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Abstract— Modern-day surveillance systems perform person
recognition using deep learning-based face verification net-
works. Most state-of-the-art facial verification systems are
trained using visible spectrum images. But, acquiring images
in the visible spectrum is impractical in scenarios of low-light
and nighttime conditions, and often images are captured in
an alternate domain such as the thermal infrared domain.
Facial verification in thermal images is often performed after
retrieving the corresponding visible domain images. This is a
well-established problem often known as the Thermal-to-Visible
(T2V) image translation. In this paper, we propose a Denois-
ing Diffusion Probabilistic Model (DDPM) based solution for
T2V translation specifically for facial images. During training,
the model learns the conditional distribution of visible facial
images given their corresponding thermal image through the
diffusion process. During inference, the visible domain image
is obtained by starting from Gaussian noise and perform-
ing denoising repeatedly. The existing inference process for
DDPMs is stochastic and time-consuming. Hence, we propose
a novel inference strategy for speeding up the inference time of
DDPMs, specifically for the problem of T2V image translation.
We achieve the state-of-the-art results on multiple datasets.
The code and pretrained models are publically available at
http://github.com/Nithin-GK/T2V-DDPM

I. INTRODUCTION

Many surveillance systems include sensors to capture
images at multiple wavelengths to accommodate day and
nighttime settings. Under low-light settings, the images cap-
tured by visible spectrum cameras fail to capture visual
details in the scene due to the increasing amount of additive
Poisson noise on the captured image. Hence, the use of
infrared cameras to capture an additional thermal image is
quite prominent. The images captured by these surveillance
systems are further used for person recognition using facial
recognition algorithms, and this falls under the broad area
of research called Heterogeneous Face Recognition (HFR)
[12], [13], [14]. Deep Convolutional Neural Network (CNN)
based algorithms have produced state-of-the-art results for
facial recognition with almost perfect accuracy in multiple
benchmarks [1], [18].

Although the existing facial verification algorithms work
remarkably well during daytime, the performance of these
algorithms fall drastically under low-light settings, this is
due to the large domain discrepancy between thermal and
visible images. One solution is to retrain a network for facial
recognition using just thermal images. But this is impractical
since the normal CNN-based facial recognition networks
[1] often require large amounts of face images to obtain
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good performance and there does not exist many publicaly
available large scale thermal images to train such networks.
Hence the problem of HFR is very relevant and has multiple
practical implications.

The recent rise of conditional generative models [5]
has enabled an alternate approach to address this problem
through a two-step process. First, the problem is simplified
to an image-to-image translation problem from thermal to
visible domains. After the corresponding visible images
are obtained, facial recognition algorithms can be directly
applied to them. Multiple works utilize GANs for tackling
this problem [16], [2], [8]. Conditional GANs attempt to
learn the translation from the thermal domain to the visible
domain through a min-max approach. Although with suf-
ficient training, GAN-based T2V translation networks can
produce good results, training of GANs is a tedious process
and may result in phenomena like mode collapse. Also, given
limited data, the convergence of GANs for accurate T2V
translation is not guaranteed.

Recently, Denoising Diffusion Probabilistic Models
(DDPMs) [7] have gained a significant attention due to
their ability to generate high-quality images. Like Variational
Autoencoders [11], DDPMs attempt to learn the variational
lower bound of the log-likelihood of the data distribution.
DDPMs have already beaten GANs in the task of image
generation. Multiple methods have proposed DDPMs for
low-level vision tasks like image super resolution, coloriza-
tion, deblurring, and denoising [22], [21], [10], [15]. These
methods have performed much better in terms of quality of
the output produced based on realness metrics like Fréchet
Inception Distance (FID) [6] and structural similarity metrics
like Structural Similarity Index (SSIM). Moreover, there
are works connecting the ability of DDPM to learn the
conditional distribution to the optimal transport theory of
the most efficient transformation [24]. Despite its immense
potential in modeling conditional distributions, there are no
works yet published for the problem of T2V face image
translation. In this paper, we propose a solution for T2V
face translation using DDPMs. Since the model attempts to
learn the transformation, very few image pairs are required
for training the model to achieve good results. We show this
in Figure 4 where we can clearly see the performance of
DDPM-based models with just a few training image pairs.

