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ABSTRACT

Blind deconvolution is a challenging problem because of its
ill-posed nature. Most existing blind deconvolution tech-
niques are based on classical methods and utilize a maximum
a posterior (MAP) framework to estimate clean images and
blur kernels. Very recently, a method that utilizes the Deep
Image Prior (DIP) principle has been proposed. This method
uses two generative networks to model the deep priors of
clean image and blur kernel. But this method fails for com-
plex kernels, and estimates erroneous kernels, hence leading
to ringing artifacts in the reconstructed image. To address this
issue and estimate better kernels, we introduce a Bayesian
uncertainty guided kernel estimation technique. Also, to im-
prove the quality of the reconstructed images, we present a
new type of edge-preserving attention. We perform evalua-
tions on several benchmark datasets to show the performance
improvement obtained by our network.

1. INTRODUCTION

Images captured by hand-held cameras often suffer from
blurring due to camera motion or movements in the cap-
tured scene. Assuming that the scene captured is static,
photographs captured by hand-held cameras with large ex-
posure times are prone to blur degradation due to camera
shake. The removal of blur from degraded images is of
significant interest to photographers. Moreover, multiple
computer vision applications require clean images for their
proper functioning[1, 2]. Hence there exists a need to restore
images degraded by camera motion. In normal scenarios, the
distortion due camera shake can be modelled as a convolu-
tion operation of the underlying clean image with a space
invariant blur kernel[3, 4, 5, 6] and can be expressed as ,

y = k ∗ x+ n, (1)

where, y is the blurry image, x is the latent clean image, k
is the blur kernel and n is an additive white Gaussian noise.
The operator ∗ denotes convolution. The task of retrieving x
given y, without the knowledge of k is referred to as the blind
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Fig. 1: A visualization of estimated uncertain kernels and re-
sulting artifacts caused by them.

deblurring (or deconvolution) problem. Blind image decon-
volution is challenging because of its highly ill-posed nature.
Moreover, we have to retrieve the clean latent image x as well
as the blur kernel k from the degraded observation y. Very
recently, Ren et al..[3] proposed a method that uses the Deep
Image Prior [7] concept and utilize two generative models.
This method performs an unconstrained neural optimization
to estimate the clean latent image and blur kernel. But the re-
stored kernels are prone to small errors after optimization and
initialization plays a major role on the quality of kernel pre-
dicted. It is well known that small uncertainties in the kernel
estimation cause artifacts and ringing effects in the restored
images [8, 9].

Hence, to improve the quality of generated kernels, we
propose a new method by using the concept of uncertainty
to the process of kernel estimation. For this, we create an
uncertainty-aware kernel estimation network by estimating
the epistemic uncertainty [10, 11] of the predictions of a base
network. We consider the kernel estimation network as a
Bayesian neural network by including dropout layers as in
Gal et al.[11]. We then predict multiple kernels by utiliz-
ing Monte-Carlo sampling with dropout and perform approx-
imate inference of the true distribution of the predicted ker-
nels. To get a refined estimate of the kernel, we use a refine-
ment network that takes the first and second-order moments
of the approximated distribution as input. We also propose
a novel loss, devised using the second-order moments of the
kernel distribution and constrain the space of the generated
kernel.

Artifacts often arise due to imperfect deconvolution op-
eration or due to the presence of kernel errors [8, 9]. Hence
a second stage that could correct the estimated latent image
would be an important task in blind deconvolution. Con-
sider the features of the penultimate layer of the image pre-
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Fig. 2: An overview of the proposed network. Two generative networks networks GI and GK are used to generate the deep
priors of the latent image. We use epistemic uncertainty of the base kernel generation network and estimate the mean and
variance of the kernel which is then passed through a refinement network to get the final output kernel. The features of the
penultimate layer is passed patch wise through the edge preserving filter.

diction network. These features are often close to the out-
put of the network. Through our experiments we have found
that by performing an artifact correction at the penultimate
layer of the network, we can reduce ringing artifacts in the
reconstructed image by a very good extent. In the case where
the predicted output features of the image prior network has
unwanted edges or artifacts, our network has the modelling
capability to filter out the unwanted regions through an edge-
preserving filter.

