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Abstract—Motivated by applications to low-latency secret key
generation in physical-layer security, we study Polarization-
Adjusted Convolutional (PAC) codes for source coding with side
information. Source PAC codes operate in a dual manner to
channel PAC codes by introducing a rate-one convolutional code
after the polarization transform. The decoding of source PAC
codes requires a careful scheduling of the successive cancellation
decoder and a careful optimization of the rate profiling. Our
empirical results demonstrate the improved performance of
source PAC codes over regular polar codes using Successive
Cancellation List (SCL) decoding. We illustrate the performance
in terms for key generation rate in a secret-key generation
setup over an Additive White Gaussian Noise (AWGN) channel,
suggesting that PAC codes could improve the performance of
physical-layer security schemes at short blocklength.

I. INTRODUCTION

Driven in part by emerging applications such as augmented

reality and remote control, existing and emerging communica-

tion standards have pushed the development of low-latency and

reliable coding schemes, as exemplified by the Ultra-Reliable

Low-Latency Communication (URLLC) requirements in the

5G standard. These new stringent requirements have called for

the development of new and improved error-control coding at

very short blocklength of N = 256 and below [1]. Candi-

date coding schemes that have shown promising performance

include extended Bose-Chaudhuri-Hocquengham (eBCH) [2],

Reed-Muller (RM) codes [3], polar codes [4] and Polarization-

Adjusted Convolutional (PAC) codes [5]–[7], especially when

used in combination with decoding techniques such as Suc-

cessive Cancellation List (SCL) [7], [8], Ordered-Statistics

Decoding (OSD) [9], or Guessing Random Additive Noise

Decoding (GRAND) [10].

While much of the focus has been on channel coding,

source coding with side information [11] is another coding

mechanism with useful applications. In particular, source

coding with side information plays a central role in physical-

layer security [12] for the reconciliation phase of secret-

key generation protocols [13], [14], including Quantum Key

Distribution (QKD) [15]. Despite the duality between source

coding with side information and channel coding [16], which

allows one to transform a good channel in a good source code

with side information for symmetric channels and sources,

extending the results to asymmetric sources presents some

challenges [17]. Hence, finding explicit and direct code con-

structions for source coding with side information remains of
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under grant 2148400 as part of the Resilient & Intelligent NextG Systems
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interest. Polar codes are of particular interest for source coding

with side information, not only because of their asymptotic

optimality [18] and finite length performance [14], but also

because polar codes for source coding with side information

have proven a useful building block to construct codes for

a host of multi-user information theory problem in an almost

systematic way [19]–[21]. The main contribution of the present

work is i) to propose encoding and decoding algorithms for

source PAC codes; and, ii) to demonstrate numerically their

excellent performance.

The remaining of the paper is organized as follows. We

review necessary notation and concepts related to PAC codes

in Section II-B. We then introduce the source coding with

side information problem and our proposed source PAC codes

in Section III, and present numerical results in Section IV.

We conclude the paper with a discussion of the usefulness

of our proposed approach for low-latency key generation over

wireless channels in Section V.

II. POLARIZATION-ADJUSTED CONVOLUTIONAL CODES

A. Polar Codes

A polar code for channel coding is characterized by its

blocklength N ≜ 2n, the number of information bits K, and

an information set A ⊂ [1;N ] that specifies how to encode

information bits. Specifically, a vector of K information bits

m is encoded into a length N vector u such that uA ≜ m and

uAc ≜ 0, the all-zero vector. The set Ac is called the frozen

set. Upon setting G =

[

1 0
1 1

]

, the base polarization matrix,

and G⊗n the nth order Kronecker product of G, a codeword x
is created through the operation x ≜ uG⊗n, a process known

as the polar transform. The structure of the matrix G⊗n allows

for an encoding complexity of O(N logN). The codeword x
is then sent over the channel to a receiver that observes a noisy

version y, e.g., yi = xi + ni, ni ∼ N (0, σ) if the channel is

an Additive White Gaussian Noise (AWGN).

