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Abstract

Inclusion of edaphic conditions in biogeographical studies typically provides a better fit and
deeper understanding of plant distributions. Increased reliance on soil data calls for easily
accessible data layers providing continuous soil predictions worldwide. Although SoilGrids
provides a potentially useful source of predicted soil data for biogeographic applications, its
accuracy for estimating the soil characteristics experienced by individuals in small-scale
populations is unclear. We used a biogeographic sampling approach to obtain soil samples from
212 sites across the midwestern and eastern United States, sampling only at sites where there was
a population of one of the 22 species in Lobelia sect. Lobelia. We analyzed six physical and
chemical characteristics in our samples and compared them with predicted values from
SoilGrids. Across all sites and species, soil texture variables (clay, silt, sand) were better
predicted by SoilGrids (R?: 0.25-0.46) than were soil chemistry variables (carbon and nitrogen,
R2<0.01; pH, R%: 0.19). While SoilGrids predictions rarely matched actual field values for any
variable, we were able to recover qualitative patterns relating species means and population-level
plant characteristics to soil texture and pH. Rank order of species mean values from SoilGrids
and direct measures were much more consistent for soil texture (Spearman rs=0.74—0.84; all
P<0.0001) and pH (s=0.61, P=0.002) than for carbon and nitrogen (P>0.35). Within the species
L. siphilitica, a significant association, known from field measurements, between soil texture and
population sex ratios could be detected using SoilGrids data, but only with large numbers of
sites. Our results suggest that modeled soil texture values can be used with caution in
biogeographic applications, such as species distribution modeling, but that soil carbon and

nitrogen contents are currently unreliable, at least in the region studied here.
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Introduction

Characterizing species distributions in geographic and environmental space can help us
understand a species’ niche, evolutionary history, and potential for interactions with co-occurring
species (Kozak et al., 2008; Elith & Leathwick, 2009; Pollock et al., 2014). One important
component of predicting a species distribution is the inclusion of ecologically relevant predictors
(Dormann, 2007; Mod et al. 2016). Modeled climate data has a long history of use in ecological
modeling but for plant distributions, incorporating soil characteristics can further improve model
accuracy (Dubuis et al., 2013; Figueiredo et al., 2013; Thuiller, 2013; Velazco et al., 2017;
Zuquim et al., 2020; Roe et al., 2022). The inclusion of soil data has created the need to enhance
the quality and availability of data on soil characteristics on a global scale.

To incorporate accurate soil data into ecological and biogeographic inference of plant
species, soil characteristics would ideally be measured from cores collected at presence points
across the full species range. Predictions for soil characteristics derived from digital soil maps
may be useful substitutes, reducing the labor and cost of direct soil core analysis at range-wide
scales, as well as providing interpolated soil data for areas with limited accessibility (McBratney
et al., 2003; Grunwald et al., 2011; Minasny & McBratney, 2016). The International Soil
Reference Information Centre (www.isric.org) developed SoilGrids as a global collection of
model-predicted soil data for ease of use in a variety of settings, including soil erosion, food and
water security, and modeling biodiversity and effects from climate change (Hengl et al., 2014;

Poggio et al., 2021). The newest version of SoilGrids combined machine learning, 150,000 soil
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profiles for training, and 158 environmental covariates to provide global predictions at a scale of
250 x 250 m (Hengl et al., 2017). Comparing cross-validation measures, R? values ranged from
56% (coarse soil fragments) to 83% (soil pH) across different soil variables (Hengl et al., 2017).
However, the utility of SoilGrids data needs additional validation for its appropriateness in the
development of species distribution models, particularly for low abundance plant species that are
moderate habitat specialists.

The use of digital soil maps for biogeographic applications comes with clear limitations.
First, the accuracy for modeling each soil characteristic varies, such that some soil variables will
be more reliable than others (Poggio et al., 2021). Along with issues of model accuracies, there
are scaling issues associated with the soil environment. For instance, climatological conditions
are likely to be quite similar at the local scale (e.g., 1 km? or smaller), whereas soil conditions
can exhibit substantial heterogeneity at much finer scales (Heuvelink & Webster, 2001; Malone
et al., 2017). Fine-scale variation in soil characteristics created by microtopography and
hydrology would not be captured in 250 x 250 m grid cells, and this is still much larger than the
scale experienced by individual plants or even whole populations. Furthermore, SoilGrids does
not predict soil conditions at locations with surface water or in cities (Poggio et al., 2021),
potentially yielding missing or inaccurate data for wetland and aquatic habitats, even where
plants of interest are dominant within the community.

