This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 1

Adversarial Examples Detection With Bayesian
Neural Network

Yao Li"?, Tongyi Tang“, Cho-Jui Hsieh

Abstract—TIn this paper, we propose a new framework to detect
adversarial examples motivated by the observations that random
components can improve the smoothness of predictors and make it
easier to simulate the output distribution of a deep neural network.
With these observations, we propose a novel Bayesian adversarial
example detector, short for BATER, to improve the performance
of adversarial example detection. Specifically, we study the distri-
butional difference of hidden layer output between natural and
adversarial examples, and propose to use the randomness of the
Bayesian neural network to simulate hidden layer output distribu-
tion and leverage the distribution dispersion to detect adversarial
examples. The advantage of a Bayesian neural network is that the
output is stochastic while a deep neural network without random
components does not have such characteristics. Empirical results
on several benchmark datasets against popular attacks show that
the proposed BATER outperforms the state-of-the-art detectors in
adversarial example detection.

Index Terms—Adversarial example, Bayesian neural network,
deep neural network, detection.

1. INTRODUCTION

ESPITE achieving tremendous successes, Deep Neural

Networks (DNNs) have been shown to be vulnerable
against adversarial attacks [1], [2], [3], [4], [5], [6]. By adding
imperceptible perturbations to the original inputs, the attack-
ers can craft adversarial examples to fool a trained classifier.
Adversarial examples are indistinguishable from the original
inputs to humans but are mis-classified by the classifier. The
wide application of machine learning models causes concerns
about the reliability and safety of machine learning systems in
security-sensitive areas, such as self-driving, financial systems,
and healthcare.

Manuscript received 27 November 2023; revised 16 January 2024; accepted
10 February 2024. This work was supported in part by the National Science
Foundation under Grant CCF-1934568, Grant IIS-2048280, Grant IIS-2008173,
Grant DMS-2113605, Grant DMS-2210388, Grant DMS-2152289, and Grant
DMS-2134107, and in part by Cisco Faculty Award. (Corresponding author:
Yao Li.)

Yao Li is with the Statistics and Operations Research Department, Univer-
sity of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA (e-mail:
yaoli@email.unc.edu).

Tongyi Tang and Thomas C. M. Lee are with the Statistics Department, Uni-
versity of California, Davis, Davis, CA 95616 USA (e-mail: tyitang @ucdavis.
edu; tcmlee @ucdavis.edu).

Cho-Jui Hsieh is with the Computer Science Department, University of
California, Los Angeles, Los Angeles, CA 90095 USA (e-mail: chohsieh@cs.
ucla.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TETCI1.2024.3372383, provided by the authors.

Recommended for acceptance by Prof. H. Huang.

Digital Object Identifier 10.1109/TETCI.2024.3372383

, and Thomas C. M. Lee

, Senior Member, IEEE

There has been extensive research on improving the robust-
ness of deep neural networks against adversarial examples [7],
[8], [9], [10]. In [11], the authors showed that many defense
methods [12], [13], [14], [15], [16] can be circumvented by
strong attacks except Madry’s adversarial training [17], in which
adversarial examples are generated during training and added
back to the training set. Since then, adversarial training-based
algorithms have become state-of-the-art methods for defending
against adversarial examples. However, despite being able to im-
prove robustness under strong attacks, adversarial training-based
algorithms are time-consuming due to the cost of generating
adversarial examples on-the-fly. Improving the robustness of
deep neural networks remains an open question.

Due to the difficulty of defense, recent work has turned
to attempting to detect adversarial examples as an alternative
solution. The main assumption made by the detectors is that
adversarial samples come from a distribution that is different
from the natural data distribution, that is, adversarial samples do
not lie on the data manifold, and DNNs perform correctly only
near the manifold of the training data [18]. Many works have
been done to study the characteristics of adversarial examples
and leverage the characteristics to detect adversarial examples
instead of trying to classify them correctly [13], [19], [20], [21],
[22], [23], [24], [25].

Despite many algorithms that have been proposed for adver-
sarial detection, most of them are deterministic, which means
they can only use the information from one single forward
pass to detect adversarial examples. This makes it easier for
an attacker to break those models, especially when the attacker
knows the neural network architecture and weights. In this paper,
we propose a novel algorithm to detect adversarial examples
based on randomized neural networks. Intuitively, incorporating
randomness in neural networks can improve the smoothness of
predictors, thus enabling stronger robustness guarantees (see
randomized-based defense methods in [16], [26], [27]). Further,
instead of observing only one hidden feature for each layer, a
randomized network can lead to a distribution of hidden features,
making it easier to detect an out-of-manifold example.

a) Contribution and Novelty: We propose a detection method
based on Bayesian Neural Network (BNN), leveraging the ran-
domness of BNN to improve detection performance (see the
framework in Fig. 1). BNN and some other random components
have been used to improve robust classification accuracy [16],
[26], [27], [28], [29], [30], [31], but they were not used to im-
prove adversarial detection performance. The proposed method
BATER is motivated by the following observations: 1) the hidden

2471-285X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Compute h;(x)

forward_, g\
multiple times

Testing sample x with
Predicted label: 0

Get hidden layer output
distributions (h;(x)) of

selected layers based on x

Fig. 1.

> hs(x)—

— > hs(x) —

—> he(x) —>

Compute distances

ds = D(h3(x),h3) Detector, g(-)

g(ds, ds, dg)

Adversarial \/
ds = D(hs(x), hg)

Natural
de = D (he(x), hg)

hjc: the hidden layer output distribution of the j-
th layer based on randomly selected training
samples from class c.

Note that hf can be computed off-line before the
testing stage

Detection framework of BATER. An example is given in this diagram to show how BATER works. An adversarial image (a) with handwritten digit 7

is mis-classified as O by the classifier (BNN). To check if the input is adversarial or not, the input image is fed into the BNN multiple times to get hidden layer
output distributions (h;(x)) of selected layers (layers 3, 5, and 6 in this example). Details of h;(a) computation and layer selection are given in Section ITI.
Then, distances (d;) between hidden layer output distributions (h()) and hidden layer output distributions based on training samples of predicted class (h;?)

are computed. In this example, it is A9 because the model predicts the input as class 0. Finally, the distances are fed into the detector to do binary classification:
adversarial vs. natural. Details of distance computation and detector training can be found in Section III.

layer output generated from adversarial examples demonstrates
different characteristics from that generated from natural data
and this phenomenon is more obvious in BNN than in deter-
ministic deep neural networks; 2) randomness of BNN makes
it easier to simulate the characteristics of hidden layer output.
Training BNN is not very time-consuming as it only doubles the
number of parameters of the deep neural network with the same
structure [32]. However, BNN can achieve comparable classifi-
cation accuracy and improve the smoothness of the classifier. A
theoretical analysis is provided to show the advantage of BNN
over DNN in adversarial detection.

In numerical experiments, our method achieves better perfor-
mance in detecting adversarial examples generated from popular
attack methods on MNIST, CIFAR 10 and ImageNet-Sub among
state-of-the-art detection methods. Ablation experiments show
that BNN performs better than deterministic neural networks
under the same detection scheme. Besides, the proposed method
is also tested against attacks with different parameters, transfer
attacks, and an adaptive attack. In all the tested scenarios, the
proposed method can achieve reasonable performance.

b) Notation: In this paper, all the vectors are represented as
bold symbols. The input to the classifier is represented by x and
the label associated with the input is represented by y. Thus, one
observation is a pair (i, y). The classifier is denoted as f(-) and
/() represents the output vector of the classifier. f(x); is the
score of predicting « with label ¢. The prediction of the classifier
is denoted as c¢(x) = argmax, f (x);; that is, the predicted label
is the one with the highest prediction score. We use the /., and
{5 distortion metrics to measure similarity and report the /.,
distance in the normalized [0,1] space (e.g., a distortion of 0.031
corresponds to 8/256), and the /5 distance as the total root-mean-
square distortion normalized by the total number of pixels [6].

