

r(T [m],A[m]) = c(A[m])R[m], (26)

since the objective of an MDP is maximizing the cumu-
lative reward, as in (21), over time.

The main issue with the MDP specified by (24), (25),
and (26) lies in the design of the action space. Though
an implicit assumption made in the MDP formulations
of [32] and references therein is that the state space and
action space are invariant over time. While, in the broad
sense, MDPs can have an action space that varies with
the state, it is an ongoing research challenge to address
the increased complexity arising from estimating action
relations and availability [35]. The joint band assignment
and beam management problem (21) similarly introduces
the dependence of the beam management procedure on
the operating band, revoking the challenges from variant

action spaces. One approach to alleviate such challenge
is to individually learn the band selection and beam
training decisions to keep the action space consistent
within a single policy. In the following section, we
describe how hierarchical learning can be used to solve
these issues.

V. HIERARCHICAL REINFORCEMENT LEARNING
ALGORITHM FOR JOINT BAND ASSIGNMENT AND

BEAM MANAGEMENT

In this section, we propose an HRL-based algorithm
for solving the joint band assignment and beam man-
agement problem. We first give a brief introduction of
HRL in Section V-A, focusing on the relation of state,
action, and reward defined in the upper-level and lower-
level policies. We then describe the proposed algorithm,
a novel approach for the joint band assignment and beam
management problem, incorporating off-policy correc-
tion methods and an adaptive upper-level policy period
in Section V-B.

A. Hierarchical reinforcement learning

HRL algorithms build upon RL algorithms, which
aim to find the policy that maximizes the cumulative
reward by training neural networks. The key difference
of HRL algorithms to traditional RL algorithms lies in
the separation of decision layers, which represents the
decomposition of the complex task given to the decision-
making agent. The upper decision layer selects subtasks
to be performed and the lower decision layer executes the
chosen subtask. In the RL framework, the policy of the
agent maps a state T to an action A. HRL algorithms,
depicted in Fig. 2, extend the framework to consist the
upper-level policy µupper and the lower-level policy µlower

[21]. The upper-level policy maps a state to a high-level
action (or goal), where the lower-level policy maps a
pair (T , g) to an action A.

We use DDPG [36] to train the upper-level policy
µupper and the lower-level policy µlower. Four neural net-
works are trained in DDPG, where each neural network
corresponds to the online actor network θA,ON, the target
actor network θA,TAR, the online critic network θC,ON,
and the target critic network θC,TAR. The actor networks

Llower =
1

ξ

∑
m′

(
(rI[m

′] + γQlower(T [m′ + 1, g[m′ + 1]], µθA,TAR(T [m′ + 1], g[m′ + 1])|θC,TAR)

−Qlower(T [m′], g[m′],A[m′]|θC,ON))
2

)
. (22)

1

ξ

∑
m′

∇AQ
lower(T , g,A|θC,ON)|T =T [m′],g=g[m′],A=µθA,ON (T [m′],g[m′])∇θA,ONµθA,ON(T , g)|T =T [m′],g=,g[m′]. (23)
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Fig. 2. Hierarchy between the upper-level and lower-level policy in the
HRL framework. The upper-level policy generates goals as its action,
which is inputted to the lower-level policy to determine the action
interacting with the environment.

represent a policy, whereas the critic networks evaluate
a policy. The target networks are delayed copies of
the online networks with slow updates, which helps to
reduce the effects of overfitting and instability.

DDPG uses experience replay that stores a buffer
of experiences to update the neural networks. The ex-
perience replay consist of trajectories, where a single
trajectory is a tuple of the state, action, reward and
successor state. The trajectory of the lower-level policy
is a tuple of (T [m], g[m],A[m], rI[m], T [m+1]), where
rI is the intrinsic reward provided by the upper-level
policy. The update of the neural networks for the lower-
level policy incorporates the goals in the typical loss
minimization and policy gradient methods. Specifically,
a ξ-element randomly sampled minibatch is from the
experience replay of the lower-level policy, which we
denote as Dlower. Using the minibatch, the lower-level
θC,ON is updated by minimizing the loss in (22), the
lower-level θA,ON is updated with the policy gradient
(23), and the target networks are slowly updated from the
online networks, where the parameter η << 1 controls
the variance of the target networks:

θA,TAR ← ηθA,ON + (1− η)θA,TAR,

θC,TAR ← ηθC,ON + (1− η)θC,TAR. (29)

The parameter η can help alleviate the overestimation of
the Q-values [37].

