
Autoencoder-Based Motion Artifact Reduction in Photoplethysmography (PPG) Signals 

Acquired from Wearable Sensors during Construction Tasks 

 

Yogesh Gautam, S.M.ASCE1; and Houtan Jebelli, Ph.D., A.M.ASCE2 

 
1Ph.D. Student, Dept. of Civil and Environmental Engineering, Univ. of Illinois 

Urbana-Champaign, Champaign, IL. Email: ygautam2@illinois.edu 
2Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Illinois 

Urbana-Champaign, Champaign, IL. Email: hjebelli@illinois.edu 

 

ABSTRACT 

 

Construction workers often experience high levels of physical and mental stress due to the 

demanding nature of their work on construction sites. Real-time health monitoring can provide 

an effective means of detecting these stressors. Previous research in this field has demonstrated 

the potential of photoplethysmography (PPG), which represents cardiac activities, as a biomarker 

for assessing various stressors, including physical fatigue, mental stress, and heat stress. 

However, PPG acquisition during construction tasks is subject to several external noises, of 

which motion artifact is a major one. To address this, the study develops and examines an 

autoencoder network—a special type of artificial neural network—to remove PPG signals’ 
motion artifacts during construction tasks, thereby enhancing the accuracy of health assessments. 

Artifact-free PPG signals are acquired through subjects in a stationary position, which is used as 

the reference for training the autoencoder network. The network’s performance is examined with 

PPG signals acquired from the same subjects performing multiple construction tasks. The 

developed autoencoder network can increase the signal-to-noise ratio (SNR) by up to 33% for 

the corrupted signals acquired in a construction setting. This research contributes to the extensive 

and resilient use of PPG signals in health monitoring for construction workers. 

 

INTRODUCTION 

 

The construction industry is currently facing a multitude of challenges that affect the physical 

and mental well-being of its workers. According to the Bureau of Labor Statistics, 36% of all 

occupational heat-related deaths in the US occurred in the construction industry, which uses 6% 

of the country's total workforce, making it the sector with the highest rate of fatalities (Dong et 

al. 2019). Apart from frequent accidents, chronic fatigue and tiredness are significant concerns. 

In the United States, 40% of the construction workforce experiences severe fatigue at some point 

during the day (Pablo Ruiz Padillo et al. 2022). Added to the physical health complexities, 

construction workers are also among the most prone to mental problems. A recent study found 

that construction workers are more likely to engage in behaviors that contribute to a higher risk 

of health complications, such as substance abuse, lack of sleep, and poor safety practices (Boal et 

al. 2020). The ability to detect stressors or signs of problems can help alleviate these problems in 

the industry, which demands a robust health monitoring system for real-time health monitoring 

of construction workers. 

Health monitoring has evolved to encompass a range of methods, with environmental-based, 

survey-based, and physiological methods being among the frequently employed approaches. 

Environmental-based methods access various environmental parameters like temperature, 
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humidity, etc., to assess the worker’s health status. This process undermines individual 

physiological differences and differences in activities that can be performed under the same 

environmental conditions, and such massive generalizations may not be able to yield accurate 

estimations. On the other hand, survey methods are intrusive and, thus, cannot be used for 

continuous assessment and are prone to bias (Ojha et al. 2023a). The physiological method 

measures and monitors various available metrics like temperature, heart rate, cortisol level, 

electrodermal responses, etc., for accessing multiple stressors in the body and making 

corresponding assessments. The remarkable progress made in the microchip industry during the 

past few decades has led to the miniaturization of physiological devices into wearable forms, 

facilitating the implementation of wearable physiological health monitoring. 

Wearable physiological devices can provide real-time health monitoring for construction 

workers in a non-invasive and continuous frequency. Real-time detection of various stressors 

relating to physical and mental fatigue/stress from multiple wearable sensors can help inform 

better decisions regarding health in real time, which can thus prevent severe fatalities and related 

health problems (Hwang and Lee 2017). The literature has explored several wearable devices for 

capturing electrocardiogram (ECG), photoplethysmography (PPG), and electromyography 

(EMG) signals for construction health monitoring (Ojha et al. 2023b; Shakerian et al. 2021). 