II. RELATED WORK

a) Adversarial attack: Multiple attack methods have been
introduced for crafting adversarial examples to attack deep

neural networks [11], [33], [34], [35], [36], [37], [38], [39], [40].
Depending on the information available to the adversary, attack
methods can be divided into white-box attacks and black-box
attacks. Under the white-box setting, the adversary is allowed to
analytically compute the model’s gradients/parameters, and has
full access to the model architecture. Most white-box attacks
generate adversarial examples based on the gradient of the loss
function with respect to the input [17], [35], [41], [42], [42],
[43]. Among them FGSM [1], C & W [35] and PGD [17]
attacks have been widely used to test the robustness of machine
learning models. In reality, the detailed model information, such
as the gradient, may not be available to the attackers [6]. Some
attack methods are more agnostic and only rely on the predicted
labels or scores [44], [45], [46], [47], [48]. In [44], the authors
proposed a method to estimate the gradient based on the score
information and craft adversarial examples with the estimated
gradient. Some other works [45], [46], [47], [48], [49], [50]
introduced methods that also only rely on the final decision of the
model.

b) Adversarial defense: To defend against adversarial exam-
ples, many studies have been done to improve the robustness of
deep neural networks, including adversarial training [17], [51],
[52], [53], [54], generative models [14], [55], [56], [57], [58],
verifiable defense [59], [60] and other techniques [25], [61], [62],
[63], [64], [65]. The authors of [11] showed that many defense
methods [12], [13], [14], [15], [16] could be circumvented by
strong attacks except Madry’s adversarial training [17]. Since
then, adversarial training-based algorithms have become state-
of-the-art methods in defending against adversarial examples.
However, adversarial training is computationally expensive and
time-consuming due to the cost of generating adversarial exam-
ples on-the-fly, thus adversarial defense is still an open problem
to solve.

c) Adversarial detection: Another popular line of research
focuses on screening out adversarial examples [25], [66], [67],
[68], [69]. A straightforward way towards adversarial example
detection is to build a simple binary classifier separating the

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIetal.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK 3

eR
:

w~N (1, exp(s))

i

Fig. 2. Illustration of Bayesian Neural Network. All weights in a BNN are
represented by probability distributions over possible values, rather than having
asingle fixed value. The red curves in the graph represent distributions. We view
aBNN as a probabilistic model: given an input -, a BNN assigns a probability to
each possible output y, using the set of parameters w sampled from the learned
distributions.

adversarial apart from the clean data based on the characteris-
tics of adversarial examples [19], [23], [66], [70], [71], [72],
[73]. In [25], a detection method is implemented based on the
consensus of the classifications of the augmented examples,
which are generated based on an individually implemented
intensity exchange on the red, green, and blue components of
the input image. In [19], the author proposed to perform kernel
density estimation on the training data in the feature space of
the last hidden layer to help detect adversarial examples (KD).
The authors of [13] observed that the Local Intrinsic Dimen-
sions (LID) of hidden-layer outputs differ between the original
inputs and adversarial examples, and leveraged these findings
to detect adversarial examples. In [23], an adversarial detection
method based on Mahalanobis distance (MAHA) is proposed.
Class conditional Gaussian distributions are first fitted based
on the hidden layer output features of the deep neural network,
then confidence scores are calculated to compute Mahalanobis
distance. In [24], the author studied the feature attributions of
adversarial examples and proposed a detection method (ML-
LOO) based on feature attribution scores. The author of [74]
showed that adversarial examples exist in cone-like regions in
very specific directions from their corresponding natural inputs
and proposed a new test statistic to detect adversarial examples
with the findings (ODD). Recently, a joint statistical test pooling
information from multiple layers is proposed in [75] to detect
adversarial examples (JTLA). We show that BATER performs
comparable or superior to these detection methods across mul-
tiple benchmark datasets.

Recently, there has been a shift in focus towards detecting
adversarial examples that are generated using black-box meth-
ods [76], which are recognized as more realistic threats. Despite
being well explored in the vision domain, adversarial example
detection started to get attention in the field of natural language
processing (NLP) recently [77], [78], [79], [80]. In addition to
the domain of NLP, adversarial detection has been extended to
the physical world, aiming to identify adversarial examples in
real-world scenarios [81].

d) Bayesian neural network: The idea of BNN is illustrated
in Fig. 2. In [32], the author introduced an efficient algorithm
to learn the parameters of BNN. Given the observable random

variables (x,y), BNN aims to estimate the distributions of hid-
den variables w, instead of estimating the maximum likelihood
value wy g for the weights. Since, in the Bayesian perspec-
tive, each parameter is now a random variable measuring the
uncertainty of the estimation, the model can potentially extract
more information to support a better prediction (in terms of
precision, robustness, etc.).

Given the input & and label y, a BNN aims to estimate the
posterior over the weights p(w|x, y) given the prior p(w). The
true posterior can be approximated by a parametric distribution
qo(w), where the unknown parameter 6 is estimated by mini-
mizing the KL divergence

KL (g0 (w) || p(wlz,y)) (1

over 6. For simplicity, gg is often assumed to be a fully factorized
Gaussian distribution:

d
go(w) = [[go.(wi), and go, (w;) = N (w;; s, exp(s;)?),

i=1

@)

where p and s are parameters of the Gaussian distributions of

weight. The objective function for training BNN is reformulated

from expression (1) and is shown in expression (3), which is a
sum of a data-dependent part and a regularization part:

arg max
s

Z Eownq,, . log p(yi|z:, w)
(xi,y:)eD

—KL(C];L7s(w)Hp(w))}) 3)

where D represents the data distribution. In the first term of
objective (3), the probability of y; given x; and weights is
the output of the model. This part represents the classification
loss. The second term of objective (3) is trying to minimize the
divergence between the prior and the parametric distribution,
which can be viewed as regularization [32]. The author of [30]
showed that the posterior average of the gradients of BNN makes
it more robust than DNN against gradient-based adversarial
attacks. Though the idea of using BNN to improve robustness
against adversarial examples is not new [28], [29], the previous
works did not leverage BNN to help detect adversarial examples.
In [28], [29], BNN was combined with adversarial training [17]
to improve robust classification accuracy.

III. PROPOSED METHOD

We first discuss the motivation behind the proposed method:
1) the distributions of the hidden layer neurons of a deep neural
network can be different when based on adversarial examples
versus natural images; 2) this dispersion is more obvious in
BNN than DNN; 3) it is easier to simulate hidden layer output
distribution with random components. Then, we introduce the
specific metric used to measure this distributional difference and
extend the detection method to multiple layers to make it more
resistant to adversarial attacks.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

— frain
030 — test

—_— adv

-10 -5 0

(a) BNN: Layer 23

(b) BNN: Layer 33

— ftrain
— test
— adv

— train
— test
— adv

10 15 20 =15 -10 =5 0 5 10 15 20 rs)

(c) BNN: Layer 43

— ftrain

05
— test 05

—_— adv

04 oA

03 03

02 02

01 01

00 - 00 -

(d) DNN: Layer 23

Fig. 3.