The upper-level trajectory involves multiple time
steps, which we denote as Mupper, because the subtask
sampling happens coarsely. A single upper-level transi-
tion is a tuple of({

T [m′]
}m+Mupper−1

m′=m
,
{
g[m′]

}m+Mupper−1

m′=m
,{

A[m′]
}m+Mupper−1

m′=m
,
{
rE[m

′]
}m+Mupper

m′=m
,

T [m+Mupper]

)
, (30)

where rE is the reward given by the environment. To
describe the usage practical actor-critic algorithms such
as DDPG based on Dupper, we denote the aggregated
state as T agg[m] = (T [m], . . . , T [m + Mupper − 1]),
aggregated goal as gagg[m] = (g[m], . . . , g[m+Mupper−
1]), and cumulative environmental reward as ragg

E =∑m+Mupper
m′=m rE[m

′].

When updating the upper-level θC,ON, minimizing the
loss as in (22), an off-policy correction is required
to address the varying µlower in a single upper-level
trajectory. Let us denote µlower

base as the lower-level policy
that was used when sampling Dupper and µlower as the
current lower-level policy. We use importance sampling
to estimate the loss function regarding the samples
generated with µlower based on the experience replay
Dupper from lower-level policy following µlower

base . The
direct importance correction can be written as [21]

w[m] =

m+Mupper−1∏
m′=m

µlower(T [m′], g[m′],A[m′])

µlower
base (T [m′], g[m′],A[m′])

, (31)

which is applied in the update of upper-level θC,ON in the
loss function (27). In case of the goal, a single goal may
be selected despite the aggregated goals in the upper-
level trajectory. A single goal represents the subtask
selection of the upper-level policy. The corrected goal
can be computed by [21]

ḡ[m] = argmin
g[m]

(1− w[m])
2
, (32)

which is applied in the update of the upper-level θA,ON
with the policy gradient (28). Later in the experiments,
we use each off-policy correction methods as baselines.

Lupper =
1

ξ

∑
m′

(
(rE[m

′] + γw[m]Qupper(T agg[m′ + 1], µθA,TAR(T agg[m′ + 1])|θC,TAR)

−Qupper(T agg[m′], gagg[m′]|θC,ON))
2

)
. (27)

1

ξ

∑
m′

∇AQ
upper(T agg, gagg|θC,ON)|T agg=T agg[m′],gagg=µθA,ON (T agg[m′])∇θA,ONµθA,ON(T )|T agg=T agg[m′]. (28)
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B. Joint band assignment and beam management strat-
egy based on hierarchical reinforcement learning

In HRL, the upper-level policy provides its action
or the goal to the lower-level policy at fixed intervals
Mupper. However, previous work has shown that setting
the duration too long or too short can result in per-
formance deterioration [22]. On the one hand, if the
duration is too long, the lower-level policy may not
receive enough goals to be trained effectively. On the
other hand, if the duration is too short, the upper-level
policy may not capture sufficient abstraction from the
environment regarding the beam management overhead
to guide the lower-level policy.

To address this tradeoff, we propose the use of round
skipping, which is inspired by bandit algorithms [38].
The idea is to set a short default period but periodically
evaluate the interaction between the agent and the envi-
ronment to determine if it is unnecessarily brief. By do-
ing so, we can ensure that the lower-level policy receives
sufficient goals for training without compromising the
efficiency of task decomposition. This approach offers a
more flexible and adaptive solution to the challenge of
setting the upper-policy period in HRL.

The round skipping probability is computed based
on the mean reward and action availability. Specifically,
the non-skipping probability is min{1, MRF

2MRF−1
1

q(A,m)},
where q(A,m) is the probability that action A is avail-
able at time slot m based on the history up to time slot m.
The underlying idea of deriving the terms in the round
skipping probability is twofold: lower bounding the ratio
between the worst-case expected reward collected by the
proposed algorithm to that of the oracle and maintaining
a consistent rate of action availability over time. The
former involves the competitive ratio of the proposed
algorithm for m time steps, which we denote as ρ(m).
For any time steps m, the competitive ratio can be lower
bounded by at least ρ(m) ≥ MRF

2MRF−1 (1−
MRF−1

MRF−1+m ) [39,
Theorem 1]. The latter is ensured by tracking the action
availability q(A,m) at time slot m, inductively from the
initial time step.

