
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 1

Adversarial Examples Detection With Bayesian

Neural Network
Yao Li , Tongyi Tang , Cho-Jui Hsieh , and Thomas C. M. Lee , Senior Member, IEEE

Abstract—In this paper, we propose a new framework to detect
adversarial examples motivated by the observations that random
components can improve the smoothness of predictors and make it
easier to simulate the output distribution of a deep neural network.
With these observations, we propose a novel Bayesian adversarial
example detector, short for BATER, to improve the performance
of adversarial example detection. Specifically, we study the distri-
butional difference of hidden layer output between natural and
adversarial examples, and propose to use the randomness of the
Bayesian neural network to simulate hidden layer output distribu-
tion and leverage the distribution dispersion to detect adversarial
examples. The advantage of a Bayesian neural network is that the
output is stochastic while a deep neural network without random
components does not have such characteristics. Empirical results
on several benchmark datasets against popular attacks show that
the proposed BATER outperforms the state-of-the-art detectors in
adversarial example detection.

Index Terms—Adversarial example, Bayesian neural network,
deep neural network, detection.

I. INTRODUCTION

D
ESPITE achieving tremendous successes, Deep Neural

Networks (DNNs) have been shown to be vulnerable

against adversarial attacks [1], [2], [3], [4], [5], [6]. By adding

imperceptible perturbations to the original inputs, the attack-

ers can craft adversarial examples to fool a trained classifier.

Adversarial examples are indistinguishable from the original

inputs to humans but are mis-classified by the classifier. The

wide application of machine learning models causes concerns

about the reliability and safety of machine learning systems in

security-sensitive areas, such as self-driving, financial systems,

and healthcare.

Manuscript received 27 November 2023; revised 16 January 2024; accepted
10 February 2024. This work was supported in part by the National Science
Foundation under Grant CCF-1934568, Grant IIS-2048280, Grant IIS-2008173,
Grant DMS-2113605, Grant DMS-2210388, Grant DMS-2152289, and Grant
DMS-2134107, and in part by Cisco Faculty Award. (Corresponding author:

Yao Li.)

Yao Li is with the Statistics and Operations Research Department, Univer-
sity of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA (e-mail:
yaoli@email.unc.edu).

Tongyi Tang and Thomas C. M. Lee are with the Statistics Department, Uni-
versity of California, Davis, Davis, CA 95616 USA (e-mail: tyitang@ucdavis.
edu; tcmlee@ucdavis.edu).

Cho-Jui Hsieh is with the Computer Science Department, University of
California, Los Angeles, Los Angeles, CA 90095 USA (e-mail: chohsieh@cs.
ucla.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TETCI.2024.3372383, provided by the authors.

Recommended for acceptance by Prof. H. Huang.
Digital Object Identifier 10.1109/TETCI.2024.3372383

There has been extensive research on improving the robust-

ness of deep neural networks against adversarial examples [7],

[8], [9], [10]. In [11], the authors showed that many defense

methods [12], [13], [14], [15], [16] can be circumvented by

strong attacks except Madry’s adversarial training [17], in which

adversarial examples are generated during training and added

back to the training set. Since then, adversarial training-based

algorithms have become state-of-the-art methods for defending

against adversarial examples. However, despite being able to im-

prove robustness under strong attacks, adversarial training-based

algorithms are time-consuming due to the cost of generating

adversarial examples on-the-fly. Improving the robustness of

deep neural networks remains an open question.

Due to the difficulty of defense, recent work has turned

to attempting to detect adversarial examples as an alternative

solution. The main assumption made by the detectors is that

adversarial samples come from a distribution that is different

from the natural data distribution, that is, adversarial samples do

not lie on the data manifold, and DNNs perform correctly only

near the manifold of the training data [18]. Many works have

been done to study the characteristics of adversarial examples

and leverage the characteristics to detect adversarial examples

instead of trying to classify them correctly [13], [19], [20], [21],

[22], [23], [24], [25].

Despite many algorithms that have been proposed for adver-

sarial detection, most of them are deterministic, which means

they can only use the information from one single forward

pass to detect adversarial examples. This makes it easier for

an attacker to break those models, especially when the attacker

knows the neural network architecture and weights. In this paper,

we propose a novel algorithm to detect adversarial examples

based on randomized neural networks. Intuitively, incorporating

randomness in neural networks can improve the smoothness of

predictors, thus enabling stronger robustness guarantees (see

randomized-based defense methods in [16], [26], [27]). Further,

instead of observing only one hidden feature for each layer, a

randomized network can lead to a distribution of hidden features,

making it easier to detect an out-of-manifold example.

a) Contribution and Novelty: We propose a detection method

based on Bayesian Neural Network (BNN), leveraging the ran-

domness of BNN to improve detection performance (see the

framework in Fig. 1). BNN and some other random components

have been used to improve robust classification accuracy [16],

[26], [27], [28], [29], [30], [31], but they were not used to im-

prove adversarial detection performance. The proposed method

BATER is motivated by the following observations: 1) the hidden

2471-285X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 1. Detection framework of BATER. An example is given in this diagram to show how BATER works. An adversarial image (x) with handwritten digit 7
is mis-classified as 0 by the classifier (BNN). To check if the input is adversarial or not, the input image is fed into the BNN multiple times to get hidden layer
output distributions (hj(x)) of selected layers (layers 3, 5, and 6 in this example). Details of hj(x) computation and layer selection are given in Section III.
Then, distances (dj) between hidden layer output distributions (hj(x)) and hidden layer output distributions based on training samples of predicted class (hc

j
)

are computed. In this example, it is h0

j
because the model predicts the input as class 0. Finally, the distances are fed into the detector to do binary classification:

adversarial vs. natural. Details of distance computation and detector training can be found in Section III.

layer output generated from adversarial examples demonstrates

different characteristics from that generated from natural data

and this phenomenon is more obvious in BNN than in deter-

ministic deep neural networks; 2) randomness of BNN makes

it easier to simulate the characteristics of hidden layer output.

Training BNN is not very time-consuming as it only doubles the

number of parameters of the deep neural network with the same

structure [32]. However, BNN can achieve comparable classifi-

cation accuracy and improve the smoothness of the classifier. A

theoretical analysis is provided to show the advantage of BNN

over DNN in adversarial detection.