One disadvantage of DDPMs over conventional CNNs
is that the inference process is quite slow because of the
underlying Markovian chain, which requires multiple for-
ward passes through a single neural network. But through
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Fig. 1: Visualization of time re-scaled diffusion process during inference.

our experiments we have observed that the initial steps of
the DDPM inference process aim to recover the high-level
image details, like structure and color. This information can
be easily captured from the corresponding thermal image;
hence, rather than starting from isotropic Gaussian noise, we
start with the noised thermal image. Thereby skipping some
steps and speeding up the inference process.

Infrared cameras capture images in different wavelengths
within the infrared spectrum based on the application. Two
common modalities are the Near Infrared (NIR) and Long
wave Infrared (LWIR). The choice between NIR and LWIR
is based on whether it is a short-range or long-range surveil-
lance application. NIR images consist of images close to
the visible spectrum; hence the resolution of these images
is naturally high and can capture finer details in the facial
image captured. LWIR images are often used for long-range
surveillance applications, but these images are often shot in
low-resolution and fail to capture essential facial details. This
could be clearly seen when we compare the facial recognition
accuracies when HFR algorithms are applied to these images.
NIR face datasets [3], [4] produce accuracies close to 99%
but those of LWIR datasets [8], [19] are significantly lower.
In this paper, we mainly focus on HFR for LWIR datasets.

In short, this paper makes the following contributions
• We propose a DDPM-based solution for the HFR prob-

lem. We focus on the image translation problem from
LWIR thermal images to their corresponding visible
images.

• We introduce a novel inference strategy for DDPMs
mainly applicable to the T2V face translation problem.
Through this we achieve upto (2×) speed up on the
inference times without any drop in performance.

• We evaluate our method qualitatively and quantitatively
on real-world datasets and show that it performs better
than the existing methods on T2V face translation
problem.

II. PROPOSED METHOD

A. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic models [23], [7] belong
to a class of generative models where the models learn the
distribution of data through a Markovian process. DDPMs

consist of a forward process and a reverse process. The joint
distribution of the data is represented by the reverse process.
The forward process is a Markovian process where the next
state is obtained by sampling from a Gaussian distribution
whose mean depends on the current state of the system,
a predefined variance schedule as well as the time t. The
sampling operation for the forward step is given by

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where {βt} is a predefined variance schedule. In practical
scenarios, t usually takes values between 10−4 to 10−2. This
could also be considered as a noising operation, where the
next state is obtained from the current state by adding a
small Gaussian noise with variance schedule {βt}. The state
at timestep t can also be computed from the initial state x0.
the distribution of the state at a particular timestep t given
x0 is,

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (2)

Equivalently,

xt = ᾱtx0 + (1− ᾱt)ε, ε ∼ N (0, I), (3)

where, ᾱt =
∏t
s=1 αs and αt = 1−βt. As can be seen from

Eq. 2, for large t, ᾱt becomes zero. Hence it results in a
standard isotropic Gaussian. The reverse process denotes a
generation step where we start from a standard Gaussian and
iteratively perform denoising through t timesteps to generate
an image corresponding to the training distribution. [23]
has shown that when the number of timesteps is large and
the increment in {βi} is small, then the reverse distribution
could be also approximated by a Gaussian. Each step in the
reverse process is performed by sampling from a distribution
whose parameters are modelled using a neural network with
parameters θ and each reverse step is defined by,

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)). (4)

The parameters θ are obtained by minimizing the variational
lower bound of the negative log-likelihood of the data
distribution defined by

E[−log(p(x0)] ≤ Eq[
pθ(x0:T )

q(x1:T |x0)
] = L. (5)



Fig. 2: An overview of the proposed method. During training the thermal image is conditioned along with the noisy visible
image. During inference, we skip some timesteps by starting with a coarse image consisting of the background colour and
the coarse features.

Further simplifying,

L = Eq
[
DKL(q(xT |x0) || p(xT ))︸ ︷︷ ︸

LT

−log pθ(x0|x1)︸ ︷︷ ︸
L0

+
∑
t>1

DKL(q(xt−1|xt,x0) || p(xt−1|xt))︸ ︷︷ ︸
Lt−1

]
. (6)

Recent works [7] have shown the variance schedule for the
reverse step could be kept the same as the forward process
and only the means need to be learned using a neural net-
work. Furthermore using the input at the current timestep, the
mean of the reverse step could be reparametrized according
to

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
. (7)

Also given an x0, xt, the mean of the distribution
q(xt−1|xt,x0) can be written as

µ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

ε(xt, t)

)
. (8)

Equating the means of the distributions, the training objective
could be further[7] simplified to,

Lsimple = Et,x0,ε

[
‖ε− εθ(xt, t)‖2

]
. (9)

Once the data distribution is learned, new samples can be
derived from the data distribution, starting from a Gaussian
random sample and following a Markovian process.