(e) DNN: Layer 33

— ftrain
— test
— adv

— train
— st
—_— adv

05

04

03

02

01

00-

(f) DNN: Layer 43

Hidden Layer output Distributions (HLDs) of VGG16 and BNN (VGG16 based architecture) based on images from automobile class of CIFAR10. Legend

explanation: train represents HLDs of training samples from automobile class; test denotes HLDs of testing samples from automobile class; adv shows HLDs of
adversarial examples predicted as automobiles. The adversarial examples are generated by PGD [17]. The three plots in the first row show hidden layer distributions
of a BNN, and the plots in the second row show the distributions of a DNN with the same base architecture. For both DNN and BNN, there are distributional
differences between natural (train and test) and adversarial (adv) hidden outputs, but the differences are larger for BNN.

A. Motivation: Distributional Difference of Natural and
Adversarial Hidden Layer Outputs

Given input « and a classifier f(-), the prediction of the clas-
sifier is denoted as ¢(x) = argmax, f(x);; that is, the predicted
label is the one with the highest prediction score. The adversary
aims to perturb the original input to change the predicted label:

c(zx) # argmax f(z + 9);,

where & denotes the perturbation added to the original input.
The attacker aims to find a small § (usually lies within a
small ¢, norm ball) to successfully change the prediction of
the model. Thus, given the same predicted label, there could
be a distributional difference in hidden layer outputs between
adversarial examples and natural data. For example, adversarial
examples mis-classified as airplanes could have hidden layer
output distributions different from those of natural airplane
images. Here, we define a hidden layer output distribution in
DNN as the empirical distribution of all the neuron values of that
layer, which means all output values of that layer will be used to
draw an one-dimensional histogram to simulate the hidden layer
distribution. For BNN, a similar approach is used to estimate the
hidden layer output distribution. Meanwhile, in BNN, the same
input will be forwarded multiple times as the weights of BNN
are stochastic to get a better estimation of the output distribution.

In the exploratory analysis, we compare the hidden layer
output distributions of DNN and BNN based on both natural and
adversarial examples, and find some interesting patterns that are
later used in the proposed method. Some examples of hidden
layer output distribution comparisons are shown in Fig. 3. The

figure shows the hidden layer output distributions of layer 23,
layer 33 and layer 43 in DNN and BNN. Blue and cyan (train
and test) curves represent distributions of the natural automobile
images in CIFAR10. Red curves represent the distributions of
adversarial examples mis-classified as automobiles. The adver-
sarial examples are generated by PGD [17] with £, norm. The
architecture of the DNN is VGG16 [82] and the architecture
of the BNN is also VGG16 [82] except that the weights in
BNN follow Gaussian distributions. Both networks are trained
on CIFAR1O train set.

In Fig. 3, we can see that for all three hidden layers, there
are differences between distributions based on natural and ad-
versarial images. In BNN, the hidden layer output distributions
of the natural images (train or test) are clearly different from
those of adversarial examples (adv), while the pattern is not that
obvious in DNN. Even though hidden layer output distributions
of only three layers are shown here, similar patterns are observed
in some other layers in BNN. This phenomenon is not a special
case with PGD adversarial examples on CIFAR10. Such char-
acteristics are also found in adversarial examples generated by
different attack methods on other datasets.

a) Why BNN not DNN?: Differences between distributions
based on natural and adversarial examples can be observed in
both DNN and BNN. However, the distributional difference is
more obvious in BNN than in neural networks without random
components (see Fig. 3). Therefore, more information can be
extracted from BNN than from deterministic neural networks.
Furthermore, random components of BNN make it easier to
simulate the hidden layer output distributions. Our experimental
results also show that the proposed detection method works

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIetal.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK 5

better with BNN than with deterministic neural networks on
multiple datasets (see Section IV-B for more details).

Fig. 3 empirically shows the intuition behind the pro-
posed framework. The following theoretical analysis shows that
randomness can help enlarge the distributional differences be-
tween natural and adversarial hidden layer outputs.

Proposition 1: Let f(x,w) be a model with & ~ D,, and
w ~ D,,, where D,, is any distribution that satisfies w is
symmetric about wo = E[w], suchas N (wo, I). If V. f(x, w)
can be approximated by the first order Taylor expansion at wy,
we have

D(f(x+ 0, w), f(=,w)) = D(f(x + 8, wo), f(x, wo)),
“)

where § represents adversarial perturbation and D represents a
translation-invariant distance measuring distribution dispersion
(See proof of the inequality in Appendix F).

The inequality shows that randomness involved in parame-
ters will enlarge the distributional differences between natural
and adversarial outputs. Therefore, leveraging the hidden layer
output distributional differences of BNN to detect adversarial
examples is a sensible choice.

B. Detect Adversarial Examples by Distribution Distance

We propose to measure the dispersion between hidden layer
output distributions of adversarial examples and natural inputs
and use this characteristic to detect adversarial examples. In
particular, given an input and its predicted label ¢, we mea-
sure the distribution distance between the hidden layer output
distribution of x and the corresponding hidden layer output
distribution of training samples from class c:

dj(x) = D (h;(x), hj({x}iz1)) ©)

where h;(x) represents the hidden layer output distribution of
the j-th layer based on testing sample x, h; ({x§ };,) represents
the hidden layer output distribution of the j-th layer based on
training samples from class ¢, n. is the number of training
samples in class ¢, and D can be arbitrary divergence. For
simplicity, h;j({z{};,) is replaced by h$ in the rest part of
the paper. Besides, n. does not have to be the total number
of training samples in class c. In our experiments, n. is just
a small amount sampled from the training samples of class c.
As for the measure of divergence, we estimate the divergence
with 1-Wasserstein distance in our experiments. However, other
divergence measures can also be used, such as the Kullback—
Leibler divergence.

The hidden layer output distribution is estimated by a one-
dimensional empirical distribution of all the output values of
that layer. The hidden layer output distribution (hf) estimated
with training samples of each class can be easily simulated
since there are multiple samples in each class. However, at the
testing stage, only one testing sample (x) is available for the
simulation of /(). For a deep neural network without random
components, the hidden layer output is deterministic, thus the
simulation result depends on a single forward pass. For BNN,

Algorithm 1: BATER.

Input: Input x, pre-trained BNN f(-), pre-trained binary
classifier g(-), number of passes to simulate hidden layer
output distribution B, indices of hidden layers selected for
detection S and divergence D.

Output: Adversarial (z = 1) or Natural (z = 0).

I: ¢ = argmax, f(x); > get the predicted label ¢

2:for j € Sdo

3: Feed x into f(-) B times to simulate h;(x)

4: dj = D(h;(z), hF) D> h§ is the j-th layer

output distribution of class c

5:z=g(d1,ds,...,dy) > z = 1 indicating

adversarial example and z = 0 indicating natural input

the hidden layer output is stochastic, thus we can simulate the
distribution with multiple passes.

To pool the information from different levels, the dispersion is
measured at multiple hidden layers to generate a set of dispersion
scores {d;|j € S}, where S is the index set of selected hidden
layers (see details of layer selection in Section III-C). It is
expected that natural inputs will have small dispersion scores
while adversarial examples will have relatively large dispersion
scores. A binary classifier is trained on the dispersion scores
to detect adversarial examples. In the paper, we fit a binomial
logistic regression model to do the binary classification. An
overview of the detection framework at testing time is shown
in Fig. 1. Details of the method are included in Algorithm 1.

