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Abstract

Unsupervised Domain Adaptation (UDA) is an effective
approach to tackle the issue of domain shift. Specifically,
UDA methods try to align the source and target representa-
tions to improve generalization on the target domain. Fur-
ther, UDA methods work under the assumption that the
source data is accessible during the adaptation process.
However, in real-world scenarios, the labelled source data
is often restricted due to privacy regulations, data transmis-
sion constraints, or proprietary data concerns. The Source-
Free Domain Adaptation (SFDA) setting aims to alleviate
these concerns by adapting a source-trained model for the
target domain without requiring access to the source data.
In this paper, we explore the SFDA setting for the task of
adaptive object detection. To this end, we propose a novel
training strategy for adapting a source-trained object de-
tector to the target domain without source data. More pre-
cisely, we design a novel contrastive loss to enhance the
target representations by exploiting the objects relations for
a given target domain input. These object instance rela-
tions are modelled using an Instance Relation Graph (IRG)
network, which are then used to guide the contrastive repre-
sentation learning. In addition, we utilize a student-teacher
to effectively distill knowledge from source-trained model
to target domain. Extensive experiments on multiple ob-
ject detection benchmark datasets show that the proposed
approach is able to efficiently adapt source-trained object
detectors to the target domain, outperforming state-of-the-
art domain adaptive detection methods. Code and models
are provided in https://viudomain.github.io/irg-sfda-web/.

1. Introduction

In recent years, object detection has seen tremendous
advancements due to the rise of deep networks [12, 42,
,45,53,79]. The major contributor to this success is
the availability of large-scale annotated detection datasets
[10, 13, 15,43, 73], as it enables the supervised training
of deep object detector models. However, these models
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Figure 1. Left: Supervised training of detection model on the
source domain. Right: Source-Free Domain Adaptation where
a source-trained model is adapted to the target domain in the ab-
sence of source data with pseudo-label self-training and proposed
Instance Relation Graph (IRG) network guided contrastive loss.

often have poor generalization when deployed in visual
domains not encountered during training. In such cases,
most works in the literature follow the Unsupervised Do-
main Adaptation (UDA) setting to improve generalization
[7,14,23,24,57,62]. Specifically, UDA methods aim to
minimize the domain discrepancy by aligning the feature
distribution of the detector model between source and tar-
get domain [9, 19, 28, 56, 59]. To perform feature align-
ment, UDA methods require simultaneous access to the la-
beled source and unlabeled target data. However in practi-
cal scenarios, the access to source data is often restricted
due to concerns related to privacy/safety, data transmis-
sion, data proprietary etc. For example, consider a detec-
tion model trained on large-scale source data, that performs
poorly when deployed in new devices having data with dif-
ferent visual domains. In such cases, it is far more effi-
cient to transmit the source-trained detector model (~500-
1000MB) for adaptation rather than transmitting the source
data (~10-100GB) to these new devices [27,37]. Moreover,
transmitting only source-trained model alleviates many pri-
vacy/safety, data proprietary concerns as well [41,47,70].
Hence, adapting the source-trained model to the target do-
main without having access to source data is essential in the
case of practical deployment of detection models. This mo-
tivates us to study Source-Free Domain Adaptation (SFDA)
setting for adapting object detectors (illustrated in Fig. 1).
The SFDA is a more challenging setting than UDA.
Specifically, on top of having no labels for the target data,
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Figure 2. (a) Object predictions by Cityscapes-trained model
on the FoggyCityscapes image. (b) Corresponding ground truth.
Here, the proposals around the bus instance have inconsistent pre-
dictions, indicating that instance features are prone to large shift
in the feature space, for a small shift in the proposal location.

the source data is not accessible during adaptation. There-
fore, most SFDA methods for detection consider train-
ing with pseudo-labels generated by source-trained model
[27,40]. During our initial SFDA training experiments,
we identified two key challenges. Firstly, noisy pseudo-
labels generated by the source-trained model due to domain
shift can result in suboptimal distillation of target domain
information into the source-trained model [11, 46]. Sec-
ondly, Fig. 2 shows object proposals for an image from
FoggyCityscapes, predicted by a detector model trained on
Cityscapes. Here, all the proposals have Intersection-over-
Union>0.9 with respective ground-truth bounding boxes
and each proposal is assigned a prediction with a confidence
score. Noticeably, the proposals around the bus instance
have different predictions, e.g., car with 18%, truck with
93%, and bus with 29% confidence. This indicates that the
pooled features are prone to a large shift in the feature space
for a small shift in the proposal location. This is because,
the source-trained model representations would tend to be
biassed towards source data, resulting in weak representa-
tion for the target data. Therefore, we consider two major
challenges in SFDA training: /) Effectively distill target do-
main information into source-trained model 2) Enhancing
the target domain feature representations.

