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Abstract 14 

Inclusion of edaphic conditions in biogeographical studies typically provides a better fit and 15 

deeper understanding of plant distributions. Increased reliance on soil data calls for easily 16 

accessible data layers providing continuous soil predictions worldwide. Although SoilGrids 17 

provides a potentially useful source of predicted soil data for biogeographic applications, its 18 

accuracy for estimating the soil characteristics experienced by individuals in small-scale 19 

populations is unclear. We used a biogeographic sampling approach to obtain soil samples from 20 

212 sites across the midwestern and eastern United States, sampling only at sites where there was 21 

a population of one of the 22 species in Lobelia sect. Lobelia. We analyzed six physical and 22 

chemical characteristics in our samples and compared them with predicted values from 23 

SoilGrids. Across all sites and species, soil texture variables (clay, silt, sand) were better 24 

predicted by SoilGrids (R2: 0.25–0.46) than were soil chemistry variables (carbon and nitrogen, 25 

R2£0.01; pH, R2: 0.19). While SoilGrids predictions rarely matched actual field values for any 26 

variable, we were able to recover qualitative patterns relating species means and population-level 27 

plant characteristics to soil texture and pH. Rank order of species mean values from SoilGrids 28 

and direct measures were much more consistent for soil texture (Spearman rS=0.74–0.84; all 29 

P<0.0001) and pH (rS=0.61, P=0.002) than for carbon and nitrogen (P>0.35). Within the species 30 

L. siphilitica, a significant association, known from field measurements, between soil texture and 31 

population sex ratios could be detected using SoilGrids data, but only with large numbers of 32 

sites. Our results suggest that modeled soil texture values can be used with caution in 33 

biogeographic applications, such as species distribution modeling, but that soil carbon and 34 

nitrogen contents are currently unreliable, at least in the region studied here.  35 
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 38 

Introduction 39 

Characterizing species distributions in geographic and environmental space can help us 40 

understand a species’ niche, evolutionary history, and potential for interactions with co-occurring 41 

species (Kozak et al., 2008; Elith & Leathwick, 2009; Pollock et al., 2014). One important 42 

component of predicting a species distribution is the inclusion of ecologically relevant predictors 43 

(Dormann, 2007; Mod et al. 2016). Modeled climate data has a long history of use in ecological 44 

modeling but for plant distributions, incorporating soil characteristics can further improve model 45 

accuracy (Dubuis et al., 2013; Figueiredo et al., 2013; Thuiller, 2013; Velazco et al., 2017; 46 

Zuquim et al., 2020; Roe et al., 2022). The inclusion of soil data has created the need to enhance 47 

the quality and availability of data on soil characteristics on a global scale. 48 

To incorporate accurate soil data into ecological and biogeographic inference of plant 49 

species, soil characteristics would ideally be measured from cores collected at presence points 50 

across the full species range. Predictions for soil characteristics derived from digital soil maps 51 

may be useful substitutes, reducing the labor and cost of direct soil core analysis at range-wide 52 

scales, as well as providing interpolated soil data for areas with limited accessibility (McBratney 53 

et al., 2003; Grunwald et al., 2011; Minasny & McBratney, 2016). The International Soil 54 

Reference Information Centre (www.isric.org) developed SoilGrids as a global collection of 55 

model-predicted soil data for ease of use in a variety of settings, including soil erosion, food and 56 

water security, and modeling biodiversity and effects from climate change (Hengl et al., 2014; 57 

Poggio et al., 2021). The newest version of SoilGrids combined machine learning, 150,000 soil 58 
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profiles for training, and 158 environmental covariates to provide global predictions at a scale of 59 

250 x 250 m (Hengl et al., 2017). Comparing cross-validation measures, R2 values ranged from 60 

56% (coarse soil fragments) to 83% (soil pH) across different soil variables (Hengl et al., 2017). 61 