In numerical experiments, our method achieves better perfor-

mance in detecting adversarial examples generated from popular

attack methods on MNIST, CIFAR10 and ImageNet-Sub among

state-of-the-art detection methods. Ablation experiments show

that BNN performs better than deterministic neural networks

under the same detection scheme. Besides, the proposed method

is also tested against attacks with different parameters, transfer

attacks, and an adaptive attack. In all the tested scenarios, the

proposed method can achieve reasonable performance.

b) Notation: In this paper, all the vectors are represented as

bold symbols. The input to the classifier is represented by x and

the label associated with the input is represented by y. Thus, one

observation is a pair (x, y). The classifier is denoted as f(·) and

f(x) represents the output vector of the classifier. f(x)i is the

score of predictingxwith label i. The prediction of the classifier

is denoted as c(x) = argmaxif(x)i; that is, the predicted label

is the one with the highest prediction score. We use the ℓ∞ and

ℓ2 distortion metrics to measure similarity and report the ℓ∞
distance in the normalized [0,1] space (e.g., a distortion of 0.031

corresponds to8/256), and the ℓ2 distance as the total root-mean-

square distortion normalized by the total number of pixels [6].

II. RELATED WORK

a) Adversarial attack: Multiple attack methods have been

introduced for crafting adversarial examples to attack deep

neural networks [11], [33], [34], [35], [36], [37], [38], [39], [40].

Depending on the information available to the adversary, attack

methods can be divided into white-box attacks and black-box

attacks. Under the white-box setting, the adversary is allowed to

analytically compute the model’s gradients/parameters, and has

full access to the model architecture. Most white-box attacks

generate adversarial examples based on the gradient of the loss

function with respect to the input [17], [35], [41], [42], [42],

[43]. Among them FGSM [1], C & W [35] and PGD [17]

attacks have been widely used to test the robustness of machine

learning models. In reality, the detailed model information, such

as the gradient, may not be available to the attackers [6]. Some

attack methods are more agnostic and only rely on the predicted

labels or scores [44], [45], [46], [47], [48]. In [44], the authors

proposed a method to estimate the gradient based on the score

information and craft adversarial examples with the estimated

gradient. Some other works [45], [46], [47], [48], [49], [50]

introduced methods that also only rely on the final decision of the

model.

b) Adversarial defense: To defend against adversarial exam-

ples, many studies have been done to improve the robustness of

deep neural networks, including adversarial training [17], [51],

[52], [53], [54], generative models [14], [55], [56], [57], [58],

verifiable defense [59], [60] and other techniques [25], [61], [62],

[63], [64], [65]. The authors of [11] showed that many defense

methods [12], [13], [14], [15], [16] could be circumvented by

strong attacks except Madry’s adversarial training [17]. Since

then, adversarial training-based algorithms have become state-

of-the-art methods in defending against adversarial examples.

However, adversarial training is computationally expensive and

time-consuming due to the cost of generating adversarial exam-

ples on-the-fly, thus adversarial defense is still an open problem

to solve.

c) Adversarial detection: Another popular line of research

focuses on screening out adversarial examples [25], [66], [67],

[68], [69]. A straightforward way towards adversarial example

detection is to build a simple binary classifier separating the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK 3

Fig. 2. Illustration of Bayesian Neural Network. All weights in a BNN are
represented by probability distributions over possible values, rather than having
a single fixed value. The red curves in the graph represent distributions. We view
a BNN as a probabilistic model: given an inputx, a BNN assigns a probability to
each possible output y, using the set of parameters w sampled from the learned
distributions.

adversarial apart from the clean data based on the characteris-

tics of adversarial examples [19], [23], [66], [70], [71], [72],

[73]. In [25], a detection method is implemented based on the

consensus of the classifications of the augmented examples,

which are generated based on an individually implemented

intensity exchange on the red, green, and blue components of

the input image. In [19], the author proposed to perform kernel

density estimation on the training data in the feature space of

the last hidden layer to help detect adversarial examples (KD).

The authors of [13] observed that the Local Intrinsic Dimen-

sions (LID) of hidden-layer outputs differ between the original

inputs and adversarial examples, and leveraged these findings

to detect adversarial examples. In [23], an adversarial detection

method based on Mahalanobis distance (MAHA) is proposed.

Class conditional Gaussian distributions are first fitted based

on the hidden layer output features of the deep neural network,

then confidence scores are calculated to compute Mahalanobis

distance. In [24], the author studied the feature attributions of

adversarial examples and proposed a detection method (ML-

LOO) based on feature attribution scores. The author of [74]

showed that adversarial examples exist in cone-like regions in

very specific directions from their corresponding natural inputs

and proposed a new test statistic to detect adversarial examples

with the findings (ODD). Recently, a joint statistical test pooling

information from multiple layers is proposed in [75] to detect

adversarial examples (JTLA). We show that BATER performs

comparable or superior to these detection methods across mul-

tiple benchmark datasets.

Recently, there has been a shift in focus towards detecting

adversarial examples that are generated using black-box meth-

ods [76], which are recognized as more realistic threats. Despite

being well explored in the vision domain, adversarial example

detection started to get attention in the field of natural language

processing (NLP) recently [77], [78], [79], [80]. In addition to

the domain of NLP, adversarial detection has been extended to

the physical world, aiming to identify adversarial examples in

real-world scenarios [81].

d) Bayesian neural network: The idea of BNN is illustrated

in Fig. 2. In [32], the author introduced an efficient algorithm

to learn the parameters of BNN. Given the observable random

variables (x, y), BNN aims to estimate the distributions of hid-

den variables w, instead of estimating the maximum likelihood

value wMLE for the weights. Since, in the Bayesian perspec-

tive, each parameter is now a random variable measuring the

uncertainty of the estimation, the model can potentially extract

more information to support a better prediction (in terms of

precision, robustness, etc.).

Given the input x and label y, a BNN aims to estimate the

posterior over the weights p(w|x, y) given the prior p(w). The

true posterior can be approximated by a parametric distribution

qθ(w), where the unknown parameter θ is estimated by mini-

mizing the KL divergence

KL (qθ(w) ‖ p(w|x, y)) (1)

overθ. For simplicity, qθ is often assumed to be a fully factorized

Gaussian distribution:

qθ(w) =
d
∏

i=1

qθi
(wi), and qθi

(wi) = N (wi;µi, exp(si)
2),

(2)

where µ and s are parameters of the Gaussian distributions of

weight. The objective function for training BNN is reformulated

from expression (1) and is shown in expression (3), which is a

sum of a data-dependent part and a regularization part:

argmax
µ,s







∑

(xi,yi)∈D

Ew∼qµ,s
log p(yi|xi,w)

−KL (qµ,s(w)‖p(w))} , (3)

where D represents the data distribution. In the first term of

objective (3), the probability of yi given xi and weights is

the output of the model. This part represents the classification

loss. The second term of objective (3) is trying to minimize the

divergence between the prior and the parametric distribution,

which can be viewed as regularization [32]. The author of [30]

showed that the posterior average of the gradients of BNN makes

it more robust than DNN against gradient-based adversarial

attacks. Though the idea of using BNN to improve robustness

against adversarial examples is not new [28], [29], the previous

works did not leverage BNN to help detect adversarial examples.