Our contributions are summarized as follows:
• We propose a new training strategy to generate better

kernels in the double generative prior-based framework
for blind image deconvolution.

• We propose a new gated edge preserving filter layer to
improve the modeling of the image prior network.

2. PROPOSED METHOD

2.1. Network architecture

Double generative prior-based techniques have been proven
effective for blind deblurring [12, 3]. Inspired by this, we de-
velop a double generative prior-based network which consists
of two main parts, the generator network for the blur kernel
prior and the clean image prior. The overall pipeline of our
network is illustrated in Fig.2. The novelties introduced are
detailed as follows.
Kernel estimation network. Our kernel estimation network
consists of two parts, the base kernel estimation network and
the refinement module. Similar to SelfDeblur[3], we choose
a two layered Fully connected Network (FCN) as our base
kernel estimation network. But to make the network capa-
ble of estimating uncertainties in the network output, we add

dropout to each layer with probability p = 0.2. While train-
ing our network, at each time step, we perform M number
of forward passes with dropout, hence generating M number
of kernels k1, ..., kM , we compute the mean (kmean) and the
variance (kvar) of the predicted kernels as

kmean = 1
M

∑M
m=1 km

kvar = 1
M

∑M
m=1 km.km − kmean.kmean.

(2)

The pixelwise variance measure of prediction kvar models the
uncertainty in predicting the kernel. We develop a refinement
module that utilizes this uncertainty and takes in kmean and
kvar as input. The architecture of the refinement module is a
simple 2 layer FCN. As we know, most blur kernels are low
pass in nature, hence to preserve this identity, the sum of all
elements in the kernel matrix should be one. To ensure this,
we add a softmax layer after the last layer of the base network
and the refinement module.

Gated feature space edge preserving attention. To rec-
tify artifacts caused due to small uncertainties in the kernel
estimate, we include a new type of gated attention layer in
our network. This layer has the capability of smoothing the
effects of ringing artifacts and generating artifact-free fea-
tures. Our attention mechanism is inspired from bilateral
filtering[18]. Given the low-level features in the penultimate
layer of the restoration network. Let these features be de-
noted by F ∈ R(h×w×C). For each channel of the low-level
features, we do the following set of operations. Consider a
feature channel Fh×w corresponding to a fixed c in F , a small
local region of pixels is extracted around this pixel. Given a
pixel xa in the feature channel, we use a local region of pixels
in positions Np(a) with spatial extent p centered around xa
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Distorted

Distorted Cho&Lee∆[5] Pan-DCP∆[13] OURS

Perrone∆[14] SelfDeblur∆[3] OURS∆ Ground Truth
Fig. 3: Qualitative evaluations on the Levin et al. dataset [6]

Images Cho&Lee∆[5] Xu&Jia∆[15] Sun∆[16] Zuo∆[17] Pan-DCP∆[13] SelfDeblur[3] SelfDeblur∆[3] Ours Ours∆

PSNR 30.57 31.67 32.99 32.66 32.69 33.07 33.32 33.65 33.87
SSIM 0.896 0.916 0.933 0.933 0.928 0.931 0.943 0.947 0.952

Table 1: Average PSNR/SSIM comparison on the dataset of Levin et al.[6]. The methods marked with ∆ uses existing non
blind deblurring techniques for restoration.

to create two handcrafted kernels, the first kernel based on
the intensity variation across this window and the other based
on the spatial orientation of these pixels. Let Ks(a, b) denote
the spatial intensity kernel variation around a pixel location
in consideration a and b ∈ Np(a) denote all the pixels in the
neighbourhood of a. Fa and Fb denotes the intensity values
at locations a and b, σr and σs are trainable parameters. We
formally define these kernels as

Ks(a, b) =
1

Z
1
2
e

−∥a−b∥2

2σ2
s ,Kr(a, b) =

1

Z
1
2
e

−∥Fa−Fb∥
2

2σ2
r ,

Z =
∑

b∈Np(a)
e

−∥a−b∥2

2σ2
s

+
−∥Fa−Fb∥

2

2σ2
r .