However, the utility of SoilGrids data needs additional validation for its appropriateness in the 62 

development of species distribution models, particularly for low abundance plant species that are 63 

moderate habitat specialists. 64 

The use of digital soil maps for biogeographic applications comes with clear limitations. 65 

First, the accuracy for modeling each soil characteristic varies, such that some soil variables will 66 

be more reliable than others (Poggio et al., 2021). Along with issues of model accuracies, there 67 

are scaling issues associated with the soil environment. For instance, climatological conditions 68 

are likely to be quite similar at the local scale (e.g., 1 km2 or smaller), whereas soil conditions 69 

can exhibit substantial heterogeneity at much finer scales (Heuvelink & Webster, 2001; Malone 70 

et al., 2017). Fine-scale variation in soil characteristics created by microtopography and 71 

hydrology would not be captured in 250 x 250 m grid cells, and this is still much larger than the 72 

scale experienced by individual plants or even whole populations. Furthermore, SoilGrids does 73 

not predict soil conditions at locations with surface water or in cities (Poggio et al., 2021), 74 

potentially yielding missing or inaccurate data for wetland and aquatic habitats, even where 75 

plants of interest are dominant within the community.  76 

To test the utility of SoilGrids specifically for biogeographic inference, we focused on a 77 

clade of wildflowers with highly variable geographic distributions and habitat types, including 78 

wetland and emergent aquatic species. Lobelia sect. Lobelia L. (Campanulaceae) is comprised of 79 

24 herbaceous species native to North and Central America. Some species are widespread across 80 

the eastern United States and Canada, while other species are found in only a few states (Biota of 81 
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North America, BONAP, Kartesz, 2015; Spaulding & Barger, 2016). This clade provides an 82 

opportunity to document potential scaling effects, as species frequently co-occur and appear to 83 

be separated into different microhabitat conditions within 250 m (unpub. data). One species, 84 

Lobelia siphilitica L., permits assessment of how soil conditions relate to trait variation among 85 

populations within a species. Lobelia siphilitica is comprised of two sexes—females and 86 

hermaphrodites—which are readily observable in the field. Females vary dramatically in their 87 

frequency among L. siphiltica populations, and field data indicate that both population size and 88 

population sex ratio vary with soil conditions (Hovatter, 2008; Hovatter et al., 2013).  89 

We tested how estimates from SoilGrids compared with soil data collected in the field at 90 

sites hosting Lobelia populations. The questions addressed here focus on: (1) the accuracy of 91 

SoilGrids estimates in habitats occupied by a set of closely related plants and (2) whether 92 

modeled soil values from SoilGrids lead to different inferences about species distributions and 93 

ecology compared to direct measurements on soils collected in situ. First, we determined how 94 

soil physical and chemical variables from SoilGrids compare to soil samples collected at sites 95 

hosting Lobelia populations. Second, we looked for associations between deviations of SoilGrids 96 

from measured field data and particular conditions (proximity to a water body or ecoregion). 97 

Third, we used two datasets to examine the extent to which SoilGrids data would be useful in 98 

understanding the biogeography of Lobelia. We collected and analyzed field soil from 22 99 

Lobelia species at 212 population sites across the midwestern and eastern United States. We 100 

compared direct measures of soil characteristics to modeled SoilGrids data to test whether: i) 101 

modeled SoilGrids data could predict patterns in average edaphic conditions among 22 Lobelia 102 

species, and ii) in polymorphic L. siphilitica, whether data from SoilGrids could predict 103 

relationships between soil conditions and population sex ratios. 104 
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 105 

Materials and Methods 106 

Soil Field Data 107 

In the summers of 2017 and 2021, we visited a total of 212 populations of 22 Lobelia 108 

species across the midwestern to eastern United States and Canada (Supplemental Table S1), 109 

where we collected soil samples and GPS coordinates. Potential populations were identified from 110 

personal communications and using the Southeast Regional Network of Expertise and 111 

