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Abstract—We consider a communication model in which a
transmitter attempts to communicate with a receiver over a state-
dependent channel and simultaneously estimates the state using
strictly causal noisy state observations. The state is assumed
to remain constant over the duration of the transmission. We
analyze the trade-off between the state-error exponent and the
communication rate in the sequential setting, in which the
transmitter determines what and how many symbols to transmit
in an online manner.

I. INTRODUCTION

Joint communication and sensing, also referred to as inte-

grated sensing and communication, is envisioned as a key com-

ponent of next-generation networks, motivated in large part by

the convergence of frequency bands used for communication

and radar [1]–[3]. The dual use of radio waveforms for sensing

and communication naturally leads to unavoidable tradeoffs in

sensing and communication performance and a host of related

resource allocation optimization problems [4]–[7].

In particular, there has been interest in studying the

information-theoretic limits of joint communication and sens-

ing, in the sense of characterizing the optimal tradeoffs in-

curred by the joint operation irrespective of the computational

power available. Two main approaches have been adopted

thus far. In high-mobility scenarios, joint communication and

sensing can be abstracted as a joint communication and chan-

nel estimation problem using information-theoretic models

developed for wireless channels [4]. In particular, [6] charac-

terizes the rate-distortion capacity region for a state-dependent

Discrete Memoryless Channel (DMC) when the transmitter

is tasked with simultaneously estimating the independent and

identically distributed (i.i.d.) state and communicating reliably

with the receiver. Extensions to multi-user models [6] and

secure joint communication and sensing [7]–[9] have also

been considered. In low-mobility scenarios, in which the

communication rate largely exceeds the rate of change of

the sensed phenomenon, joint communication and sensing

can be abstracted as a joint communication and parameter

estimation problem using ideas from controlled sensing and

active hypothesis testing [10], [11]. For parameters taking

finitely many values, tradeoffs take the form of a rate-detection

exponent capacity region that can be fully characterized in

open loop [12]–[14]. In the case of parameters taking a
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continuum of values, the tradeoff takes the form of a Cramér-

Rao vs. rate region, see, e.g., [15]. While the benefits of

closed-loop operation are readily established [12], an exact

characterization of the capacity region remains elusive.

We are interested in furthering the information-theoretic

study of low-mobility scenarios by considering a sequential

estimation setting [16], in which the communication and the

sensing are allowed to operate with variable length. This

is motivated by the better performance of sequential tests

compared to fixed length-tests [11], [17] and by the observa-

tion that transmissions often occur over multiple consecutive

packets and not just a single packet. The main insight resulting

from our study is that the benefits of sequential adaptation

to estimate the channel state can be achieved by adapting

the transmission parameters at the packet level, resulting in

an improved tradeoff between sensing and communication

performance.

II. NOTATION

We let F2 ≜ {0, 1} and define M =
⋃∞

k=1 F
k
2 ; with a slight

abuse of notation, we also let F∞
2 denote a countably infinite

sequence consisting of {0, 1} without additional algebraic
structure. For any U ∈ M, we denote U [1; k] the length k sub-
sequence of U . We also define B = {stop, continue}. Let X be
any discrete set, and PX be the set of all probability distribu-
tions on X . We denote by X a random variable in X and Xn a
random sequence with length n ∈ N+, where N+ is a set of all
positive integers. σ(X) is the sigma algebra generated by the
random variable X . Let Y be another discrete set. Let PY |X
and WY |X be two conditional distributions on Y ∈ Y given

X ∈ X , we define H
(
WY |X

∣∣PX

)
≜ EPX

[
H
(
WY |X(·|X)

)]
the conditional entropy of WY |X given input distribution PX

and I(PX ,WY |X) ≜ H
(
WY |X ◦ PX

)
− H

(
WY |X

∣∣PX

)
the

mutual information between X and Y , where X ∼ PX and
Y ∼ PX ◦WY |X ≜

∑
x PX(x)WY |X(·|x). We also define the

relative entropy given an input distribution PX as

D
(

PY |X

∥

∥WY |X

∣

∣PX

)

≜ EPX

[

D
(

PY |X(·|X)
∥

∥WY |X(·|X)
)]

.