The standard decoding algorithm for polar codes is the

Successive Cancellation (SC) decoder, by which bits from

the information set A are successively decoded based on

their Log-Likelihood Ratio (LLR) given the past decoded bits

according to the maximum-likelihood rule:1

∀i ∈ A ûi =

{

0 if λ0
i = ln P (y,û0:i−1|ûi=0)

P (y,û0:i−1|ûi=1) > 0

1 else.
, (1)

1It is sometimes convenient to consider a randomized decoding rule to
analyze polar codes [22].
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∀i ∈ Ac ûi = 0, (2)

where û0:i−1 = {û0, û1, . . . , ûi−1} denotes the vector of past

decisions. The LLRs can be efficiently computed recursively,

resulting in a decoding complexity of O(N logN). The LLRs

can also be viewed as decisions made at the output of indi-

vidual bit channels, corresponding to channels with input bit

ui and output (y, û0:i−1). The choice of the set A, called rate

profiling, plays a crucial role in determining the performance

of polar codes, and several criteria have been proposed based

on the capacity of the bit channels [23] or the RM profile [24],

which consists in enumerating the Hamming weight of RM

codewords and selecting those with highest weight.

Given that each decision in the SC decoder relies on previ-

ously decoded bits, one bad decision can propagate and affect

future ones. SCL list decoding [25] mitigates this problem and

be implemented relatively efficiently. In SCL, the decoding

process is viewed as following branches of a tree and tracks

up to L branches in a list. The tree splits at every non-frozen

bit, creating two branches ui = 0 and ui = 1. A path metric

is updated based on the decision of each path, and when the

number of paths is greater than L, the list is pruned to track

L paths, keeping the paths with the lowest path metrics.

B. PAC Codes

Polarization-Adjusted Convolutional (PAC) codes have been

introduced as a means to improve the finite-length performance

of polar codes. In polar codes, the rate profiling consists in

identifying the bit-channels that are either almost noiseless or

completely noisy, corresponding to a rate assignment of 0 or

1 to each bit-channel. While this approach is asymptotically

optimal [4], there is a loss in performance at small and medium

blocklengths because polarization takes place relatively slowly.

The main idea behind PAC codes is to augment the polar

code with an outer rate one convolutional code before the

polar transform. Upon denoting v and u the input and the

output of the convolutional code, respectively, the encoding

process remains similar to that of polar codes. A rate-profile

associated to an information set A determines the placement

of information bits, so that vA contains the information bits

and vAc = 0. The use of an RM profile was shown to

yield significant performance improvements [5] over polar

codes, while recent results suggest that adapting the rate-

profile to the specific structure of PAC codes yields further

improvements [26]. Despite attempts to analyze PAC codes,

e.g., from the perspective of the number of minimum weight

codewords [8], [27], a theoretical justification for the perfor-

mance of PAC codes and the identification of optimal rate

profiles remains elusive. Nevertheless, several follow-up works

have provided insight into the complexity of PAC decoding [7],

[28]. PAC codes can be viewed as a specific case of polar codes

with dynamically frozen sets [29], [30].

III. SOURCE PAC CODES

A. Source Coding with Side information

We are interested here in the problem of source coding

with side information [11], in which the encoder observes

N independent and identically distributed (i.i.d.) realizations

x ≜ {xi}
N

i=1, xi ∈ {±1}, of a Bern(p) distribution and

compresses them into a message m. The receiver obtains

m and has access to N observations y ≜ {yi}
N

i=1 where

yi = xi + ni and ni are i.i.d. realizations of an N (0, σ2)
distribution to form an estimate x̂ ≜ {x̂i}

N

i=1 of x. This

special setup models the type of source models that is common

in secret-key generation over wireless channels [14]. The

objective is to achieve a low frame error rate P(x̂ ̸= x) while

reducing the size of m as much as possible.

Polar source coding operates in a dual manner to polar

channel coding. Polarized bits are computed from the sequence

of observations x as u ≜ xG⊗n and a rate-profile is used to

select the polarized bits forming the message m. Intuitively,

the bits revealed are high entropy bits that are difficult to

reconstruct, while the non-revealed bits with low-entropy are

reconstructed by the decoder using SC decoding and the side

information y. The asymptotic optimality of source polar-

ization [18] holds under slightly more general assumptions

than channel polarization [4] because it does not require any

symmetry in the source distributions. This observation was

leveraged to extend polar constructions to multi-user channel

coding problems, see e.g., [20] for one of the first such

applications.

B. Source PAC Codes

The encoding and decoding process for source PAC codes

is illustrated in Fig. 1. As in traditional source polarization,

the N source bits x are mapped to u through the polarization

transform G⊗n as u ≜ xG⊗n. Following polarization, the bits

of u are sent through the N ×N bit-reversal operation matrix

P and we let uP ≜ uP . The rationale for this permutation

matrix will be further discussed in Section III-C, suffice here

to say that it ensures that the decoder is able to decode bits in

the correct order during successive cancellation. The permuted

polarized bits uP are then convolved using a polynomial g =
[g0, g1 . . . , gm] to generate v, where vi =

∑m

j=0 gju
P
i−j , gk ∈

{0, 1} and g0 = gm = 1 by convention.2 The convolutional

2This order of encoding constitutes the main difference with the PAC
scheme for channel coding in which the convolution is performed before

polarization encoding.
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Fig. 1: Block diagram of source coding with side information

using PAC methodology.
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coding is succinctly described by the matrix operation v ≜
uPT , with T an upper triangular Toeplitz matrix, filled out by

the coefficients of g as in (3) below.