To test the utility of SoilGrids specifically for biogeographic inference, we focused on a
clade of wildflowers with highly variable geographic distributions and habitat types, including
wetland and emergent aquatic species. Lobelia sect. Lobelia L. (Campanulaceae) is comprised of
24 herbaceous species native to North and Central America. Some species are widespread across

the eastern United States and Canada, while other species are found in only a few states (Biota of
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North America, BONAP, Kartesz, 2015; Spaulding & Barger, 2016). This clade provides an
opportunity to document potential scaling effects, as species frequently co-occur and appear to
be separated into different microhabitat conditions within 250 m (unpub. data). One species,
Lobelia siphilitica L., permits assessment of how soil conditions relate to trait variation among
populations within a species. Lobelia siphilitica is comprised of two sexes—females and
hermaphrodites—which are readily observable in the field. Females vary dramatically in their
frequency among L. siphiltica populations, and field data indicate that both population size and
population sex ratio vary with soil conditions (Hovatter, 2008; Hovatter et al., 2013).

We tested how estimates from SoilGrids compared with soil data collected in the field at
sites hosting Lobelia populations. The questions addressed here focus on: (1) the accuracy of
SoilGrids estimates in habitats occupied by a set of closely related plants and (2) whether
modeled soil values from SoilGrids lead to different inferences about species distributions and
ecology compared to direct measurements on soils collected in situ. First, we determined how
soil physical and chemical variables from SoilGrids compare to soil samples collected at sites
hosting Lobelia populations. Second, we looked for associations between deviations of SoilGrids
from measured field data and particular conditions (proximity to a water body or ecoregion).
Third, we used two datasets to examine the extent to which SoilGrids data would be useful in
understanding the biogeography of Lobelia. We collected and analyzed field soil from 22
Lobelia species at 212 population sites across the midwestern and eastern United States. We
compared direct measures of soil characteristics to modeled SoilGrids data to test whether: 1)
modeled SoilGrids data could predict patterns in average edaphic conditions among 22 Lobelia
species, and ii) in polymorphic L. siphilitica, whether data from SoilGrids could predict

relationships between soil conditions and population sex ratios.
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Materials and Methods
Soil Field Data

In the summers of 2017 and 2021, we visited a total of 212 populations of 22 Lobelia
species across the midwestern to eastern United States and Canada (Supplemental Table S1),
where we collected soil samples and GPS coordinates. Potential populations were identified from
personal communications and using the Southeast Regional Network of Expertise and
Collections (SERNEC; 2022). After removing any Oi horizon, soil samples were collected from
the top 10 cm of soil underneath individual Lobelia plants (five samples per site, or from each
plant if there were fewer than five present), which were bulked for analysis by population site
and species. Distances between bulked soil samples ranged from 1-30 meters. Population sizes
ranged widely by site and species, from single plants to over 1000 individuals. Although most
species prefer moist habitats, specific habitat conditions range widely among species and sites,
including roadsides, upland forests, bogs, prairies, riparian areas, and near-shore lacustrine
habitats (Spaulding & Barger 2016). Soil samples were allowed to air dry before passing through
a 2mm sieve, leaving only the fine-earth fractions (sand, silt, and clay). pH was measured using a
1:2.5 mass ratio of soil to water. Percent carbon and nitrogen were measured using an elemental
analyzer (Costech Analytical, Santa Clarita, USA). For texture analysis, sieved soils were first
pretreated with 30% hydrogen peroxide to remove organic matter, and then analyzed using a
laser-diffraction particle size analyzer (Mastersizer 2000, Malvern Panalytical, UK). Soil
aggregates were added to distilled water and broken up with one minute of ultrasonication. We
used a protocol measuring the texture distribution of three subsamples, each of which reached a

laser obscuration value between 12-16%, and obtained the mean distribution of subsamples. As
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laser diffraction measurements underestimate clay and overestimate silt fractions in soil
compared to the sedimentation method, we applied a correction factor as described in DiStefano
et al. (2010), which was confirmed for our laboratory (Supplemental Figure S1), multiplying the
clay fraction 1.9X and subtracting the resulting difference from the silt fraction.