In [28], [29], BNN was combined with adversarial training [17]

to improve robust classification accuracy.

III. PROPOSED METHOD

We first discuss the motivation behind the proposed method:

1) the distributions of the hidden layer neurons of a deep neural

network can be different when based on adversarial examples

versus natural images; 2) this dispersion is more obvious in

BNN than DNN; 3) it is easier to simulate hidden layer output

distribution with random components. Then, we introduce the

specific metric used to measure this distributional difference and

extend the detection method to multiple layers to make it more

resistant to adversarial attacks.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 3. Hidden Layer output Distributions (HLDs) of VGG16 and BNN (VGG16 based architecture) based on images from automobile class of CIFAR10. Legend
explanation: train represents HLDs of training samples from automobile class; test denotes HLDs of testing samples from automobile class; adv shows HLDs of
adversarial examples predicted as automobiles. The adversarial examples are generated by PGD [17]. The three plots in the first row show hidden layer distributions
of a BNN, and the plots in the second row show the distributions of a DNN with the same base architecture. For both DNN and BNN, there are distributional
differences between natural (train and test) and adversarial (adv) hidden outputs, but the differences are larger for BNN.

A. Motivation: Distributional Difference of Natural and

Adversarial Hidden Layer Outputs

Given input x and a classifier f(·), the prediction of the clas-

sifier is denoted as c(x) = argmaxif(x)i; that is, the predicted

label is the one with the highest prediction score. The adversary

aims to perturb the original input to change the predicted label:

c(x) 6= argmax
i

f(x+ δ)i,

where δ denotes the perturbation added to the original input.

The attacker aims to find a small δ (usually lies within a

small ℓp norm ball) to successfully change the prediction of

the model. Thus, given the same predicted label, there could

be a distributional difference in hidden layer outputs between

adversarial examples and natural data. For example, adversarial

examples mis-classified as airplanes could have hidden layer

output distributions different from those of natural airplane

images. Here, we define a hidden layer output distribution in

DNN as the empirical distribution of all the neuron values of that

layer, which means all output values of that layer will be used to

draw an one-dimensional histogram to simulate the hidden layer

distribution. For BNN, a similar approach is used to estimate the

hidden layer output distribution. Meanwhile, in BNN, the same

input will be forwarded multiple times as the weights of BNN

are stochastic to get a better estimation of the output distribution.

In the exploratory analysis, we compare the hidden layer

output distributions of DNN and BNN based on both natural and

adversarial examples, and find some interesting patterns that are

later used in the proposed method. Some examples of hidden

layer output distribution comparisons are shown in Fig. 3. The

figure shows the hidden layer output distributions of layer 23,

layer 33 and layer 43 in DNN and BNN. Blue and cyan (train

and test) curves represent distributions of the natural automobile

images in CIFAR10. Red curves represent the distributions of

adversarial examples mis-classified as automobiles. The adver-

sarial examples are generated by PGD [17] with ℓ∞ norm. The

architecture of the DNN is VGG16 [82] and the architecture

of the BNN is also VGG16 [82] except that the weights in

BNN follow Gaussian distributions. Both networks are trained

on CIFAR10 train set.

In Fig. 3, we can see that for all three hidden layers, there

are differences between distributions based on natural and ad-

versarial images. In BNN, the hidden layer output distributions

of the natural images (train or test) are clearly different from

those of adversarial examples (adv), while the pattern is not that

obvious in DNN. Even though hidden layer output distributions

of only three layers are shown here, similar patterns are observed

in some other layers in BNN. This phenomenon is not a special

case with PGD adversarial examples on CIFAR10. Such char-

acteristics are also found in adversarial examples generated by

different attack methods on other datasets.

a) Why BNN not DNN?: Differences between distributions

based on natural and adversarial examples can be observed in

both DNN and BNN. However, the distributional difference is

more obvious in BNN than in neural networks without random

components (see Fig. 3). Therefore, more information can be

extracted from BNN than from deterministic neural networks.

Furthermore, random components of BNN make it easier to

simulate the hidden layer output distributions. Our experimental

results also show that the proposed detection method works

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK 5

better with BNN than with deterministic neural networks on

multiple datasets (see Section IV-B for more details).

Fig. 3 empirically shows the intuition behind the pro-

posed framework. The following theoretical analysis shows that

randomness can help enlarge the distributional differences be-

tween natural and adversarial hidden layer outputs.

Proposition 1: Let f(x,w) be a model with x ∼ Dx and

w ∼ Dw, where Dw is any distribution that satisfies w is

symmetric about w0 = E[w], such as N (w0, I). If ∇xf(x,w)
can be approximated by the first order Taylor expansion at w0,

we have

D(f(x+ δ,w), f(x,w)) ≥ D(f(x+ δ,w0), f(x,w0)),
(4)

where δ represents adversarial perturbation and D represents a

translation-invariant distance measuring distribution dispersion

(See proof of the inequality in Appendix F).

The inequality shows that randomness involved in parame-

ters will enlarge the distributional differences between natural

and adversarial outputs. Therefore, leveraging the hidden layer

output distributional differences of BNN to detect adversarial

examples is a sensible choice.

B. Detect Adversarial Examples by Distribution Distance

We propose to measure the dispersion between hidden layer

output distributions of adversarial examples and natural inputs

and use this characteristic to detect adversarial examples. In

particular, given an input x and its predicted label c, we mea-

sure the distribution distance between the hidden layer output

distribution of x and the corresponding hidden layer output

distribution of training samples from class c:

dj(x) = D (hj(x), hj({x
c
i}

nc

i=1)) , (5)

where hj(x) represents the hidden layer output distribution of

the j-th layer based on testing samplex,hj({xc
i}

nc

i=1) represents

the hidden layer output distribution of the j-th layer based on

training samples from class c, nc is the number of training

samples in class c, and D can be arbitrary divergence. For

simplicity, hj({x
c
i}

nc

i=1) is replaced by hc
j in the rest part of

the paper. Besides, nc does not have to be the total number

of training samples in class c. In our experiments, nc is just

a small amount sampled from the training samples of class c.
As for the measure of divergence, we estimate the divergence

with 1-Wasserstein distance in our experiments. However, other

divergence measures can also be used, such as the Kullback–

Leibler divergence.

The hidden layer output distribution is estimated by a one-

dimensional empirical distribution of all the output values of

that layer. The hidden layer output distribution (hc
j) estimated

with training samples of each class can be easily simulated

since there are multiple samples in each class. However, at the

testing stage, only one testing sample (x) is available for the

simulation of hj(x). For a deep neural network without random

components, the hidden layer output is deterministic, thus the

simulation result depends on a single forward pass. For BNN,

Algorithm 1: BATER.