C. Implementation Details

a) Layer Selection: For adversarial examples generated with
different attacks on different datasets, the pattern of distribu-
tional differences can be different. For example, adversarial
examples generated by PGD on CIFARI10 show larger distri-
butional dispersion in deeper layers (layers closer to the final
layer). However, such characteristic does not appear in adver-
sarial examples generated by C & W on CIFARI0. Instead, the
distributional dispersion is more obvious in some front layers
(layers closer to the input layer). Therefore, we develop an
automated hidden layer selection scheme to find the layers with
large deviations between natural data and adversarial examples.
Cross-validation is performed to do layer selection by fitting
a binary classifier (logistic regression) with a single layer’s
dispersion score. Layers with top-ranked performance mea-
sured by AUC (Area Under the receiver operating characteristic
Curve) scores are selected, and information from those layers is
pooled for ultimate detection (See details of selected layers in
Appendix C).

b) Distance Calculation: To measure the dispersion between
hidden layer output distributions of natural and adversarial
samples, we treat the output of a hidden layer as a realiza-
tion of a one-dimensional random variable. The dispersion be-
tween two distributions is estimated by 1-Wasserstein distance
between their empirical distributions. In BNN, the empirical
distribution of a testing sample can be simulated by multiple
forward passes. Whereas, in DNN, a single forward pass is

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

done to simulate the empirical distribution as the output is
deterministic. Training samples from the same class can be used
to simulate empirical hidden layer output distributions of natural
data of that class. Given a testing sample and its predicted label,
calculating the dispersion score with all training samples in the
predicted class is expensive, so we sample some natural images
in the predicted class as representatives to speed up the process.

¢) Dimension Reduction: To further improve computational
efficiency, we apply dimension reduction on the hidden layer
output. PCA (Principal Component Analysis) is applied to the
hidden layer output of training samples to do dimension reduc-
tion before the testing stage. At the testing stage, hidden layer
output is projected to a lower dimension before calculating dis-
persion scores, which speeds up the dispersion score calculation
with high-dimensional output.

IV. EXPERIMENTAL RESULTS

We evaluate BATER on the following well-known image clas-
sification datasets: MNIST [83], CIFAR10 [84] and Imagenet-
sub [85]. The training sets provided by the datasets are used
to train BNN and DNN. The BNN and DNN architectures are
the same, except that the weights of BNN follow Gaussian
distributions. We train BNN with Gaussian variational inference
because it is straightforward to implement. We have also tried to
train BNN with other techniques, such as K-FAC [86], but they
all generate similar results.

The test sets are split into 20% in training folds and 80% in
test folds. The detection models (binary classifiers) of KD, LID
and BATER are trained on the training folds and the test folds are
used to evaluate the performance of different detection methods.
Foolbox [87] is used to generate adversarial examples with the
following attack methods: FGSM [1] with /., norm, PGD [17]
with /o, norm and C & W [35] with /5 norm. Since BNN is
stochastic, original PGD and C & W attacks without considering
randomness are not strong enough against it. For fair compar-
ison, we update PGD and C & W with stochastic optimization
methods (multiple forward passes are used to estimate gradient
not just one pass).

Experiments in Sections IV-A to ['V-E are done in a gray-box
setting, in which we assume the adversary has access to the
classifier model but does not know the detector. An adaptive
attack is proposed in Section ['V-F to attack BATER in a white-
box setting, in which we assume the adversary has access to both
the classifier and the detector. Details of parameter selection,
neural network architectures, implementation, code github and
examples of detected adversarial examples are provided in the
Appendix.

A. Comparison With State-of-the-Art Methods

We compare the performance of BATER with the following
state-of-the-art detection methods for adversarial detection: 1)
Kernel Density Detection (KD) [19], 2) Local Intrinsic Di-
mensionality detection (LID) [13], 3) Odds are Odd Detection
(ODD) [74], 4) Joint statistical Testing across DNN Layers for
Anomalies (JTLA) [75]. In [75], JTLA outperforms deep Maha-
lanobis detection [23], deep KNN [88], and trust score [89], so

we do not include the performance of the three here. Details of
implementation and parameters can be found in the Appendix.
All the detection methods are tested by the following attacks:
1) FGSM [1] with £, norm bounded by 0.3, 0.03 and 0.01 for
MNIST, CIFAR10 and Imagenet-sub respectively; 2) PGD [17]
with /., norm bounded by 0.3, 0.03 and 0.01 for MNIST,
CIFAR10 and Imagenet-sub respectively; C & W [35] with
confidence of O for all three datasets.

We report the AUC (Area Under the receiver operating char-
acteristic Curve) score as the performance evaluation criterion as
well as the True Positive Rates (TPR) by thresholding False Pos-
itive Rates (FPR) at 0.01, 0.05 and 0.1, as it is practical to keep
mis-classified natural data at a low proportion. TPR represents
the proportion of adversarial examples classified as adversarial,
and FPR represents the proportion of natural data mis-classified
as adversarial. Before calculating performance metrics, all the
adversarial examples that can be classified correctly by the
model are removed. The results are reported in Table I and ROC
curves are shown in Fig. 4. BATER shows superior or comparable
performance over the other four detection methods across three
datasets against three attacks.

B. Ablation Study: BNN versus DNN

In this section, we compare the performance of BATER using
different structures (BNN versus DNN) against PGD across
three datasets. The /., norm is bounded by 0.3, 0.03 and 0.01 for
MNIST, CIFAR10 and Imagenet-sub respectively. The detection
methods are the same (as described in Algorithm 1) and the dif-
ferences are: 1) BATER with DNN uses a pre-trained deep neural
network of the same structure without random components; 2)
The number of passes is one as DNN does not produce different
outputs with the same input. We report the class conditional
AUC of the two different structures across three datasets.

The comparison results on CIFAR10 and MNIST are shown
in Table IT and the results on Imagenet-sub are shown in Fig. 5.
Since there are 143 classes in Imagenet-sub, it is not reasonable
to show the results in a table. Instead, we show the AUC his-
tograms of BATER with different structures in Fig. 5. Comparing
the AUCs of applying BATER with BNN and DNN on CIFAR10
and MNIST, it is obvious that the BNN structure demonstrates
superior performance all the time. On Imagenet-sub, the AUC
histogram of BATER with BNN ranges from 0.90 to 1.00 and is
left-tailed, while the AUC histogram of BATER with DNN ranges
from 0.10 to 0.85 and centers around 0.40, so the BNN structure
clearly outperforms on Imagenet-sub. The experimental results
show that random components can help improve detection re-
sults.

C. Transfer Attack

In this section, we study the performance of BATER under
transfer attack setting. In practice, the defense method does
not know what attack methods will be used. Therefore, defense
methods trained with adversarial examples generated from one
attack method may be attacked by adversarial examples gen-
erated by another attack method. When generating adversarial
examples, we employ the same attack parameters as outlined in