Collections (SERNEC; 2022). After removing any Oi horizon, soil samples were collected from 112 

the top 10 cm of soil underneath individual Lobelia plants (five samples per site, or from each 113 

plant if there were fewer than five present), which were bulked for analysis by population site 114 

and species. Distances between bulked soil samples ranged from 1-30 meters. Population sizes 115 

ranged widely by site and species, from single plants to over 1000 individuals. Although most 116 

species prefer moist habitats, specific habitat conditions range widely among species and sites, 117 

including roadsides, upland forests, bogs, prairies, riparian areas, and near-shore lacustrine 118 

habitats (Spaulding & Barger 2016). Soil samples were allowed to air dry before passing through 119 

a 2mm sieve, leaving only the fine-earth fractions (sand, silt, and clay). pH was measured using a 120 

1:2.5 mass ratio of soil to water. Percent carbon and nitrogen were measured using an elemental 121 

analyzer (Costech Analytical, Santa Clarita, USA). For texture analysis, sieved soils were first 122 

pretreated with 30% hydrogen peroxide to remove organic matter, and then analyzed using a 123 

laser-diffraction particle size analyzer (Mastersizer 2000, Malvern Panalytical, UK). Soil 124 

aggregates were added to distilled water and broken up with one minute of ultrasonication. We 125 

used a protocol measuring the texture distribution of three subsamples, each of which reached a 126 

laser obscuration value between 12-16%, and obtained the mean distribution of subsamples. As 127 
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laser diffraction measurements underestimate clay and overestimate silt fractions in soil 128 

compared to the sedimentation method, we applied a correction factor as described in DiStefano 129 

et al. (2010), which was confirmed for our laboratory (Supplemental Figure S1), multiplying the 130 

clay fraction 1.9X and subtracting the resulting difference from the silt fraction. 131 

SoilGrids Data 132 

Using population GPS coordinates, SoilGrids250 data were obtained for pH, carbon, 133 

nitrogen, and each of the three fine-earth fractions (sand, silt, and clay). The data were accessed 134 

directly from the SoilGrids website in December 2022 (Poggio et al. 2021). In some cases, GPS 135 

coordinates landed in a grid cell with no SoilGrids data. In these cases, we used the nearest grid 136 

cell with data.  137 

Because our in situ soil samples included the top 10 cm, we averaged SoilGrids layers for 138 

the surface horizon (0-5 cm) and the first subsurface horizon (5-15 cm) for our analyses using 139 

equal weights for each horizon. The 0-5 cm and 5-15 cm layers were strongly correlated for clay, 140 

sand, silt, and pH (r>0.98), while the correlation between layers was weaker for nitrogen (r: 0.8) 141 

and weakest for carbon (r: 0.5). To further explore this, we conducted separate regressions 142 

comparing the field data with each individual horizon, and the results were similar as the average 143 

values (Supplemental Table S2).  144 

Comparison of SoilGrids Predictions to Field-Collected Soil Measurements 145 

To investigate the relationship between SoilGrids data and field-collected data, we conducted 146 

linear regressions for each variable using field-collected measurements as the independent 147 

variable. We then examined goodness-of-fit measurements (R2), slopes, root mean squared error 148 

(RMSE), and mean bias error (MBE) to determine agreement between SoilGrids predictions and 149 

observations obtained in the field. RMSE and MBE are expressed in the same units as the 150 
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response variable (here, SoilGrids values). RMSE is used in comparing measured values with 151 

predicted values by using the square root of the sum of the squared residuals of the model. MBE, 152 

on the other hand, calculates the mean of the residuals and indicates whether variables are under- 153 

or over-predicted. 154 

Investigating Environmental Correlates of Deviations between Field and Modeled Data 155 

The difference between measured and modeled values were calculated by subtracting SoilGrids 156 

values from field values. We then tested for associations between these SoilGrids-measured 157 

differences and two environmental variables: proximity of the sample site to water bodies and 158 

ecoregion designation. Some GPS coordinates for populations near water bodies had no 159 

corresponding data from SoilGrids due to issues like shifting boundaries of water bodies. Sites 160 

close to water bodies may also be affected by flooding and hydrology that vary over small scales 161 