Input: Input x, pre-trained BNN f(·), pre-trained binary

classifier g(·), number of passes to simulate hidden layer

output distribution B, indices of hidden layers selected for

detection S and divergence D.

Output: Adversarial (z = 1) or Natural (z = 0).

1: c = argmaxif(x)i ⊲ get the predicted label c
2: for j ∈ S do

3: Feed x into f(·) B times to simulate hj(x)
4: dj = D(hj(x), h

c
j) ⊲ hc

j is the j-th layer

output distribution of class c
5: z = g(d1, d2, . . ., dk) ⊲ z = 1 indicating

adversarial example and z = 0 indicating natural input

the hidden layer output is stochastic, thus we can simulate the

distribution with multiple passes.

To pool the information from different levels, the dispersion is

measured at multiple hidden layers to generate a set of dispersion

scores {dj |j ∈ S}, where S is the index set of selected hidden

layers (see details of layer selection in Section III-C). It is

expected that natural inputs will have small dispersion scores

while adversarial examples will have relatively large dispersion

scores. A binary classifier is trained on the dispersion scores

to detect adversarial examples. In the paper, we fit a binomial

logistic regression model to do the binary classification. An

overview of the detection framework at testing time is shown

in Fig. 1. Details of the method are included in Algorithm 1.

C. Implementation Details

a) Layer Selection: For adversarial examples generated with

different attacks on different datasets, the pattern of distribu-

tional differences can be different. For example, adversarial

examples generated by PGD on CIFAR10 show larger distri-

butional dispersion in deeper layers (layers closer to the final

layer). However, such characteristic does not appear in adver-

sarial examples generated by C & W on CIFAR10. Instead, the

distributional dispersion is more obvious in some front layers

(layers closer to the input layer). Therefore, we develop an

automated hidden layer selection scheme to find the layers with

large deviations between natural data and adversarial examples.

Cross-validation is performed to do layer selection by fitting

a binary classifier (logistic regression) with a single layer’s

dispersion score. Layers with top-ranked performance mea-

sured by AUC (Area Under the receiver operating characteristic

Curve) scores are selected, and information from those layers is

pooled for ultimate detection (See details of selected layers in

Appendix C).

b) Distance Calculation: To measure the dispersion between

hidden layer output distributions of natural and adversarial

samples, we treat the output of a hidden layer as a realiza-

tion of a one-dimensional random variable. The dispersion be-

tween two distributions is estimated by 1-Wasserstein distance

between their empirical distributions. In BNN, the empirical

distribution of a testing sample can be simulated by multiple

forward passes. Whereas, in DNN, a single forward pass is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

done to simulate the empirical distribution as the output is

deterministic. Training samples from the same class can be used

to simulate empirical hidden layer output distributions of natural

data of that class. Given a testing sample and its predicted label,

calculating the dispersion score with all training samples in the

predicted class is expensive, so we sample some natural images

in the predicted class as representatives to speed up the process.

c) Dimension Reduction: To further improve computational

efficiency, we apply dimension reduction on the hidden layer

output. PCA (Principal Component Analysis) is applied to the

hidden layer output of training samples to do dimension reduc-

tion before the testing stage. At the testing stage, hidden layer

output is projected to a lower dimension before calculating dis-

persion scores, which speeds up the dispersion score calculation

with high-dimensional output.

IV. EXPERIMENTAL RESULTS

We evaluate BATER on the following well-known image clas-

sification datasets: MNIST [83], CIFAR10 [84] and Imagenet-

sub [85]. The training sets provided by the datasets are used

to train BNN and DNN. The BNN and DNN architectures are

the same, except that the weights of BNN follow Gaussian

distributions. We train BNN with Gaussian variational inference

because it is straightforward to implement. We have also tried to

train BNN with other techniques, such as K-FAC [86], but they

all generate similar results.

The test sets are split into 20% in training folds and 80% in

test folds. The detection models (binary classifiers) of KD, LID

and BATER are trained on the training folds and the test folds are

used to evaluate the performance of different detection methods.

Foolbox [87] is used to generate adversarial examples with the

following attack methods: FGSM [1] with ℓ∞ norm, PGD [17]

with ℓ∞ norm and C & W [35] with ℓ2 norm. Since BNN is

stochastic, original PGD and C&W attacks without considering

randomness are not strong enough against it. For fair compar-

ison, we update PGD and C & W with stochastic optimization

methods (multiple forward passes are used to estimate gradient

not just one pass).

Experiments in Sections IV-A to IV-E are done in a gray-box

setting, in which we assume the adversary has access to the

classifier model but does not know the detector. An adaptive

attack is proposed in Section IV-F to attack BATER in a white-

box setting, in which we assume the adversary has access to both

the classifier and the detector. Details of parameter selection,

neural network architectures, implementation, code github and

examples of detected adversarial examples are provided in the

Appendix.

A. Comparison With State-of-the-Art Methods

We compare the performance of BATER with the following

state-of-the-art detection methods for adversarial detection: 1)

Kernel Density Detection (KD) [19], 2) Local Intrinsic Di-

mensionality detection (LID) [13], 3) Odds are Odd Detection

(ODD) [74], 4) Joint statistical Testing across DNN Layers for

Anomalies (JTLA) [75]. In [75], JTLA outperforms deep Maha-

lanobis detection [23], deep KNN [88], and trust score [89], so

we do not include the performance of the three here. Details of

implementation and parameters can be found in the Appendix.

All the detection methods are tested by the following attacks:

1) FGSM [1] with ℓ∞ norm bounded by 0.3, 0.03 and 0.01 for

MNIST, CIFAR10 and Imagenet-sub respectively; 2) PGD [17]

with ℓ∞ norm bounded by 0.3, 0.03 and 0.01 for MNIST,

CIFAR10 and Imagenet-sub respectively; C & W [35] with

confidence of 0 for all three datasets.

We report the AUC (Area Under the receiver operating char-

acteristic Curve) score as the performance evaluation criterion as

well as the True Positive Rates (TPR) by thresholding False Pos-

itive Rates (FPR) at 0.01, 0.05 and 0.1, as it is practical to keep

mis-classified natural data at a low proportion. TPR represents

the proportion of adversarial examples classified as adversarial,

and FPR represents the proportion of natural data mis-classified

as adversarial. Before calculating performance metrics, all the

adversarial examples that can be classified correctly by the

model are removed. The results are reported in Table I and ROC

curves are shown in Fig. 4. BATER shows superior or comparable

performance over the other four detection methods across three

datasets against three attacks.