SoilGrids Data

Using population GPS coordinates, SoilGrids250 data were obtained for pH, carbon,
nitrogen, and each of the three fine-earth fractions (sand, silt, and clay). The data were accessed
directly from the SoilGrids website in December 2022 (Poggio et al. 2021). In some cases, GPS
coordinates landed in a grid cell with no SoilGrids data. In these cases, we used the nearest grid
cell with data.

Because our in situ soil samples included the top 10 cm, we averaged SoilGrids layers for
the surface horizon (0-5 cm) and the first subsurface horizon (5-15 cm) for our analyses using
equal weights for each horizon. The 0-5 cm and 5-15 cm layers were strongly correlated for clay,
sand, silt, and pH (r>0.98), while the correlation between layers was weaker for nitrogen (r: 0.8)
and weakest for carbon (r: 0.5). To further explore this, we conducted separate regressions
comparing the field data with each individual horizon, and the results were similar as the average
values (Supplemental Table S2).

Comparison of SoilGrids Predictions to Field-Collected Soil Measurements

To investigate the relationship between SoilGrids data and field-collected data, we conducted
linear regressions for each variable using field-collected measurements as the independent
variable. We then examined goodness-of-fit measurements (R?), slopes, root mean squared error
(RMSE), and mean bias error (MBE) to determine agreement between SoilGrids predictions and

observations obtained in the field. RMSE and MBE are expressed in the same units as the
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response variable (here, SoilGrids values). RMSE is used in comparing measured values with
predicted values by using the square root of the sum of the squared residuals of the model. MBE,
on the other hand, calculates the mean of the residuals and indicates whether variables are under-
or over-predicted.

Investigating Environmental Correlates of Deviations between Field and Modeled Data

The difference between measured and modeled values were calculated by subtracting SoilGrids
values from field values. We then tested for associations between these SoilGrids-measured
differences and two environmental variables: proximity of the sample site to water bodies and
ecoregion designation. Some GPS coordinates for populations near water bodies had no
corresponding data from SoilGrids due to issues like shifting boundaries of water bodies. Sites
close to water bodies may also be affected by flooding and hydrology that vary over small scales
(i.e., a few meters). Thus, we tested whether the distance of a population to a water body affected
the magnitude of SoilGrids-measured differences. Water body data were obtained from the
National Hydrography Dataset managed by the United States Geological Survey (USGS, 2019).
We used QGIS 3.6 to determine the distance a population point was from the nearest body of
water (QGIS, 2019). Linear regressions were used to investigate whether larger SoilGrids-
measured differences were associated with distance to the nearest water body.

We also used ecoregions to see if SoilGrids-measured differences were associated with
our sampling points being embedded in any particular habitat conditions. Data on ecoregions
were obtained from the US Environmental Protection Agency (US EPA, 2022; Omernik, 1987,
Omernik & Griffith, 2014). We conducted the analyses using level-2 ecoregions because many
sampled populations fell into a single category of level-1 ecoregions (eastern temperate forests;

Supplemental Table S2). To test for significant differences in SoilGrids-measured differences
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across ecoregions, we used the non-parametric Kruskal-Wallis one-way ANOVA followed by
the Steel-Dwass pairwise comparison method that controls for multiple comparisons and is
robust to imbalanced sampling (Morley, 1982; Neuhduser & Bretz, 2001).

Inferring Ecological Relationships Between Soil Conditions and Lobelia Species

The utility of SoilGrids data for inferring soil conditions at Lobelia population sites was tested
using two approaches. First, for each of 22 Lobelia species, we calculated the mean and standard
error of field soil measurements and SoilGrids modeled data for each soil characteristic. Species
were then ranked by mean field soil measurement to determine whether the ranking according to
SoilGrids data would be consistent with measured habitat values. This procedure was used to see
if SoilGrids could capture ecologically relevant but very broad, qualitative characteristics of the
dataset without influence of outliers or noise introduced by individual site data. Congruence of
species ranks was assessed by a Spearman rank correlation test (Spearman correlation shown
below as rs).