(i.e., a few meters). Thus, we tested whether the distance of a population to a water body affected 162 

the magnitude of SoilGrids-measured differences. Water body data were obtained from the 163 

National Hydrography Dataset managed by the United States Geological Survey (USGS, 2019). 164 

We used QGIS 3.6 to determine the distance a population point was from the nearest body of 165 

water (QGIS, 2019). Linear regressions were used to investigate whether larger SoilGrids-166 

measured differences were associated with distance to the nearest water body. 167 

 We also used ecoregions to see if SoilGrids-measured differences were associated with 168 

our sampling points being embedded in any particular habitat conditions. Data on ecoregions 169 

were obtained from the US Environmental Protection Agency (US EPA, 2022; Omernik, 1987; 170 

Omernik & Griffith, 2014). We conducted the analyses using level-2 ecoregions because many 171 

sampled populations fell into a single category of level-1 ecoregions (eastern temperate forests; 172 

Supplemental Table S2). To test for significant differences in SoilGrids-measured differences 173 
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across ecoregions, we used the non-parametric Kruskal-Wallis one-way ANOVA followed by 174 

the Steel-Dwass pairwise comparison method that controls for multiple comparisons and is 175 

robust to imbalanced sampling (Morley, 1982; Neuhäuser & Bretz, 2001). 176 

Inferring Ecological Relationships Between Soil Conditions and Lobelia Species   177 

The utility of SoilGrids data for inferring soil conditions at Lobelia population sites was tested 178 

using two approaches. First, for each of 22 Lobelia species, we calculated the mean and standard 179 

error of field soil measurements and SoilGrids modeled data for each soil characteristic. Species 180 

were then ranked by mean field soil measurement to determine whether the ranking according to 181 

SoilGrids data would be consistent with measured habitat values. This procedure was used to see 182 

if SoilGrids could capture ecologically relevant but very broad, qualitative characteristics of the 183 

dataset without influence of outliers or noise introduced by individual site data. Congruence of 184 

species ranks was assessed by a Spearman rank correlation test (Spearman correlation shown 185 

below as rS).  186 

Second, to compare how SoilGrids and field-collected data associated with L. siphilitica 187 

population sex ratios, we conducted Spearman rank tests between each soil characteristic and the 188 

percent females in a population. This dataset was confined to 30 populations for which we had 189 

obtained both soil samples and population sex ratios for L. siphilitica. Sex ratios were calculated 190 

by sexing and counting all female and hermaphrodite plants at each site and are reported here as 191 

the percent of all censused plants that were female. In a second analysis, we used an expanded 192 

set of population sex ratios at 195 sites where L. siphilitica sex ratios and GPS coordinates had 193 

been recorded in situ, but no physical soil samples were available. This latter analysis was done 194 

to determine whether the associations between population female frequency and soil 195 

characteristics known from empirical measurements (n=30) could be recovered by using 196 
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modeled SoilGrids variables with an increased sample size. As sex-ratio data are non-normally 197 

distributed, we used Spearman rank tests. All statistics were calculated using JMP Version 14 198 

(JMP Statistical Discovery, SAS, 2019). Soil data was extracted using QGIS 3.6 (QGIS, 2019). 199 

Results 200 

Accuracy of SoilGrids—Soil Physical Characteristics 201 

The estimated particle-size fractions from SoilGrids were all positively correlated with the 202 

corresponding measurement from field-collected soils (Fig. 1). Of the three texture variables 203 

analyzed, the weakest relationship was in the clay fraction (Fig. 1a, R2: 0.25). Silt fractions and 204 

sand fractions showed relatively strong relationships between SoilGrids predictions and field-205 

collected data (Figs. 1b & 1c, R2: 0.42 & 0.46, respectively). Clay and silt fractions tended to be 206 

over-estimated, as many of the data points fell above the 1:1 line (MBE:  8.5% and 12.3%, 207 

respectively; Fig. 1). Sand fractions were under-estimated, with most points falling below the 1:1 208 

line (MBE:  -21%). Overall, SoilGrids texture predictions were most accurate for soils with 209 

relatively high clay and silt but low sand (closest to the 1:1 line in Fig. 1). 210 