B. Conditional Diffusion Models for T2V Generation

Saharia et al. [22] proposed a method for conditional
generation using DDPM where the images are generated
based on a constraint, and the model learns the conditional
distribution given a condition y. Learning the conditional
distribution rather than the unconditional distribution enables
the use of DDPMs for low-level vision problems like image
restoration. To make the model learn the conditional distribu-
tion, we condition the neural network with the thermal image
y at all timesteps t. Here the effective training objective is
defined by,

Lsimple = Et,x0,ε

[
‖ε− εθ(xt, y, t)‖2

]
. (10)

Once the conditional distribution is learnt, the model can
be used for inference, i.e., given a thermal image, we can
sample the corresponding visible image by starting with pure
Gaussian noise and sampling from a Markov chain of T
steps. The corresponding mean of the conditional distribution
for the transition pθ(xt−1|xt, y) is

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, y, t)

)
. (11)

and the variance schedule remains the same as that during
training.

C. Speeding up conditional diffusion models

From our experiments we made a key observation that
forms the basis for this section. As can be seen from Figure 3,
which shows how the generated image varies with time, the
low-level semantics of the image is learnt much further into
the diffusion process. The initial steps are aimed at learning
coarse features like the shape of the underlying face and
background color. This means if we have an image with
coarse facial features but lacks finer details, it can possibly be
utilized to speed up the reconstruction process. Motivated by
this empirical observation, we generate an image with coarse
features through the following process. Given the thermal
image y and the visible image, x normalized in the range
[0, 1], we binarize the thermal image to generate a mask m
through the following operation

m =

{
1 if x > ε

0 otherwise.
(12)

Since the background colour is constant for almost all
images, we sample the background colour from a random
image in the training dataset and form a grid c of the size
of the image. The coarse image yc is created according to

yc = m · y + (1−m) · c. (13)

Using yc, the noisy version of yc denoted by ycTr
correspond-

ing to time Tr is created. Figure 3 shows a visualization of
yc, ycTr

as well as xTr starting from an isotropic Gaussian
noise. From the visualization, one can note that xTr

and ycTr
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Fig. 3: (a) Thermal Image, (b) Masked thermal image (c) Noise masked thermal image(T=50) (d) Reconstructed masked
thermal image(T=100) (e) Intermediate diffusion process result image starting from Gaussian noise visualized at (T=50) (f)
Reconstructed image starting from (T=0). (g) Visible Image

for Tr = 50 does not differ much semantically. Moreover
the SNR values of both the images are almost the same.

Algorithm 1 Training

Input: Thermal image and visible image pairs P =
{(yk,xk)}Kk=1

1: repeat
2: (y,x) ∼ P
3: t ∼ Uniform({1, . . . , T})
4: ε ∼ N (0, I)
5: xt =

√
ᾱtxc +

√
1− ᾱtε

6: Gradient descent step on ∇θ ||ε− εθ(xt,y, t)||2
7: until converged

Algorithm 2 Inference

Input: Thermal image x, background colour c
1: Create course image xc according to Equation 13
2: Sample xcTr

∼ q(xcTr
|xc)

3: for t = Tr, . . . , 1 do
4: sample z ∼ N (0, I) if t > 1 else z = 0

5: compute xct−1 = 1√
αt

(
xct − 1−αt√

1−ᾱt
εθ(x

c
t ,x, t)

)
+

σtz
6: end for
7: return xc0

Algorithm 1 summarises the training procedure of the pro-
posed method. The thermal image and their corresponding
noisy visible images are used for training a DDPM model for
T timesteps. During inference, we reduce the inference time
of the diffusion process by starting from a noisy coarse image
than isotropic Gaussian noise. The inference procedure is
given in Algorithm 2.