Motivated by [46], we utilize mean-teacher [61] frame-
work to effectively distill of target domain knowledge into
source-trained model. However, the key challenge of en-
hancing the target domain feature representations remained.
To address this, we turned to contrastive representation
learning (CRL) methods, has been shown to learn high-
quality representations from images in an unsupervised
manner [5, 6, 69]. CRL methods achieve this by forcing
representations to be similar under multiple views (or aug-
mentations) of an anchor image and dissimilar to all other
images. In classification, the CRL methods assume that
each image contains only one object. On the contrary,
for object detection, each image is highly likely to have
multiple object instances. Furthermore, the CRL train-
ing also requires large batch sizes and multiple views to
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Figure 3. (a) Class agnostic object proposals generated by Re-
gion Proposal Network (RPN). (b) Cropping out RPN propos-
als will provide multiple contrastive views of an object instance.
We utilize this to improve target domain feature representations
through RPN-view contrastive learning. However as RPN pro-
posals are class agnostic, it is challenging to form positive (same
class)/negative pairs (different class), which is essential for CRL.

learn high-quality representations, which incurs a very high
GPU/memory cost, as detection models are computation-
ally expensive. To circumvent these issues, we propose
an alternative strategy which exploits the architecture of
the detection model like Faster-RCNN [54]. Interestingly,
the proposals generated by the Region Proposal Network
(RPN) of a Faster-RCNN essentially provide multiple views
for any object instance as shown in Fig. 3 (a). In other
words, the RPN module provides instance augmentation
for free, which could be exploited for CRL, as shown in
Fig. 3 (b). However, RPN predictions are class agnos-
tic and without the ground-truth annotations for target do-
main, it is impossible to know which of these proposals
would form positive (same class)/negative pairs (different
class), which is essential for CRL. To this end, we propose
a Graph Convolution Network (GCN) based network that
models the inter-instance relations for generated RPN pro-
posals. Specifically, each node corresponds to a proposal
and the edges represent the similarity relations between the
proposals. This learned similarity relations are utilized to
extract information regarding which proposals would form
positive/negative pairs and are used to guide CRL. By doing
so, we show that such graph-guided contrastive representa-
tion learning is able to enhance representations for the target
data. Our contributions are summarized as follows:

* We investigate the problem of source-free domain adap-
tation for object detection and identify some of the major
challenges that need to be addressed.

* We introduced an Instance Relation Graph (IRG) frame-
work to model the relationship between proposals gener-
ated by the region proposal network.

* We propose a novel contrastive loss which is guided by
the IRG network to improve the feature representations
for the target data.

* The effectiveness of the proposed method is evaluated on
multiple object detection benchmarks comprising of visu-
ally distinct domains. Our method outperforms existing
source-free domain adaptation methods and many unsu-
pervised domain adaptation methods.
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2. Related works

Unsupervised Domain Adaption. Unsupervised domain
adaptation for object detection was first explored by Chen
et al. [8]. Chen et al. [8] proposed adversarial-based fea-
ture alignment for a Faster-RCNN network at image and
instance level to mitigate the domain shift. Later, Saito
et al. [56] proposed a method that performs strong local
feature alignment and weak global feature alignment based
on adversarial training. Instead of utilizing an adversarial-
based approach, Khodabandeh et al. [30] proposed to miti-
gate domain shift by pseudo-label self-training on the target
data. Self-training using pseudo-labels ensures that the de-
tection model learns target representation. Recently, Hsu et
al. [25] explored domain adaptation for one-stage object de-
tection, where he utilized a one-stage detection framework
to perform object center-aware training while performing
adversarial feature alignment. Also, there exists multiple
UDA work for object detection [2, 19, 50, 55, 59, 66, 67];
however, all these works assume you have access to labeled
source and unlabeled target data.

Source-Free Domain Adaptation. In a real-world sce-
nario, the source data is not often accessible during the
adaptation process due to privacy regulations, data trans-
mission constraints, or proprietary data concerns. Many
works have addressed the source-free domain adaptation
(SFDA) setting for classification [38,41], 2D and 3D ob-
ject detection [21,22,27,64] and video segmentation [48]
tasks. First for the classification task, the SFDA setting
was explored by Liang ef al. [41] proposed source hypoth-
esis transfer, where the source-trained model classifier is
kept frozen and target generated features are aligned via
pseudo-label training and information maximization. Fol-
lowing the segmentation task Liu et al. [47] proposed a self-
supervision and knowledge transfer-based adaptation strat-
egy for target domain adaptation. For object detection task,
[40] proposed a pseudo-label self-training strategy and [27]
proposed self-supervised feature representation learning via
previous models approach.

