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Abstract—Motivated by applications to low-latency secret key
generation in physical-layer security, we study Polarization-
Adjusted Convolutional (PAC) codes for source coding with side
information. Source PAC codes operate in a dual manner to
channel PAC codes by introducing a rate-one convolutional code
after the polarization transform. The decoding of source PAC
codes requires a careful scheduling of the successive cancellation
decoder and a careful optimization of the rate profiling. Our
empirical results demonstrate the improved performance of
source PAC codes over regular polar codes using Successive
Cancellation List (SCL) decoding. We illustrate the performance
in terms for key generation rate in a secret-key generation
setup over an Additive White Gaussian Noise (AWGN) channel,
suggesting that PAC codes could improve the performance of
physical-layer security schemes at short blocklength.

I. INTRODUCTION

Driven in part by emerging applications such as augmented
reality and remote control, existing and emerging communica-
tion standards have pushed the development of low-latency and
reliable coding schemes, as exemplified by the Ultra-Reliable
Low-Latency Communication (URLLC) requirements in the
5G standard. These new stringent requirements have called for
the development of new and improved error-control coding at
very short blocklength of N = 256 and below [1]. Candi-
date coding schemes that have shown promising performance
include extended Bose-Chaudhuri-Hocquengham (eBCH) [2],
Reed-Muller (RM) codes [3], polar codes [4] and Polarization-
Adjusted Convolutional (PAC) codes [5]-[7], especially when
used in combination with decoding techniques such as Suc-
cessive Cancellation List (SCL) [7], [8], Ordered-Statistics
Decoding (OSD) [9], or Guessing Random Additive Noise
Decoding (GRAND) [10].

While much of the focus has been on channel coding,
source coding with side information [11] is another coding
mechanism with useful applications. In particular, source
coding with side information plays a central role in physical-
layer security [12] for the reconciliation phase of secret-
key generation protocols [13], [14], including Quantum Key
Distribution (QKD) [15]. Despite the duality between source
coding with side information and channel coding [16], which
allows one to transform a good channel in a good source code
with side information for symmetric channels and sources,
extending the results to asymmetric sources presents some
challenges [17]. Hence, finding explicit and direct code con-
structions for source coding with side information remains of
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interest. Polar codes are of particular interest for source coding
with side information, not only because of their asymptotic
optimality [18] and finite length performance [14], but also
because polar codes for source coding with side information
have proven a useful building block to construct codes for
a host of multi-user information theory problem in an almost
systematic way [19]-[21]. The main contribution of the present
work is i) to propose encoding and decoding algorithms for
source PAC codes; and, ii) to demonstrate numerically their
excellent performance.

The remaining of the paper is organized as follows. We
review necessary notation and concepts related to PAC codes
in Section II-B. We then introduce the source coding with
side information problem and our proposed source PAC codes
in Section III, and present numerical results in Section IV.
We conclude the paper with a discussion of the usefulness
of our proposed approach for low-latency key generation over
wireless channels in Section V.

II. POLARIZATION-ADJUSTED CONVOLUTIONAL CODES
A. Polar Codes

A polar code for channel coding is characterized by its
blocklength N £ 97 the number of information bits K, and
an information set A C [1; N] that specifies how to encode
information bits. Specifically, a vector of K information bits
m is encoded into a length N vector u such that u_4 = m and

ue = 0, the all-zero vector. The set A¢ is called the frozen
1

0
11
and G®" the n'" order Kronecker product of G, a codeword x
is created through the operation z £ uG®", a process known
as the polar transform. The structure of the matrix G®" allows
for an encoding complexity of O(N log N). The codeword z
is then sent over the channel to a receiver that observes a noisy
version y, e.g., y; = x; + ni,n; ~ N(0,0) if the channel is
an Additive White Gaussian Noise (AWGN).

The standard decoding algorithm for polar codes is the
Successive Cancellation (SC) decoder, by which bits from
the information set A are successively decoded based on
their Log-Likelihood Ratio (LLR) given the past decoded bits
according to the maximum-likelihood rule:'

{o if A0 = In P a=0)

set. Upon setting G = , the base polarization matrix,

Vie A 4, = P(y,a%7=Ta,;=1) (1)

1 else.