III. EXPERIMENTS

In our experiments, we focus on the translation problem
from thermal images of dimension 128 × 128 to visible
images of size 128 × 128. The main emphasis of our ex-
periments is on improving the facial recognition accuracy of

the reconstructed images, but we also perform comparisons
with different metrics. Until now, there are no standardized
baselines for T2V face translation. Hence we make use of
the datasets used in the work [16] for our experiments. We
perform experiments on three different datasets for T2V face
translation. More details about the individual datasets and
their evaluation criteria are presented in this section.
VIS-TH dataset [16]:- The VIS-TH dataset consists of facial
images corresponding to 50 different identities. Images in the
VIS-TH dataset are captured through a dual-sensor camera
in Long Wave Infrared (LWIR) modality and are aligned.
The facial images in the dataset consist of various poses. We
create the train-test split for the dataset in the same fashion as
followed by [16], [8]. We use all the images corresponding
to 40 randomly selected identities as the training set and
the remaining images as the test set. VIS-TH is quite a
challenging dataset owing to the low number of identities
and the diversity of the dataset.
ARL-VTF dataset[20]:- Like the VIS-TH dataset, the RL-
VTF dataset also consists of facial images captured in the
LWIR modality. The dataset also provides the image capture
settings for aligning the faces. Visible images in the ARL-
VTF dataset are severely overexposed. Hence we correct
this overexposure through exposure matching with the VIS-
TH dataset. We create a subset of the original ARL-VTF
dataset for all our experiments and choose 100 identities
with different expressions as the training dataset, and data
corresponding to 40 identities as the testing set. In total,
there are 3,200 training pairs and 985 testing pairs.
Evaluation metrics: For evaluating the effectiveness of our
method, we utilize two different schemes like [3], [16].
We evaluate the facial verification performance of the re-
constructed images by using and comparing our method
with the existing methods in terms of the Rank-1 accuracy,
Verification Rate (VR) @ False Accept Rate (FAR)=1%
and VR@FAR=0.1%. All Facial verification experiments
are conducted using pretrained ArcFace facial recongittion
system[1]. For evaluating the quality of the reconstructed
outputs, we use the following metrics: Learned Perceptual
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Fig. 4: Qualitative results for the thermal to visible translation tasks for facial images on a challenging dataset (VIS-TH
dataset). Due to the low number of training image pairs, existing methods fail to reconstruct facial images accuractely, see
coloumns(1,2,3,4) in the results and doesn’t generalize well over unseen poses. On contrast Our method is able to generalize
well given a low number of training image pairs.

TABLE I: Verification results on VIS-TH dataset

Method Rank-1 VR@FAR=1% VR@FAR=0.1%
Pix2Pix[9] 20.88 1.73 0.0

SAGAN[2] 13.04 0.0 0.0
GANVFS[26] 30.98 3.43 0.0

HiFaceGAN[25] 68.48 37.14 17.14
AxialGAN[8] 58.15 23.43 6.86
T2V-DDPM 70.5 45.5 23.5

Image Patch Similarity (LPIPS) [27], Deg (cosine distance
between LightCNN features), Peak Signal to Noise ratio
(PSNR) of the underlying grayscale image and Structural
Similarity Index (SSIM).
Training settings: For the diffusion model, we use the same
parameters as for the iamgeNet superresolution model as
used in improved diffusion [17]. We initialize the model
with the imageNet pretrained weights. The model is trained
for T = 1000 timesteps. During inference, we use timestep
rescaling as in [17] and reduce the number of inference steps
to 100. Tr = 60, ε is set equal to 0.1 for all experiments
Comparison methods: We evaluate our method by com-
paring with different generative model based approaches
for image-to-image translation. The following methods
are used for comparison: Pixel2Pixel[9], Self-Attention
GAN (SAGAN)[2], GANVFS[26], HIFaceGAN[25] and
AxialGAN[8].