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK

Fig. 4.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE I
PERFORMANCE OF DETECTION METHODS AGAINST ADVERSARIAL ATTACKS
Data Metric ‘ CLw I FGSM I PGD
| KD [LID [ODD [JTLA [BATER [KD | LID [ODD [JTLA [BATER || KD [LID [ODD | JTLA | BATER
AUC 0.945 | 0.947 [0.955 | 0.968 0.980 0.873 | 0.957 [0.968 | 0.990 0.995 0.791 | 0.777 | 0.963 | 0.962 0.971
CIFARI0 TPR(FPR@0.0T) | 0.068 [0.220 [0.591 | 0.309 0.606 0.136 | 0.385 [0.224 | 0.698 0.878 0.018 | 0.093 | 0.059 | 0.191 0.813
TPR(FPR@0.05) | 0.464 | 0.668 | 0.839 | 0.726 0.881 0.401 | 0.753 | 0.709 | 0.974 0.991 0.148 | 0.317 | 0.819 | 0.789 0.881
TPR(FPR@0.10) | 0911 | 0.856 | 0.901 | 0.954 0.965 0.572 | 0.875 | 1.000 | 1.000 0.998 0.285 | 0.448] 0.999 | 0.999 0.917
AUC 0.932 | 0.785 | 0.968 | 0.980 0.999 0.933 | 0.888 | 0.952 | 0.992 0.999 0.801 | 0.861 | 0.967 | 0.975 0.989
MNIST TPR(FPR@0.0T) | 0.196 [0.079 [0.212 | 0.630 0.974 0.421 | 0.152 [0.898 | 0.885 0.972 0.062 | 0.170 | 0.607 | 0.382 0.733
TPR(FPR@0.05) | 0.616 [0.263 [0.911 | 0.900 0.997 0.692 | 0.503 [0.908 | 0.990 0.998 0.275] 0.396 | 0.934 | 0.851 0.957
TPR(FPR@0.10) | 0.818 [0.397 | 1.000 | 0.972 1.000 0.796 | 0.678 [0.917 | 1.000 1.000 0.429 | 0.552] 0.945 | 0.956 0.999
Imasenct AUC 0.811 | 0.905 | 0.886 | 0.834 0.941 0.914 | 0983 | 0.844 | 0.842 0.989 0.989 | 0.991 | 0.777 | 0.824 0.976
& TPR(FPR@0.01) | 0.193 [0.401 | 0.185 | 0.035 0.146 0.460 | 0.772 [0.042 [0.045 0.569 0.930 | 0.829 | 0.010 | 0.028 0.729
_sub TPR(FPR@0.05) | 0.452 [0.653 | 0.398 | 0.167 0.538 0.727 1 0.952 [0.188 [0.197 0.989 0.966 | 0.961 | 0.054 | 0.139 0.904
TPR(FPR@0.10) | 0.584 [0.754 | 0.566 | 0.312 0.815 0.822 | 0.987 [0.364 | 0.358 1.000 0.979 | 0.984 | 0.12T | 0.280 0.947
The best performance among the five detection methods is marked in bold. In general, BATER performs the best or comparable to the best in most cases.
ROC Curves against CW on MNIST ROC Curves against FGSM on MNIST ROC Curves against PGD on MNIST
10 — 10 - 10
08 08 08
06 06 06
04 04 04
— KD(0.932) — KD(0.933) — KD(0.801)
LID(0.785) LID(0.888) LID(0.861)
02 —— ODD(0.968) 02 — 0DD(0.952) 02 — 0DD(0.967)
~—— [TLA(0.980) —— [TLA(0.992) —— [TLA(0.975)
00 —— BATer(0.999) 00 —— BATer(0.999) 00 —— BATer(0.989)
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
ROC Curves against CW on CIFAR10 ROC Curves against FGSM on CIFAR10 ROC Curves against PGD on CIFAR10
10 — 10 10 -
08 08 08
06 06 06
04 04 04
— KD(0.945) — KD(0.873) — KD(0.791)
LID(0.947) LD(0.957) uD(0.777)
02 —— 0DD(0.955) 0z —— 0DD(0.968) 02 —— 0DD(0.963)
—— [TLA(0.968) —— [TLA(0.990) —— JTLA{0.962)
00 —— BATer(0.980) 00 —— BATer(0.995) 00 —— BATer(0.971)

ROC Curves of experiments in Section IV-A on MNIST and CIFAR10

04 06 08 10

comparably to the best method in all the cases.

TABLE II

00

02

AUCS OF BATER WITH DIFFERENT STRUCTURES (BNN VSs. DNN) ON
CIFAR10 AND MNIST OF DIFFERENT CLASSES. SINCE IN ALL THE CASES,
BNN GIVES BETTER RESULTS, IT IS CLEAR THAT BNN IS A BETTER CHOICE

THAN DNN, WHICH SHOWS THAT RANDOM COMPONENTS CAN HELP

Fig. 5.

IMPROVE DETECTION PERFORMANCE

Class |__CIFARI0 [MNIST

| BNN_DNN | BNN__DNN
classT | 0978 0489 | 0929 0901
class2 | 0.972 0410 | 1.000 0967
class3 | 0.973 0501 | 0.993 0.892
classd | 0.994 0594 | 0991 0958
class5 | 0.955 0477 | 1.000 0.883
class6 | 0.995 0729 | 0.999 0.937
class7 | 0.976 0.584 | 0.989 0.878
class8 | 0.973 0537 | 1.000 0941
class9 | 0.915 0493 | 0959 0.874
lass10 | 0.949 0567 | 0.982 0917

(a) AUC of BNN

03 o4

o5 os

on Imagenet-sub. It is obvious that BNN results in better AUCs.

07

(b) AUC of DNN

o8

04

AUC Histograms of BATER with different structures (BNN vs. DNN)

06 08 10 00 02 04 06 08 10

. The curves show that BATER outperforms other detection methods or perform

TABLE III
PERFORMANCE OF BATER UNDER TRANSFER ATTACK. THE COLUMN NAMES
REPRESENT THE ADVERSARIAL EXAMPLES THE DETECTOR TRAINED WITH.
THE ROW NAMES REPRESENT THE ADVERSARIAL EXAMPLES THE DETECTOR
TESTED AGAINST. AUC SCORES ARE REPORTED

Dats MNIST CIFARI0 Imagenet-sub

ata C&W [PGD [FGSM || C&W [PGD | FGSM || C&W [PGD [FGSM
C&W | 0999 | 0.994 | 0.994 0.980 | 0.877 | 0.972 0.941 | 0.845 | 0.870
PGD 0.989 | 0.989 | 0.989 0.820 | 0971 | 0.824 0.886 | 0976 | 0.975
FGSM | 0.998 | 0.998 | 0.999 0.868 | 0.912 | 0.995 0.914 | 0.896 | 0.989

Section IV-A.The performance of BATER in the transfer attack
setting are shown in Table III. The results show that BATER
trained on one type of adversarial examples can generalize to
other types.

D. Effect of Number of Forward Pass

The proposed method is based on two blocks: 1) The first part
is that the distributional difference between natural/adversarial
images of BNN is larger compared to that of DNN. Unfortu-
nately, we cannot prove this part theoretically, but observe the
phenomenon empirically (e.g., Fig. 3). 2) Proposition 1 shows
that this distributional difference can be enlarged by leveraging
the randomness of the BNN model (through multiple passes).
Ideally, we need to generate distributions from an infinite number
of passes, which is impossible in real practice. Therefore, we

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

TABLE IV
EFFECT OF THE NUMBER OF FORWARD PASSES ON MNIST AGAINST PGD
ATTACK. INCREASING THE NUMBER OF PASSES IS HELPFUL BUT A VERY
LARGE NUMBER IS NOT NECESSARY AS 4 PASSES ALREADY SHOWS
REASONABLY GOOD RESULTS

num of pass || 1 [4] 6 [8 T 10
AUC 0.9651 0.9892 | 0.9918 | 0.9908 | 0.9897
tpr(fpr@0.01) 0.5471 0.7333 | 0.7891 0.8051 0.7801
tpr(fpr@0.05) 0.8362 | 0.9569 | 0.9709 | 0.9720 | 0.9654
tpr(fpr@0.10) 0.9013 | 0.9990 | 0.9994 | 0.9903 | 0.9865
TABLE V

PERFORMANCE OF DETECTION METHODS AGAINST ADVERSARIAL ATTACKS
WITH DIFFERENT PARAMETERS. OUT OF 27 AUC VALUES, 24 OF THEM ARE
ABOVE 0.980 AND ALL THE AUCS ARE ABOVE 0.920. BATER PERFORMS
WELL AGAINST ATTACKS OF DIFFERENT STRENGTHS

Data__ [Metric/Parameter | C&W I FGSM I PGD

Parameter Value 0 10 20 0.01 0.03 0.05 0.01 0.03 0.05

0.980 | 0.999 | 0.995 0.982 | 0.995 | 0.996 0.965 | 0971 | 0.981
CIFARI0 | TPR(FPR@0.01) | 0.606 | 0.998 | 0.939 0.497 | 0.878 | 0.839 0.287 | 0.813 | 0.834
TPR(FPR@0.05) | 0.881 1.000 | 0.995 0.942 | 0.991 | 0.996 0.917 | 0.881 | 0.928
TPR(FPR@0.10) | 0.965 | 1.000 | 0.995 0.978 | 0.998 | 0.996 0.960 | 0917 | 0.957