T =

























g0 . . . gm 0 . . . 0

0 g0 . . . gm
...

... 0
. . .

. . .
...

...
. . .

. . . 0
...

... 0 0 g0 g1
0 . . . . . . 0 0 g0

























(3)

Once v is generated, rate profiling is performed to select a

set of positions F ⊂ [1;N ] of bits to reveal. Thus, only

the bits vF are revealed to the decoder. The decoder’s task

is to then identify the remaining bits in the set Fc with the

help of the side information. Once u has been obtained, the

polar transform is inverted to get back the original source

bits x. As for PAC codes, the choice of the rate-profiling

significantly impacts the overall performance and is discussed

in Section III-D.

C. Decoding of Source PAC codes

The complete algorithm for SCL decoding of source PAC

codes is given in Algorithm 1. Note that the algorithm relies

on routines updateLLRs (to update LLRs), UpdatePM (to

update path metrics), updatePartialSums (to reconstruct the

bits at each stage of polarization), duplicatePath (to duplicate

a path in the decoding tree), prunePaths (to remove branches

in the tree), and pruneToOnePath (to reduce the list of paths

to a single one) that are identical to those in [25] and not

reproduced here for brevity. List source decoding of PAC

codes with side information operates similar to the non-PAC

case. For bits that are not revealed, ûi is estimated just as

source coding is traditionally done. For i ∈ F , vi is revealed

and uP
i is deconvolved from vi and the current memory

(lines 31-35 in Algorithm 1). If the recent bits of uP (more

specifically the vector of bits uP
i−m:i−1 in memory) have all

been decoded correctly, vi, which was a linear combination

of uP
i and the memory, will map back to uP

i correctly and

will behave just as if uP
i were revealed. However, if the local

memory contains erroneous bits, decoding even the frozen bit

correctly bit is not guaranteed. This means that, while good

paths are unaffected by PAC, bad paths become even worse

and generate a much larger path metric.

We now discuss the importance of the shuffling, using

Figure 2 as an illustration. The first two bits to be decoded in

polar codes are u0 and u2, hence if F = {0, 1}, one would

reveal uP
0 = u0, u

P
1 = u2. However, since v is already created

from the shuffled u, for the same F , one would reveal v0, v1.

This emphasizes the need for the shuffling, for without it, the

second vi to be decoded would be a function of u0 and u1, a

bit that has not been decoded yet. Furthermore, even if vi were

to be revealed, it would not give us information on u2, which is

necessary to continue the decoding. Thus, the shuffling ensures

Algorithm 1: SCL decoding of source PAC codes

input : vi∈F , received LLRs λn, F , list size L,

convolutional generator g

output: message estimate x
1 L ← 1
2 LLRs = zeros([N , n+1, 2L]) // Contains all λ

at all stages and lists

3 β = zeros([N , n+1, 2L]) // Contains all bits

at all stages and lists

4 PM = zeros([1:2L])

5 for i← 0 to N − 1 do

6 if i ∈ F then

7 for l← 1 to L do

8 j = BitPerm(i)

9 LLRs[l]← updateLLRs(LLRs[l], β[l], j)

// Same as SCL

10 vi ← vi // Convolved bit vi
revealed

11 mem ← β[0, i−m : i− 1, l] // If

i−m < 0, append with zeroes

12 ûP
j ← convUndo(vi, mem, g) // uP is

recreated

13 β[0, i, l]← ûP
j

14 PM[l] = UpdatePM(LLRs[0,j,l],ûP
j )

15 β[l]← updatePartialSums(β[l]) // same

as SCL

16 end

17 else

18 for l← 1 to L do

19 LLRs[L+ l], β[L+ l], PM[L+ l] ←
duplicatePath(LLRs[l], β[l], PM[l] )

// same as SCL

20 L ← 2L
21 end

22 if L > L then

23 LLRs, β, PMs ← prunePaths(LLRs, β,

PMs) // same as SCL

24 L = L
25 end

26 end

27 β∗ ← pruneToOnePath(β, PM) // Keep the 1

path with lowest metric

28 ûP = β∗[0, :] // This row is are the

bits on the far right

29 return x̂← ûPPG
30 end

31 subroutine undoConv(v,mem, g)