Contrastive Learning. The huge success in unsupervised
feature learning is due to contrastive learning which has at-
tributed to huge improvement in many unsupervised tasks
[5,27,52]. Contrastive learning generally learns a discrimi-
native feature embedding by maximizing the agreement be-
tween positive pairs and minimizing the agreement with
negative pairs. In [5, 17,52]. in batch of an image, an
anchor image undergoes different augmentation and these
augmentations for that anchor forms positive pair and nega-
tive pairs are sampled from other images in the given batch.
Later, in [3 1] exploiting the task-specific semantic informa-
tion, intra-class features embedding is pulled together and
repelled away from cross-class feature embedding. In this
way, [31] learned a more class discriminative feature rep-
resentation. All these works are performed for the classi-

fication task, and these methods work well for large batch
size tasks [5, 31]. Extending this to object detection tasks
generally fails as detection models are computationally ex-
pensive. To overcome this, we exploit graph convolution
networks to guide contrastive learning for object detection.
Graph Convolution Neural Networks (GNNs). Graph
Convolution Neural Networks was first introduced by Gori
[16] to process the data with a graph structure using neu-
ral networks. The key idea is to construct a graph with
nodes and edges relating to each other and update node/edge
features, i.e., a process called node feature aggregation.
In recent years, different GNNs have been proposed (e.g.,
GraphConv [49], GCN [35], each with a unique feature ag-
gregation rule which is shown to be effective on various
tasks. Recent works in image captioning [51, 76], scene
graph parsing [72] etc. try to model inter-instance rela-
tions by IoU based graph generation. For these applica-
tions, IoU based graph is effective as modelling the inter-
action between objects is essential and can be achieved by
simply constructing a graph based on object overlap. How-
ever, the problem araises with IoU based graph generation
when two objects have no overlap and in these cases, it dis-
regards the object relation. For example, see Fig. 3 (a),
where the proposals for the left sidecar and right sidecar
has no overlap; as a result, IoU based graph will output no
relation between them. In contrast for the CRL case, they
need to be treated as a positive pair. To overcome these is-
sues, we propose a learnable graph convolution network to
models inter-instance relations present within an image.

3. Proposed method
3.1. Preliminaries

Background. UDA [9, 24, 62] considers labeled source
and unlabeled target domain datasets for adaptation. Let
us formally denote the labeled source domain dataset as
Dy = {z7,y7} N+ | where 27 denotes the n*" source image
and y2 denotes the corresponding ground-truth, and the un-
labeled target domain dataset as, D; = {7} |, where 2}
denotes n'" the target image without the ground-truth anno-
tations. In contrast, the SFDA setting [34,40,41,47] consid-
ers a more practical scenario where the access to the source
dataset is restricted and only a source-trained model © and
the unlabeled target data D; are available during adaptation.
Mean-teacher based self-training. Self-training adapta-
tion strategy updates the detection model on unlabeled tar-
get data using pseudo-labels generated by the source-trained
model [30]. Reliable pseudo-labels are selected based on a
confidence threshold and the pseudo-label supervision loss
for the detection model is expressed as:

Lo = Lo (=, 57) + L7285 (=7, 57)
+ Lo (o, 1) + L2 (e, 97'), - (1)
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Figure 4. Overall architecture of our method. We follow a student-teacher framework for the detector model training. The proposed
Instance Relation Graph (IRG) network models the relation between the object proposals generated by the detector. Using the inter-
proposal relations learned by IRG, we generate pairwise labels to identify positive/negative pairs for contrastive learning. The IRG network
is regularized with distillation loss between student and teacher model.

where pseudo label ;' is obtained by filtering low con-
fidence predictions. However, due to domain shift, the
pseudo labels generated by the source-trained model are
still noisy. Therefore, to effectively distill target domain
information to the source-trained model, it is necessary to
improve the quality of the pseudo labels [11,46].

To this end, we utilize mean-teacher [61] which con-
sists of student and teacher networks with parameters O
and Oy, respectively. In the mean-teacher, the student is
trained with pseudo labels generated by the teacher and the
teacher is progressively updated via Exponential Moving
Average (EMA) of student weights. Furthermore, moti-
vated by semi-supervised techniques [11,46], the student
and teacher networks are fed with strong and weak augmen-
tations, respectively and consistency between their predic-
tions improves detection on target data. Hence, the overall
student-teacher self-training based object detection frame-
work updates can be formulated as:

O(LyL)
s s ) 2
Os; +— O, + 7 0. 2
@t — Oé@t + (1 — Oé)@s, 3

where £}, is the student loss computed using the pseudo-
labels generated by the teacher network. The hyperparame-
ters v and « are student learning rate and teacher EMA rate,
respectively. Although the student-teacher framework en-
ables target knowledge distillation into the source-trained

model, it is still not sufficient to learn high-quality target
features. Hence, to enhance the features in the target do-
main, we utilize contrastive representation learning.

