2023 IEEE Information Theory Workshop (ITW) | 979-8-3503-0149-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/ITW55543.2023.10161688

2023 IEEE Information Theory Workshop (ITW)

Sequential Joint Communication and Sensing
of Fixed Channel States

Meng-Che Chang, Shi-Yuan Wang, Matthieu R. Bloch
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Email: {mchang301,shi-yuan.wang,matthieu} @gatech.edu

Abstract—We consider a communication model in which a
transmitter attempts to communicate with a receiver over a state-
dependent channel and simultaneously estimates the state using
strictly causal noisy state observations. The state is assumed
to remain constant over the duration of the transmission. We
analyze the trade-off between the state-error exponent and the
communication rate in the sequential setting, in which the
transmitter determines what and how many symbols to transmit
in an online manner.

I. INTRODUCTION

Joint communication and sensing, also referred to as inte-
grated sensing and communication, is envisioned as a key com-
ponent of next-generation networks, motivated in large part by
the convergence of frequency bands used for communication
and radar [1]-[3]. The dual use of radio waveforms for sensing
and communication naturally leads to unavoidable tradeoffs in
sensing and communication performance and a host of related
resource allocation optimization problems [4]-[7].

In particular, there has been interest in studying the
information-theoretic limits of joint communication and sens-
ing, in the sense of characterizing the optimal tradeoffs in-
curred by the joint operation irrespective of the computational
power available. Two main approaches have been adopted
thus far. In high-mobility scenarios, joint communication and
sensing can be abstracted as a joint communication and chan-
nel estimation problem using information-theoretic models
developed for wireless channels [4]. In particular, [6] charac-
terizes the rate-distortion capacity region for a state-dependent
Discrete Memoryless Channel (DMC) when the transmitter
is tasked with simultaneously estimating the independent and
identically distributed (i.i.d.) state and communicating reliably
with the receiver. Extensions to multi-user models [6] and
secure joint communication and sensing [7]-[9] have also
been considered. In low-mobility scenarios, in which the
communication rate largely exceeds the rate of change of
the sensed phenomenon, joint communication and sensing
can be abstracted as a joint communication and parameter
estimation problem using ideas from controlled sensing and
active hypothesis testing [10], [11]. For parameters taking
finitely many values, tradeoffs take the form of a rate-detection
exponent capacity region that can be fully characterized in
open loop [12]-[14]. In the case of parameters taking a
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continuum of values, the tradeoff takes the form of a Cramér-
Rao vs. rate region, see, e.g., [15]. While the benefits of
closed-loop operation are readily established [12], an exact
characterization of the capacity region remains elusive.

We are interested in furthering the information-theoretic
study of low-mobility scenarios by considering a sequential
estimation setting [16], in which the communication and the
sensing are allowed to operate with variable length. This
is motivated by the better performance of sequential tests
compared to fixed length-tests [11], [17] and by the observa-
tion that transmissions often occur over multiple consecutive
packets and not just a single packet. The main insight resulting
from our study is that the benefits of sequential adaptation
to estimate the channel state can be achieved by adapting
the transmission parameters at the packet level, resulting in
an improved tradeoff between sensing and communication
performance.

II. NOTATION

We let Fo £ {0,1} and define M = |J;~, F5; with a slight
abuse of notation, we also let F5° denote a countably infinite
sequence consisting of {0,1} without additional algebraic
structure. For any U € M, we denote U[1; k] the length k sub-
sequence of U. We also define 5 = {stop, continue}. Let X’ be
any discrete set, and Py be the set of all probability distribu-
tions on X'. We denote by X a random variable in X and X" a
random sequence with length n € N, where N is a set of all
positive integers. o(X) is the sigma algebra generated by the
random variable X. Let ) be another discrete set. Let Py x
and Wy x be two conditional distributions on Y € ) given
X € X, we define H(Wy x|Px) £ Ep, [H(Wyx(-1X))]
the condltlonal entropy of i/V y|x given 1nput distribution Px
and I(Px,Wy|x) £ H(Wyx o Px) — H(Wy x|Px) the
mutual 1nformat10n between and Y where X ~ Px and
Y ~ PxoWyx 23, Px(2)Wy|x(: |x) We also define the
relative entropy given an input distribution Px as