B. Ablation Study: BNN versus DNN

In this section, we compare the performance of BATER using

different structures (BNN versus DNN) against PGD across

three datasets. The ℓ∞ norm is bounded by 0.3, 0.03 and 0.01 for

MNIST, CIFAR10 and Imagenet-sub respectively. The detection

methods are the same (as described in Algorithm 1) and the dif-

ferences are: 1) BATER with DNN uses a pre-trained deep neural

network of the same structure without random components; 2)

The number of passes is one as DNN does not produce different

outputs with the same input. We report the class conditional

AUC of the two different structures across three datasets.

The comparison results on CIFAR10 and MNIST are shown

in Table II and the results on Imagenet-sub are shown in Fig. 5.

Since there are 143 classes in Imagenet-sub, it is not reasonable

to show the results in a table. Instead, we show the AUC his-

tograms of BATER with different structures in Fig. 5. Comparing

the AUCs of applying BATER with BNN and DNN on CIFAR10

and MNIST, it is obvious that the BNN structure demonstrates

superior performance all the time. On Imagenet-sub, the AUC

histogram of BATER with BNN ranges from 0.90 to 1.00 and is

left-tailed, while the AUC histogram of BATER with DNN ranges

from 0.10 to 0.85 and centers around 0.40, so the BNN structure

clearly outperforms on Imagenet-sub. The experimental results

show that random components can help improve detection re-

sults.

C. Transfer Attack

In this section, we study the performance of BATER under

transfer attack setting. In practice, the defense method does

not know what attack methods will be used. Therefore, defense

methods trained with adversarial examples generated from one

attack method may be attacked by adversarial examples gen-

erated by another attack method. When generating adversarial

examples, we employ the same attack parameters as outlined in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK 7

TABLE I
PERFORMANCE OF DETECTION METHODS AGAINST ADVERSARIAL ATTACKS

Fig. 4. ROC Curves of experiments in Section IV-A on MNIST and CIFAR10. The curves show that BATER outperforms other detection methods or perform
comparably to the best method in all the cases.

TABLE II
AUCS OF BATER WITH DIFFERENT STRUCTURES (BNN VS. DNN) ON

CIFAR10 AND MNIST OF DIFFERENT CLASSES. SINCE IN ALL THE CASES,
BNN GIVES BETTER RESULTS, IT IS CLEAR THAT BNN IS A BETTER CHOICE

THAN DNN, WHICH SHOWS THAT RANDOM COMPONENTS CAN HELP

IMPROVE DETECTION PERFORMANCE

Fig. 5. AUC Histograms of BATER with different structures (BNN vs. DNN)
on Imagenet-sub. It is obvious that BNN results in better AUCs.

TABLE III
PERFORMANCE OF BATER UNDER TRANSFER ATTACK. THE COLUMN NAMES

REPRESENT THE ADVERSARIAL EXAMPLES THE DETECTOR TRAINED WITH.
THE ROW NAMES REPRESENT THE ADVERSARIAL EXAMPLES THE DETECTOR

TESTED AGAINST. AUC SCORES ARE REPORTED

Section IV-A.The performance of BATER in the transfer attack

setting are shown in Table III. The results show that BATER

trained on one type of adversarial examples can generalize to

other types.

D. Effect of Number of Forward Pass

The proposed method is based on two blocks: 1) The first part

is that the distributional difference between natural/adversarial

images of BNN is larger compared to that of DNN. Unfortu-

nately, we cannot prove this part theoretically, but observe the

phenomenon empirically (e.g., Fig. 3). 2) Proposition 1 shows

that this distributional difference can be enlarged by leveraging

the randomness of the BNN model (through multiple passes).

Ideally, we need to generate distributions from an infinite number

of passes, which is impossible in real practice. Therefore, we

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

TABLE IV
EFFECT OF THE NUMBER OF FORWARD PASSES ON MNIST AGAINST PGD
ATTACK. INCREASING THE NUMBER OF PASSES IS HELPFUL BUT A VERY

LARGE NUMBER IS NOT NECESSARY AS 4 PASSES ALREADY SHOWS

REASONABLY GOOD RESULTS

TABLE V
PERFORMANCE OF DETECTION METHODS AGAINST ADVERSARIAL ATTACKS

WITH DIFFERENT PARAMETERS. OUT OF 27 AUC VALUES, 24 OF THEM ARE

ABOVE 0.980 AND ALL THE AUCS ARE ABOVE 0.920. BATER PERFORMS

WELL AGAINST ATTACKS OF DIFFERENT STRENGTHS

conducted experiments to study the effect of the number of

forward passes on MNIST against PGD attack. The ℓ∞ norm

of PGD attack is bounded by 0.3 in the experiments.

As shown in Table IV, a few passes can recover this property.

Comparing the performance of 4 passes and 1 pass, we see that

increasing the number of passes helps improve performance.

However, after a certain point, this increase does not improve

the performance much. Therefore, we do not need to worry that

too many forward passes will be required for the distribution

simulation.

E. Defense Against Attack With Different Parameters

Some previous works [11] pointed out that detection methods

can fail when the adversarial attacks are strong, such as C & W

attack with high confidence. Therefore, we test BATER against

adversarial attacks of different strengths across three datasets.

For PGD and FGSM attacks, the parameter ǫ captures the

strength of the attack with larger ǫ representing a stronger attack.

For C & W, we try different confidence levels. The performance

of BATER is reported in Table V. Out of 27 AUC values, 24

of them are above 0.980 and all the AUCs are above 0.920.

The results show that BATER performs well against various

adversarial attacks with different strengths.

F. Adaptive Attack

All the previous experiments are carried out in a gray-box

setting, where we assume the adversary has access to the clas-

sifier model but does not know the details of the detector. The

white-box setting assumes that the adversary has access to both

the classifier and the detector. Therefore, an adaptive attack

method can be built to attack both the classifier and the detector.

This is worth studying as it can reveal possible drawbacks of the

method and promote future research direction.

TABLE VI
PEFORMANCE OF BATER AGAINST ADAPTIVE ATTACK. CONSIDERING BOTH

ROBUST ACCURACY AND DETECTION AUC, BATER SHOWS ACCEPTABLE

PERFORMANCE AGAINST THE ADAPTIVE ATTACK

To develop an adaptive attack against BATER, we propose the

following objective:

argmin
‖x−x0‖∞≤ǫ

−L1(x, y0)− λL2(x, z0), (6)

where L1 and L2 represent the classification loss and detection

loss respectively, λ controls the trade-off between the two, y0 is

the label of original input, z0 is the detection label, and x and x0

represent adversarial example and original input. The loss func-

tion aims to fool the classifier and the detector at the same time. In

the experiment, we set λ = 1. To optimize over the loss function,

we build a torch version of the Wasserstein distance function

based on the one from the scipy package, making it possible to

get the gradient of the second part of the loss function. Due to

the sorting operations in the Wasserstein distance calculation,

the function is non-differentiable at some points. However, if

we are not at those points we can assume the permutation won’t

change within a small region, so it becomes differentiable using

the same permutation forward and backward. So, the gradient is

still an approximation but very close.