3.2. Graph-guided contrastive learning

The Contrastive Representation Learning framework as-
sumes one category per image and relies on large batch
sizes for generating positive/negative pairs [5, 6]. How-
ever, this approach fails in object detection tasks as detec-
tion models are computationally expensive for large batch
sizes, and images contain multiple object instances. To
overcome the challenges discussed earlier, we exploit the
architecture of Faster-RCNN to design a novel contrastive
learning strategy as shown in Fig. 4. As we discussed in
Sec. 1, RPN by default, provides augmentation for each
instance in an image. As shown in Fig. 3, cropping out
the RPN proposals will provide multiple different views
around each instance in an image. This property can be
exploited to learn contrastive representation by maximizing
the agreement between proposal features for the same in-
stance and disagreement of the proposal features for differ-
ent instances. However, RPN predictions are class agnos-
tic and the unavailability of ground truth boxes for target
domain makes it difficult to know which proposals belong
to which instance. Consequently, for a given proposal as
an anchor, sampling positive/ negative pairs become a chal-
lenging task. To this end, we introduce an Instance Relation



Figure 5. (a) Instance Graph Relation Network: Given pro-
posal Rol features, the IRG models and improves the similarity
relations between proposals. Thresholding the learned relation
matrix generates instance pairwise labels used to obtain positive
(white)/negative (black) pairs for computing the contrastive loss.
(b) Graph Contrastive Loss: Projecting Rol features as keys and
queries and performing transpose multiplication provides instance
pair wise logits. The generated instance pairwise logits and in-
stance pairwise labels are used to compute the contrastive loss.

Graph (IRG) network that models inter-instance relations
between the RPN proposals. IRG then provides pairwise
labels by inspecting similarities between two proposals to
identify positive/negative proposal pairs.

3.2.1 Instance Relation Graph (IRG):

Graph Convolution Network (GCN) is an effective way to
understand the relationship and propagate information be-
tween the nodes [, 68, 74]. The proposed IRG network
utilizes GCN to learn the relationship between the RPN
proposals by considering each RPN proposal features as a
node. Let us denote IRG as G : G = (V, &), where V is
nodes and & is edges of the graph network. The nodes in V
corresponds to Rol features extracted from RPN proposals
and edges e; ; € € encodes relationship between the i*" and
the j*" proposals. We then aim to learn relation matrix &,
to find the relationship between the RPN proposals. Both
the student and teacher networks share the IRG network for
modeling relationships between object proposals.

Nodes. The nodes in IRG represent features of the RPN
proposals obtained from Rol feature extractor. The nodes
in G are denoted as V = {vy, va, ..., U }, Where v,, is the
feature of the mt" instance. Here, m is the total number
of RPN proposals. We set m to 300 for both teacher and
student. The teacher pipeline has input with weak augmen-
tations; thus, the teacher RPN proposals are better and more
consistent than strongly augmented student RPN. Hence,
we use teacher RPN proposals to extract Rol features and
construct IRG for both student and teacher networks.

Edges. The edges in the graph G are denoted as &
[€45]mxm» Where e;; is the edge of the v}" and v" nodes,
denoting the relation of corresponding instances in the fea-
ture space and can be formally represented as:

- M, where S;; = f(v;) - g(v;)7,

>~ exp(Sij)

where, f and g are learnable function.

“4)

eij

3.2.2 Graph Distillation Loss (GDL).

Let us denote the input features to IRG as F' € R™*? where
m denoting the number of proposal instances and d denot-
ing the feature dimension of the Rol features. The features
F" are then passed through graph convolution layers of IRG
to model the inter-instance relations. The output features F
are calculated as:

F =ReLU(EFW), (5)
where W is a learnable weight matrix. Subsequently, both
features F' and F are fed into the RCNN classification layer
to obtain class logits for each proposal. Let us denote the
student and the teacher class logits corresponding to fea-
tures F' as Z and Z;., respectively. Similarly, let us de-
note student and teacher class logits corresponding to IRG
output features F as Zy and Zy., respectively. To supervise
the IRG network parameters, we minimize the discrepancy
between class logits Z and Z for both student and teacher
pipeline in an end-to-end manner. In addition, we also min-
imize the discrepancy between student and teacher class
logits Z4; and Z;. to maintain consistency between both
pipelines. We denote this discrepancy as GDL which can
be formally written as:

Lopr = KL(0(Zy), 0(Zsr))

+KL(0(Zte),0(Zte)) + KL(0(Zst), 0(Zte)),
where KL denotes the Kullback-Leibler divergence, o de-
notes softmax operator. Therefore, minimizing L& py, su-
pervises the IRG network which inturn learns the instance
relation matrix (£).