D(Pyix || Wy x|Px) £ Epy [D(Pyix (|X) || Wy ix (1X))].
III. CHANNEL MODELS AND MAIN RESULTS

We consider a sequential mono-static joint communication
and sensing problem, in which a transmitter communicates
with a receiver over a state-dependent DMC, also known
as a compound channel, while simultaneously probing the
channel state in a strictly causal manner through a sensing
channel. For each time ¢ € N, we denote by X; € X the
input of the state-dependent DMC channel Wy 7| x5, and by
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Y, € Y and Z, € Z the outputs of the communication
channel and the sensing channel, respectively. The a priori
unknown state S € © is assumed to be fixed during the
whole duration of the transmission and takes value in a finite
set ©. A sequential joint communication and sensing policy

A = ({60}i2y, {£1121, 9. h, {61}32,) consists of a stopping

rule {¢:}:2,, a set of encoding functions {f:}32,, a state

estimator g, a message decoder h, and a set of functions

{¢+}2, that determine the number of message bits being

transmitted. The latter is required at the transmitter, since the

number of channel uses is not fixed before transmission. Let

M; be the number of message bits determined at time t by

the function ¢;. We require that the encoder only rely on

the first M, bits of the message sequence {U;}$°,, where

U; ~ Ber(1/2). Detailed descriptions of each component of a

policy A are as follows.

o by i FYTU X 2l il N (UM Z871 X1
Ge(UMe=1 Zt=1 X'=1) = M, is a function that determines
the number of message bits M; being transmitted by the time
t. In addition, we require that each realization of {M;}$2,
be a non-decreasing sequence.

o fr Ptz xtt s X (UM 28 X
fo(UMe Zt=1 X1=1) = X, is the function that determines
the input of the channel at time ¢.

oy o FMt x 2t x Xt o B (UM Z XY
(UM 78 XY = Qq, where Q; € B is the status
indicating whether the transmission continues or not at time
t. We also define 7 = 1+ 372, 1{Q; = continue} as the
stopping time. Note that the transmission only happens at
time tif ¢t <T.

eg  FYT x ZT x XT — © : (UMr,Z7 XT)
g(UMr 7T XT) = S, where S € O is the estimated state.

e h: YT M YT — h(YT) = U, where U € M is the
decoded message.

Under the above definition of a policy, the probability that

(M, Xt Yt ZY) = (mt, 2t  yt, 2) when the state S = 6 and

the message sequence U = w is given by

P(Mt :mt,Xt :th,Yt :yt,Zt :Zt|S:0,UOO :w)

t
= [ Wy zixs (i zilwi, O1{ fi(w[L;mi], 27, 2 1) = 23}
=1
x 1{ps(w[1;m;_q], 21

We shall denote Wy x,g(-|) & W xs(-|-,0) the conditional
probability of Z given X when S = 6 for any 6 € ©. More-
over, we assume that 0 < I(Px, Wy|x 9) < oc for any 0 € ©
and Px € Px, and 0 < D (W x0(-|2)||Wz x,0 (-]2)) < o0
for any x € X, 6 € © and ¢’ # 6. Let n be the constraint on
the stopping time 7. Specifically, we require that

min min P(T <n|S=0,U* =w) >1-46
9€0 weks®

) =my)

Vo1 > 0.

The detection-error probability and the communication-error
probability when the expected stopping time satisfies the
constraint n are defined as

Pén) £ max max P (g(UM", 27, XT) £ 0|S = 0,U> = w)

0€O weFs°

pim & P (h(YT 1; Mp]|S = 0,0 =

=" £ max max P (h(Y™) # wll; Mr]|S = 6, w)
We are interested in analyzing the tradeoff between the
detection-error exponent and the rate of the policy A defined
as follows:

Py MT n -1 n
R £ =5 and E,fl)é?logpg ),

Note that the rate R(™) defined above is random. To simplify
the notation, we denote by Py ,, the probability measure when
S =0 and U* = w. This leads to the following definition of
achievability and sequential joint communication and sensing
capacity.