't is sometimes convenient to consider a randomized decoding rule to
analyze polar codes [22].
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where = {dg, 41, ...,0;—1} denotes the vector of past
decisions. The LLRs can be efficiently computed recursively,
resulting in a decoding complexity of O(N log N). The LLRs
can also be viewed as decisions made at the output of indi-
vidual bit channels, corresponding to channels with input bit
u; and output (y, 4%*~1). The choice of the set A, called rate
profiling, plays a crucial role in determining the performance
of polar codes, and several criteria have been proposed based
on the capacity of the bit channels [23] or the RM profile [24],
which consists in enumerating the Hamming weight of RM
codewords and selecting those with highest weight.

Given that each decision in the SC decoder relies on previ-
ously decoded bits, one bad decision can propagate and affect
future ones. SCL list decoding [25] mitigates this problem and
be implemented relatively efficiently. In SCL, the decoding
process is viewed as following branches of a tree and tracks
up to L branches in a list. The tree splits at every non-frozen
bit, creating two branches u; = 0 and uw; = 1. A path metric
is updated based on the decision of each path, and when the
number of paths is greater than L, the list is pruned to track
L paths, keeping the paths with the lowest path metrics.

B. PAC Codes

Polarization-Adjusted Convolutional (PAC) codes have been
introduced as a means to improve the finite-length performance
of polar codes. In polar codes, the rate profiling consists in
identifying the bit-channels that are either almost noiseless or
completely noisy, corresponding to a rate assignment of O or
1 to each bit-channel. While this approach is asymptotically
optimal [4], there is a loss in performance at small and medium
blocklengths because polarization takes place relatively slowly.
The main idea behind PAC codes is to augment the polar
code with an outer rate one convolutional code before the
polar transform. Upon denoting v and u the input and the
output of the convolutional code, respectively, the encoding
process remains similar to that of polar codes. A rate-profile
associated to an information set A determines the placement
of information bits, so that v 4 contains the information bits
and v e 0. The use of an RM profile was shown to
yield significant performance improvements [5] over polar
codes, while recent results suggest that adapting the rate-
profile to the specific structure of PAC codes yields further
improvements [26]. Despite attempts to analyze PAC codes,
e.g., from the perspective of the number of minimum weight
codewords [8], [27], a theoretical justification for the perfor-
mance of PAC codes and the identification of optimal rate
profiles remains elusive. Nevertheless, several follow-up works
have provided insight into the complexity of PAC decoding [7],
[28]. PAC codes can be viewed as a specific case of polar codes
with dynamically frozen sets [29], [30].

ITI. SOoURCE PAC CODES
A. Source Coding with Side information

We are interested here in the problem of source coding
with side information [11], in which the encoder observes
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N independent and identically distributed (i.i.d.) realizations
v 2 {x},, 2 € {1}, of a Bern(p) distribution and
compresses them into a message m. The receiver obtains
m and has access to N observations y 2 {y;}._, where
y; = x; +n; and n; are i.i.d. realizations of an N(O,O’Q)
distribution to form an estimate & = {i‘t}fil of z. This
special setup models the type of source models that is common
in secret-key generation over wireless channels [14]. The
objective is to achieve a low frame error rate P(Z # ) while
reducing the size of m as much as possible.

Polar source coding operates in a dual manner to polar
channel coding. Polarized bits are computed from the sequence
of observations z as u 2 2G®" and a rate-profile is used to
select the polarized bits forming the message m. Intuitively,
the bits revealed are high entropy bits that are difficult to
reconstruct, while the non-revealed bits with low-entropy are
reconstructed by the decoder using SC decoding and the side
information y. The asymptotic optimality of source polar-
ization [18] holds under slightly more general assumptions
than channel polarization [4] because it does not require any
symmetry in the source distributions. This observation was
leveraged to extend polar constructions to multi-user channel
coding problems, see e.g., [20] for one of the first such
applications.

B. Source PAC Codes

The encoding and decoding process for source PAC codes
is illustrated in Fig. 1. As in traditional source polarization,
the NV source bits z are mapped to u through the polarization
transform G®™ as u £ 2G®". Following polarization, the bits
of u are sent through the N x N bit-reversal operation matrix
P and we let u” £ wP. The rationale for this permutation
matrix will be further discussed in Section III-C, suffice here
to say that it ensures that the decoder is able to decode bits in
the correct order during successive cancellation. The permuted
polarized bits u”" are then convolved using a polynomial g =
[90,91 .-, 9m] to generate v, where v; Z;'n:o gjufj_j, gk €
{0,1} and go = gm = 1 by convention.> The convolutional

2This order of encoding constitutes the main difference with the PAC
scheme for channel coding in which the convolution is performed before
polarization encoding.