Parameter Value 0 10 20 0.1 0.3 0.5 0.1 0.3 0.5
AUC 0.999 | 0.995 | 0.995 0.993 | 0.999 | 0.999 0.980 | 0.989 | 0.996
MNIST TPR(FPR@0.01) | 0.974 | 0913 | 0919 0.817 | 0.972 | 1.000 0.692 | 0.733 | 0.920
TPR(FPR@0.05) | 0.997 | 0.993 | 0.994 0.994 | 0.998 1.000 0.973 | 0.957 | 0.992
TPR(FPR@0.10) | 1.000 | 0.998 | 0.999 0.998 | 1.000 | 1.000 0.992 | 0.999 | 0.996

Parameter Value 0 10 20 0.01 0.02 0.03 0.01 0.02 0.03
Tmagenet 0.94T [0.99T | 0.983 [[0.989 | 0.992 | 0.994 0.976 | 0.982 | 0.987
TPR(FPR@0.01) | 0.146 | 0.896 | 0.642 0.569 | 0.824 | 0.841 0.729 | 0.511 | 0.708

_sub TPR(FPR@0.05) | 0.538 | 0.951 | 0.910 0.989 | 0.985 | 0.995 0.904 | 0.936 | 0.951
b TPR(FPR@0.10) | 0.815 | 0.977 | 0.964 1.000 | 0.997 | 0.999 0.947 | 0.980 | 0.984

conducted experiments to study the effect of the number of
forward passes on MNIST against PGD attack. The ¢, norm
of PGD attack is bounded by 0.3 in the experiments.

As shown in Table IV, a few passes can recover this property.
Comparing the performance of 4 passes and 1 pass, we see that
increasing the number of passes helps improve performance.
However, after a certain point, this increase does not improve
the performance much. Therefore, we do not need to worry that
too many forward passes will be required for the distribution
simulation.

E. Defense Against Attack With Different Parameters

Some previous works [11] pointed out that detection methods
can fail when the adversarial attacks are strong, such as C & W
attack with high confidence. Therefore, we test BATER against
adversarial attacks of different strengths across three datasets.
For PGD and FGSM attacks, the parameter e captures the
strength of the attack with larger e representing a stronger attack.
For C & W, we try different confidence levels. The performance
of BATER is reported in Table V. Out of 27 AUC values, 24
of them are above 0.980 and all the AUCs are above 0.920.
The results show that BATER performs well against various
adversarial attacks with different strengths.

F. Adaptive Attack

All the previous experiments are carried out in a gray-box
setting, where we assume the adversary has access to the clas-
sifier model but does not know the details of the detector. The
white-box setting assumes that the adversary has access to both
the classifier and the detector. Therefore, an adaptive attack
method can be built to attack both the classifier and the detector.
This is worth studying as it can reveal possible drawbacks of the
method and promote future research direction.

TABLE VI
PEFORMANCE OF BATER AGAINST ADAPTIVE ATTACK. CONSIDERING BOTH
ROBUST ACCURACY AND DETECTION AUC, BATER SHOWS ACCEPTABLE
PERFORMANCE AGAINST THE ADAPTIVE ATTACK

Metric [MNIST | CIFARIO [TImagenet-sub
Robust.Acc 0.203 0.112 0.215
AUC 0.644 0.801 0.583
TPR(FPR@0.01) 0.325 0.134 0.051
TPR(FPR@0.05) 0.432 0.346 0.171
TPR(FPR@0.10) 0.476 0.450 0.256

To develop an adaptive attack against BATER, we propose the
following objective:

argmln 7L1(CB, yO) -)"LQ(ma ZO)7 (6)

[&—zollo<e

where L, and L, represent the classification loss and detection
loss respectively, A controls the trade-off between the two, y is
the label of original input, z(is the detection label, and and x(
represent adversarial example and original input. The loss func-
tion aims to fool the classifier and the detector at the same time. In
the experiment, we set A = 1. To optimize over the loss function,
we build a torch version of the Wasserstein distance function
based on the one from the scipy package, making it possible to
get the gradient of the second part of the loss function. Due to
the sorting operations in the Wasserstein distance calculation,
the function is non-differentiable at some points. However, if
we are not at those points we can assume the permutation won’t
change within a small region, so it becomes differentiable using
the same permutation forward and backward. So, the gradient is
still an approximation but very close.

The performance of BATER against the adaptive attack on
1000 randomly selected images of each dataset is shown in
Table VI. We employ the same attack parameters as outlined
in Section IV-A. Compared to the gray-box setting, the perfor-
mance drops, but still reasonable and better than without the
detection system. The task of fooling the detection part makes
the robust accuracy increase. On MNIST, the robust accuracy in-
creases to 20.3% and the AUC drops to 0.644. Taking both robust
accuracy and detection AUC into consideration, the framework
can still handle a reasonable portion of adversarial examples cor-
rectly. On CIFAR10, though the robust accuracy only increases
to 11.2%, the detection AUC is 0.801. On Imagenet-sub, the
performance is similar to that on MNIST.

V. CONCLUSION

In this paper, we introduce a new framework to detect adver-
sarial examples with Bayesian Neural Network, by capturing
the distributional differences of multiple hidden layer outputs
between the natural and adversarial examples. We show that our
detection framework outperforms other state-of-the-art methods
in detecting adversarial examples generated by various kinds
of attacks. It also displays strong performance in detecting
adversarial examples generated by various attack methods with
different strengths and adversarial examples generated by an
adaptive attack method.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK

—

[1]
[2]
[3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REFERENCES

I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. Int. Conf. Learn. Representations, 2015.
C. Szegedy et al., “Intriguing properties of neural networks,” 2013,
arXiv:1312.6199.

V. Kurkova, Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogiannis,
Artif. Neural Netw. Mach. Learn.: 27th Int. Conf. Artif. Neural Netw.,2018.
P. Yang, Towards Adversarial Robustness of Deep Neural Networks. Davis,
CA, USA: Univ. California, 2020.

Y. Li, On Robustness and Efficiency of Machine Learning Systems. Davis,
CA, USA: Univ. California, 2020.

Y. Li, M. Cheng, C.-J. Hsieh, and T. C. Lee, “A review of adversarial attack
and defense for classification methods,” Amer. Statistician, vol. 76, no. 4,
pp. 329-345, 2022.

X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 9, pp. 2805-2824, Sep. 2019.

J.Zhang and C. Li, “Adversarial examples: Opportunities and challenges,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7, pp. 2578-2593,
Jul. 2020.

A. Chan et al., “Breaking neural reasoning architectures with metamorphic
relation-based adversarial examples,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 33, no. 11, pp. 6976-6982, Nov. 2022.

Y. Li, M. Cheng, C.-J. Hsieh, and T. C. M. Lee, “A review of adversarial
attack and defense for classification methods,” Amer. Statistician, vol. 76,
pp. 329-345, 2022, doi: 10.1080/00031305.2021.2006781.

A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples,” in
Proc. Int. Conf. Mach. Learn., 2018, pp. 274-283.

G. S. Dhillon et al., “Stochastic activation pruning for robust adversarial
defense,” in Proc. Int. Conf. Learn. Representations, 2018. [Online].
Available: https://openreview.net/forum?id=H1uR4GZRZ

X. Ma et al., “Characterizing adversarial subspaces using local intrinsic
dimensionality,” in Proc. Int. Conf. Learn. Representations, 2018.