Definition 1. A policy A is (R, E) achievable if for any
01, 02,03, €1 > 0, there exists some n(01, 02,03, €1) such that

max max Py, (T > n) < o1 1)
6O we]Fgo
min min Pe., (R<"> > R) >1-4, )
0cO w€]F§°
PM™ < 8 3)
EV>E—« @

for all n. > n(d1, 62,03, €1).

Definition 2. The closure region of sequential joint commu-
nication and sensing C is the union of all achievable tuples

(R, E).

Theorem 3. The closure region of sequential joint communi-
cation and sensing C is larger than

(R,E) € RY :
U ﬂ R <I(Px,0, Wy x,0) ,
{Px.otoco0€0 | E <ming oD (Wzix.0||Wzx,0|Px.00)
(5)

where the notation | (Px.o}oco Means that we take the union
over all possible |©|-tuples of distributions on X.

At first glance, the region (5) looks similar to the following
open-loop capacity region [12]:

(R,E) € R% :
CS,;’;& = R < minges [(Px, Wy|xs) ¢, (6)
Px€ePx E < p(Px)

where p(Px) is the minimum Chernoff information between
states when the type of inputs is Px [12]. However, the
subtlety lies in the fact that we consider the union of all
possible |©|-tuples of distributions on X, and this allows us to
choose types independently for each channel state. Therefore,
the region is no longer restricted to the compound capacity. In
addition, the sensing exponent is boosted from the Chernoff
information p(Py) to the relative entropy as in (5) because of
the nature of the sequential setting. We provide a numerical
example in Fig. 1 for the compound channel given in Table I
to illustrate the benefit of operating in the sequential setting.
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TABLE I
TABLE FOR Wz x,9(0) FOR ALL X € {0,1} AND 6 € {0, 1,2}.

0 0 1
095 | 045
1 0.9 0.2
2 0.55 | 0.05
e P
0.12 1 _-_""'\~\
0.10 1 B

0.06 q

Achievable Exponent (AU)

0.024 == Sequential

1
I
I
0.04 1 I
1
I
I
o

= Open-loop

0.00 T T T T T T T
0.00 0.02 004 006 008 010 012 014 0.16

Achievable Rate (nats per channel use)

Fig. 1. Numerical illustration of the achievable region with sequential policy
and open-loop capacity regions corresponding to the channel given in Table I.

IV. CONSTRUCTION OF THE POLICY

We first construct the policy A. For any § € © and w € F5°,
we define the generalized likelihood ratio Ay, at any time
t € N as

Py (MY, Z, X1
maXQI;gg PG/,w (Mt, Zt, Xt) '

Ap.w(t) £ log @)
Similarly, for any 6,6, w and any ¢t € Ny, Agg ,, is the
ordinary likelihood ratio defined as

Py (MY, Z, X")
Py (M, Z8, XY

For each fixed n € N, we define N = /n as the block
length. The core idea of of our policy is to determine whether
the transmission stops or not at the end of each packet of
blocklength N. The rate of each block is determined by the
transmitter in a online manner and is unknown to the receiver
of the communication channel. Therefore, a fraction A > 0
of the block length NV is utilized to convey the code structure.
The detailed construction of our policy A is as follows.
a) Types of codes for each 0 € O:

The types that maximize the capacities for different channel
states are different. Therefore, we start by choosing the set
of types {Px ¢}oco. Fix any A > 0, for each § € O, the
type Pxp € ’P)((l_A Nis any type of a length (1 — A)N
sequence. The choice of {Px g}pco is done offline before
the transmission, and we assume that the information of
{Px.0}oco is known by both transceivers as part of the design
of the policy. We also define

Ag.or.(t) = log (8)

Omin = arg lgggﬂ (Px.0.Wz|x,0)

and

Px min = Px 0,,-

b) Stopping rule
When ¢t mod N = 0, the stopping rule v, is defined as

(2", X")
B {stop if 360 € © such that Ag g .,(t) = Toe VO #0
continue otherwise,
where
Loo =n (D (Wzx0||Wzixe|Pxe) —7) )
for some 7 > 0. On the other hand, if £ mod N # 0,
Yy (Z', X') = continue (10)

for all Zt € Z' and X* € X', That is, we only decide whether
the sequential test should stop every IV time steps. Under this
definition of the stopping rule, the stopping time 7' can be
written as