The upper-level actor-critic update is triggered every
Mupper time slots. If the round-skipping occurs, the band
assignment variable b and goal g is kept constant to
be used in the lower-level policy computation. Other-
wise, the upper-level experience replay is generated by
aggregating state, action, and cumulating the environ-
mental reward over time horizon m, . . . ,m + Mupper.
In the upper-level trajectory, the length of elements are
truncated to MRF when Mupper > MRF. The off-policy
correction is applied to take account of the varying
lower-level policy. The lower-level policy uses the goal
g and intrinsic reward rI given by the upper-level actor-
critic networks.

The state T [m], goal g[m], action A[m], intrinsic
reward rI[m], and extrinsic reward rE[m] of the HRL-
based joint band assignment and beam management
algorithm can be described as the following.

1) States: The state space in the proposed HRL algo-
rithm aligns with that of the DRL method, as described
in (24). This space encompasses the beamformers and
feedback used throughout the beam management proce-
dures, as detailed in Section II-B and Section II-C.

2) Goal: The goal is associated with the operational
band. It is configured as g[m] = 1 when the mmWave
band is used; otherwise, it is set as g[m] = 0.

3) Action: The action space consist of two continuous
variables, resembling the two thresholds that governs the
beam managment procedure in the action space of the
DRL method. Specifically,

A[m] = {τA[m], τD[m]}. (33)

The difference of the action space in the HRL method
and that of the DRL method is that the band assignment
is determined in the upper-level action. The spectral
efficiency feedback SUE[m] at mmWave is compared
with the thresholds to perform one of the following.
When SUE[m] < τA[m], the base station performs analog
beam training. When τA[m] < SUE[m] < τD[m], the base
station proceeds digital beam training. When τD[m] <
SUE[m], the base station transmits data using symbols.
At sub-6 GHz, τA[m] is masked. When SUE[m] < τD[m],
the base station processes beam training. When τD[m] <
SUE[m], the base station transmits data using symbols.

4) Intrinsic reward: The intrinsic reward for solving
(21) can be written as

rI(T [m], g[m],A[m]) = c(A[m])R[m]. (34)

Note that g[m] is analogous to the band assignment
variable b[m] discussed in Section III.

5) Extrinsic reward: The reward provided by the
environment accounts for the upper-level policy period
Mupper such that

rE[m] =
1

Mupper

m′+Mupper−1∑
m′

r[m′], (35)

The pseudocode of the proposed algorithm is provided
in Algorithm V-B. Algorithm V-B highlights the consists
of two parts of the upper-level policy update and the
lower-level policy update. The upper-level policy is up-
dated only when the boolean random variable RoundSkip
is false, hence in average updated every Mupper iterations.
For completeness, Algorithm V-B and Algorithm V-B are
provided to further detail the update procedure of the
upper-level and lower-level policies. In Algorithm V-B,
the band assignment variable b[m] is computed based on
the updates on the upper-level policy. In Algorithm V-B,
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given the band of operation, the beam management mode
is determined based on the lower-level action A[m] from
the updates on the lower-level policy. To ensure the
algorithm implementation runs within a single OFDM
time slot, we note that graphics processing unit (GPU)
with high clock speed and field-programmable gate array
(FPGA) may be exploited as discussed in [40].

We provide an estimate of the complexity of the
proposed algorithm. Let us denote N sup

ℓ as the number
of layers of a neural network with a subscript ℓ ∈ {A,C}
describing the type of the network and a superscript
sup ∈ {lower, upper} indicating the level of hierarchy of
the policy. For example, we denote N upper

A as the number
of layers in the actor network of the upper-level policy.
Let us also denote U sup

ℓ,u as the number of nodes of the
uth layer of a neural network. For example, we denote
U upper

A,u as the number of nodes of the uth layer in the actor
network of the upper-level policy. Then, the computation
complexity of the proposed HRL-based algorithm can be
written as [41]