III. CHANNEL MODELS AND MAIN RESULTS

We consider a sequential mono-static joint communication

and sensing problem, in which a transmitter communicates

with a receiver over a state-dependent DMC, also known

as a compound channel, while simultaneously probing the

channel state in a strictly causal manner through a sensing

channel. For each time t ∈ N, we denote by Xt ∈ X the

input of the state-dependent DMC channel WY Z|XS , and by

2023 IEEE Information Theory Workshop (ITW)

979-8-3503-0149-6/23/$31.00 ©2023 IEEE 462



Yt ∈ Y and Zt ∈ Z the outputs of the communication

channel and the sensing channel, respectively. The a priori

unknown state S ∈ Θ is assumed to be fixed during the

whole duration of the transmission and takes value in a finite

set Θ. A sequential joint communication and sensing policy

Λ = ({ψt}∞t=1, {ft}∞t=1, g, h, {ϕt}∞t=1) consists of a stopping

rule {ψt}∞t=1, a set of encoding functions {ft}∞t=1, a state

estimator g, a message decoder h, and a set of functions

{ϕt}∞t=1 that determine the number of message bits being

transmitted. The latter is required at the transmitter, since the

number of channel uses is not fixed before transmission. Let

Mt be the number of message bits determined at time t by

the function ϕt. We require that the encoder only rely on

the first Mt bits of the message sequence {Ut}∞t−1, where

Ut ∼ Ber(1/2). Detailed descriptions of each component of a

policy Λ are as follows.

• ϕt : F
Mt−1

2 ×Zt−1×X t−1 7→ N : (UMt−1 , Zt−1, Xt−1) 7→
ϕt(U

Mt−1 , Zt−1, Xt−1) =Mt is a function that determines

the number of message bits Mt being transmitted by the time

t. In addition, we require that each realization of {Mt}∞t=1

be a non-decreasing sequence.

• ft : FMt
2 × Zt−1 × X t−1 7→ X : (UMt , Zt−1, Xt−1) 7→

ft(U
Mt , Zt−1, Xt−1) = Xt is the function that determines

the input of the channel at time t.
• ψt : F

Mt
2 × Zt × X t 7→ B: (UMt , Zt, Xt) 7→

ψt(U
Mt , Zt, Xt) = Qt, where Qt ∈ B is the status

indicating whether the transmission continues or not at time

t. We also define T ≜ 1 +
∑∞

t=1 1{Qt = continue} as the

stopping time. Note that the transmission only happens at

time t if t ⩽ T .

• g : F
MT
2 × ZT × X T 7→ Θ : (UMT , ZT , XT ) 7→

g(UMT , ZT , XT ) = Ŝ, where Ŝ ∈ Θ is the estimated state.

• h : YT 7→ M : Y T 7→ h(Y T ) = Û , where Û ∈ M is the

decoded message.

Under the above definition of a policy, the probability that

(M t, Xt, Y t, Zt) = (mt, xt, yt, zt) when the state S = θ and

the message sequence U∞ = w is given by

P(M t = mt, Xt = xt, Y t = yt, Zt = zt|S = θ, U∞ = w)

=
t∏

i=1

WY Z|XS(yi, zi|xi, θ)1{fi(w[1;mi], z
i−1, xi−1) = xi}

× 1{ϕi(w[1;mi−1], z
i−1, xi−1) = mi}.

We shall denote WZ|X,θ(·|·) ≜ WZ|XS(·|·, θ) the conditional

probability of Z given X when S = θ for any θ ∈ Θ. More-

over, we assume that 0 < I(PX ,WY |X,θ) <∞ for any θ ∈ Θ
and PX ∈ PX , and 0 < D

(
WZ|X,θ(·|x)

∥∥WZ|X,θ′(·|x)
)
<∞

for any x ∈ X , θ ∈ Θ and θ′ ̸= θ. Let n be the constraint on

the stopping time T . Specifically, we require that

min
θ∈Θ

min
w∈F

∞
2

P(T ⩽ n|S = θ, U∞ = w) ⩾ 1− δ1 ∀δ1 > 0.

The detection-error probability and the communication-error

probability when the expected stopping time satisfies the

constraint n are defined as

P
(n)
d ≜ max

θ∈Θ
max
w∈F

∞
2

P
(
g(UMT , ZT , XT ) ̸= θ|S = θ, U∞ = w

)

P (n)
c ≜ max

θ∈Θ
max
w∈F

∞
2

P
(
h(Y T ) ̸= w[1;MT ]|S = θ, U∞ = w

)

We are interested in analyzing the tradeoff between the

detection-error exponent and the rate of the policy Λ defined

as follows:

R(n) ≜
MT

n
and E

(n)
d ≜

−1

n
logP

(n)
d .