T = irt1f {AB,B’,w (N {%J) >Tye VO # 0 for some 6 € 6} .
c) Number of message bits being transmitted
For each k € N, the transmitted symbols during the k-th
block Nj, £ [(k — 1)N + 1;kN] correspond to a codeword
whose type simultaneously determines the performance of
the communication and sensing. The number of message bits
transmitted during the k-th block is defined as

I 2 {N (H (PX,é((k—l)N7WY\X,@((k—l)N)) - 6)J if k>n'/t,
[N (ming: I (Px,o/, Wy |x,0) —€)] if k<n'/?,

where ¢ > 0 is a positive value related to A and will be fully
discussed in Section V-(d), and

(11)

is the estimate of 6 at each time ¢. Then, the set of functions
{#:}72, that determine the total number of message bits
transmitted by time ¢ are

0(t) = argmax Ay, (t)

Igqif t=1

$(Z2'7H X =00 (27X + ,
0 otherwise

where the notation ¢ = 1 means ¢t = 1(mod N'). We emphasize
that 0(t) is a function of M, Z' X', which makes ¢; a
function of Z!~!, X'~ Moreover, from our definition of ¢,,
the sequence of {M,}{2, is non-decreasing.
d) Conveying the information of the code being used

We use a constant composition code with either type
Py a(k—1)n) ©F Pxmin, depending on whether k& > ni/4
or not, to transmit I; message bits. When k < n'/%, the
value of Ij; as well as the type Px min are known by the
receiver. However, this information is unknown by the receiver
when k > n'/4. Since Ij, only depends on A((k — 1)N),
at most log |©| number of bits are required to convey the
information about the structure of the code, i.e, PX,()((kq) N)

and Ij,. Note that lim,_, .o loijl\?‘ = 0. for any A > 0.

Therefore, there exists some length AN code with type
Px € PLY such that the error probability of conveying the
information of A((k — 1)N) is vanishing with N. Let (f,h)
be the encoder/decoder pair of such code, where f(6') =
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x(0) = (£1(0"),--- ,2an(0")) € X2N is the codeword
corresponding to 6’ € ©. Then, for each k € N, the encoder
feforall t € [(k—1)N + 1;(k — 1 + A)NJis defined as

[ UM Z0 X =3 goyn(0((k— 1)N)). (12)

e) A constant composition encoding for each block

In part (d), we have defined the encoders for all ¢ &
[(k—1)N + 1;(k — 1+ A)N] for all k¥ € N;. We now
proceed to define the encoders for the remaining time steps.
Let {Cyp }oco be the set of constant composition codes,
where for each ¢/ € O, Cp = {Xg(w)}, is the set
of length (1 — A)N codewords and (fg:,hes) is the en-
coder/decoder pair of such code, where fo(w) = X (w)
is the type Px g codeword corresponding to the message
w € [1;2N(H(PX’9”WYIX19/)_€)] in the code Cyp:. We also
denote Xg/ (w) = (Zor 1 (w), -+, Tor (1—a)n (w)), Where each
Zgs ;(w) is the ith symbol of the codeword Xg¢/(w). Then, for

each k € N, the encoder for each t € [(k—1+A)N+1;kN]
is defined as

ft(UI\Jt,Zt_l,Xt_l) —

- k-1 k .
{xé((kl)N),t(lirA)N (U [2221 Lo+ 157, IZD if k> n'/?,

f%m%mwmw@ﬂZth+hZﬁH4)ﬁk<”“

Note that for 1 < k < nl/ %, we transmit a universal
code according to the encoder fy , and the reason is to
communicate reliably while obtaining an initial estimate of
the state. This information is known by the receiver as
part of the design of the policy. To simplify the notation,
we sometimes write Zg/ ; to denote the jth symbol of the

codeword Xg (U [ L+ 1;2?2114D when the mes-
sage U [252—11 I+ 1; Zif:l [g:| is clear in the context.

f) Message decoder

After the receiver obtains the sequence Y7, the message
decoder needs to estimate the transmitted message sequence
U[Ll; Mr]. Since My is a priori unknown, the receiver first
needs to decode from Y7 the value of My or, equivalently,
I}, for each k € Ny, which can be done using the decoder h.