Second, to compare how SoilGrids and field-collected data associated with L. siphilitica
population sex ratios, we conducted Spearman rank tests between each soil characteristic and the
percent females in a population. This dataset was confined to 30 populations for which we had
obtained both soil samples and population sex ratios for L. siphilitica. Sex ratios were calculated
by sexing and counting all female and hermaphrodite plants at each site and are reported here as
the percent of all censused plants that were female. In a second analysis, we used an expanded
set of population sex ratios at 195 sites where L. siphilitica sex ratios and GPS coordinates had
been recorded in situ, but no physical soil samples were available. This latter analysis was done
to determine whether the associations between population female frequency and soil

characteristics known from empirical measurements (n=30) could be recovered by using
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modeled SoilGrids variables with an increased sample size. As sex-ratio data are non-normally
distributed, we used Spearman rank tests. All statistics were calculated using JMP Version 14
(JMP Statistical Discovery, SAS, 2019). Soil data was extracted using QGIS 3.6 (QGIS, 2019).
Results
Accuracy of SoilGrids—Soil Physical Characteristics
The estimated particle-size fractions from SoilGrids were all positively correlated with the
corresponding measurement from field-collected soils (Fig. 1). Of the three texture variables
analyzed, the weakest relationship was in the clay fraction (Fig. 1a, R%: 0.25). Silt fractions and
sand fractions showed relatively strong relationships between SoilGrids predictions and field-
collected data (Figs. 1b & 1c, R?: 0.42 & 0.46, respectively). Clay and silt fractions tended to be
over-estimated, as many of the data points fell above the 1:1 line (MBE: 8.5% and 12.3%,
respectively; Fig. 1). Sand fractions were under-estimated, with most points falling below the 1:1
line (MBE: -21%). Overall, SoilGrids texture predictions were most accurate for soils with
relatively high clay and silt but low sand (closest to the 1:1 line in Fig. 1).
Accuracy of SoilGrids—Soil Chemical Characteristics
The soil pH from field-collected soils had a weak, positive relationship with SoilGrids pH
predictions (Fig. 1d, R?: 0.19). The range of SoilGrids pH values was much smaller (ranging
from 4.4 to 6.6) than for field soils (ranging from <4 to >8). SoilGrids tended to over-estimate
pH for soils with pH below 5 and under-estimate pH above 5.

For nitrogen and carbon, there was no relationship between field data and predicted data
from SoilGrids (Figs. le & 1f, R>< 0.01, and R?: 0.01, respectively). The relationship was not
improved by removing outliers (identified using the quantile range method in JMP), or

examination of carbon to nitrogen ratio (R><0.01).
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Investigating Environmental Correlates of Variation between Field and Modeled Data

The distance to the nearest water body did not account for discrepancies between field and
SoilGrids data for any of the soil variables analyzed (P > 0.4 for each variable). Across
ecoregions, we found significant differences for all variables of interest (Supplemental Figure
S2). Of note is that mean carbon SoilGrids-measured differences can either be positive or
negative depending in which ecoregion the soil core was collected. The SoilGrids-measured
differences for nitrogen were lowest in the southeast USA plains (Supplemental Figure S2 panel
e). However, even when conducting linear regression using only the southeast USA plains
populations, the relationship for nitrogen concentration in the field and predicted from SoilGrids
was still not significant (R><0.01).