The performance of BATER against the adaptive attack on

1000 randomly selected images of each dataset is shown in

Table VI. We employ the same attack parameters as outlined

in Section IV-A. Compared to the gray-box setting, the perfor-

mance drops, but still reasonable and better than without the

detection system. The task of fooling the detection part makes

the robust accuracy increase. On MNIST, the robust accuracy in-

creases to 20.3% and the AUC drops to 0.644. Taking both robust

accuracy and detection AUC into consideration, the framework

can still handle a reasonable portion of adversarial examples cor-

rectly. On CIFAR10, though the robust accuracy only increases

to 11.2%, the detection AUC is 0.801. On Imagenet-sub, the

performance is similar to that on MNIST.

V. CONCLUSION

In this paper, we introduce a new framework to detect adver-

sarial examples with Bayesian Neural Network, by capturing

the distributional differences of multiple hidden layer outputs

between the natural and adversarial examples. We show that our

detection framework outperforms other state-of-the-art methods

in detecting adversarial examples generated by various kinds

of attacks. It also displays strong performance in detecting

adversarial examples generated by various attack methods with

different strengths and adversarial examples generated by an

adaptive attack method.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK 9

REFERENCES

[1] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. Int. Conf. Learn. Representations, 2015.

[2] C. Szegedy et al., “Intriguing properties of neural networks,” 2013,
arXiv:1312.6199.

[3] V. Kurkova, Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogiannis,
Artif. Neural Netw. Mach. Learn.: 27th Int. Conf. Artif. Neural Netw., 2018.

[4] P. Yang, Towards Adversarial Robustness of Deep Neural Networks. Davis,
CA, USA: Univ. California, 2020.

[5] Y. Li, On Robustness and Efficiency of Machine Learning Systems. Davis,
CA, USA: Univ. California, 2020.

[6] Y. Li, M. Cheng, C.-J. Hsieh, and T. C. Lee, “A review of adversarial attack
and defense for classification methods,” Amer. Statistician, vol. 76, no. 4,
pp. 329–345, 2022.

[7] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 9, pp. 2805–2824, Sep. 2019.

[8] J. Zhang and C. Li, “Adversarial examples: Opportunities and challenges,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7, pp. 2578–2593,
Jul. 2020.

[9] A. Chan et al., “Breaking neural reasoning architectures with metamorphic
relation-based adversarial examples,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 33, no. 11, pp. 6976–6982, Nov. 2022.
[10] Y. Li, M. Cheng, C.-J. Hsieh, and T. C. M. Lee, “A review of adversarial

attack and defense for classification methods,” Amer. Statistician, vol. 76,
pp. 329–345, 2022, doi: 10.1080/00031305.2021.2006781.

[11] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples,” in
Proc. Int. Conf. Mach. Learn., 2018, pp. 274–283.

[12] G. S. Dhillon et al., “Stochastic activation pruning for robust adversarial
defense,” in Proc. Int. Conf. Learn. Representations, 2018. [Online].
Available: https://openreview.net/forum?id=H1uR4GZRZ

[13] X. Ma et al., “Characterizing adversarial subspaces using local intrinsic
dimensionality,” in Proc. Int. Conf. Learn. Representations, 2018.

[14] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: Pro-
tecting classifiers against adversarial attacks using generative models,”
in Proc. Int. Conf. Learn. Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=BkJ3ibb0-

[15] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “PixelDefend:
Leveraging generative models to understand and defend against adversarial
examples,” in Proc. Int. Conf. Learn. Representations, 2018. [Online].
Available: https://openreview.net/forum?id=rJUYGxbCW

[16] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial
effects through randomization,” in Proc. Int. Conf. Learn. Representations,
2018. [Online]. Available: https://openreview.net/forum?id=Sk9yuql0Z

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Proc. Int. Conf.

Learn. Representations, 2018. [Online]. Available: https://openreview.net/
forum?id=rJzIBfZAb

[18] T. Tanay and L. Griffin, “A boundary tilting persepective on the phe-
nomenon of adversarial examples,” 2016, arXiv:1608.07690.

[19] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” 2017, arXiv:1703.00410.

[20] Z. Zheng and P. Hong, “Robust detection of adversarial attacks by model-
ing the intrinsic properties of deep neural networks,” in Proc. Adv. Neural

Inf. Process. Syst., 2018, pp. 7913–7922.
[21] T. Pang, C. Du, Y. Dong, and J. Zhu, “Towards robust detection of

adversarial examples,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 4584–4594.

[22] G. Tao, S. Ma, Y. Liu, and X. Zhang, “Attacks meet interpretability:
Attribute-steered detection of adversarial samples,” in Proc. Adv. Neural

Inf. Process. Syst., 2018, pp. 7717–7728.
[23] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for

detecting out-of-distribution samples and adversarial attacks,” in Proc.

Adv. Neural Inf. Process. Syst., 2018, pp. 7167–7177.
[24] P. Yang, J. Chen, C.-J. Hsieh, J.-L. Wang, and M. Jordan, “ML-LOO:

Detecting adversarial examples with feature attribution,” in Proc. AAAI

Conf. Artif. Intell., 2020, pp. 6639–6647.
[25] X. Ding, Y. Cheng, Y. Luo, Q. Li, and P. Gope, “Consensus adversarial

defense method based on augmented examples,” IEEE Trans. Ind. Inform.,
vol. 19, no. 1, pp. 984–994, Jan. 2023.

[26] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust neural
networks via random self-ensemble,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 369–385.

[27] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial robust-
ness via randomized smoothing,” in Proc. Int. Conf. Mach. Learn.,2019,
pp. 1310–1320.

[28] X. Liu, Y. Li, C. Wu, and C.-J. Hsieh, “Adv-BNN: Improved adversarial
defense through robust Bayesian neural network,” in Proc. Int. Conf. Learn.

Representations, 2019.
[29] N. Ye and Z. Zhu, “Bayesian adversarial learning,” in Proc. Adv. Neural Inf.

Process. Syst., 2018, pp. 6892–6901. [Online]. Available: http://papers.
nips.cc/paper/7921-bayesian-adversarial-learning.pdf

[30] G. Carbone, M. Wicker, L. Laurenti, A. Patane, L. Bortolussi,
and G. Sanguinetti, “Robustness of Bayesian neural networks to
gradient-based attacks,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 15602–15613.