Recall that h : Y2V — © defined in part (d) is the decoder
of the codes that convey the information of the code structure.
Then, we define hy : YV — M as the message decoder for
each block k£ € N as follow.

~A B YICN if k> 1/4
M gopram (Yizrean) i k> n

by, (Y(Ilcﬁl)N-H) = {~ )N . »
R (Y(k—1+A)N+1) if k<n'/=.

Finally, the decoder h : YT — M is defined as the concate-
nation of all message sub-sequences decoded from {hk}fi Jf,
ie.,

MYT) = (b (V) e (VRE) 5 o (Vo)) -

g) State detector

The state detector g is simply defined as
g(UMr 7T XTy = 4(T) (13)

with 6(t) defined in (11) for all ¢ € N

V. RATE AND EXPONENT ANALYSIS

Before deriving the achievable region of the policy defined
in Section IV, we first review a useful lemma that has been
derived in the context of sequential hypothesis testing.

Lemma 4. [17] [10, Lemma 19] The state estimator é(t) is
incorrect for only finitely many t € N, i.e.,

ipg,w (é(t) ” 9) <0
t=1

for any 6 € © and w € F.

(14)

a) Analysis of the stopping time
For any 0, 6’ # 6, w € F$°, and 7 € N, we define

Logr (i) = log Wazix.5(Z:i| X, 0) ’
’ W x5 (Zi|X:,0)

15)

so that Ag g (1) = Zle Lo g (i) for any ¢t € N. Note
that for each 0, 6’ # 0, w € F$°, the discrete time stochastic
process

t t
Vo.orw(t) = Z Lo (i) — ZEe,w[Le,ef,w(i)lfi—ﬂ
i=1 i=1

is a martingale adapted to the filtration {F;}3°, =

{o(X*, Z%,U>°)}¢°,. Then, for any 6 € © and w € F°,
Pg’w (T > ’I’L)
< Pe’w (V 0’ S @ EI 9” 7é 0’ S.t Ag/yg//’w(n — N) < Fg/,gu)
<Y Pow (Vg,gu,w(n ~N)

0" #6
n—N

<Topr— Y Ee,w[Le,e”,w(i)|fi1]>~ (16)

=1

One can show that

n—N
> EouwlLosrw(i)|Fizi]
1=1

> n(l—A) (D (Wzx,0|| Wz x,0

PXﬂ) — 6/)

for any ¢ > 0 when n is sufficiently large by leveraging
Lemma 4 and the fact that N = o(n); details are omitted for
brevity. Therefore,

a7)

n—N

Lo or — Z Eg,w[Lo o1 0 (4)| Fi-1]

i=1

< —n (17— AD (W x,60||Wzix,00 | Px,0) — (1 — A)') . (18)

For any T > 0, we can choose A > 0 and € > 0 small enough
such that

T — AD (WZ‘X79HWZ‘X79H

PX’Q) — (1 — A)E/
is positive. Then, by (16), (18) and Azuma’s inequality,
Pg . (T > n) < e (19)

for some &, > 0 when n is sufficiently large.
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b) Analysis of the rate
For any 0 € ©, 0’ # 0, w € F$° and t € N, we have

t

Zl

for some C; > 0, where (20) follows from the fact that
D (WZ‘X,9||WZ|X19/|PX) is bounded for all § € ©, 6’ # 0
and Px € Py by assumption. This implies 7' = Q(n) by the
definition of the stopping rule. Then, the number of blocks
is T/N = Q(y/n). When the true hypothesis is § € ©, the
number of transmitted message Mr is

WZ\X S Z |Xza€)

Agp o S T
0.0 S Waix.s(Z:] X2, 0)

< 0, (20)

T/N

Mr = z {N (H (PX,é((k—l)N)7 WY|X,é((k71)N)) - E)J

k=nl/4

+(n/* — 1) x {N (mgin]l (Px.6, Wy x.0) — E)J

> (1= ) [N (P Wrixa) =) @

for any ¢’ > 0 when n is sufficiently large, where (21)
follows from the fact that (n'/* — 1) = o(y/n) and that
Yool g@((k —1)N) # 0) < oo by Lemma 4. Then, the
rate satisfies