O

( ∑
ℓ∈{A,C}

N lower
ℓ −1∑
n=2

(U lower
ℓ,u−1U

lower
ℓ,u + U lower

ℓ,u U lower
ℓ,u+1)

)

+O

(
1

Mupper

∑
ℓ∈{A,C}

N upper
ℓ −1∑
n=2

(U upper
ℓ,u−1U

upper
ℓ,u

+U upper
ℓ,u U upper

ℓ,u+1)

)
. (36)

Assuming the number of nodes in each layer are sim-
ilar within the same level of hierarchy of policies,
each to U lower for the lower-level policy and to U upper

for the upper-level policy, (36) can be further simpli-
fied to O((N lower

A + N lower
C )(U lower)2 + 1

Mupper
(N upper

A +

N upper
C )(U upper)2).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed HRL al-
gorithm on a realistic multi-band wireless network. We
first describe the scenario in Section VI-A. We outline
the performance metric of interest and baselines in
Section VI-B. We then provide the numerical results and
discussion in Section VI-C.

A. Simulation setup

We simulate an urban vehicular network consisting
of a static base station with a fixed transmit power
in mmWave and sub-6 GHz bands and mobile vehicle
nodes. We implement the Manhattan mobility model,
which represents urban roads with a typical grid topol-
ogy found in metropolitan cities. To generate vehicle
trajectories, we employ Simulation of Urban MObil-
ity (SUMO) [42]. Among the simulated vehicles, we

Algorithm 1 Joint band assignment and beam manage-
ment strategy based on HRL

1: Input: Length M of decision horizon, Boolean con-
stant UseActionRelabling, Boolean random variable
RoundSkip

2: Randomly initialize online critic network
Q(s, a|θC,ON) and online actor network µ(s|θA,ON)
with θC,ON and θA,ON for upper-level and lower-level

3: for m = 1, . . . ,M do
4: if RoundSkip then
5: Continue using upper-level action g[m]
6: else
7: UpperPolicyUpdate
8: end if
9: LowerPolicyUpdate

10: end for

Algorithm 1.1 UpperPolicyUpdate

1: Input: Current decision horizon index m, Boolean
constant UseActionRelabling, Upper-level trajectory
length Mupper, Experience replay Dupper of the upper-
level policy, online actor and critic network of the
upper-level policy

2: Set aggregated state as T agg[m] = T [m′ : m′ +
Mupper − 1]

3: if UseActionRelabling then
4: Set goal as (32)
5: else
6: Set aggregated goal as gagg = g[m′ : m′+Mupper−

1]
7: end if
8: Set reward as

∑
rE[m

′]
9: Get successor state T [m+Mupper]

10: Store transition (30) in Dupper
11: Sample a random minibatch of ξ transitions from
Dlower

12: Update the upper-level online critic network by
minimizing the loss (27)

13: Update the upper-level online actor network by
policy gradient (28)

14: Update the target networks from the online networks
according to (29)

15: Compute upper-level action g[m] by (32)
16: Update b[m+Mupper]
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Algorithm 1.2 LowerPolicyUpdate

1: Input: Current decision horizon index m, Experience
replay Dlower of the lower-level policy, online actor
and critic network of the lower-level policy

2: Select lower-level action A[m] according to the
current online actor network and exploration noise
distribution N

3: Set reward as rI[m] (20)
4: Update nmode[m+ 1]
5: Get successor state T [m+ 1]
6: Store transition (T [m], g[m],A[m], rI[m], T [m+1])

in Dlower
7: Sample a random minibatch of ξ transitions from
Dlower

8: Update the lower-level online critic network by
minimizing the loss (22)

9: Update the lower-level online actor network by
policy gradient (23)

10: Update the target networks from the online networks
according to (29)

select a single vehicle to serve as the user. We then
apply the SUMO-generated vehicle trajectory to QUAsi
Deterministic RadIo channel GenerAtor (QuaDRiGa),
where QuaDRiGa generates the channels accounting for
the geometric consideration of vehicles acting as reflec-
tors and blockages [43]. While SUMO and QuaDRiGa
can represent realistic vehicular networks as ray-tracing
channel simulators, scenarios with errornous feedback
from the user or malicious attacks may require a novel
simulation environment. We use the 3GPP 3D Urban
micro (UMi) model provided within QuaDRiGa that
determines parameters such as the path, ray, complex
path gain, angle of arrival, and angle of departure. At
sub-6 GHz, we use the ’3gpp-3d’ type of antenna array
provided by QuaDRiGa in accordance with the 3GPP
technical report 36.873 [44].