3.2.3 Graph Contrastive Loss (GCL)

Instance pairwise labels. In order to utilize the con-
trastive loss, we need to understand the relation of the given
anchor proposal with other RPN proposals to form posi-
tive/negative pairs. As mentioned earlier, this relation ma-
trix (£) is obtained from the IRG network, which learns how
proposals are related to each other. For instance pairwise la-
bel generation, let us consider proposal instances ¢ and 7 and
it’s corresponding learned relation between them, e;; € £.
Now, one can obtain positive/negative pairs by simply set-
ting a threshold € on normalized £ where the e;; > € would
indicate that they are highly related, forming a positive pair
and vice versa for the negative pairs. The pairwise labels be-
tween ‘" and j*" proposal instances, denoted as M;;, can

be given as:
. 0, €ij <€
17 €ij Z €,

where ¢ is a hyper parameter. Thus, for a given anchor pro-
posal we obtain its corresponding positive and negative pro-
posal pairs from M;; .

Instance pairwise logits. As shown in Fig. 5, the Rol
features v; are projected as key k; and query g; inorder to
model better correlation among the Rol features [63]. For

M;; (6)



given it Rol features, we obtain key, query and pairwise
logits as follows:

ki = Wi - vi,

qi = Wq Vs,

Rij = qi(k;)",

where W, and W, are linear layer weights and k;, ¢; and
R;; are key, query and instance pairwise logits. To this end,
the contrastive loss can be computed from the instance pair-
wise logits (R;;) and instance pairwise labels ().
Contrastive loss. Considering any i'" proposal as an
anchor, where i € I = {1,2,...,m}, let us define a
set consisting of all the samples excluding the anchor
as A(i) = I\{i}. Further, using pairwise labels from
M, we can create a positive pair set defined as P(i) =
{p € I:M;; =1}\{i}. For given i*" proposal, the Graph
Contrastive Loss (GCL) can be calculated as:

exp (qi(kp)”
ZaeA(i) exp (qi(ka)™) [’
(N
By training with the proposed loss Lz, the student net-
work is encouraged to learn high-quality feature represen-
tations on the target domain. We show that it improves the
detector’s performance by conducting experimental analy-
sis in Sec. 4. Note that GCL is used only to update the
student network parameters, whereas the teacher network
parameters are updated via EMA.

1
focr =2 718 gy
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3.3. Overall loss function

So far, we have introduced an Instance Relation Graph
(IRG), Graph Distillation Loss (GDL), and Graph Con-
trastive Loss (GCL) to effectively tackle the source free do-
main adaptation problem for detection. Then overall objec-
tive of our proposed SFDA method is formulated as:

Lsrpa =LY+ Lepr + Laor, (8)

4. Experiments and Results

To validate the effectiveness of our method, we compare
our model performance with existing state-of-the-art UDA
and SFDA methods on four different domain shift scenar-
ios; 1) Adaptation to adverse weather, 2) Real to artistic, 3)
Synthetic to real, and 4) Cross-camera. Note that in UDA
we have access to both source and target domain data. How-
ever, in SFDA, we have access only to source-trained model
and not the source domain data for adaptation.
Implementation details: Following the SFDA setting [34,

], we adopt Faster-RCNN [54] with ImageNet [36] pre-
trained ResNet50 [18] as the backbone. In all of our ex-
periments, the input images are resized with a shorter side
to be 600 while maintaining the aspect ratio and the batch
size to 1. The source model is trained using SGD optimizer
with a learning rate of 0.001 and momentum of 0.9 for 10

Table 1. Quantitative results (mAP) for Cityscapes — FoggyCi-
tyscapes. S: Source only, O: Oracle, UDA: Unsupervised Domain
Adaptation, SFDA: Source-Free Domain Adaptation.