Inferring Ecological Relationships Between Soil Conditions and Lobelia Species

Comparing the rank order of the Lobelia species, the SoilGrids predictions do not mirror ranks
based on field-collected data. Comparisons for sand, pH, and nitrogen (Fig. 2) illustrate strong,
medium, and weak correlations between predictions and field data. Spearman correlation tests
indicate that the rankings of species means are significantly related for soil texture (clay rs=0.74,
silt 7s=0.79, sand rs=0.84; all P<0.0001) and pH (rs=0.61, P=0.002). However, while rankings of
species means may be partially consistent, SoilGrids species means do not often reflect true field
values. For example, species that affiliate with alkaline soil pH show highly underestimated soil
pH means from modeled SoilGrids data (e.g., L. siphilitica soils have a mean pH of 7.0 but the
SoilGrids estimate is 5.6). In contrast to soil texture and pH, species means for soil C and N
calculated from SoilGrids data appear to be completely unrelated to values measured from the

field (carbon rs=0.21 P=0.35; nitrogen rs=-0.06 P=0.79).
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The relationships between SoilGrids data and L. siphilitica sex ratios did not match
relationships between field data and sex ratios (Table 1). Using field data from 30 population
sites, percentage of females in a population was positively associated with clay content and
negatively associated with sand content. Silt and pH showed no relationship with the percent of
females in a population. Using SoilGrids predictions for these same 30 populations, no
associations were significant, but clay content and pH were marginally positively associated with
female percentage (P<0.1). When expanding the sample to 195 populations with known sex
ratios, the association of modeled SoilGrids clay and sand content became significant, better
matching the results from the empirical dataset based on direct measures of both soil and female
frequency at 30 population sites.

Discussion

Plant distributions are commonly constrained by soil properties (e.g., nutrient availability
and water holding capacity), making digital soil maps a potentially valuable resource for
improving plant species distribution mapping, forecasting, and making inferences about plant
species’ niches (Mod et al. 2016; Velazco et al., 2017; Zuquim et al., 2020; Roe et al. 2022). In
this study, we explored the utility of SoilGrids for investigating biogeographic patterns within
and among species using soil samples from 212 Lobelia population sites representing a broad
range of habitats. Most datasets that have been used to evaluate SoilGrids predictions are derived
from random or systematic soil sampling distributed across a geographic area of interest (Tifafi
et al. 2018; Caubet et al., 2019; Cramer et al. 2019; Liang et al. 2019; Dharumarajan et al. 2021;
Bodenstein et al., 2022; Dandabathula et al., 2022; Huang et al., 2022; Radocaj et al. 2023). Our
test incorporated constraints that are inherent in ‘presence’ datasets for modeling the

distributions of individual species (Jeliazkov et al. 2021). Our study organisms determined the
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locations of soil sampling sites, introducing constraints on the specific types of habitats sampled
and their distribution across the landscape.

Of the six soil variables predicted by SoilGrids, soil texture variables (percent sand, silt,
and clay) were most similar to measurements taken on field samples. pH values showed a poor
but significant relationship, and soil carbon and nitrogen predictions did not correspond with
direct measurements at all. Although the slopes of these relationships were significantly different
from 1.0, our analysis indicates that certain SoilGrids variables may be of some usefulness for
biogeographic analyses. For example, when comparing edaphic conditions among species,
texture and pH may provide a broad indication of species rank-orders, albeit not actual field
values. In our analysis of L. siphilitica population sex ratios, we also found that noise in
predicted soil texture variables may be overcome by increasing sample size, potentially revealing
similar associations as those found using a smaller dataset (Table 1). Although not directly tested
in this study, the lack of fit between predicted and actual values is likely to be even greater when
population presence information is taken from online databases (e.g., GBIF) rather than taken in
situ, as error rates in location data tend to be extremely high across taxa (Zizka et al., 2020).
Overall, our results indicate that caution should be exercised, but that using predicted data from
SoilGrids may still be helpful in generating hypotheses about the importance of soil texture and
pH in species biogeography, as long as the number of accurate presence points is sufficient.

Use of SoilGrids in Ecological Inference and Statistical Modeling

Our results have important consequences for using SoilGrids to assess variable
importance in constructing species distribution models, mapping habitat suitability, and revealing
ecological relationships. Even in cases where modeled predictor variables have a decent

relationship with underlying true values (e.g., best shown here for soil texture variables), error in
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predictor variables leads to lack of statistical power and biased parameter estimates and
projections. In some cases, it may be possible to reduce the effects of predictor-variable
uncertainty by taking advantage of spatial autocorrelation and joint species distributions, or by
statistically propagating known variance in predictor values as part of the SDM (Mclnerny and
Purves 2011, Stoklosa et al. 2015). The latter methods may prove useful and should be explored
further for SoilGrids data because the database provides a measure of model prediction
uncertainty (Poggio et al. 2021).