Accuracy of SoilGrids—Soil Chemical Characteristics 211 

The soil pH from field-collected soils had a weak, positive relationship with SoilGrids pH 212 

predictions (Fig. 1d, R2:  0.19). The range of SoilGrids pH values was much smaller (ranging 213 

from 4.4 to 6.6) than for field soils (ranging from <4 to >8). SoilGrids tended to over-estimate 214 

pH for soils with pH below 5 and under-estimate pH above 5.  215 

For nitrogen and carbon, there was no relationship between field data and predicted data 216 

from SoilGrids (Figs. 1e & 1f, R2< 0.01, and R2 : 0.01, respectively). The relationship was not 217 

improved by removing outliers (identified using the quantile range method in JMP), or 218 

examination of carbon to nitrogen ratio (R2<0.01). 219 
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Investigating Environmental Correlates of Variation between Field and Modeled Data 220 

The distance to the nearest water body did not account for discrepancies between field and 221 

SoilGrids data for any of the soil variables analyzed (P > 0.4 for each variable). Across 222 

ecoregions, we found significant differences for all variables of interest (Supplemental Figure 223 

S2). Of note is that mean carbon SoilGrids-measured differences can either be positive or 224 

negative depending in which ecoregion the soil core was collected. The SoilGrids-measured 225 

differences for nitrogen were lowest in the southeast USA plains (Supplemental Figure S2 panel 226 

e). However, even when conducting linear regression using only the southeast USA plains 227 

populations, the relationship for nitrogen concentration in the field and predicted from SoilGrids 228 

was still not significant (R2<0.01). 229 

Inferring Ecological Relationships Between Soil Conditions and Lobelia Species 230 

Comparing the rank order of the Lobelia species, the SoilGrids predictions do not mirror ranks 231 

based on field-collected data. Comparisons for sand, pH, and nitrogen (Fig. 2) illustrate strong, 232 

medium, and weak correlations between predictions and field data.  Spearman correlation tests 233 

indicate that the rankings of species means are significantly related for soil texture (clay rS=0.74, 234 

silt rS=0.79, sand rS=0.84; all P<0.0001) and pH (rS=0.61, P=0.002). However, while rankings of 235 

species means may be partially consistent, SoilGrids species means do not often reflect true field 236 

values. For example, species that affiliate with alkaline soil pH show highly underestimated soil 237 

pH means from modeled SoilGrids data (e.g., L. siphilitica soils have a mean pH of 7.0 but the 238 

SoilGrids estimate is 5.6). In contrast to soil texture and pH, species means for soil C and N 239 

calculated from SoilGrids data appear to be completely unrelated to values measured from the 240 

field (carbon rS=0.21 P=0.35; nitrogen rS=-0.06 P=0.79).  241 
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The relationships between SoilGrids data and L. siphilitica sex ratios did not match 242 

relationships between field data and sex ratios (Table 1). Using field data from 30 population 243 

sites, percentage of females in a population was positively associated with clay content and 244 

negatively associated with sand content. Silt and pH showed no relationship with the percent of 245 

females in a population. Using SoilGrids predictions for these same 30 populations, no 246 

associations were significant, but clay content and pH were marginally positively associated with 247 

female percentage (P<0.1). When expanding the sample to 195 populations with known sex 248 

ratios, the association of modeled SoilGrids clay and sand content became significant, better 249 

matching the results from the empirical dataset based on direct measures of both soil and female 250 