We summarize the key simulation parameters, which
are uniformly applied to simulations unless mentioned
otherwise, and assumptions as the following:

1) Mobility parameters: When vehicles move through
a crossroad, the probability of going straight is 0.5,
turning left is 0.25, and turning right is 0.25. We set
the average vehicle speed as 40 km/h and the vehicle
density as 10 vehicles per kilometer.

2) Array and band parameters: We assume the number
of antennas at the base station and the user are NBS = 32
and NUE = 16 at mmWave and NBS = 4 and NUE = 4
at sub-6 GHz. The number of streams are NS = NS = 4
and the number of RF chain are NBS,RF = 8 at mmWave.
We assume a uniform linear array (ULA) with half-
wavelength spacing used at mmWave. We assume the

mmWave and sub-6 GHz arrays are co-located and
aligned. Note that the aligned arrays imply that the phys-
ical line-of-sight (LOS) between the base station and the
user is invariant over the sub-6 GHz and mmWave bands.
We select K = 256 OFDM subcarriers at mmWave and
K = 32 subcarriers at the sub-6 GHz band. The sub-6
GHz band has 150 MHz bandwidth and the mmWave
band has 850 MHz bandwidth [45].

3) Beam management parameters: In the mmWave
band, we apply beam management with MSS = 1 and
NSS = 4. We assume single bit limited feedback and set
κchannel = κchannel = 1. We assume that a discrete Fourier
transform (DFT) codebook is employed at mmWave and
the Type-I PMI codebook is used at sub-6 GHz.

B. Performance metric and baseline policies

We evaluate the cumulative rate as specified in
(20). We approximate the ensemble mean by averaging
over 1,000 channel instances generated by SUMO and
QuaDRiGa. For the performance of the learning-based
policy, either DRL-based or HRL-based, we measure the
average of the last 20 iterations out of the M = 200 total
iterations to represent the converged reward. We use two
hidden layers with 400 nodes in the network structure of
the actor and critic networks. For both upper and lower-
level policies, we use the target update value η = 0.005,
actor learning rate of 0.0001, and critic learning rate of
0.001. The choice of the number of iterations and the
parameters of the neural network structure was made
to ensure a reasonable algorithm runtime within several
hours. Exploring the potential for increased rewards
under less stringent computational resource constraints
is an avenue for future investigation.

We compare the proposed HRL-based algorithm to
three baseline policies:

• Genie-aided policy: This algorithm has perfect
knowledge of the channel on both the mmWave
and sub-6 GHz bands. Subsequently, this policy
chooses the data transmission action with the cor-
rect frequency band and the best beam indices.
Thus, the performance achieved by the genie-aided
policy represents the theoretical upper limit of the
system.

• Three-threshold policy: This algorithm applies
DRL using threshold-based actions. The spectral
efficiency feedback is compared to the learned
thresholds to either perform band switching, digital
beam training, analog beam training, or data trans-
mission. The second threshold is masked when the
sub-6 GHz band is selected.

• Greedy policy: This algorithm chooses an action
in each iteration following the genie-aided policy
while being restricted to mmWave. This policy
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Fig. 3. Average data rate versus transmit power for (i) the genie-
aided policy, (ii) the proposed HRL-based policy, (iii) DRL approach
using threshold-based action, and (iv) the policy that only use the
mmWave band. The distinctive beam management procedures between
bands causes the DRL-based heuristic to incrementally improve over
the greedy policy. Employing hierarchy between the band assignment
and beam management leads to further improvement in the achieved
data rate by resolving the nonstationary actions.

represents the performance that can be achieved
with beam tracking and alignment alone, without
the aid of a sub-6 GHz band.