Problems using SoilGrids variables are likely to remain particularly acute for several
common situations. Mismatches between grain size resolution of predictor variable estimates and
the scales at which individual organisms or populations respond to the environment are known to
be problematic (Moulatlet et al. 2017, Moudry et al. 2023). As shown here, even the 250m
SoilGrids predictions may not be fine enough resolution to use with species that have small
population sizes or species that specialize on soil types that either occur on a small scale or are
difficult to predict using a digital soil model.

In addition, if true conditions are poorly reflected by interpolated predictor variables,
SDMs can provide misleading inferences, even in cases where algorithms generate a model with
high predictive accuracy (Smith and Santos 2020). We found that SoilGrids frequently failed to
predict values that are extreme but not uncommon in soils, or predicted extreme values in
incorrect locations. For instance, the extremely low variation in pH estimates from SoilGrids is
likely to result in reduced discrimination among sites and lower weighting in a SDM, whereas
the increased variation in soil N will likely result in misleading predictions and variable

importance. The exceptionally narrow range of soil pH values predicted by SoilGrids at our
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sampling sites compared to measured values (as well as in Cramer et al. 2019) is particularly
problematic given its importance as a driver of variation in nutrient and biotic soil properties.
Comparison to Other SoilGrids Validation Studies

Despite our biogeographically focused sampling design, our results are broadly similar to
previous studies that used systematic or random sampling to assess the accuracy of SoilGrids
over larger landscape scales. SoilGrids predictions of texture data appear more reliable than
predictions of soil carbon and nitrogen, and silt and sand have stronger relationships than clay,
including in the cross-validation performed on the newest iteration of SoilGrids (Poggio et al,
2021). Because the United States contains many soil cores that were used as training data for the
SoilGrids algorithm, our study assessed the accuracy of SoilGrids under a favorable scenario,
compared to regions with limited training data. The relationships for soil texture found here were
similar to those reported in France (Caubet et al., 2019), another area with high density of
training data. Results in regions with fewer training points are more variable: no relationships
were found between SoilGrids texture predictions and field textures in Norway or Croatia
(Huang et al., 2022; Radocaj et al. 2023), whereas results in arid regions in India were similar to
what we observed here (Dandabathula et al., 2022). This suggests that biases or noise in
SoilGrids predictions of soil texture may be related to regional differences in drivers of soil
texture variation rather than the density of training data. Indeed, based on our comparison of the
clay fraction, there may be certain ecoregions where SoilGrids predictions would be more
suitable for use (e.g., the Ozark/Ouachita Appalachian forests and southeastern USA plains).

Although valuable in global analyses and modeling, the SoilGrids estimates of soil
carbon stocks are often found to be inaccurate when compared to direct measurements. We

found a very poor relationship between direct measurements of soil carbon and nitrogen contents
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and estimates in SoilGrids. This finding resembles several other studies finding essentially no
relationship (R?<0.15) between SoilGrids250 carbon values and independent regional datasets
generated using non-biogeographic sampling approaches in China (Liang et al. 2019) and
Western Ghats, India (Dharumarajan et al. 2021). Somewhat better results have been obtained in
southern Africa (Cramer et al. 2019; Bodenstein et al., 2022) and European countries (Tifafi et
al. 2018), but these analyses still suggest that extreme caution must be used in using point
estimates from SoilGrids as an indicator of soil carbon at any particular location. In addition to
limited utility in biogeographic modeling, this may also explain the consistent overestimation of
regional carbon stocks by SoilGrids (Liang et al. 2019, Silatsa et al. 2020, Duarte et al. 2022).
Conclusions