Type  Method prsn rider car truck bus train mcycle bicycle mAP
S Source Only 293 341 358 154 260 9.09 224 29.7 25.2
DA Faster [8] 250 31.0 405 221 353 202 20.0 27.1 27.6
Dé&Match [33] 30.8 405 443 272 384 345 28.4 322 34.6
MTOR [2] 30.6 414 440 219 386 406 283 356 351

UDA  SWDA [56] 209 423 435 245 362 326 300 353 34.3
CDN [60] 358 457 509 30.1 425 298 308 36.5 36.6
Collaborative DA [75] 327 444 50.1 217 456 254  30.1 36.8 359

iFAN DA [78] 32.6 485 228 400 33.0 455 31.7 279 353
Instance DA [78] 331 434 496 219 457 320 29.5 37.0 36.5
Progressive DA [26] 36.0 455 544 243 441 258 29.1 359 36.9
Categorical DA [71] 329 438 492 272 451 364 303 346 374

MeGA CDA [26] 377 49.0 524 254 492 469 345 390 418
Unbiased DA [11] 33.8 473 498 300 482 421 33.0 373 404

SFOD [40] 217 440 404 322 118 253 345 343 30.6
SFOD-Mosaic [40] 255 445 407 332 222 284 34.1 39.0 335

SFDA HCL [27] 269 46.0 413 330 250 281 359 40.7 34.6
LODS [39] 340 457 488 273 397 19.6 332 37.8 35.8
Mean-Teacher [61] 339 43.0 450 292 372 251 25.6 38.2 343

IRG (Ours) 374 452 519 244 396 252 315 416 371

[9) Oracle 387 469 567 355 494 447 359 38.8 431

epochs. For the proposed framework, the teacher network
EMA momentum rate « is set equal to 0.9. In addition, the
pseudo-labels generated by the teacher network with confi-
dence greater than the threshold 7=0.9 are selected for stu-
dent training. We utilize the SGD optimizer to train the stu-
dent network with a learning rate of 0.001 and momentum
of 0.9 for 10 epochs. We report the mean Average Precision
(mAP) with an IoU threshold of 0.5 for the teacher network
on the target domain during the evaluation.

4.1. Quantitative comparison
4.1.1 Adaptation to adverse weather:

Given a model trained on clear weather condition, we aim
to perform adaptation to images in adverse weather con-
ditions like fog/haze etc. The Cityscapes [10] consist of
2,975 training and 500 validation images with 8 object cat-
egories: person, rider, car, truck, bus, train, motorcycle and
bicycle. The FoggyCityscapes [58] consist of images that
are rendered from the Cityscapes dataset by integrating fog
and depth information. To this end, a model trained on
Cityscapes is adapted to FoggyCityscapes without having
access to the Cityscapes.

Results.  Table 1 provides the quantitative compar-
ison with the existing UDA and SFDA methods for
Cityscape—FoggyCityscapes adaptation scenario. From
Table 1, we can infer that the proposed method outperforms
most of the existing UDA methods such as SWDA [56],
InstanceDA [67], and CategoricalDA [71]. However, com-
pared MeGA-CDA [65] and Unbiased DA [11] methods,
our proposed method produces a competitive performance
with a drop of 2.5-3.5 mAP. But it is worth noting that,
these method make use of labelled source data during adap-
tation whereas our proposed method only has access to
source-trained model. Furthermore, compared with exist-
ing SFDA methods, SFOD [40] and HCL [27], the pro-
posed method provides improvement of 3.5 mAP and 2.4
mAP, respectively. We also compared with mean-teacher



Table 2. Quantitative results for Sim10K — Cityscapes and KITTI
— Cityscapes. S: Source only, UDA: Unsupervised Domain
Adaptation, SFDA: Source-Free domain adaptation.

Type  Method Sim10k — City  Kitti — City

AP of Car AP of Car

S Source Only 32.0 339

DA Faster [8] 38.9 38.5

Selective DA [77] 43.0 42.5

MAF [19] 41.1 41.0

Robust DA [30] 42.5 429

UDA  Strong-Weak [50] 40.1 37.9

ATF [20] 42.8 42.1
Harmonizing [3] 425 -

Cycle DA [75] 41.5 41.7

MeGA CDA [65] 44.8 43.0
Unbiased DA [11] 43.1 -

SFOD [40] 42.3 43.6

SFOD-Mosaic [40] 42.9 44.6

SFDA  Mean-teacher [61] 39.7 41.2

IRG (Ours) 45.2 46.9

self-training baseline to show that adding the proposed GCL
loss is able to enhance the features representation on the tar-
get domain, providing an improvement of 3.5 mAP.

4.1.2 Realistic to artistic data adaptation:

Here, we consider adaptation to dissimilar domains [56],
where a model trained on the real-world images is aimed
to perform adaptation towards artistic domain. We con-
sider the model trained on the Pascal-VOC dataset [13] and
adapt to two target domains, namely, Clipart [28] and Wa-
tercolor [28]. The Clipart dataset contains 1K unlabeled
images and has the same 20 categories as Pascal-VOC. The
Watercolor consists of 1K training and 1K testing images
with six categories.