Note that the rate R(n) defined above is random. To simplify

the notation, we denote by Pθ,w the probability measure when

S = θ and U∞ = w. This leads to the following definition of

achievability and sequential joint communication and sensing

capacity.

Definition 1. A policy Λ is (R,E) achievable if for any
δ1, δ2, δ3, ϵ1 > 0, there exists some n(δ1, δ2, δ3, ϵ1) such that

max
θ∈Θ

max
w∈F

∞
2

Pθ,w (T > n) ⩽ δ1 (1)

min
θ∈Θ

min
w∈F

∞
2

Pθ,w

(

R
(n) ⩾ R

)

⩾ 1− δ2 (2)

P
(n)
c ⩽ δ3 (3)

E
(n)
d ⩾ E − ϵ1 (4)

for all n ⩾ n(δ1, δ2, δ3, ϵ1).

Definition 2. The closure region of sequential joint commu-

nication and sensing C is the union of all achievable tuples

(R,E).

Theorem 3. The closure region of sequential joint communi-
cation and sensing C is larger than

⋃

{PX,θ}θ∈Θ

⋂

θ∈Θ







(R,E) ∈ R
2
+ :

R ⩽ I(PX,θ,WY |X,θ)
E ⩽ minθ′ ̸=θ D

(

WZ|X,θ′
∥

∥WZ|X,θ

∣

∣PX,θ′
)







,

(5)

where the notation
⋃

{PX,θ}θ∈Θ
means that we take the union

over all possible |Θ|-tuples of distributions on X .

At first glance, the region (5) looks similar to the following

open-loop capacity region [12]:

C
(m)
open =

⋃

PX∈PX





(R,E) ∈ R
2
+ :

R ⩽ mins∈S I(PX ,WY |X,s)
E ⩽ ρ(PX)



 , (6)

where ρ(PX) is the minimum Chernoff information between

states when the type of inputs is PX [12]. However, the

subtlety lies in the fact that we consider the union of all

possible |Θ|-tuples of distributions on X , and this allows us to

choose types independently for each channel state. Therefore,

the region is no longer restricted to the compound capacity. In

addition, the sensing exponent is boosted from the Chernoff

information ρ(PX) to the relative entropy as in (5) because of

the nature of the sequential setting. We provide a numerical

example in Fig. 1 for the compound channel given in Table I

to illustrate the benefit of operating in the sequential setting.
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x̂(θ′) = (x̂1(θ
′), · · · , x̂∆N (θ′)) ∈ X∆N is the codeword

corresponding to θ′ ∈ Θ. Then, for each k ∈ N+, the encoder

ft for all t ∈ [(k − 1)N + 1; (k − 1 + ∆)N ]is defined as

ft(U
Mt , Zt−1, Xt−1) = x̂t−(k−1)N (θ̂((k − 1)N)). (12)

e) A constant composition encoding for each block
In part (d), we have defined the encoders for all t ∈

[(k − 1)N + 1; (k − 1 + ∆)N ] for all k ∈ N+. We now
proceed to define the encoders for the remaining time steps.
Let {Cθ′}θ′∈Θ be the set of constant composition codes,
where for each θ′ ∈ Θ, Cθ′ = {x̃θ′(w)}w is the set

of length (1 − ∆)N codewords and (f̃θ′ , h̃θ′) is the en-

coder/decoder pair of such code, where f̃θ′(w) = x̃θ′(w)
is the type PX,θ′ codeword corresponding to the message

w ∈ [1; 2N(I(PX,θ′ ,WY |X,θ′ )−ϵ)] in the code Cθ′ . We also
denote x̃θ′(w) =

(
x̃θ′,1(w), · · · , x̃θ′,(1−∆)N (w)

)
, where each

x̃θ′,i(w) is the ith symbol of the codeword x̃θ′(w). Then, for
each k ∈ N+, the encoder for each t ∈ [(k−1+∆)N+1; kN ]
is defined as

ft(U
Mt , Z

t−1
, X

t−1) =






x̃θ̂((k−1)N),t−(k−1+∆)N

(

U
[

∑k−1
ℓ=1 Iℓ + 1;

∑k
ℓ=1 Iℓ

])

if k ⩾ n1/4,

x̃θmin,t−(k−1+∆)N

(

U
[

∑k−1
ℓ=1 Iℓ + 1;

∑k
ℓ=1 Iℓ

])

if k < n1/4.