32 uP
i ← vi

33 for i← 1 to m do

34 uP
i ← uP

i ⊕mem[m− i]g[i]
35 end

36 return uP
i
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Fig. 2: The first two bits decoded in an N = 4 length polar

code diagram. The side information comes from x (the left

hand side), and the λs flow left to right.

that decoding actions are causal and that one obtains the bit

that would be expected in standard polar coding. Additionally,

the LLR matrix is a matrix filled with all LLRs λs at all stages,

and is filled in at indices j = iP following the decoding

process (e.g. LLR[1] is filled and then LLR[3] from Figure

2). Our β is a matrix of the same size but is filled with all

the bits of each stage, and it is filled such that β[i] = uP
i .

This allows the memory to be easily grabbed, but results in

ûP being the output, instead of û. The process can be seen

in more detail in Algorithm 1, and using Figure 2 we shall

discuss a simple example. We start with λ2 = (λ2
0, λ

2
1, λ

2
2, λ

2
3),

which corresponds to the vector of received LLRs from the

channel, and fill the first row of our LLR matrix. We make

our calculations left to right to generate λ1
0 and λ1

2, the LLRs

after the first stage of polarization, and fill the second row

of the matrix at positions 0 and 2. Suppose for the sake of

illustration, we reveal only bits at position 0 (v0, i = 0) and 1

(v1, i = 2) to the decoder (F = {0, 2}). The decoder’s task is

then to determine bits at the positions 2 and 3 to recover the

whole vector u and then reconstruct x. Since bit at position 0 is

known, we know v0 = u0 and propagate it back to calculate λ0
2

from λ1
0, λ1

2 and value of the bit at position 2. More precisely,

we add the two LLRs with λ1
0 adjusted for sign by multiplying

with 1−2û0. That would then allow us to decode û2. We can

now update our LLR matrix at the last row in indices 0 and

2, generate β at indices 0 and 1 at the last row , as well as

β at the row above in indices 0 and 1, since we can calculate

{uP
0 + uP

1 , u
P
1 }. We then obtain λ1

3 and λ0
3 (and update the

matrix accordingly). At i = 2, BitPerm(i) = 1, we are given

v2 = uP
2 + uP

1 = u1 + u2 (note that due the shuffling we are

using previously decoded bits and only have one unknown u1).

If we have calculated previous bits correctly, we can properly

estimate β[2] = u1, and ultimately use it to decode u3. At

the end, ûP will have been created and x̂ can be recovered as

ûPPG⊗n.

D. Weighted Sum for Source Coding with Side Information

The choice of the rate profiling is key to achieve finite-

length performance with PAC codes. While the RM profile

offers good performance, we propose a modification based

on [26] to further improve performance. The key idea behind

the rate-profile of [26] is to identify the bit-channels to transmit

information by accounting for the entire transform consisting

of both the convolution and the polarization matrices. [26]

considers each bit before convolution and accounts for all the

polarization channels W it goes through. Briefly, τ represents

the number of information bits being combined by the con-

volutional code, to be transmitted over a particular polarized

bit-channel whose reliability is given by the metric ω. Then,

the metric θ, for the information bit before the convolution,

is the sum over all the bit-channels that the information bit is

sent over, but weighted by ω/(τ +1) for each underlying bit-

channel. The more information bits being linearly combined

from a generator g in a channel, the more τ is increased,

meaning an error here would be more disastrous and the metric

θ is lowered. However it is increased if the channels that are

being combined have strong reliability metrics themselves, as

ω is proportional to the reliability of any one channel. We

impose the same metric found in equation (12) of [26], yet

we account for the fact that the choice of revealed bits comes

at the end, as opposed to channel codes when the selection

of frozen bits is at the beginning. This means any bit v is a

sum of previous (shuffled) bits. While we use the same overall

algorithm as [26], we modify equation (12) to be:

θi
△
=

m
∑

j=0

gjω[i−j]P

1 + τ[i−j]P
,

with
ω[i−j]P

1+τ[i−j]P
= 0 when i − j < 0. We denote the resulting

profiling from [26] and our modified equation as Source

Weighted Sum (SWS).

IV. NUMERICAL RESULTS

We now investigate different setups of PAC source coding

with side information and compare the error correcting perfor-

mance of PAC codes versus compared the original polar codes.