PPG devices, which detect blood volume changes in the microvascular bed of tissue, have the 

advantage of compact size, ease of use, and ability to offer vital insights into cardiopulmonary 

activities. 

PPG represents information regarding cardiac activities such as blood pressure, oxygen 

saturation (𝑆𝑝𝑂2), and pulse rate, providing access to various stressors like physical fatigue, 

mental fatigue, and heat stress. Real-time access to this information can assist in determining the 

different physical and mental health statuses of the given construction worker, making it an 

attractive technology for real-time health monitoring. Despite the multiple advantages, wearable 

PPG signals are prone to several artifacts, and much research has been performed to tackle them. 

However, motion artifact (MA) remains one of the significant challenges for obtaining a reliable 

PPG signal. One of the reasons is the frequency overlap of MA, and PPG signals over a broader 

range, making it challenging to filter the MA from the PPG signals (Park et al. 2022). Moreover, 

the dynamic nature of construction activities requires frequent motion of construction workers, 

making motion artifacts a more dominant problem for PPG usage in the construction industry. 

Such artifacts can cause significant loss and modification of the information, which cannot create 

a reliable health monitoring assessment. Thus, there is a need for the development of a dedicated 

MA removal method for PPG signals based on the construction industry for robust wearable 

physiological health monitoring of construction workers.  

To bridge the gap, the study develops an autoencoder network for motion artifact removal 

from the PPG signals acquired in a construction setting. An autoencoder is a type of artificial 

neural network that learns to encode the input data into a lower-dimensional representation and 

then decode it back to the original data. In this research, a deep autoencoder network is designed, 

trained, and tested for MA removal from PPG signals. The network utilizes MA-corrupted PPG 

signals as input to reconstruct MA-reduced signals. A case study is conducted to validate the 

developed network for construction workers. The results show that the developed network, when 

tested on data from the construction environment, provided up to a 33% increase in signal-to-

noise ratio (SNR) over the MA-corrupted signals. This study contributes to the existing body of 

knowledge by proposing a dedicated method for reducing motion artifacts in PPG signals, 

specifically tailored for the construction industry. 
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PHOTOPLETHYSMOGRAPHY FOR HEALTH MONITORING OF CONSTRUCTION 

WORKERS 

 

Photoplethysmography is a non-invasive technique based on hemoglobin's absorption of light 

that measures changes in blood volume in tissue represented as blood volume pulse (BVP) 

(Alian and Shelley 2014). PPG signals are frequently obtained from the fingertip, earlobe, or 

wrist. They have been employed for a variety of medical applications, including the assessment 

of blood oxygen saturation (𝑆𝑃𝑂2), heart rates, and other derivatives such as pulse rate, heart 

rate variability, and pulse pressure. Because of this vital access to various cardio-pulmonary 

metrics, it has been frequently used for cardiovascular monitoring.  

The author’s previous study has explored the usage of PPG for accessing construction 

workers’ physical and mental status and verified its feasibility (Jebelli et al. 2018). There have 

been other studies in construction settings; for instance, Ojha et al. investigated the usage of PPG 

to analyze dehydration in construction workers (Ojha et al. 2020). Although the use of PPG for 

monitoring the health of construction workers has been validated using various methods, the 

wide-scale adaptation is still lagging. 

 

PPG SIGNAL DENOISING AND ARTIFACT REMOVAL FOR ENHANCED HEALTH 

MONITORING IN CONSTRUCTION WORKERS 

 

One of the challenges for the extensive use of PPG for health monitoring is separating the 

physiological information from noise and artifacts. Because of the overlapping of MA frequency 

and PPG signal frequency, MA removal remains one of the significant barriers (Couceiro et al. 

2014), affecting the measurement's accuracy and reliability. 