The importance of suitable soil characteristics in determining plant species presence
motivates the use of digital soil predictions for species distribution modeling. Our sampling
scheme represents a best-case scenario for assessing the accuracy of SoilGrids in modeling the
environmental conditions associated with widespread, low-abundance plant species, but we
recommend that extreme caution must be used even under these circumstances. Our findings
confirm that soil texture variables are often better predicted than chemistry variables, with two
additional insights. First, our analysis of L. siphilitica sex ratios indicated that having a sufficient
number of precise sampling locations appears to be more important for enhancing signal-to-noise
than having a higher density of training points within a region. Second, while SoilGrids estimates
may not reflect actual field values, rank ordering of mean species values may be somewhat
reliable from predicted data. Soil texture may be easier to predict because it varies more
gradually over time and space compared to chemical properties, which can be extremely

dynamic, especially with changes in land use (Guo and Gifford, 2002). Incorporating additional
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drivers of soil properties (e.g., disturbance, edge effects) into digital soil models may be helpful
in improving accuracy of chemical predictions and increase reliability of modeled soil data for

uncovering biogeographic patterns.
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Figure 1. Relationships between field-collected soil measurements and predicted soil
measurements from SoilGrids. Solid lines represent relationships between the field-collected
data with the SoilGrids predicted data. Dashed lines represent a 1:1 line, which would be

expected if the field collections and predictions have perfect agreement. (a) clay (R?: 0.25;
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Slope: 0.65 +/- 0.08; P < 0.01; RMSE: 12; MBE: 8) (b) silt (R?: 0.42; Slope: 0.67 +/- 0.05; P <
0.01; RMSE: 18; MBE: 12) (¢) sand (R?: 0.46, Slope: 0.73 +/- 0.05; P < 0.01; RMSE: 28; MBE:
-21) (d) pH (R?: 0.19; Slope: 0.17 +/- 0.02; P < 0.01; RMSE: 1.1; MBE: -0.45) (e) nitrogen (R:
0.0004; Slope: 0.030 +/- 0.1; P = 0.07; RMSE: 525; MBE: 280) (f) carbon (R?: 0.01; Slope:

0.044 +/- 0.03; P =0.13; RMSE: 472; MBE: 19)

26



2, o,
%, e,
%, %
i P
7o %
%, @0@
4
,“\3\.
%
“%
&
S,
%,
%,

100

a

=} =}
@ =

%PUues pjald

0

2
100
80

muL
@@
%
%
o o L L i A i i i L wAWN\\k
o 0 s &)
3 g "Rl Yearpenans ¥
9%pues os Hd piat uodIpald HA 9S uea

1750
1400

(3%/82) ual

g] 1050
700

350
1750
400
050

(8/82) uaSoiuN spuojios

io Species

obeli

L

545

27



546

547

548

549

550

551

552

Figure 2 Comparing ranked species means derived from field-collected soil measurements
and SoilGrids predictions. The top graph within each panel shows the mean (+ standard error)
of measurements on field-collected soil ranked in order from highest to lowest on the x-axis. The
bottom graph within each panel shows the mean (+ standard error) of SoilGrids predictions for
the variables, while maintaining the same order on the x-axis to compare ranks. (a) % Sand (rs =

0.84) (b) pH (rs = 0.61) (c) % Nitrogen (rs = -0.06)
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Table 1 Associations of population sex ratios of L. siphilitica with soil data collected from
the field versus predicted from SoilGrids. Spearman’s correlation (rs) and p-values are
provided for assessing the relationship between the proportion of females within populations and
field-collected soil samples (A) or SoilGrids predictions (B,C). Significant relationships are
shown in bold. A. Field data from 30 populations where soil samples and sex ratios were both
collected. B. Data from SoilGrids predictions for the same 30 populations as in A. C. Data from
SoilGrids predictions for 195 populations where sex ratios were observed but soil samples were

not collected.

A. Field soil samples B. So0ilGrids matching | C. SoilGrids matching sites
from population sites field samples (n=30) with sex-ratio data only
(n=30) (n=195)
Soil rs p-value s p-value rs p-value
variable
Clay 0.45 0.01 0.31 0.09 0.19 <0.001
Silt 0.23 0.2 -0.002 0.98 0.37 <0.0001
Sand -0.37 0.03 -0.23 0.2 -0.40 <0.0001
pH 0.07 0.6 0.28 0.1 0.08 0.2
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