C. Numerical results and discussion

Fig. 3 shows the average data rate versus transmit
power, ranging over 5 dBm to 30 dBm. The proposed
band assignment and beam management algorithm based
on HRL outperforms the traditional DRL-based heuris-
tic. At a high transmit power of 30 dBm, the HRL-based
algorithm shows a 2.7-fold improvement over the greedy
method in contrast to the DRL-based heuristic getting
0.25-fold gain over the greedy baseline. This suggests
that the HRL-based method effectively learns the policy
by decomposing the joint band assignment and beam
management, unlike the DRL approach, which struggles
with the nonstationary action between the sub-6 GHz
and mmWave band.

Fig. 4 displays a comparison of the achieved data rate
over 100 training episodes between the proposed HRL-
based algorithm and the traditional RL algorithm as a
baseline. Additionally, we implement direct importance
correction as a baseline to examine its impact on the
algorithms’ performance. The results demonstrate that
both HRL algorithms outperform the DRL approach,
exhibiting a substantial increase in average reward. We
interpret that the faster increase in episodic reward is
due to the enhanced sample efficiency of HRL-based
methods, thanks to the extended horizon in the experi-
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Fig. 4. Reward convergence across learning episodes compared among
the HRL algorithm with action relabeling, HRL algorithm with direct
importance correction, and DRL algorithm with no hierarchy. Both
HRL algorithms exhibit rapid average reward increase over the DRL
approach. Action relabeling aids in faster convergence, while direct
importance correlation minimizes reward deviation.

ence replay. Among the different off-policy correction
methods, action relabeling promotes faster convergence,
while direct importance correction results in less devi-
ation of reward. The DRL-based method takes around
60 episodes to converge at approximately 6.5 Mbps,
whereas the HRL algorithms can achieve up to 27 Mbps.
Notably, the importance-based action relabeling leads to
the fastest convergence in approximately 20 episodes,
while the direct importance correction method takes
around 90 episodes to achieve more than 24 Mbps. We
observed hours of runtime using a simulation environ-
ment with a GTX 1080 GPU to achieve the 27 Mbps
of the HRL algorithm throughout 20 episodes. Still,
base station deployments typically last for tens of years.
This indicates that the investment of time in training is
justified by the long-term performance benefits.

Fig. 5 displays a comparison of the achieved data rate
over 100 training episodes between HRL algorithms with
different approaches to set the upper-level policy period.
The proposed method based on round-skipping that
adapts the upper-level period shows the best convergence
behavior, converging to 27 Mbps around 20 episodes.
While moderately short fixed upper-level period shows
convergence around 20 episodes as well, the achieved
reward drops down below 20 Mbps. When the fixed
upper-level period is excessive, matching the analog
beam training overhead, the performance is comparable
to the vanilla DRL approach taking over 40 episode to
converge to the reward below 10 Mbps. This highlights
the importance of adaptively adjusting the upper-policy
trajectory sampling period in achieving better perfor-
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Fig. 5. Convergence behavior over the period of the upper-level
policy. The proposed method that uses round-skipping outperforms the
baselines that have a fixed period of upper-policy trajectory sampling.
The performance of the fixed period policies can deteriorate down to
the vanilla DRL appraoch, losing the benefits of using the hierarchical
structured learning.

mance in the HRL setting, where round-skipping is an
effective way to adjust the upper-policy period.

Fig. 6 shows the threshold and spectral efficiency
feedback datapoints of the proposed HRL-based algo-
rithm at the mmWave band during episodes 1-40 of
the learning phase. The data points are color-coded in
a heatmap style, ranging from red to blue to represent
high to low spectral efficiency feedback. Clusters are
evident, with data transmission occurring when spectral
efficiency feedback is over 0.9 bps/Hz and the threshold
is between 0.8 and 1.2. Beam training occurs when the
feedback deteriorates, with a high threshold indicating
digital beam training and a low threshold indicating
analog beam training. The cluster formation indicates
that the threshold-based action in the HRL algorithm en-
ables efficient beam management per spectral efficiency
feedback.