Wavelet transform-based techniques have been widely used for motion artifact removal in 

PPG signals. These techniques use the wavelet transform to decompose the PPG signal into 

different frequency bands and remove the artifact by selectively reconstructing the signal from 

the high-frequency sub-bands. Some popular wavelet-based methods for artifact removal in the 

PPG signals used in the literature include discrete wavelet transform (DWT) (Joseph et al. 2014), 

stationary wavelet transform (SWT) (Lee and Zhang 2003), and dual-tree complex wavelet 

transform (DT-CWT) (Raghuram et al. 2012). Wavelet transform-based methods may introduce 

phase distortion, which can cause a loss of information (Goh et al. 2020).  

The other common approach is leveraging IMU or accelerometers to reference the motion 

and then reconstructing the PPG signals with the corresponding motion information (Asada et al. 

2004; Lee et al. 2019; Wood and Asada 2006). This approach requires extra hardware, 

calibration, and synchronization between the two devices. Moreover, motion artifacts in the PPG 

signal and accelerometer data do not strongly correlate as well (Yousefi et al. 2012). 

Deep learning has emerged as a powerful signal processing and denoising application tool. In 

recent years, various deep learning models have been proposed and applied in denoising signals, 

including audio (Purwins et al. 2019), and biomedical signals (Tobore et al. 2019). Autoencoder 

has been a popular deep-learning network for denoising images, and works have also been 

extended to signals (Saad and Chen 2020). There have also been some similar investigations on 

physiological signals as well. For instance, Leite et al. proposed a deep denoising autoencoder 

(DDAE) for removing noise from electroencephalography signals (Leite et al. 2019). Machine 

learning methods thus have been able to achieve better performance compared with traditional 

signal processing and hardware-based methods mentioned earlier. 
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While prior research has indeed demonstrated the effectiveness of machine learning (ML) 

models in reducing noise from various physiological signals, the potential of modern machine 

learning algorithms in denoising PPG signals remains relatively unexplored. This gap in the 

literature is even more pronounced when it comes to the context of the construction industry. 

Addressing these gaps, this study introduces a novel approach. It focuses on the design, 

development, and validation of an autoencoder network tailored to removing motion artifacts 

(MA) from PPG signals, particularly within the challenging construction environment. An 

autoencoder is a specialized neural network that learns to extract essential features from input 

data, effectively enabling the separation of valuable information from unwanted noise. 

Through the development of this specialized autoencoder network, our study not only 

addresses the existing research gap but also unlocks opportunities for the extensive application of 

PPG signals in monitoring the real-time health of construction workers. By incorporating 

sophisticated machine learning methods like autoencoders, there is potential for substantial 

improvements in signal accuracy and dependability. Consequently, this advancement can make 

notable contributions to the overall well-being and safety of individuals employed in the 

construction industry. 

 

METHODOLOGY 

 

The study is carried out in two phases. In the first phase, data acquisition is performed for 

subjects in a controlled construction setting with prespecified construction tasks for a 

predetermined time frame. Through the experiment, motion artifact-free reference signals and 

motion artifact corrupted signals are acquired for the study. This phase is explained in more 

detail in the next section. In the second phase, reference PPG signals acquired during the 

stationary phase are used to train an autoencoder network that learns to reconstruct the MA-free 

PPG signal as the output of the network. For testing the performance of the trained network, 

unseen data acquired from multiple subjects performing various construction tasks is leveraged. 

The second phase is explained in more detail in the following subsection.  

Network architecture and training. The autoencoder network comprises two parts, an 

encoder and a decoder connected by an embedding layer, as shown in Figure 1. The encoder and 

decoder networks are based on a Dense layer with opposite sequences and an embedding unit to 

transit between the encoder and decoder. The encoder uses blood volume pulse (BVP) signals 

acquired through photoplethysmography as input to transit to the embedding vectors. The 

encoder layer encodes the BVP input vector to a double unit embedding vector using the 𝑊𝑗 

matrix, passing through two sets of hidden dense layers, both activated by the sigmoid functions. 

Based on the information in the embedding vector, the decoder layers decode the embeddings to 

the output vector representing the regenerated BVP signals. In the decoder, the 𝑊𝑘 matrix 

transforms the embeddings to the final size, combining two hidden dense layers activated by the 

sigmoid function. Equations 1, 2, and 3 present the computation in encoding, decoding, and 

sigmoid functions, respectively. 