frequency at 30 population sites. 251 

Discussion 252 

Plant distributions are commonly constrained by soil properties (e.g., nutrient availability 253 

and water holding capacity), making digital soil maps a potentially valuable resource for 254 

improving plant species distribution mapping, forecasting, and making inferences about plant 255 

species’ niches (Mod et al. 2016; Velazco et al., 2017; Zuquim et al., 2020; Roe et al. 2022). In 256 

this study, we explored the utility of SoilGrids for investigating biogeographic patterns within 257 

and among species using soil samples from 212 Lobelia population sites representing a broad 258 

range of habitats. Most datasets that have been used to evaluate SoilGrids predictions are derived 259 

from random or systematic soil sampling distributed across a geographic area of interest (Tifafi 260 

et al. 2018; Caubet et al., 2019; Cramer et al. 2019; Liang et al. 2019; Dharumarajan et al. 2021; 261 

Bodenstein et al., 2022; Dandabathula et al., 2022; Huang et al., 2022; Radočaj et al. 2023). Our 262 

test incorporated constraints that are inherent in ‘presence’ datasets for modeling the 263 

distributions of individual species (Jeliazkov et al. 2021). Our study organisms determined the 264 



13 
 

locations of soil sampling sites, introducing constraints on the specific types of habitats sampled 265 

and their distribution across the landscape.  266 

Of the six soil variables predicted by SoilGrids, soil texture variables (percent sand, silt, 267 

and clay) were most similar to measurements taken on field samples. pH values showed a poor 268 

but significant relationship, and soil carbon and nitrogen predictions did not correspond with 269 

direct measurements at all. Although the slopes of these relationships were significantly different 270 

from 1.0, our analysis indicates that certain SoilGrids variables may be of some usefulness for 271 

biogeographic analyses. For example, when comparing edaphic conditions among species, 272 

texture and pH may provide a broad indication of species rank-orders, albeit not actual field 273 

values. In our analysis of L. siphilitica population sex ratios, we also found that noise in 274 

predicted soil texture variables may be overcome by increasing sample size, potentially revealing 275 

similar associations as those found using a smaller dataset (Table 1). Although not directly tested 276 

in this study, the lack of fit between predicted and actual values is likely to be even greater when 277 

population presence information is taken from online databases (e.g., GBIF) rather than taken in 278 

situ, as error rates in location data tend to be extremely high across taxa (Zizka et al., 2020). 279 

Overall, our results indicate that caution should be exercised, but that using predicted data from 280 

SoilGrids may still be helpful in generating hypotheses about the importance of soil texture and 281 

pH in species biogeography, as long as the number of accurate presence points is sufficient. 282 

Use of SoilGrids in Ecological Inference and Statistical Modeling 283 

Our results have important consequences for using SoilGrids to assess variable 284 

importance in constructing species distribution models, mapping habitat suitability, and revealing 285 

ecological relationships. Even in cases where modeled predictor variables have a decent 286 

relationship with underlying true values (e.g., best shown here for soil texture variables), error in 287 
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predictor variables leads to lack of statistical power and biased parameter estimates and 288 

projections. In some cases, it may be possible to reduce the effects of predictor-variable 289 

uncertainty by taking advantage of spatial autocorrelation and joint species distributions, or by 290 

statistically propagating known variance in predictor values as part of the SDM (McInerny and 291 

Purves 2011, Stoklosa et al. 2015). The latter methods may prove useful and should be explored 292 

further for SoilGrids data because the database provides a measure of model prediction 293 

uncertainty (Poggio et al. 2021).  294 

Problems using SoilGrids variables are likely to remain particularly acute for several 295 

common situations. Mismatches between grain size resolution of predictor variable estimates and 296 

the scales at which individual organisms or populations respond to the environment are known to 297 

be problematic (Moulatlet et al. 2017, Moudrý et al. 2023). As shown here, even the 250m 298 