(3)
The weights for each location are based on the intensity vari-
ation in the neighborhood of a. For Kr(a, b), the weights
for each location are based on the relative distance between
the pixels. This could also be thought as a positional embed-
ding kernel. Once these kernel functions are generated, the
attended feature at location a can be estimated by

F̂a =
∑

b∈Np(a)
Ks(a, b)Kr(a, b)F (b) =∑

b∈Np(a)
Softmax(H(Fa, Fb) + r(a, b))F (b),

(4)

where H(.) is a function denoting the closeness of intensity
values and r(.) is the term denoting relative positions. The
advantage of designing handcrafted attention rather than uti-
lizing a standard attention module in this scenario is that the
number of trainable parameters is just two. Also, this atten-
tion is computationally inexpensive and could be computed
with linear complexity to the size of the image. Fig.2 shows
the gated edge-preserving module. The inputs to the module
are F̂ , which denotes the features after attention, and C(F (.))
denoting the features after a normal convolutional operation.
The output of the gated network is,

O = W1F̂ + (1−W1)C(F ), (5)

where the weights W1 are computed by using a gate estima-
tion network that takes as input the features F and the output
of the restoration network during the previous m iterations.

Algorithm 1: Pseudo code for training our network.
Input: Blurry image y
Output: Clean image x, blur kernel k

1 for n = 1 : N do
2 Sample zk and zx from uniform distribution.;
3 for m = 1 : M do
4 perform M forward passes;
5 ki = Gn−1

kb (zk);
6 end
7 Find kmean and kvar kmean = 1

M

∑M
m=1 km;

8 kvar = 1
M

∑M
m=1 k

T
mkm − kTmeankmean;

9 kn = Gn−1
kr (kmean, kvar);

10 xn = Gn−1
x (zx, {xn−1, xn−2, ..., xn−m+1});

11 Find gradients of Gkr, Gkb and Gx;
12 Update parameters of Gkr, Gkb and Gx;
13 end
14 x = GN

x (zx, {xn−1, xn−2, ..., xn−m+1});

The key idea is that artifacts present in the output dur-
ing each iteration could be different. Algorithm 1 shows the
pseudo code for the overall training process.

2.2. Loss functions

Let y denote the blurry image, x denote the clean latent im-
age, k1, k2, ..., kM the kernel estimates found at a particular
instant and k denote the output of the kernel refinement net-
work. The net loss function for training our network is,

L = LMAP + Lmont + λLtv, (6)

where L denotes the net loss function for training our net-
work. LMAP focuses on finding the best parameters for the
generative networks natural image estimation and kernel es-
timation that maximizes the posterior distribution P (y|k, x).
Ltv denotes the total variation loss for improving the qual-
ity of the predicted output x. Let ′h′ and ′w′ denote the
axis along the length and width of the image. Lmont ensures
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Distorted

Distorted Cho&Lee∆[5] Pan-DCP∆[13] OURS

Perrone∆[14] SelfDeblur∆[3] OURS∆ Ground Truth
Fig. 4: Qualitative evaluations on the Lai et al. dataset [19]

Images Xu&Jia∆[15] Xu∆ [20] Perroe et al.∆[14] Pan-DCP∆[13] SelfDeblur[3] SelfDeblur∆[3] Ours Ours∆

Manmade 19.23/0.654 17.99/0.598 17.41/0.550 18.59/0.594 20.35/0.754 20.08/0.733 20.95/0.791 20.70/0.769
Natural 23.03/0.754 21.58/0.678 21.04/0.676 22.60/0.698 22.05/0.709 22.50/0.718 22.45/0.712 22.84/0.723
People 25.32/0.851 24.40/0.813 22.77/0.734 24.03/0.771 25.94/0.883 27.41/0.878 26.43/0.901 26.90/0.891