A. Results on the VIS-TH dataset

Figure 4 shows the qualitative results on the VIS-TH
dataset for four different poses. As we can see, all the

TABLE II: Image Quality metrics results on VIS-TH dataset

Method LPIPS(↓) Deg.(↑) PSNR(↑) SSIM(↑)
TH 0.5780 0.3635 6.3516 0.1841

Pix2Pix[9] 0.4847 0.2794 13.45 0.353
SAGAN[2] 0.4678 0.3367 14.14 0.4183

GANVFS[26] 0.4116 0.3292 13.83 0.4186
HiFaceGAN[25] 0.1950 0.6268 19.16 0.6963

AxialGAN[8] 0.1756 0.6157 22.80 0.7458
T2V-DDPM 0.1718 0.6441 19.419 0.7178

existing methods except HIFaceGAN fail to reconstruct
attributes like hats and sunglasses. Whereas our method, as
well as HIFaceGAN work well even with these occlusions.
If we have a close look at the last row of Figure 4 we
can see that when the frontal pose changes, HiFaceGAN
fails to reconstruct the face properly, but our method works
well even with different attributes as well as poses. For
evaluating the methods quantitatively, we use two criteria
as mentioned earlier. The quantitative results can be found
in Table II and I. For the rank-1 accuracy, we can see
that we gain an improvement by 2%. For VR@FAR=0.1%
and VR@FAR=1%, we gain performance improvements of
8.3% and 6.3% respectively. For the image quality met-
rics, in terms of the perceptual similarity metrics (LPIPS
and Deg), we gain an improvement of 0.0038 and 0.03,
respectively. Our values for PSNR and SSIM are a bit lower
than AxialGAN. However, note that PSNR often does not
often represent the amount of facial details present in the
reconstructed images since a blurry image could have a
higher PSNR compared to a much sharper image.
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Fig. 5: Qualitative results on the ARL-VTF-dataset.

TABLE III: Verification results on the ARL-VTF dataset

Method Rank-1 VR@FAR=1% VR@FAR=0.1%
Pix2Pix[9] 18.88 5.09 0.33
SAGAN[2] 13.46 5.42 0.33

GANVFS[26] 21.84 12.97 2.63
HiFaceGAN[25] 65.35 41.33 20.89

AxialGAN[8] 66.67 42.86 18.62
T2V-DDPM 75.37 43.51 19.87

TABLE IV: Image quality metrics results on the ARL-VTF
dataset

Method LPIPS(↓) Deg.(↑) PSNR(↑) SSIM(↑)
TH 0.5551 0.4201 5.674 0.1095

Pix2Pix[9] 0.4467 0.3489 13.12 0.3804
SAGAN[2] 0.4044 0.4244 14.25 0.4490

GANVFS[26] 0.3924 0.3935 13.68 0.4313
HiFaceGAN[25] 0.1937 0.6563 19.62 0.6937

AxialGAN[8] 0.2123 0.6699 20.04 0.7179
T2V-DDPM 0.2010 0.6606 19.70 0.6775

B. Results on the ARL-VTF dataset

Figure 5 shows the qualitative results on the ARL-VTF
dataset. This dataset consists of more identities and much
more training and testing images. As we can see in Fig.
5, only our method can properly reconstruct the salient
underlying facial features, and it can create realistic features
that have coarse features corresponding to the thermal image.
Further quantitative evaluations can be found in Table IV and
III.

C. Ablation study: Performance variation on changing Tr:

To note the performance variation on changing Tr, we
vary Tr in steps of 10 from Tr = 40, ..., 100 on the VIS-TH
dataset, where Tr = 100 denotes starting from pure Gaussian
noise. The corresponding results are shown in Table V. As
can be seen, the facial verification performance doesn’t vary
much even for Tr = 40. This clearly validates our claim
and observation that in the initial steps of the diffusion
process, only the coarse features are learnt and if this could

TABLE V: Ablation study on the TH-VIS dataset. The
number of inference timesteps are varied here and the
performance is noted.

Tr Rank-1 VR@FAR=1% VR@FAR=0.1%
40 66.5 34.0 18.0
50 70.5 45.5 23.5
60 71 42.5 31.0
70 70.5 40.0 21.0
80 68.5 39.0 23.5
90 72.0 37.0 22.0

100 70.0 40.5 18.5

be inputted properly to the diffusion model, we can achieve
major boost for the inference time.

IV. CONCLUSION

We presented a solution for V2T face translation using
DDPMs by treating it as a conditional image generation
problem. We find that with the immense power in modeling
probabilistic distributions, DDPMs prove as an ideal solution
for generating samples from the conditional distribution of
visible images given thermal images. We also introduce
a novel sampling strategy to reduce the inference time
for DDPMs. Our experiments on multiple datasets show
that DDPMs perform better than GANs for the T2V face
translation problem. To the best of our knowledge, this is
the first work utilizing DDPMs to reconstruct visible facial
images from thermal images.
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