T Polar u Bit-Reversal | u” | Convolutional | v Rate
Encoding Operation Encoding Profiling
VieF
generator
g
UieFe
Memoryless | y |Calculate | A SCL €7, Trregular
Channel " LLRs Decoding | %ier |  Tree
Code
iﬁp
Bit-Reversal | @ Polar T
Operation Decoding |

Fig. 1: Block diagram of source coding with side information
using PAC methodology.
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coding is succinctly described by the matrix operation v £
uP T, with T an upper triangular Toeplitz matrix, filled out by
the coefficients of g as in (3) below.

(g0 -« Gm O ... O
0 g0 - 9m :
T— : 0 . . : 3)
: 0 0 g0 &
_0 0 0 go

Once v is generated, rate profiling is performed to select a
set of positions F C [1; N] of bits to reveal. Thus, only
the bits vr are revealed to the decoder. The decoder’s task
is to then identify the remaining bits in the set /¢ with the
help of the side information. Once u has been obtained, the
polar transform is inverted to get back the original source
bits . As for PAC codes, the choice of the rate-profiling
significantly impacts the overall performance and is discussed
in Section III-D.

C. Decoding of Source PAC codes

The complete algorithm for SCL decoding of source PAC
codes is given in Algorithm 1. Note that the algorithm relies
on routines updateLL.Rs (to update LLRs), UpdatePM (to
update path metrics), updatePartialSums (to reconstruct the
bits at each stage of polarization), duplicatePath (to duplicate
a path in the decoding tree), prunePaths (to remove branches
in the tree), and pruneToOnePath (to reduce the list of paths
to a single one) that are identical to those in [25] and not
reproduced here for brevity. List source decoding of PAC
codes with side information operates similar to the non-PAC
case. For bits that are not revealed, u; is estimated just as
source coding is traditionally done. For ¢ € F, v; is revealed
and u! is deconvolved from v; and the current memory
(lines 31-35 in Algorithm 1). If the recent bits of u” (more
specifically the vector of bits uf , . ;| in memory) have all
been decoded correctly, v;, which was a linear combination
of uf’ and the memory, will map back to ul" correctly and
will behave just as if uf were revealed. However, if the local
memory contains erroneous bits, decoding even the frozen bit
correctly bit is not guaranteed. This means that, while good
paths are unaffected by PAC, bad paths become even worse
and generate a much larger path metric.

We now discuss the importance of the shuffling, using
Figure 2 as an illustration. The first two bits to be decoded in
polar codes are wuo and us, hence if F = {0, 1}, one would
reveal ul’ = ug,ul’ = uy. However, since v is already created
from the shuffled u, for the same F, one would reveal vg, v;.
This emphasizes the need for the shuffling, for without it, the
second v; to be decoded would be a function of uy and uq, a
bit that has not been decoded yet. Furthermore, even if v; were
to be revealed, it would not give us information on us, which is
necessary to continue the decoding. Thus, the shuffling ensures

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded

18

Algorithm 1: SCL decoding of source PAC codes

1
2

3

4
5

input : v,c 7, received LLRs \", F, list size L,
convolutional generator g

output: message estimate x

L+1

LLRs = zeros([V, n+1, 2L]) // Contains all A
at all stages and lists

B = zeros([N, n+1, 2L]) // Contains all bits
at all stages and lists

PM = zeros([1:2L])