[31] C.-H. H. Yang et al., “Mitigating closed-model adversarial examples
with Bayesian neural modeling for enhanced end-to-end speech recog-
nition,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2022,
pp. 6302–6306.

[32] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1613–1622.

[33] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 9 , pp. 2805–2824, Sep. 2019.

[34] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proc. 10th ACM Workshop Artif.

Intell. Secur., 2017, pp. 3–14.
[35] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural

networks,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 39–57.
[36] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal

adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., 2017, pp. 1765–1773.
[37] Z. Che et al., “SMGEA: A new ensemble adversarial attack powered by

long-term gradient memories,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 3, pp. 1051–1065, Mar. 2022.

[38] L. Liang et al., “Exploring adversarial attack in spiking neural networks
with spike-compatible gradient,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 5, pp. 2569–2583, May 2023.

[39] P. Zhao, K. Xu, S. Liu, Y. Wang, and X. Lin, “ADMM attack: An enhanced
adversarial attack for deep neural networks with undetectable distortions,”
in Proc. 24th Asia South Pacific Des. Automat. Conf., 2019, pp. 499–505.

[40] T. Chen, J. Liu, Y. Xiang, W. Niu, E. Tong, and Z. Han, “Adversarial
attack and defense in reinforcement learning-from AI security view,”
Cybersecurity, vol. 2, pp. 1–22, 2019.

[41] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2016, pp. 2574–2582.
[42] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “EAD: Elastic-net

attacks to deep neural networks via adversarial examples,” in Proc. 32nd

AAAI Conf. Artif. Intell., 2018, Art. no. 2.
[43] N. Carlini, Evaluation and Design of Robust Neural Network Defenses.

Berkeley, CA, USA: Univ. California, 2018.
[44] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth

order optimization based black-box attacks to deep neural networks with-
out training substitute models,” in Proc. 10th ACM Workshop Artif. Intell.

Secur., 2017, pp. 15–26.
[45] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial

attacks: Reliable attacks against black-box machine learning models,”
in Proc. Int. Conf. Learn. Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=SyZI0GWCZ

[46] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial
attacks with limited queries and information,” in Proc. Int. Conf. Mach.

Learn., 2018, pp. 2137–2146.
[47] M. Cheng, S. Singh, P.-Y. Chen, S. Liu, and C.-J. Hsieh, “Sign-OPT:

A query-efficient hard-label adversarial attack,” in Proc. Int. Conf.

Learn. Representations, 2020. [Online]. Available: https://openreview.net/
forum?id=SklTQCNtvS

[48] Z. Yan, Y. Guo, and C. Zhang, “Subspace attack: Exploiting promising
subspaces for query-efficient black-box attacks,” Adv. Neural Inf. Process.

Syst., H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett, Eds. New York, NY, USA: Curran Associates, Inc.,
vol. 32, 2019. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2019/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf

[49] J. Chen, M. I. Jordan, and M. J. Wainwright, “HopSkipJumpAttack: A
query-efficient decision-based attack,” in Proc. IEEE Symp. Secur. Pri-

vacy, 2019, pp. 1277–1294.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

[50] J. Chen, Towards Interpretability and Robustness of Machine Learning

Models. Berkeley, CA, USA: Univ. California, 2019.
[51] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the

physical world,” Artif. Intell. Saf. Secur., pp. 99–112, 2018.
[52] F. Tramàr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P.

McDaniel, “Ensemble adversarial training: Attacks and defenses,” in
Proc. Int. Conf. Learn. Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=rkZvSe-RZ

[53] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan,
“Theoretically principled trade-off between robustness and accuracy,” in
Proc. Int. Conf. Mach. Learn., 2019, pp. 7472–7482.

[54] N. Ye, Q. Li, X.-Y. Zhou, and Z. Zhu, “An annealing mechanism for
adversarial training acceleration,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 2 , pp. 882–893, Feb. 2023.

[55] D. Meng and H. Chen, “MagNet: A two-pronged defense against adver-
sarial examples,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2017, pp. 135–147.

[56] Y. Li et al., “Towards robustness of deep neural networks via reg-
ularization,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., Oct. 2021,
pp. 7496–7505.

[57] A. Jalal, A. Ilyas, C. Daskalakis, and A. G. Dimakis, “The robust
manifold defense: Adversarial training using generative models,” 2017,
arXiv:1712.09196.

[58] Y. Li et al., “Towards robustness of deep neural networks via regulariza-
tion,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 7496–7505.

[59] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in Proc. Int. Conf. Mach.

Learn., 2018, pp. 5286–5295.
[60] M. Everett, B. Lütjens, and J. P. How, “Certifiable robustness to adversarial

state uncertainty in deep reinforcement learning,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 33, no. 9, pp. 4184–4198, Sep. 2022.
[61] X. Chen, J. Weng, X. Deng, W. Luo, Y. Lan, and Q. Tian, “Feature

distillation in deep attention network against adversarial examples,” IEEE

Trans. Neural Netw. Learn. Syst., vol. 34, no. 7, pp. 3691–3705, Jul. 2023.
[62] Q. Liu and W. Wen, “Model compression hardens deep neural networks: A

new perspective to prevent adversarial attacks,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 34, no. 1, pp. 3–14, Jan. 2023.
[63] B. Zhang, B. Tondi, X. Lv, and M. Barni, “Challenging the adversarial

robustness of DNNs based on error-correcting output codes,” Secur. Com-

mun. Netw., vol. 2020, pp. 1–11, 2020.
[64] A. Mustafa, S. H. Khan, M. Hayat, R. Goecke, J. Shen, and L. Shao,

“Deeply supervised discriminative learning for adversarial defense,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 9, pp. 3154–3166,
Sep. 2021.

[65] S. Zhao, J. Yu, Z. Sun, B. Zhang, and X. Wei, “Enhanced accuracy and
robustness via multi-teacher adversarial distillation,” in Proc. 17th Eur.

Conf. Comput. Vis., 2022, pp. 585–602.
[66] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting

adversarial perturbations,” in Proc. Int. Conf. Learn. Representations,
2017. [Online]. Available: https://openreview.net/forum?id=SJzCSf9xg

[67] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” in Proc. Int. Conf. Learn. Representations,
2017. [Online]. Available: https://openreview.net/forum?id=SJzCSf9xg

[68] A. Agarwal, G. Goswami, M. Vatsa, R. Singh, and N. K. Ratha, “DAMAD:
Database, attack, and model agnostic adversarial perturbation detector,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8 , pp. 3277–3289,
Aug. 2022.