Saturated 14.79/0.563 14.53/0.538 14.24/0.510 16.57/0.632 16.35/0.636 16.58/0.616 16.61/0.665 16.91/0.633
Text 18.56/0.717 17.64/0.667 16.94/0.592 17.42/0.619 20.16/0.778 19.06/0.712 20.60/0.820 19.73/0.735
Avg 20.18/0.708 19.23/0.659 18.48/0.613 19.89/0.665 20.97/0.752 21.13/0.731 21.41/0.777 21.40/0.750

Table 2: Average PSNR/SSIM comparison on the dataset of Lai et al[19]

that the base kernel estimation network learns meaningful ker-
nel representations and also the epistemic uncertainty of pre-
dicted kernels is minimized. kvarj denotes each entry in the
variance matrix of the kernel values k1, k2, ..., kM . LMAP

Ltv and Lmont are defined as,

LMAP = |x ∗ k − y|2, Ltv =
√

|∂x∂h |2 + | ∂x∂w |2,

Lmont =
1

2M

(∑M
i=1 |x ∗ ki − y|2 +

∑
j∈kvar

|kvarj |2
)
.

(7)3. EXPERIMENTS

Training and Implementation details: Since our network
uses the DIP framework, there is no explicit training of our
network with data. The hyperparameters for the network are
defined as follows. The number of iterations N = 5000. The
number of forward passes through the base kernel estimation
network M = 10. The value of the hyperparameter λ =
10−7.The network is trained with Adam optimizer. The initial
learning rate is set as 0.01. The learning rate is decayed by
half after every 1000 iterations.
Evaluation benchmarks: We evaluate our network on the
popular benchmark datasets from Levin et al.[6] and Lai et
al.[19]. For comparisons, similar to [3, 16, 17], we use ex-
isting classical methods[5, 15, 16, 17, 13, 21, 14] for blind
deblurring by estimating the blur kernels and then using the
estimated blur kernels on the non-blind deblurring method
by[22] to get the restored image. We also compare our
method with the existing state-of-the-art deep learning tech-
nique, SelfDeblur[3]. For all comparison methods, we use the
qualitative and quantitative results released by the authors of
[3] and [19]. In the results shown, ∆ denotes that the method
from [6] has been used for evaluation using the estimated blur
kernels. For evaluating the restored images, we utilize PSNR
and SSIM as the metrics.
3.1. Results on the Levin et al.[6] and Lai et al.[19] dataset

The qualitative results on the Levin et al. dataset [6] are given
in Fig.3. From the figure, we can see that the existing classi-
cal methods [16, 17, 13] over smooth the image. The method

Network SelfDeblur[3] SelfDeblur[3]+Image SelfDeblur[3]+ Kernel OURS
PSNR 33.07 33.31 33.50 33.65
SSIM 0.931 0.937 0.939 0.947

Table 3: Ablation study corresponding for the different mod-
ules in our network on Levin et al dataset[6]

from [3] creates artifacts. In contrast, our method can pre-
serve details without generating artifacts. Also, we can see
from Table 1 that our method significantly outperforms all
other methods in terms of PSNR and SSIM. The qualitative
results on the Lai et al. dataset [19] are given in Fig.4. From
the figure, we can see that recent deep learning-based tech-
nique [3] is unable to preserve fine details (such as windows)
but generates significant artifacts for other regions. Methods
such as [5, 14] fail to preserve details in the restored image.
In contrast, our method is able to restore fine details as well as
reduce artifacts to a good extent. Qualitative results show that
our method is able to produce state-of-the-art results for most
of the classes in terms of PSNR and SSIM. On average, our
method performs better than all the existing methods. Table 3
shows the performance improvement from different modules
proposed in our network.

4. CONCLUSION

We proposed an improved method for kernel estimation for
blind image deblurring. We utilized the principle of epis-
temic uncertainty to predict the uncertainty in the prediction
of kernels, and used this information to estimate better ker-
nels. To account for the artifact problem in the restored image,
we developed a feature space edge-preserving attention mod-
ule. This attention module is applied to high-level features of
the image restoration network to improve the quality of the
restored image. Experiments performed on two benchmark
datasets for blind deblurring showed that is able to estimate
better blur kernels.
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