SoilGrids predictions may not be fine enough resolution to use with species that have small 299 

population sizes or species that specialize on soil types that either occur on a small scale or are 300 

difficult to predict using a digital soil model.  301 

In addition, if true conditions are poorly reflected by interpolated predictor variables, 302 

SDMs can provide misleading inferences, even in cases where algorithms generate a model with 303 

high predictive accuracy (Smith and Santos 2020). We found that SoilGrids frequently failed to 304 

predict values that are extreme but not uncommon in soils, or predicted extreme values in 305 

incorrect locations. For instance, the extremely low variation in pH estimates from SoilGrids is 306 

likely to result in reduced discrimination among sites and lower weighting in a SDM, whereas 307 

the increased variation in soil N will likely result in misleading predictions and variable 308 

importance. The exceptionally narrow range of soil pH values predicted by SoilGrids at our 309 
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sampling sites compared to measured values (as well as in Cramer et al. 2019) is particularly 310 

problematic given its importance as a driver of variation in nutrient and biotic soil properties. 311 

Comparison to Other SoilGrids Validation Studies 312 

Despite our biogeographically focused sampling design, our results are broadly similar to 313 

previous studies that used systematic or random sampling to assess the accuracy of SoilGrids 314 

over larger landscape scales. SoilGrids predictions of texture data appear more reliable than 315 

predictions of soil carbon and nitrogen, and silt and sand have stronger relationships than clay, 316 

including in the cross-validation performed on the newest iteration of SoilGrids (Poggio et al, 317 

2021). Because the United States contains many soil cores that were used as training data for the 318 

SoilGrids algorithm, our study assessed the accuracy of SoilGrids under a favorable scenario, 319 

compared to regions with limited training data. The relationships for soil texture found here were 320 

similar to those reported in France (Caubet et al., 2019), another area with high density of 321 

training data. Results in regions with fewer training points are more variable: no relationships 322 

were found between SoilGrids texture predictions and field textures in Norway or Croatia 323 

(Huang et al., 2022; Radočaj et al. 2023), whereas results in arid regions in India were similar to 324 

what we observed here (Dandabathula et al., 2022). This suggests that biases or noise in 325 

SoilGrids predictions of soil texture may be related to regional differences in drivers of soil 326 

texture variation rather than the density of training data. Indeed, based on our comparison of the 327 

clay fraction, there may be certain ecoregions where SoilGrids predictions would be more 328 

suitable for use (e.g., the Ozark/Ouachita Appalachian forests and southeastern USA plains).  329 

 Although valuable in global analyses and modeling, the SoilGrids estimates of soil 330 

carbon stocks are often found to be inaccurate when compared to direct measurements. We 331 

found a very poor relationship between direct measurements of soil carbon and nitrogen contents 332 
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and estimates in SoilGrids. This finding resembles several other studies finding essentially no 333 

relationship (R2<0.15) between SoilGrids250 carbon values and independent regional datasets 334 

generated using non-biogeographic sampling approaches in China (Liang et al. 2019) and 335 

Western Ghats, India (Dharumarajan et al. 2021). Somewhat better results have been obtained in 336 

southern Africa (Cramer et al. 2019; Bodenstein et al., 2022) and European countries (Tifafi et 337 

al. 2018), but these analyses still suggest that extreme caution must be used in using point 338 

estimates from SoilGrids as an indicator of soil carbon at any particular location. In addition to 339 

limited utility in biogeographic modeling, this may also explain the consistent overestimation of 340 

regional carbon stocks by SoilGrids (Liang et al. 2019, Silatsa et al. 2020, Duarte et al. 2022).  341 