for i < 0to N —1do

6 if © € F then
7 for [ < 1 to L do
8 j = BitPerm(i)
9 LLRs[!] + updateLLRs(LLRs[!], B[], j)
// Same as SCL
10 Vi U4 // Convolved bit wv;
revealed
1 mem <+ 3[0,s—m :i— 1, // If
t—m <0, append with zeroes
12 af «+ convUndo(v;, mem, g) // u’ is
recreated
13 Bl0,4,1] + af
14 PMJI] = UpdatePM(LLRs[O,j,l],ﬁf )
15 B[] < updatePartialSums(8[l]) // same
as SCL
16 end
17 else
18 for [ + 1 to L do
19 LLRs[L + 1], B[L + 1], PM[L + 1] +
duplicatePath(LLRs[{], 8[{], PM[I] )
// same as SCL
20 L+ 2L
21 end
22 if £ > L then
23 LLRs, 3, PMs < prunePaths(LLRs, 3,
PMs) // same as SCL
24 L=L
25 end
26 end
27 B* + pruneToOnePath(5,PM) // Keep the 1
path with lowest metric
28 ot = B0, // This row is are the
bits on the far right
29 | return & < o PG
30 end
31 subroutine undoConv(v, mem, g)
2 | ul o
33 for i + 1 to m do
34 uf + uf ® mem[m — i]gi]
35 end
36 return ul’
é)n88eptember 20,2023 at 19:30:55 UTC from IEEE Xplore. Restrictions apply.
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Fig. 2: The first two bits decoded in an N = 4 length polar
code diagram. The side information comes from x (the left
hand side), and the As flow left to right.

that decoding actions are causal and that one obtains the bit
that would be expected in standard polar coding. Additionally,
the LLR matrix is a matrix filled with all LLRs As at all stages,
and is filled in at indices j i following the decoding
process (e.g. LLR[1] is filled and then LLR[3] from Figure
2). Our B is a matrix of the same size but is filled with all
the bits of each stage, and it is filled such that 8[i] = ul.
This allows the memory to be easily grabbed, but results in
4" being the output, instead of 7. The process can be seen
in more detail in Algorithm 1, and using Figure 2 we shall
discuss a simple example. We start with A = (A3, A2, A2 \2),
which corresponds to the vector of received LLRs from the
channel, and fill the first row of our LLR matrix. We make
our calculations left to right to generate A} and A3, the LLRs
after the first stage of polarization, and fill the second row
of the matrix at positions 0 and 2. Suppose for the sake of
illustration, we reveal only bits at position 0 (vg,? = 0) and 1
(v1,1 = 2) to the decoder (F = {0, 2}). The decoder’s task is
then to determine bits at the positions 2 and 3 to recover the
whole vector u and then reconstruct x. Since bit at position O is
known, we know vy = ug and propagate it back to calculate \9
from A}, A} and value of the bit at position 2. More precisely,
we add the two LLRs with A} adjusted for sign by multiplying
with 1 — 2tg. That would then allow us to decode 5. We can
now update our LLR matrix at the last row in indices 0 and
2, generate [ at indices 0 and 1 at the last row , as well as
(3 at the row above in indices 0 and 1, since we can calculate
{ul +uf ul’}. We then obtain A} and A\J (and update the
matrix accordingly). At i = 2, BitPerm(i) = 1, we are given
vo = ud +uf = uy + ug (note that due the shuffling we are
using previously decoded bits and only have one unknown u;).
If we have calculated previous bits correctly, we can properly
estimate $8[2] = wuj, and ultimately use it to decode wugz. At
the end, up will have been created and = can be recovered as
upPG®™.

D. Weighted Sum for Source Coding with Side Information

The choice of the rate profiling is key to achieve finite-
length performance with PAC codes. While the RM profile
offers good performance, we propose a modification based
on [26] to further improve performance. The key idea behind
the rate-profile of [26] is to identify the bit-channels to transmit
information by accounting for the entire transform consisting
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of both the convolution and the polarization matrices. [26]
considers each bit before convolution and accounts for all the
polarization channels W it goes through. Briefly, 7 represents
the number of information bits being combined by the con-
volutional code, to be transmitted over a particular polarized
bit-channel whose reliability is given by the metric w. Then,
the metric 0, for the information bit before the convolution,
is the sum over all the bit-channels that the information bit is
sent over, but weighted by w/(7 + 1) for each underlying bit-
channel. The more information bits being linearly combined
from a generator g in a channel, the more 7 is increased,
meaning an error here would be more disastrous and the metric
0 is lowered. However it is increased if the channels that are
being combined have strong reliability metrics themselves, as
w is proportional to the reliability of any one channel. We
impose the same metric found in equation (12) of [26], yet
we account for the fact that the choice of revealed bits comes
at the end, as opposed to channel codes when the selection
of frozen bits is at the beginning. This means any bit v is a
sum of previous (shuffled) bits. While we use the same overall
algorithm as [26], we modify equation (12) to be:

m

o, & Z 959li—41" ’
=0 1 + T[’i*j]P
with li[;[’iﬂpp = 0 when ¢ — 5 < 0. We denote the resulting

profiling from [26] and our modified equation as Source
Weighted Sum (SWS).