To evaluate performance, we explore different rates, block

lengths, and rate profiles. Our simulations consider a Binary

Phase-Shift Keying (BPSK) source x whose side information

y is obtained by transmitting the symbols over an AWGN

channel. For the case of a symmetric source x, we obtain as

expected results very similar to [7] because of the duality of

channel and source coding. In addition, we also show how the

benefits of PAC codes extend to asymmetric sources. Results

are summarized in Figures 3-5.

For the convolutional transform we use 0o133 as the gener-

ator coefficients, with a constraint length m = 6 (generator

length = 7). This generator is commonly used throughout

the literature and yields good performance, although there is

currently no known optimal generator.

We compare different list sizes in Figure 3. We see that

using PAC, a list size of 32 is able to compete with list size

of 256. Using list size 256 and PAC, we are able to see nearly

a third of a dB gain in performance. As seen in Fig. 4, we also

show that PAC codes maintain the performance gain when the

source x is asymmetric. Therein, PAC with a list size of 32

when the source is Bern(.3) offers benefits similar to when it

is a Bern(.5) source. Lastly, in Figure 5, the codes considered

have a rate different than .5. This figure, alongside Figure
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R

Source Codes: FER vs SNR, (128, 64), RM-Polar

SCL(256)

PAC SCL(32)

PAC SCL(256)

Dispersion Bound [31]

Fig. 3: PAC performance for (128, 64) code and symmetric

source X ∼ Bern(0.5). PAC source codes achieve polar code

performance with a much smaller list size and outperform

them for the same list size. Note that for (128,64) SWS and

RM are equivalent. We are able to achieve similar results as

[7].

1 1.5 2 2.5 3

10−2

10−1

SNR

F
E

R

FER vs SNR, (64, 32), X ∼ Bern(.3)

SCL(32) RM-Polar (2dB)

PAC SCL(32) RM-Polar (2dB)

PAC SCL(32) SWS-Polar (2.5 dB)

Fig. 4: PAC performance for N = (64, 32) code from an

asymmetric source X ∼ Bern(0.3).

4, demonstrates the importance of choosing the frozen set

correctly, as our SWS metric can be seen to vastly outperform

the metric of RM-Polar from [24].

V. SECRET KEY GENERATION

The benefits of source PAC codes over standard source

polarization yield direct benefits to any application that uses

source polarization in the short block length regime. Notably,

[32], [33] exploit polar codes for secret key generation. In [14],

Alice and Bob have access to X and Y respectively, where Y
is a noisy version of X . Alice and Bob then perform informa-

tion reconciliation, with the goal of Bob reliably reconstructing

a quantized version of X with as few bits as possible. Eve also

has access to the bits revealed to Bob. Ultimately the key is

generated through source polarization with side information,

meaning any improvement in the source coding rate yields

an equal improvement in the secret key rate. In Figure 6,

analogous to showing that one can use a higher rate with

PAC codes, we show the FER vs Rate under a fixed noise

1 1.5 2 2.5 3

10−2

10−1

SNR

F
E

R

FER vs SNR, (128, 85)

SCL(32) RM-Polar (2dB)

PAC SCL(32) RM-Polar (2dB)

PAC SCL(32) SWS-Polar (2.5 dB)

Fig. 5: PAC at a rate smaller than 1
2 . Here we use the generator

found in [26], and are able to achieve similar performance.

constraint for N = 64 length codes. It is clear that for any

rate, our source PAC codes achieve improved performance.

At such a small blocklength, this increase is non-trivial. For

example, if one wants to transmit with probability of error

ϵ ⩽ .01, one needs to reveal only 36 bits with PAC and 38

with Polar, a 5% decrease in rate.

Since the PAC benefits in our algorithm only result from

the frozen bits, it is no surprise that the benefits become more

apparent when |F| gets larger. Even further, if the last revealed

bit comes before the first information bit, as is common in

very low compression rates, our codes will behave exactly

as polar codes. We also notice that due to bits relying more

on the correct decoding of previous bits, as well as the fact

that revealed bits are no longer guaranteed to be correct, even

though the overall FER sees improvement, the BER is similar

when comparing Polar and PAC. More specifically this means

that the BER of PAC messages that were not decoded correctly

are much higher than incorrect Polar messages, giving weight

to our interpolation in III-C that incorrect paths are made even

worse.

0.3 0.4 0.5 0.6 0.7

10−4

10−2

Rate

F
E

R

FER vs Rate, N = 64, σ = .79

SCL(32), RM-Polar

PAC SCL(32), SWS

PAC SCL(32), RM-Polar

Fig. 6: Given a fixed noise of σ = .79 for the side information,

the FER at various rates, under list size L = 32.
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