 𝑦𝑗 = 𝜎(𝑊𝑗 ∗ 𝑋 + 𝑏)                                                        (1) 

 𝑋∗ = 𝜎(𝑊𝑘 ∗ 𝑌 + 𝑏1)                                                        (2) 

 𝜎(𝑥) = 𝑒𝑥1+𝑒𝑥                                                             (3) 
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Here, 𝑋, 𝑊𝑗 , 𝑊𝑘, 𝑌, 𝑋∗, 𝜎 , 𝑎𝑛𝑑 𝑏 represent input signals, encoding weights, decoding weights, 

embeddings, autoencoder output (regenerated signal), sigmoid function, and bias vector 

respectively. The input(𝑋∗) and output(𝑋∗) data for the network consist of time series data 

points representing BVP data obtained from photoplethysmography with a window size of two 

seconds. Window size defines the length of a segment, encompassing a specific number of 

sequential time steps, used as input for processing in the autoencoder network. For the training 

process, the mean absolute error is used as the loss function ℒ(𝜃) (Equation 4). During each 

iteration of the training process, the weights {𝜃 ∈ 𝑊, 𝑏} are updated to minimize the given loss 

function ℒ(𝜃) as given by Equation 5 based on Adam optimizer with a learning rate of 0.0001 . 

The autoencoder network is designed and developed using Keras API with TensorFlow backend. 

 

 ℒ(𝜃) = 1𝑛 ∗  ∑ |𝑋𝑖∗ − 𝑋𝑖𝑁𝑖=1 |                                                  (4) 

 𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃ℒ(𝜃)                                                       (5) 

 

The reference signals acquired during the stationary phase are leveraged for training the 

autoencoder network. The reference signal is used as both input (𝑋) and output (𝑋∗), enabling 

the network to learn the general structure of the uncorrupted signals. Additionally, the reference 

signals are corrupted with the Gaussian noise and then used as an input (𝑋) with the reference 

signals as output (𝑋∗). This second set trains the network to reconstruct the BVP signals in the 

presence of artifacts. A sample result of denoised signals from the developed autoencoder 

network is presented in Figure 2. 

 

 
Figure 1. Architecture of the developed autoencoder network for artifact reduction. 

 

 
 

Figure 2. A sample of MA removed output signal reconstructed by the autoencoder 

network compared with the corrupted signal acquired during the rebar tying task. 
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For testing purposes, data collected from various construction tasks, namely rebar tying, low-

intensity material handling, and high-intensity material handling (explained in more detail in the 

next section), are used to access the autoencoder networks’ performance and compare it with 

other competing methods. All the comparisons are evaluated against signal-to-noise ratios (SNR) 

presented in the analysis and results section. 

 

EXPERIMENT AND DATASET DESCRIPTION  

 

This section explains the experiments performed for validating the study. An off-the-shelf 

wristband biosensor was used to obtain PPG signals from the less dominant wrist of the subject 

(“ 4 wrist and”). In total, 7 subjects were employed for the study, where data acquired during 

the stationary phase is used as training data and data acquired during the specific construction 

task is used for testing. The construction tasks performed for the experiment are illustrated in 

Figure 3.  

 

 
 

Figure 3. Experimental setup for material handling and rebar tying; 3A: Material 

handling-task with an overview of the experimental location; 3B: Subject performing rebar 

tying task with wristband bounded in a white box; 3C: PPG sensor with light emitting 

diode (LED) and photodetectors (PD) bounded in the white dashed box. 

 

For the first task, the subjects tie up rebars set up in an area of 1.21m by 0.6m for a total of 

480 seconds with 120 seconds break after the first 180 seconds. 30 rebars of 0.5 inches in 

diameter with a length of 4 feet are put in a cross position, and the subjects tie up the rebar with 

tie wire using a manual wire twister. The average number of knots during the study was 5 knots 

per 60 seconds. The second task is to perform a loading-unloading of a 2.3 Kg (5 lbs.) bag to 6 

meters. This task is performed for a total of 480 seconds with 120 seconds break after the first 

180 seconds. During the tasks, the subjects transport an average of 1 bag per 15 seconds. For the 

third task, the same structure as that of task 2 is used but with a bag weight of 13.6 Kg (30 lbs.). 