Note that for 1 ⩽ k < n1/4, we transmit a universal

code according to the encoder f̃θmin
, and the reason is to

communicate reliably while obtaining an initial estimate of

the state. This information is known by the receiver as

part of the design of the policy. To simplify the notation,

we sometimes write x̃θ′,j to denote the jth symbol of the

codeword x̃θ′

(
U
[∑k−1

ℓ=1 Iℓ + 1;
∑k

ℓ=1 Iℓ

])
when the mes-

sage U
[∑k−1

ℓ=1 Iℓ + 1;
∑k

ℓ=1 Iℓ

]
is clear in the context.

f) Message decoder

After the receiver obtains the sequence Y T , the message
decoder needs to estimate the transmitted message sequence
U [1;MT ]. Since MT is a priori unknown, the receiver first
needs to decode from Y T the value of MT or, equivalently,

Ik for each k ∈ N+, which can be done using the decoder ĥ.

Recall that ĥ : Y∆N 7→ Θ defined in part (d) is the decoder
of the codes that convey the information of the code structure.
Then, we define hk : YN 7→ M as the message decoder for
each block k ∈ N+ as follow.

hk

(

Y
kN
(k−1)N+1

)

=

{

h̃
ĥ(Y

(k−1+∆)N
(k−1)N+1

)

(

Y kN
(k−1+∆)N+1

)

if k ⩾ n1/4

h̃θmin

(

Y kN
(k−1+∆)N+1

)

if k < n1/4.

Finally, the decoder h : YT 7→ M is defined as the concate-

nation of all message sub-sequences decoded from {hk}T/N
k=1 ,

i.e.,

h(Y T ) =
(
hk

(
Y N
1

)
, hk

(
Y 2N
N+1

)
, · · · , hk

(
Y T
T−N+1

))
.

g) State detector

The state detector g is simply defined as

g(UMT , ZT , XT ) = θ̂(T ) (13)

with θ̂(t) defined in (11) for all t ∈ N+.

V. RATE AND EXPONENT ANALYSIS

Before deriving the achievable region of the policy defined

in Section IV, we first review a useful lemma that has been

derived in the context of sequential hypothesis testing.

Lemma 4. [17] [10, Lemma 19] The state estimator θ̂(t) is

incorrect for only finitely many t ∈ N+, i.e.,

∞∑

t=1

Pθ,w

(
θ̂(t) ̸= θ

)
<∞ (14)

for any θ ∈ Θ and w ∈ F
∞
2 .

a) Analysis of the stopping time

For any θ, θ′ ̸= θ, w ∈ F
∞
2 , and i ∈ N+, we define

Lθ,θ′,w(i) ≜ log
WZ|X,S(Zi|Xi, θ)

WZ|X,S(Zi|Xi, θ′)
, (15)

so that Aθ,θ′,w(t) =
∑t

i=1 Lθ,θ′,w(i) for any t ∈ N+. Note

that for each θ, θ′ ̸= θ, w ∈ F
∞
2 , the discrete time stochastic

process

Vθ,θ′,w(t) ≜

t∑

i=1

Lθ,θ′,w(i)−
t∑

i=1

Eθ,w[Lθ,θ′,w(i)|Fi−1]

is a martingale adapted to the filtration {Fi}∞i=1 ≜
{σ(Xi, Zi, U∞)}∞i=1. Then, for any θ ∈ Θ and w ∈ F

∞
2 ,

Pθ,w (T > n)

⩽ Pθ,w

(

∀ θ
′ ∈ Θ ∃ θ

′′ ̸= θ
′

s.t Aθ′,θ′′,w(n−N) < Γθ′,θ′′
)

⩽
∑

θ′′ ̸=θ

Pθ,w

(

Vθ,θ′′,w(n−N)

< Γθ,θ′′ −

n−N
∑

i=1

Eθ,w[Lθ,θ′′,w(i)|Fi−1]

)

. (16)