Results. The PASCAL-VOC—Clipart adaptation results
are reported in Table 4. Our method outperforms the ex-
isting UDA methods such as ADDA [28] and DANN [14]
by a margin of 4.7 mAP and 0.3 mAP, respectively. More-
over, the PASCAL-VOC— Watercolor adaptation results are
reported in Table 3. Even in this case, our method out-
performs the state-of-the-art UDA methods such as SWDA
[56] and I®Net [4] by 2.6 mAP and 1.5 mAP, respectively.
Furthermore, for both Clipart and Watercolor adaptation
scenarios, our method consistently outperforms in every
category compared with pseudo-label self-training (PL) and
mean-teacher baseline.

4.1.3 Synthetic to real-world adaptation

The cost of generating and labeling synthetic data is low
compared to real-world data. Hence, it makes sense to train
a detector on synthetic images and transfer the knowledge to
real-world data. However, the style shift between synthetic

Table 3. Quantitative results for PASCAL-VOC — Watercolor.
S: Source only, UDA: Unsupervised Domain Adaptation, SFDA:
Source-Free domain adaptation.

Type Method bike bird car cat dog prsn mAP
S Source only 68.8 46.8 37.2 32.7 21.3 60.7 44.6
DA Faster [8] 75.2 40.6 48.0 31.5 20.6 60.0 46.0

BDC Faster [56] 68.6 48.3 47.2 26.5 21.7 60.5 45.5

BSR [32] 82.8 43.2 49.8 29.6 27.6 584 48.6
UDA WST [32] 77.8 48.0 45.2 30.4 29.5 64.2 492
SWDA [56] 71.3 52.0 46.6 36.2 29.2 67.3 504
HTCN [3] 78.6 47.5 45.6 354 31.0 62.2 50.1
I*Net [4] 81.1 49.3 46.2 35.0 319 65.7 51.5
Unbiased DA [11] 88.2 55.3 51.7 39.8 43.6 69.9 55.6
PL [30] 74.6 46.5 45.1 27.3 259 54.4 46.1
SFOD [40] 76.2 449 49.3 31.6 30.6 552 479
SFDA Mean-teacher [061] 73.6 47.6 46.6 28.5 29.4 56.6 47.1
IRG (Ours) 759 52.5 50.8 30.8 38.7 69.2 53.0

to real domain makes it challenging. Here, we consider such
scenario where we adapt a model trained on the synthetic
data, Sim10K [29], to a real-world data, Cityscapes [10]
under SFDA condition, i.e., synthetic data are not available
while adapting the model to the real-world images. The
model is trained on 10,000 training images of Sim10k ren-
dered by the Grand Theft Auto gaming engine. The target
Cityscapes dataset consists of 2,975 training and 500 vali-
dation images.

Results. We report the results of Sim10K—Cityscapes in
Table 2. Note that even though we adapt for only the car
category, the proposed GCL training strategy is able to get
discriminative positive pairs for different cars and improve
the feature representations through contrastive training. Our
proposed method outperforms existing UDA method like
Cycle DA [75], Unbiased DA [11] etc. by considerable
margin. Under SFDA setting, the proposed method pro-
duces state-of-the-art performance by improving ~2 mAP
compared to SFOD [40].

Cross-camera adaptation In real-world scenarios, the tar-
get domain data is captured by a camera with configura-
tions different from the source data. To emulate this cross-
camera conditions, we consider a model trained on source,
KITTT dataset [15], is adapted to target, Cityscapes [10].
The KITTI dataset consists of 7,481 training images, which
is used to get the source-trained detector model. The model
is then adapted to the target domain dataset, i.e., Cityscapes.

Results. KITTI—Cityscapes results are reported in Ta-
ble 2. Our method outperform existing state-of-the-art UDA
methods like Cycle DA [75], MeGA CDA [65] and Unbi-
ased DA [11] by considerable margin. Further in SFDA set-
ting, the proposed method produce state-of-the-art perfor-
mance by improving around 3.3 mAP compared to SFOD.
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Figure 6. Relation matrix analysis for 25 proposal Rol features before and after passing through IRG network and corresponding masked
instance pairwise labels. We can observe the IRG network models the relationship between the proposal, which maximizes the similarity

between similar proposals and vice versa for dissimilar proposals.

Table 4. Quantitative results (mAP) for PASCAL-VOC — Clipart. S: Source only, UDA: Unsupervised Domain Adaptation, SFDA:

Source-Free domain adaptation.