Fig. 7 shows the average data rate per the number
of quantization bits of the RVQ codebook used in the
digital effective channel feedback. The range of the bits
is selected from 1 through 11. Increasing the quantization
codebook bits from 1 shows an increase in the average
data rate since the digital effective channel feedback
will become more accurate. The increase in the average
data rate continues up to the quantization bits of 5 for
the three-threshold policy and 8 for the proposed HRL-
based method. We interpret that the DRL approach is
bound to the number of SS blocks NSS = 4 whereas
the HRL-based method can further benefit from the
accurate digital effective channel to increase the achiev-
able rate. Moreover, the proposed HRL-based algorithm
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Fig. 6. Beam training behavior per the learned threshold and spectral
efficiency feedback at the mmWave band. Three clusters are observed:
data transmission, analog beam training, and digital beam training.
Clusters form based on spectral efficiency feedback and threshold
levels, with high spectral efficiency for data transmission, moderate
spectral efficiency and high thresholds for digital beam training, and
low spectral efficiency for analog beam training.

outperforms the greedy approach over the codebook
quantization bits ranging from 1 through 11, where
for the three-threshold policy the quantization codebook
is preferred within 4 to 8 to outperform the greedy
baseline. The HRL-based method exhibits a limitation,
resulting in a higher data rate loss with lower RVQ
codebook quantization bits compared to the DRL-based
heuristic. The robustness of HRL-based methods would
need careful consideration, especially in scenarios where
the feedback from the receiver can be erroneous [46].

Fig. 8 shows the average data rate achievable per vehi-
cle density, ranging from 10 to 40 vehicles per kilometer
in the SUMO simulation, under different QuaDRiGa
scenarios. The solid lines represent the performance of
the policies under the 3GPP-UMi LOS scenario, while
the dotted lines depict the performance of the policies
under the 3GPP-UMi NLOS scenario. As the vehicle
density increases, resulting in a higher likelihood of
blockages, the achievable data rate decreases. However,
our observation reveals that the exploitation of the
LOS channel in the HRL-based method experiences a
comparatively lesser performance loss in contrast to the
NLOS scenario. The performance of the proposed HRL
algorithm outperforms the vanilla DRL approach and
the greedy algorithm under the LOS scenario over the
increasing vehicle density, where we observe the compa-
rable degradation of policy performance. The proposed
method also outperforms the baselines under the NLOS
scenario, but the performance degradation is more severe
under the NLOS scenario over the increasing vehicle
density. This observation may be due to the fact that the
Type-1 codebook in the sub-6 GHz band is designed



15

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

Peak at 8 bits

Peak at 5 bits

RVQ codebook quantization bits

A
ve
ra
ge

d
a
ta

ra
te

[M
b
p
s] Genie-aided policy

Proposed HRL algorithm

Three-threshold policy (DRL)
Greedy algorithm

Fig. 7. Achievable rate per the number of bits used in the digital
effective channel quantization. Learning-based methods show a peaked
curve in performance, with data rate increasing at low quantization
due to more accurate channel estimates, but decreasing at excessive
quantization due to significant overhead. The proposed HRL-based
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Fig. 8. Achievable rate per different vehicle densities. The solid
line shows the 3GPP-UMi LOS scenario and the dotted line shows
the 3GPP-UMi NLOS scenario. Increased vehicle density in urban
scenarios can reduce the achievable data rate due to more frequent
blockages, but the HRL-based method can exploit the LOS channel to
achieve milder performance loss compared to the NLOS scenario.

for LOS conditions to enjoy the short beam training
overhead while maintaining high data rate. An interesting
future direction in this regard would be to consider
a Type-2 codebook with more sophisticated precoder
computation that accounts for the multipath channel in
the sub-6 GHz band.

VII. CONCLUSIONS AND FUTURE WORK

Exploiting multiple band characteristics will be a ma-
jor approach addressing challenges in wireless networks,
including mobility and blockage, while avoiding their
associated drawbacks. We formulated the joint band
assignment and beam management problem in wireless
networks operating on FR1 and FR2. We devised an
MDP that introduces hierarchy between the band as-
signment and beam management to avoid nonstation-
ary action space. The numerical evaluation based on
QuaDRiGa-generated channel showed that the proposed
HRL-based method improves over traditional DRL ap-
proaches. This suggests that the introduction of hierarchy
is an effective approach addressing the complex problem
of joint band assignment and beam management. For
future work, the extension to multi-user scenario is an
interesting direction that may require queuing theory to
resolve conflicts between users with the same preferred
band. The robustness of the RL methods also needs fur-
ther investigation to ensure their suitability in scenarios
where feedback from the receiver might be erroneous.
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