P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: Pro-
tecting classifiers against adversarial attacks using generative models,”
in Proc. Int. Conf. Learn. Representations, 2018. [Online]. Available:
https://openreview.net/forum ?id=BkJ3ibb0-

Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “PixelDefend:
Leveraging generative models to understand and defend against adversarial
examples,” in Proc. Int. Conf. Learn. Representations, 2018. [Online].
Available: https://openreview.net/forum?id=rJUYGxbCW

C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial
effects through randomization,” in Proc. Int. Conf. Learn. Representations,
2018. [Online]. Available: https://openreview.net/forum?id=Sk9yuql0Z
A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Proc. Int. Conf.
Learn. Representations,2018. [Online]. Available: https://openreview.net/
forum?id=rJzIBfZAb

T. Tanay and L. Griffin, “A boundary tilting persepective on the phe-
nomenon of adversarial examples,” 2016, arXiv:1608.07690.

R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” 2017, arXiv:1703.00410.

Z.Zheng and P. Hong, “Robust detection of adversarial attacks by model-
ing the intrinsic properties of deep neural networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 7913-7922.

T. Pang, C. Du, Y. Dong, and J. Zhu, “Towards robust detection of
adversarial examples,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 4584-4594.

G. Tao, S. Ma, Y. Liu, and X. Zhang, “Attacks meet interpretability:
Attribute-steered detection of adversarial samples,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 7717-7728.

K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for
detecting out-of-distribution samples and adversarial attacks,” in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 7167-7177.

P. Yang, J. Chen, C.-J. Hsieh, J.-L. Wang, and M. Jordan, “ML-LOO:
Detecting adversarial examples with feature attribution,” in Proc. AAAI
Conf. Artif. Intell., 2020, pp. 6639-6647.

X. Ding, Y. Cheng, Y. Luo, Q. Li, and P. Gope, “Consensus adversarial
defense method based on augmented examples,” IEEE Trans. Ind. Inform.,
vol. 19, no. 1, pp. 984-994, Jan. 2023.

X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust neural
networks via random self-ensemble,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 369-385.

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

(35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial robust-
ness via randomized smoothing,” in Proc. Int. Conf. Mach. Learn.,2019,
pp. 1310-1320.

X. Liu, Y. Li, C. Wu, and C.-J. Hsieh, “Adv-BNN: Improved adversarial
defense through robust Bayesian neural network,” in Proc. Int. Conf. Learn.
Representations, 2019.

N. Ye and Z. Zhu, “Bayesian adversarial learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 6892-6901. [Online]. Available: http://papers.
nips.cc/paper/7921-bayesian-adversarial-learning.pdf

G. Carbone, M. Wicker, L. Laurenti, A. Patane, L. Bortolussi,
and G. Sanguinetti, “Robustness of Bayesian neural networks to
gradient-based attacks,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 15602-15613.

C.-H. H. Yang et al., “Mitigating closed-model adversarial examples
with Bayesian neural modeling for enhanced end-to-end speech recog-
nition,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2022,
pp. 6302-6306.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1613-1622.

X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 9, pp. 2805-2824, Sep. 2019.

N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proc. 10th ACM Workshop Artif.
Intell. Secur., 2017, pp. 3—14.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 39-57.

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 1765-1773.

Z. Che et al., “SMGEA: A new ensemble adversarial attack powered by
long-term gradient memories,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 3, pp. 1051-1065, Mar. 2022.

L. Liang et al., “Exploring adversarial attack in spiking neural networks
with spike-compatible gradient,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 5, pp. 2569-2583, May 2023.

P.Zhao, K. Xu, S. Liu, Y. Wang, and X. Lin, “ADMM attack: An enhanced
adversarial attack for deep neural networks with undetectable distortions,”
in Proc. 24th Asia South Pacific Des. Automat. Conf., 2019, pp. 499-505.
T. Chen, J. Liu, Y. Xiang, W. Niu, E. Tong, and Z. Han, “Adversarial
attack and defense in reinforcement learning-from Al security view,”
Cybersecurity, vol. 2, pp. 1-22, 2019.

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2574-2582.

P-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “EAD: Elastic-net
attacks to deep neural networks via adversarial examples,” in Proc. 32nd
AAAI Conf. Artif. Intell., 2018, Art. no. 2.

N. Carlini, Evaluation and Design of Robust Neural Network Defenses.
Berkeley, CA, USA: Univ. California, 2018.

P-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth
order optimization based black-box attacks to deep neural networks with-
out training substitute models,” in Proc. 10th ACM Workshop Artif. Intell.
Secur., 2017, pp. 15-26.

W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
in Proc. Int. Conf. Learn. Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=SyZIOGWCZ

A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial
attacks with limited queries and information,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 2137-2146.

M. Cheng, S. Singh, P.-Y. Chen, S. Liu, and C.-J. Hsieh, “Sign-OPT:
A query-efficient hard-label adversarial attack,” in Proc. Int. Conf.
Learn. Representations,2020. [Online]. Available: https://openreview.net/
forum?id=SkITQCNtvS

Z. Yan, Y. Guo, and C. Zhang, “Subspace attack: Exploiting promising
subspaces for query-efficient black-box attacks,” Adv. Neural Inf. Process.
Syst., H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett, Eds. New York, NY, USA: Curran Associates, Inc.,
vol. 32, 2019. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2019/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf

J. Chen, M. L. Jordan, and M. J. Wainwright, “HopSkipJumpAttack: A
query-efficient decision-based attack,” in Proc. IEEE Symp. Secur. Pri-
vacy, 2019, pp. 1277-1294.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

10

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

J. Chen, Towards Interpretability and Robustness of Machine Learning
Models. Berkeley, CA, USA: Univ. California, 2019.

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” Artif. Intell. Saf. Secur., pp. 99-112, 2018.

F. Tramar, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P.
McDaniel, “Ensemble adversarial training: Attacks and defenses,” in
Proc. Int. Conf. Learn. Representations, 2018. [Online]. Available: https:
/lopenreview.net/forum?id=rkZvSe-RZ

H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan,
“Theoretically principled trade-off between robustness and accuracy,” in
Proc. Int. Conf. Mach. Learn., 2019, pp. 7472-7482.

N. Ye, Q. Li, X.-Y. Zhou, and Z. Zhu, “An annealing mechanism for
adversarial training acceleration,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 2, pp. 882-893, Feb. 2023.

D. Meng and H. Chen, “MagNet: A two-pronged defense against adver-
sarial examples,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2017, pp. 135-147.

Y. Li et al., “Towards robustness of deep neural networks via reg-
ularization,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., Oct. 2021,
pp- 7496-7505.

A. Jalal, A. Tlyas, C. Daskalakis, and A. G. Dimakis, “The robust
manifold defense: Adversarial training using generative models,” 2017,
arXiv:1712.09196.

Y. Li et al., “Towards robustness of deep neural networks via regulariza-
tion,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 7496-7505.
E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 5286-5295.

M. Everett, B. Liitjens, and J. P. How, “Certifiable robustness to adversarial
state uncertainty in deep reinforcement learning,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 33, no. 9, pp. 4184-4198, Sep. 2022.

X. Chen, J. Weng, X. Deng, W. Luo, Y. Lan, and Q. Tian, “Feature
distillation in deep attention network against adversarial examples,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 34, no. 7, pp. 3691-3705, Jul. 2023.
Q. Liu and W. Wen, “Model compression hardens deep neural networks: A
new perspective to prevent adversarial attacks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 34, no. 1, pp. 3—14, Jan. 2023.

B. Zhang, B. Tondi, X. Lv, and M. Barni, “Challenging the adversarial
robustness of DNNs based on error-correcting output codes,” Secur. Com-
mun. Netw., vol. 2020, pp. 1-11, 2020.