Type Method aero bcycle bird boat bottle bus car cat chair cow table dog horse bike prsn plnt sheep sofa train tv mAP
S Source only 356 525 243 23.0 20.0 439 32.8 10.7 30.6 11.7 13.8 6.0 36.8 459 487 419 165 7.3 229 32.0 278
DANN [14] 241 52.6 275 185 203 59.3 374 3.8 35.1 32.6 239 13.8 22.5 509 499 36.3 11.6 31.3 48.0 358 31.8

UDA DAF [§] 150 346 124 119 19.8 21.1 233 3.10 22.1 263 10.6 10.0 19.6 394 34.6 293 1.00 17.1 19.7 24.8 19.8
ADDA [28] 20.1 502 205 23.6 11.4 405 349 23 397 223 27.1 104 31.7 53.6 46.6 32.1 18.0 21.1 23.6 183 274

BDC Faster [56] 20.2 46.4 204 193 18.7 41.3 26.5 640 332 11.7 26.0 1.7 36.6 41.5 37.7 445 10.6 204 33.3 155 25.6
PL[61] 183 484 192 224 128 389 36.1 52 369 248 29.3 9.09 34.6 58.6 43.1 343 9.09 144 269 19.8 28.2
SFOD [40] 20.1 51.5 268 23.0 248 64.1 37.6 103 36.3 20.0 18.7 13.5 26.5 49.1 37.1 32.1 10.1 17.6 42.6 30.0 29.5
SFDA Mean-teacher [61] 22.3 423 23.8 21.7 235 60.7 332 9.1 247 16.7 122 13.1 26.8 73.6 43.9 345 9.09 243 37.9 422 29.1
IRG (Ours) 203 473 273 197 305 54.2 362 103 35.1 20.6 20.2 12.3 28.7 53.1 47.5 424 9.09 21.1 42.3 50.3 31.5

Table 5. Ablation study on FoggyCityscapes.

Method PL GDL GCL prsn rider car truc bus train mcycle bcycle mAP
Source Only X X X 258 337 352 13.0 282 9.1 187 314 244
MT+WW v/ X X 358 426 439 23.1 327 11.0 299 387 322
MT +SS v X X 328 414 438 182 286 112 246 383 299
MT+SW v/ X X 339 43.0 450 29.1 372 25.1 255 382 343
Ours v v/ X 372 43.1 51.0 28.6 40.1 212 282 37.1 359
Ours v /v v 374 452 519 244 396 252 315 416 371

4.2. Ablation analysis

We study the impact of the proposed GCL and IRG
network by performing an in-depth ablation analysis on
Cityscapes—FoggyCityscapes adaptation scenario.
Quantitative  analysis. The  results  for
Cityscapes—FoggyCityscapes ablation experiments are
reported in Table 5. In Table 5, the first three experiments
are performed to analyze the effect of various combinations
of weak and strong augmentation for a mean-teacher
framework in an SFDA setting. More precisely, we input
the student and teacher network with Weak-Weak (WW),
Strong-Strong (SS) and Strong-Weak (SW) augmented
images, respectively. These three experiments show that
strong-weak (SW) produces consistent and improved results
compared to other variations. This is due to mutual learning
between student and teacher networks, where student trains
on strong augmentation leading to robust prediction and
the teacher supervise the student by good pseudo-labels
predicted from the weak augmented images. Furthermore,
minimizing the discrepancy between instance relation
graph network of student and teacher framework ensures
consistency between student and teacher graph proposal
feature representations. Subsequently, addition of graph

distillation loss enhances the model performance from
34.3 mAP to 35.9 mAP. Finally, utilizing graph-guided
contrastive learning on the proposal features further helps
the model learn high-quality representations, resulting in an
increase in performance by 1.9 mAP on the target domain.
Qualitative analysis. In Fig. 6, we show the relation matrix
for the Rol features before and after it is processed by IRG.
For better visualizations, we consider 25 out of 300 Rol fea-
tures. It can be observed that relation between the proposals
are poorly defined and IRG network is able to improve these
relations through graph-based feature aggregation.

5. Conclusion

In this work, we presented a novel approach for source-
free domain adaptive detection using graph-guided con-
trastive learning. Specifically, we introduced a contrastive
graph loss to enhance the target domain representations
by exploiting instance relations. We propose an instance
relation graph network built on top of a graph convolu-
tion network to model the relation between proposal in-
stances. Subsequently, the learned instance relations are
used to get positive/negative proposal pairs to guide con-
trastive learning. We conducted experiments on multiple
detection benchmarks to show that the proposed method ef-
ficiently adapts a source-trained object detector to the tar-
get domain, outperforming the existing source-free domain
adaptation and unsupervised domain adaptation methods.
Acknowledgment: This work was supported by NSF CAR-
RER award 2045489.
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