During this task, the subject transported the bags at an average rate of 1 bag per 22 seconds. The 

activities are summarized in Table 1.  

 

RESULTS AND DISCUSSION 

 

To assess the effectiveness of the proposed approach in mitigating motion artifacts, the 

authors employed the signal-to-noise ratio (SNR) metric, as established in (Gonzalez-Moreno et 
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al. 2014). SNR quantifies the relationship between the signal power and motion artifact power. A 

higher SNR value indicates superior performance in removing artifacts. The autoencoder 

network was evaluated independently for distinct construction tasks, and outcomes are 

summarized in Table 2. 

 

Table 1. Summary of the construction task performed for the data acquisition. 

 

S.no. Activity  Number of Subjects Duration (S) 

1 Rebar tying 7 480 

2 Low-intensity material handling 7 480 

3 High-intensity material handling 7 480 

 

Table 2. Task-wise SNR value comparison for the autoencoder network 

 

Tasks Initial SNR Final SNR % Change 

Rebar tying 16.2 23.33 44% 

Low-intensity material handling 31.08 32.77 5% 

High-intensity material handling 15.15 23.00 52% 

Overall 16.12 21.43 33% 

 

Table 2 presents the computation of initial and final SNR values for unprocessed and 

denoised PPG signals acquired during the construction task. Notably, a substantial increase in 

SNR values was observed for the high-intensity material handling and rebar tying tasks, both of 

which had initially lower SNR values. Conversely, the low-intensity material handling task, with 

a comparatively higher initial SNR value, exhibited only marginal enhancement after denoising. 

Particularly, the SNR improvement was remarkable for the high-intensity material handling task, 

showing a gain of over 52%, whereas the low-intensity material handling task demonstrated a 

modest 5% enhancement. 

In order to comprehensively evaluate the proposed method's efficacy, a comparative analysis 

was conducted against alternative techniques, including the wavelet decomposition method and 

interval-dependent denoising method (Chen et al. 2015; Joseph et al. 2014). Each method was 

independently applied to the PPG dataset, and SNR served as the metric for comparison. The 

obtained results are detailed in Table 3. 

 

Table 3. Comparison of the proposed autoencoder with other denoising methods 

 

Name 𝑆𝑁𝑅 % change 

Unprocessed Signal 16.12 - 

Wavelet Decomposition Method 17.70 10% 

Interval Dependent Denoising 18.94 17% 

Proposed Network 21.43 33% 

 

The autoencoder model exhibits superior performance compared to the competing methods, 

achieving a remarkable up to 33% enhancement in the SNR value of motion artifact-corrupted 

signals. The wavelet decomposition method yields a 10% improvement, while interval-

dependent denoising algorithms yield a 17% improvement. Impressively, the proposed 
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autoencoder network surpasses even the best-performing alternative, Interval Dependent 

Denoising, with a 13% higher SNR value. In essence, the comparative analysis underscores the 

potential of the proposed method to significantly enhance the quality of physiological signals by 

proficiently eliminating motion artifacts. 

 

CONCLUSION 

 

The study introduces an autoencoder-based approach to tackle motion artifacts in PPG 

signals, particularly designed for construction environments. It focuses on reconstructing motion-

affected PPG signals, yielding clearer output. The method's effectiveness was evaluated through 

diverse experiments involving individuals in construction tasks. The findings have valuable 

implications for bolstering the reliability of PPG signals in monitoring construction workers' 

health. The developed model could be integrated into existing health monitoring systems 

utilizing PPG signals for further validation and framework advancement. While the study 

employs a simple autoencoder model with a compact size, future research could delve into more 

advanced architectures and hyperparameter tuning, especially when working with larger training 

datasets. Another limitation emerges in real-time deployment due to recorded data usage. To 

address this, future work could extend the approach to real-time operation and optimize model 

size and inference time for portable devices like mobiles and microcontrollers. In essence, the 

proposed network holds the potential to revolutionize health monitoring at construction sites, 

ensuring dependable and precise utilization of PPG signals. 
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