IV. NUMERICAL RESULTS

We now investigate different setups of PAC source coding
with side information and compare the error correcting perfor-
mance of PAC codes versus compared the original polar codes.
To evaluate performance, we explore different rates, block
lengths, and rate profiles. Our simulations consider a Binary
Phase-Shift Keying (BPSK) source z whose side information
y is obtained by transmitting the symbols over an AWGN
channel. For the case of a symmetric source x, we obtain as
expected results very similar to [7] because of the duality of
channel and source coding. In addition, we also show how the
benefits of PAC codes extend to asymmetric sources. Results
are summarized in Figures 3-5.

For the convolutional transform we use 00133 as the gener-
ator coefficients, with a constraint length m = 6 (generator
length = 7). This generator is commonly used throughout
the literature and yields good performance, although there is
currently no known optimal generator.

We compare different list sizes in Figure 3. We see that
using PAC, a list size of 32 is able to compete with list size
of 256. Using list size 256 and PAC, we are able to see nearly
a third of a dB gain in performance. As seen in Fig. 4, we also
show that PAC codes maintain the performance gain when the
source x is asymmetric. Therein, PAC with a list size of 32
when the source is Bern(.3) offers benefits similar to when it
is a Bern(.5) source. Lastly, in Figure 5, the codes considered
have a rate different than .5. This figure, alongside Figure
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Source Codes: FER vs SNR, (128, 64), RM-Polar
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Fig. 3: PAC performance for (128,64) code and symmetric
source X ~ Bern(0.5). PAC source codes achieve polar code
performance with a much smaller list size and outperform
them for the same list size. Note that for (128,64) SWS and
RM are equivalent. We are able to achieve similar results as

[7].

FER vs SNR, (64, 32), X ~ Bern(.3)
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Fig. 4: PAC performance for N = (64,32) code from an
asymmetric source X ~ Bern(0.3).

4, demonstrates the importance of choosing the frozen set
correctly, as our SWS metric can be seen to vastly outperform
the metric of RM-Polar from [24].

V. SECRET KEY GENERATION

The benefits of source PAC codes over standard source
polarization yield direct benefits to any application that uses
source polarization in the short block length regime. Notably,
[32], [33] exploit polar codes for secret key generation. In [14],
Alice and Bob have access to X and Y respectively, where Y’
is a noisy version of X. Alice and Bob then perform informa-
tion reconciliation, with the goal of Bob reliably reconstructing
a quantized version of X with as few bits as possible. Eve also
has access to the bits revealed to Bob. Ultimately the key is
generated through source polarization with side information,
meaning any improvement in the source coding rate yields
an equal improvement in the secret key rate. In Figure 6,
analogous to showing that one can use a higher rate with
PAC codes, we show the FER vs Rate under a fixed noise
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FER vs SNR, (128, 85)
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Fig. 5: PAC at a rate smaller than % Here we use the generator

found in [26], and are able to achieve similar performance.

constraint for N = 64 length codes. It is clear that for any
rate, our source PAC codes achieve improved performance.
At such a small blocklength, this increase is non-trivial. For
example, if one wants to transmit with probability of error
€ < .01, one needs to reveal only 36 bits with PAC and 38
with Polar, a 5% decrease in rate.

Since the PAC benefits in our algorithm only result from
the frozen bits, it is no surprise that the benefits become more
apparent when | F| gets larger. Even further, if the last revealed
bit comes before the first information bit, as is common in
very low compression rates, our codes will behave exactly
as polar codes. We also notice that due to bits relying more
on the correct decoding of previous bits, as well as the fact
that revealed bits are no longer guaranteed to be correct, even
though the overall FER sees improvement, the BER is similar
when comparing Polar and PAC. More specifically this means
that the BER of PAC messages that were not decoded correctly
are much higher than incorrect Polar messages, giving weight
to our interpolation in III-C that incorrect paths are made even
WOrse.

FER vs Rate, N = 64,0 = .79

X—
X\X\\x
& 1072
m
a9
- - = SCL(32), RM-Polar
PAC SCL(32), SWS
10™% < —¢— PAC SCL(32), RM-Polar
I I I I I
0.3 0.4 0.5 0.6 0.7
Rate

Fig. 6: Given a fixed noise of o = .79 for the side information,
the FER at various rates, under list size L = 32.
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