[69] F. Nesti, A. Biondi, and G. Buttazzo, “Detecting adversarial examples
by input transformations, defense perturbations, and voting,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 34, no. 3, pp. 1329–1341, Mar. 2023.
[70] Z. Gong and W. Wang, “Adversarial and clean data are not twins,” in

Proc. 6th Int. Workshop Exploiting Artif. Intell. Techn. Data Manage.,
2023, pp. 1–5.

[71] P. Sperl, C.-Y. Kao, P. Chen, X. Lei, and K. Böttinger, “DLA: Dense-layer-
analysis for adversarial example detection,” in Proc. IEEE Eur. Symp.

Secur. Privacy, 2020, pp. 198–215.
[72] S. Gao et al., “Detecting adversarial examples on deep neural networks

with mutual information neural estimation,” IEEE Trans. Dependable

Secure Comput., vol. 20, no. 6 , pp. 5168–5181, Nov./Dec. 2023.
[73] Y. Chen, M. Zhang, J. Li, and X. Kuang, “Adversarial attacks and defenses

in image classification: A practical perspective,” in Proc. IEEE 7th Int.

Conf. Image Vis. Comput., 2022, pp. 424–430.
[74] K. Roth, Y. Kilcher, and T. Hofmann, “The odds are odd: A statistical

test for detecting adversarial examples,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 5498–5507.

[75] J. Raghuram, V. Chandrasekaran, S. Jha, and S. Banerjee, “A general
framework for detecting anomalous inputs to DNN classifiers,” in Proc.

Int. Conf. Mach. Learn., 2021, pp. 8764–8775.
[76] Y. Gao, Z. Lin, Y. Yang, and J. Sang, “Towards black-box adver-

sarial example detection: A data reconstruction-based method,” 2023,
arXiv:2306.02021.

[77] Y. Zhou, J.-Y. Jiang, K.-W. Chang, and W. Wang, “Learning to discriminate
perturbations for blocking adversarial attacks in text classification,” in
Proc. Conf. Empir. Methods Natural Lang. Process. 9th Int. Joint Conf.

Natural Lang. Process., 2019, pp. 4903–4912.
[78] M. Mozes, P. Stenetorp, B. Kleinberg, and L. Griffin, “Frequency-guided

word substitutions for detecting textual adversarial examples,” in Proc.

16th Conf. Eur. Chapter Assoc. Comput. Linguistics, 2021, pp. 171–186.
[Online]. Available: https://aclanthology.org/2021.eacl-main.13

[79] K. Yoo, J. Kim, J. Jang, and N. Kwak, “Detection of adversarial examples
in text classification: Benchmark and baseline via robust density estima-
tion,” in Proc. Findings Assoc. Comput. Linguistics, 2022, pp. 3656–3672.
[Online]. Available: https://aclanthology.org/2022.findings-acl.289

[80] F. Yin, Y. Li, C.-J. Hsieh, and K.-W. Chang, “ADDMU: Detection of
far-boundary adversarial examples with data and model uncertainty es-
timation,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2022,
pp. 6567–6584.

[81] H. Ren, T. Huang, and H. Yan, “Adversarial examples: Attacks and
defenses in the physical world,” Int. J. Mach. Learn. Cybern., vol. 12,
pp. 3325–3336, 2021.

[82] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[83] Y. LeCun, “The MNIST database of handwritten digits,” 1998. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[84] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Toronto, ON, Canada, 2009.

[85] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normaliza-
tion for generative adversarial networks,” in Proc. Int. Conf. Learn. Rep-

resentations, 2018. [Online]. Available: https://openreview.net/forum?id=
B1QRgziT-

[86] G. Zhang, S. Sun, D. Duvenaud, and R. Grosse, “Noisy natural gradient as
variational inference,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 5852–
5861.

[87] J. Rauber, R. Zimmermann, M. Bethge, and W. Brendel, “Foolbox native:
Fast adversarial attacks to benchmark the robustness of machine learning
models in PyTorch, TensorFlow, and JAX,” J. Open Source Softw., vol. 5,
no. 53, p. 2607, 2020, doi: 10.21105/joss.02607.

[88] N. Papernot and P. McDaniel, “Deep k-nearest neighbors: Towards confi-
dent, interpretable and robust deep learning,” 2018, arXiv:1803.04765.

[89] H. Jiang, B. Kim, M. Y. Guan, and M. R. Gupta, “To trust or not to trust
a classifier,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018,
pp. 5546–5557.

Yao Li received the bachelor’s degree in statistics
from Fudan University, Shanghai, China, in 2014, and
the Ph.D. degree from the University of California,
Davis, Davis, CA, USA, in 2020. She is currently
an Assistant Professor of statistics and operations
research with the University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA. Her research in-
terests include trustworthy machine learning, compu-
tational pathology, and machine learning applications
in other scientific disciplines.

Tongyi Tang received the bachelor’s degree in math-
ematics from Fudan University, Shanghai, China, in
2016, and the Ph.D. degree from the University of
California, Davis, Davis, CA, USA, in 2021. She is
currently a Research Scientist with Meta Platforms,
Inc., Menlo Park, CA. Her research interests include
optimization, random vector field modeling, and se-
curity of deep learning models.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK 11

Cho-Jui Hsieh is currently an Associate Professor
with the Computer Science Department, University of
California, Los Angeles, Los Angeles, CA, USA. His
work primarily focuses on enhancing the efficiency
and robustness of machine learning systems. He has
made significant contributions to multiple widely-
used machine learning packages. He was the recipient
of the NSF Career Award, Samsung AI Researcher of
the Year, and Google Research Scholar Award, and
his work has been acknowledged with several paper
awards in ICLR, KDD, ICDM, ICPP, and SC.

Thomas C. M. Lee (Senior Member, IEEE) re-
ceived the B.App.Sc. and B.Sc. (Hons) (with Uni-
versity Medal) degrees in mathematics from the Uni-
versity of Technology, Sydney, NSW, Australia, in
1992 and 1993, respectively, and the Ph.D. degree
jointly from Macquarie University, Macquarie Park,
NSW, and CSIRO Mathematical and Information Sci-
ences, Sydney, in 1997. He is currently a Professor
of statistics and an Associate Dean of the Faculty
of Mathematical and Physical Sciences, University
of California, Davis (UC Davis), Davis, CA, USA.

His research interests include inference methods, machine learning, and statis-
tical applications in other scientific disciplines. He is an elected Fellow of the
American Association for the Advancement of Science, American Statistical
Association, and Institute of Mathematical Statistics. From 2013 to 2015, he was
the Editor-in-Chief of the Journal of Computational and Graphical Statistics,
from 2015 to 2018, and the Chair of the Department of Statistics, UC Davis. He
is also the Review Editor of the Journal of the American Statistical Association.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