One can show that

n−N∑

i=1

Eθ,w[Lθ,θ′′,w(i)|Fi−1]

⩾ n(1−∆)
(
D
(
WZ|X,θ

∥∥WZ|X,θ′′

∣∣PX,θ

)
− ϵ′

)
(17)

for any ϵ′ > 0 when n is sufficiently large by leveraging
Lemma 4 and the fact that N = o(n); details are omitted for
brevity. Therefore,

Γθ,θ′′ −

n−N
∑

i=1

Eθ,w[Lθ,θ′′,w(i)|Fi−1]

⩽ −n
(

τ −∆D
(

WZ|X,θ

∥

∥WZ|X,θ′′
∣

∣PX,θ

)

− (1−∆)ϵ′
)

. (18)

For any τ > 0, we can choose ∆ > 0 and ϵ′ > 0 small enough

such that

τ −∆D
(
WZ|X,θ

∥∥WZ|X,θ′′

∣∣PX,θ

)
− (1−∆)ϵ′

is positive. Then, by (16), (18) and Azuma’s inequality,

Pθ,w (T > n) ⩽ e−nξ1 (19)

for some ξ1 > 0 when n is sufficiently large.
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b) Analysis of the rate

For any θ ∈ Θ, θ′ ̸= θ, w ∈ F
∞
2 and t ∈ N+, we have

Aθ,θ′,w(t) =
t
∑

i=1

log
WZ|X,S(Zi|Xi, θ)

WZ|X,S(Zi|Xi, θ′)
⩽ tC1, (20)

for some C1 > 0, where (20) follows from the fact that
D
(
WZ|X,θ

∥∥WZ|X,θ′

∣∣PX

)
is bounded for all θ ∈ Θ, θ′ ̸= θ

and PX ∈ PX by assumption. This implies T = Ω(n) by the
definition of the stopping rule. Then, the number of blocks
is T/N = Ω(

√
n). When the true hypothesis is θ ∈ Θ, the

number of transmitted message MT is

MT =

T/N
∑

k=n1/4

⌊

N
(

I

(

PX,θ̂((k−1)N),WY |X,θ̂((k−1)N)

)

− ϵ
)⌋

+ (n1/4 − 1)×
⌊

N
(

min
θ

I
(

PX,θ,WY |X,θ

)

− ϵ
)⌋

⩾ (1− ϵ
′′)

T

N

⌊

N
(

I
(

PX,θ,WY |X,θ

)

− ϵ
)⌋

(21)

for any ϵ′′ > 0 when n is sufficiently large, where (21)
follows from the fact that (n1/4 − 1) = o(

√
n) and that∑∞

k=1 1

(
θ̂((k − 1)N) ̸= θ

)
< ∞ by Lemma 4. Then, the

rate satisfies

R
(n) ⩾ (1− κ)×

T

n
×
(

I
(

PX,θ,WY |X,θ

)

− ϵ
)

(22)

for any κ > 0 when n is sufficiently large and the true
hypothesis is θ. It remains to show that T is greater than
(1− κ)n with high probability. By definition of the stopping
rule, we have

Pθ,w (T ⩽ (1− κ)n)

⩽
∑

θ′∈Θ

∑

1⩽t⩽(1−κ)n

Pθ,w

(

Aθ′,θ′′,w(t) ⩾ Γθ′,θ′′ ∀ θ
′′ ̸= θ

′)
, (23)

where one can show that (details omitted) each term in the

summation of (23) can be upper bounded by e−nξ2 for some

ξ2 > 0 when n is sufficiently large. Therefore,

Pθ,w

(
R(n) ⩾ (1− κ)2 ×

(
I
(
PX,θ,WY |X,θ

)
− ϵ

))

⩾ 1− |Θ|(1− κ)ne−nξ2 (24)

when n is sufficiently large for all θ ∈ Θ and w ∈ F
∞
2 .

c) Analysis of the detection-error exponent

Following the standard change-of-measure techniques [18],

we can show that for any θ ∈ Θ and w ∈ F
∞
2 ,

Pθ,w

(
g(UMT , XT , ZT ) ̸= θ

)

⩽ |Θ|e−n(minθ′ ̸=θ D(WZ|X,θ′∥WZ|X,θ|PX(θ′))−τ); (25)

details are omitted for brevity.