R™ > (1K) x % x (I(Px.o, Wyixo) =€) (22)

for any x > 0 when n is sufficiently large and the true
hypothesis is 6. It remains to show that 7" is greater than
(1 — k)n with high probability. By definition of the stopping
rule, we have

Po. (T < (1 k)n)

< Z Z Po.w (Aor,0r (1)

0O 1<t<(1—k)n

2Ty o V0" £6'), (23)

where one can show that (details omitted) each term in the
summation of (23) can be upper bounded by e~"¢2 for some
&5 > 0 when n is sufficiently large. Therefore,

Py 4 (R(") > (1-r)?x (]1 (PX,97WY\X,0) - 6))

>1—|0](1 — k)ne "2 (24)

when n is sufficiently large for all § € © and w € F5°.
c) Analysis of the detection-error exponent
Following the standard change-of-measure techniques [18],
we can show that for any 6 € © and w € F3°,

Py, (g(UMT, X", Z7) +# 0)

< |@|e*”(mi“e'¢e D(Wx,00 [[Wzix,0| Px (67)=7); (25)

details are omitted for brevity.
d) Analysis of the communication-error probability

(n) _ T . — o _
P Igleaé(grel%g{oﬁ”( (Y") #wl; Mr)|S=0,U —w>

< max max

0€6 werge
nl/4_1 k—1

< Z Po,w (hamm(y(k 1+aynv+1) #U Zfz +1; Zh})
=1 =1

T/N

+ > (Pe,w (é((k —1)N) # 9) +Pow (;:L( y(hany 9))
k=nl/4
o k-1

+ Z IP’ew(he(Y(k 1+aynv+1) #U ZI£+1 Z[f]>>
k=nl/4 =1 et

(26)

where in (26) we use the law of total probability so that [}, in
the third summation term of (26) satisfies

I = [N (T(Px.0, Wy|x,0) =€) ] -
By Lemma 4, for any § > 0, there exists some n sufficiently
large so that
T/N
3 Po (9((k -
k=nl/4
By well-known results for constant composition codes [19],
forany § € ©, w € F3® and k € N,

k A
Pe,w (h(}/((k 11)-;/4_)1]\[) e 0) <e

for some &, > 0 when n is sufficiently large. Moreover, for
any 6 € ©, w € F$° and k > n'/4,

N) #6) <4 27)

TANG (28)

k—1 k
Po,w <h9(Y<’;]X1+A)N+1) AU > L+ 1 ZLZD < e U-DNG
(=1 =1

for some &5 > 0 when n is sufficiently large if

I
— < (P 2
1I-AN <I(Px,0,Wy|x,0) (29)
Similarly, for any § € ©, w € F$° and k < n'/4,
k—1
Py, <h9m(y(k raynt1) U D I+ 1 Zzg]) < e~ (-MNes
=1 =1
for some & > 0 when n is sufficiently large if
I,
—_ in I (Px o, W ). 30
(1—A)N<§penel) (Px.0r, Wy|x,00) (30)
For any A > 0, we can choose
e =1.5A glgg]l (Px.0, Wy |x,0) (31

so that (29) and (30) hold for all £ € N. Then, when n is
sufficiently large,

T/N

) < Z ( “E4AN

e) Claim of achievable region

e 6 (I=AIN | —&(1-2)N )+5 (32)

By considering all § € © and w € F$
in (19), (24), (25 and (32), we show that the
rate (I (Px,0, Wy|x,0 and  the  exponent
mlngeg (mll’lg #Q]D)(WZ\X 9/1 W2|X9‘PX )) —7') are

achievable when n is sufficiently large. Note that x and
A depend on the choice of 7, and € is a function of A
as discussed in paragraphs (a), (b) and (d). Therefore, by
choosing 7 arbitrarily small, there exists some n(d1, 2, d3, €1)
so that (1)-(4) are satisfied with the rate and exponent tuple

(géig]l (Px.,0, Wy |x,0) ,gl?iéléD (Wzix,0r HWZ|X,9‘PX(9/))) .

We complete the proof by taking the union over all {Px g}.
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