Conclusions 342 

The importance of suitable soil characteristics in determining plant species presence 343 

motivates the use of digital soil predictions for species distribution modeling. Our sampling 344 

scheme represents a best-case scenario for assessing the accuracy of SoilGrids in modeling the 345 

environmental conditions associated with widespread, low-abundance plant species, but we 346 

recommend that extreme caution must be used even under these circumstances. Our findings 347 

confirm that soil texture variables are often better predicted than chemistry variables, with two 348 

additional insights. First, our analysis of L. siphilitica sex ratios indicated that having a sufficient 349 

number of precise sampling locations appears to be more important for enhancing signal-to-noise 350 

than having a higher density of training points within a region. Second, while SoilGrids estimates 351 

may not reflect actual field values, rank ordering of mean species values may be somewhat 352 

reliable from predicted data. Soil texture may be easier to predict because it varies more 353 

gradually over time and space compared to chemical properties, which can be extremely 354 

dynamic, especially with changes in land use (Guo and Gifford, 2002). Incorporating additional 355 
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drivers of soil properties (e.g., disturbance, edge effects) into digital soil models may be helpful 356 

in improving accuracy of chemical predictions and increase reliability of modeled soil data for 357 

uncovering biogeographic patterns.  358 
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 534 

Figure 1.  Relationships between field-collected soil measurements and predicted soil 535 

measurements from SoilGrids. Solid lines represent relationships between the field-collected 536 

data with the SoilGrids predicted data. Dashed lines represent a 1:1 line, which would be 537 

expected if the field collections and predictions have perfect agreement. (a)  clay (R2: 0.25; 538 
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Slope: 0.65 +/- 0.08; P < 0.01; RMSE: 12; MBE: 8) (b) silt (R2: 0.42; Slope: 0.67 +/- 0.05; P < 539 

0.01; RMSE: 18; MBE: 12) (c) sand (R2: 0.46, Slope: 0.73 +/- 0.05; P < 0.01; RMSE: 28; MBE: 540 

-21) (d) pH (R2: 0.19; Slope: 0.17 +/- 0.02; P < 0.01; RMSE: 1.1; MBE: -0.45) (e) nitrogen (R2: 541 

0.0004; Slope: 0.030 +/- 0.1; P = 0.07; RMSE: 525; MBE: 280) (f) carbon (R2: 0.01; Slope: 542 

0.044 +/- 0.03; P = 0.13; RMSE: 472; MBE: 19)  543 
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Figure 2  Comparing ranked species means derived from field-collected soil measurements 546 

and SoilGrids predictions. The top graph within each panel shows the mean (± standard error) 547 

of measurements on field-collected soil ranked in order from highest to lowest on the x-axis. The 548 

bottom graph within each panel shows the mean (± standard error) of SoilGrids predictions for 549 

the variables, while maintaining the same order on the x-axis to compare ranks. (a)  % Sand (rS = 550 

0.84) (b)  pH (rS = 0.61) (c)  % Nitrogen (rS = -0.06) 551 

  552 
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Table 1  Associations of population sex ratios of L. siphilitica with soil data collected from 553 

the field versus predicted from SoilGrids. Spearman’s correlation (rS) and p-values are 554 

provided for assessing the relationship between the proportion of females within populations and 555 

field-collected soil samples (A) or SoilGrids predictions (B,C). Significant relationships are 556 

shown in bold. A. Field data from 30 populations where soil samples and sex ratios were both 557 

collected. B.  Data from SoilGrids predictions for the same 30 populations as in A. C. Data from 558 

SoilGrids predictions for 195 populations where sex ratios were observed but soil samples were 559 

not collected. 560 

 561 
 562 

 A. Field soil samples 
from population sites 

(n=30) 

B. SoilGrids matching 
field samples (n=30) 

C. SoilGrids matching sites 
with sex-ratio data only 

(n=195) 
Soil 
variable 

rS p-value rS p-value rS p-value 

Clay 0.45 0.01 0.31 0.09 0.19 <0.001 
Silt 0.23 0.2 -0.002 0.98 0.37 <0.0001 
Sand -0.37 0.03 -0.23 0.2 -0.40 <0.0001 
pH 0.07 0.6 0.28 0.1 0.08 0.2 
 563 
 564 
 565 