d) Analysis of the communication-error probability

P
(n)
c = max

θ∈Θ
max
w∈F

∞
2

P

(

h(Y T ) ̸= w[1;MT ]|S = θ, U
∞ = w

)

⩽ max
θ∈Θ

max
w∈F

∞
2

(

n1/4−1
∑

k=1

Pθ,w

(

h̃θmin
(Y kN

(k−1+∆)N+1) ̸= U

[

k−1
∑

ℓ=1

Iℓ + 1;

k
∑

ℓ=1

Iℓ

])

+

T/N
∑

k=n1/4

(

Pθ,w

(

θ̂((k − 1)N) ̸= θ
)

+ Pθ,w

(

ĥ(Y
(k−1+∆)N

(k−1)N+1 ) ̸= θ
))

+

T/N
∑

k=n1/4

Pθ,w

(

h̃θ(Y
kN
(k−1+∆)N+1) ̸= U

[

k−1
∑

ℓ=1

Iℓ + 1;

k
∑

ℓ=1

Iℓ

]))

,

(26)

where in (26) we use the law of total probability so that Ik in

the third summation term of (26) satisfies

Ik =
⌊
N

(
I
(
PX,θ,WY |X,θ

)
− ϵ

)⌋
.

By Lemma 4, for any δ > 0, there exists some n sufficiently

large so that

T/N∑

k=n1/4

Pθ,w

(
θ̂((k − 1)N) ̸= θ

)
⩽ δ. (27)

By well-known results for constant composition codes [19],

for any θ ∈ Θ, w ∈ F
∞
2 and k ∈ N+,

Pθ,w

(
ĥ(Y

(k−1+∆)N
(k−1)N+1 ) ̸= θ

)
⩽ e−∆Nξ4 (28)

for some ξ4 > 0 when n is sufficiently large. Moreover, for
any θ ∈ Θ, w ∈ F

∞
2 and k ⩾ n1/4,

Pθ,w

(

h̃θ(Y
kN
(k−1+∆)N+1) ̸= U

[

k−1
∑

ℓ=1

Iℓ + 1;

k
∑

ℓ=1

Iℓ

])

⩽ e
−(1−∆)Nξ5

for some ξ5 > 0 when n is sufficiently large if

Ik
(1−∆)N

< I
(
PX,θ,WY |X,θ

)
(29)

Similarly, for any θ ∈ Θ, w ∈ F
∞
2 and k < n1/4,

Pθ,w

(

h̃θmin
(Y kN

(k−1+∆)N+1) ̸= U

[

k−1
∑

ℓ=1

Iℓ + 1;
k
∑

ℓ=1

Iℓ

])

⩽ e
−(1−∆)Nξ6

for some ξ6 > 0 when n is sufficiently large if

Ik
(1−∆)N

< min
θ′∈Θ

I
(
PX,θ′ ,WY |X,θ′

)
. (30)

For any ∆ > 0, we can choose

ϵ = 1.5∆max
θ′∈Θ

I
(
PX,θ′ ,WY |X,θ′

)
(31)

so that (29) and (30) hold for all k ∈ N+. Then, when n is
sufficiently large,

P
(n)
c ⩽

T/N
∑

k=1

(

e
−ξ4∆N + e

−ξ5(1−∆)N + e
−ξ6(1−∆)N

)

+ δ. (32)

e) Claim of achievable region
By considering all θ ∈ Θ and w ∈ F

∞
2

in (19), (24), (25) and (32), we show that the
rate

(
I
(
PX,θ,WY |X,θ

)
− ϵ

)
and the exponent

minθ∈Θ

(
minθ′ ̸=θ D

(
WZ|X,θ′

∥∥WZ|X,θ

∣∣PX(θ′)
)
− τ

)
are

achievable when n is sufficiently large. Note that κ and
∆ depend on the choice of τ , and ϵ is a function of ∆
as discussed in paragraphs (a), (b) and (d). Therefore, by
choosing τ arbitrarily small, there exists some n(δ1, δ2, δ3, ϵ1)
so that (1)-(4) are satisfied with the rate and exponent tuple
(

min
θ∈Θ

I
(

PX,θ,WY |X,θ

)

,min
θ′ ̸=θ

D
(

WZ|X,θ′
∥

∥WZ|X,θ

∣

∣PX(θ′)
)

)

.

We complete the proof by taking the union over all {PX,θ}.
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