A. Mustafa, S. H. Khan, M. Hayat, R. Goecke, J. Shen, and L. Shao,
“Deeply supervised discriminative learning for adversarial defense,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 9, pp. 3154-3166,
Sep. 2021.

S. Zhao, J. Yu, Z. Sun, B. Zhang, and X. Wei, “Enhanced accuracy and
robustness via multi-teacher adversarial distillation,” in Proc. 17th Eur.
Conf. Comput. Vis., 2022, pp. 585-602.

J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” in Proc. Int. Conf. Learn. Representations,
2017. [Online]. Available: https://openreview.net/forum?id=SJzCSfoxg
J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” in Proc. Int. Conf. Learn. Representations,
2017. [Online]. Available: https://openreview.net/forum?id=SJzCSfoxg
A. Agarwal, G. Goswami, M. Vatsa, R. Singh, and N. K. Ratha, “DAMAD:
Database, attack, and model agnostic adversarial perturbation detector,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8 , pp. 3277-3289,
Aug. 2022.

F. Nesti, A. Biondi, and G. Buttazzo, “Detecting adversarial examples
by input transformations, defense perturbations, and voting,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 3, pp. 1329-1341, Mar. 2023.

Z. Gong and W. Wang, “Adversarial and clean data are not twins,” in
Proc. 6th Int. Workshop Exploiting Artif. Intell. Techn. Data Manage.,
2023, pp. 1-5.

P. Sperl, C.-Y. Kao, P. Chen, X. Lei, and K. Béttinger, “DLA: Dense-layer-
analysis for adversarial example detection,” in Proc. IEEE Eur. Symp.
Secur. Privacy, 2020, pp. 198-215.

S. Gao et al., “Detecting adversarial examples on deep neural networks
with mutual information neural estimation,” IEEE Trans. Dependable
Secure Comput., vol. 20, no. 6 , pp. 5168-5181, Nov./Dec. 2023.

Y. Chen, M. Zhang, J. Li, and X. Kuang, “Adversarial attacks and defenses
in image classification: A practical perspective,” in Proc. IEEE 7th Int.
Conf. Image Vis. Comput., 2022, pp. 424-430.

K. Roth, Y. Kilcher, and T. Hofmann, “The odds are odd: A statistical
test for detecting adversarial examples,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 5498-5507.

[75] J. Raghuram, V. Chandrasekaran, S. Jha, and S. Banerjee, “A general

framework for detecting anomalous inputs to DNN classifiers,” in Proc.
Int. Conf. Mach. Learn., 2021, pp. 8764-8775.

[76] Y. Gao, Z. Lin, Y. Yang, and J. Sang, “Towards black-box adver-

sarial example detection: A data reconstruction-based method,” 2023,
arXiv:2306.02021.

[77] Y.Zhou,J.-Y.Jiang, K.-W. Chang, and W. Wang, “Learning to discriminate

perturbations for blocking adversarial attacks in text classification,” in
Proc. Conf. Empir. Methods Natural Lang. Process. 9th Int. Joint Conf.
Natural Lang. Process., 2019, pp. 4903-4912.

[78] M. Mozes, P. Stenetorp, B. Kleinberg, and L. Griffin, “Frequency-guided

word substitutions for detecting textual adversarial examples,” in Proc.
16th Conf. Eur. Chapter Assoc. Comput. Linguistics, 2021, pp. 171-186.
[Online]. Available: https://aclanthology.org/2021.eacl-main.13

[79] K. Yoo, J. Kim, J. Jang, and N. Kwak, “Detection of adversarial examples

in text classification: Benchmark and baseline via robust density estima-
tion,” in Proc. Findings Assoc. Comput. Linguistics, 2022, pp. 3656-3672.
[Online]. Available: https://aclanthology.org/2022.findings-acl.289

[80] F. Yin, Y. Li, C.-J. Hsieh, and K.-W. Chang, “ADDMU: Detection of

far-boundary adversarial examples with data and model uncertainty es-
timation,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2022,
pp. 6567-6584.

[81] H. Ren, T. Huang, and H. Yan, “Adversarial examples: Attacks and

defenses in the physical world,” Int. J. Mach. Learn. Cybern., vol. 12,
pp. 3325-3336, 2021.

[82] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 2014, arXiv:1409.1556.

[83] Y. LeCun, “The MNIST database of handwritten digits,” 1998. [Online].

Auvailable: http://yann.lecun.com/exdb/mnist/

[84] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” Toronto, ON, Canada, 2009.

[85] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normaliza-

tion for generative adversarial networks,” in Proc. Int. Conf. Learn. Rep-
resentations,2018. [Online]. Available: https://openreview.net/forum?id=
B1QRgziT-

[86] G.Zhang, S. Sun, D. Duvenaud, and R. Grosse, “Noisy natural gradient as

variational inference,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 5852—
5861.

[87] J.Rauber, R. Zimmermann, M. Bethge, and W. Brendel, “Foolbox native:

Fast adversarial attacks to benchmark the robustness of machine learning
models in PyTorch, TensorFlow, and JAX,” J. Open Source Softw., vol. 5,
no. 53, p. 2607, 2020, doi: 10.21105/j0ss.02607.

[88] N. Papernot and P. McDaniel, “Deep k-nearest neighbors: Towards confi-

dent, interpretable and robust deep learning,” 2018, arXiv:1803.04765.

[89] H. Jiang, B. Kim, M. Y. Guan, and M. R. Gupta, “To trust or not to trust

a classifier,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018,
pp. 5546-5557.

Yao Li received the bachelor’s degree in statistics
from Fudan University, Shanghai, China, in 2014, and
the Ph.D. degree from the University of California,
Davis, Davis, CA, USA, in 2020. She is currently
an Assistant Professor of statistics and operations
research with the University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA. Her research in-
terests include trustworthy machine learning, compu-
tational pathology, and machine learning applications
in other scientific disciplines.

Tongyi Tang received the bachelor’s degree in math-
ematics from Fudan University, Shanghai, China, in
2016, and the Ph.D. degree from the University of
California, Davis, Davis, CA, USA, in 2021. She is
currently a Research Scientist with Meta Platforms,
Inc., Menlo Park, CA. Her research interests include
optimization, random vector field modeling, and se-
curity of deep learning models.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

Cho-Jui Hsieh is currently an Associate Professor
with the Computer Science Department, University of
California, Los Angeles, Los Angeles, CA, USA. His
work primarily focuses on enhancing the efficiency
and robustness of machine learning systems. He has
made significant contributions to multiple widely-
used machine learning packages. He was the recipient
of the NSF Career Award, Samsung Al Researcher of
the Year, and Google Research Scholar Award, and
his work has been acknowledged with several paper
awards in ICLR, KDD, ICDM, ICPP, and SC.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ADVERSARIAL EXAMPLES DETECTION WITH BAYESIAN NEURAL NETWORK 11

Thomas C. M. Lee (Senior Member, IEEE) re-
ceived the B.App.Sc. and B.Sc. (Hons) (with Uni-
versity Medal) degrees in mathematics from the Uni-
versity of Technology, Sydney, NSW, Australia, in
1992 and 1993, respectively, and the Ph.D. degree
jointly from Macquarie University, Macquarie Park,
NSW, and CSIRO Mathematical and Information Sci-
ences, Sydney, in 1997. He is currently a Professor
of statistics and an Associate Dean of the Faculty
of Mathematical and Physical Sciences, University
of California, Davis (UC Davis), Davis, CA, USA.
His research interests include inference methods, machine learning, and statis-
tical applications in other scientific disciplines. He is an elected Fellow of the
American Association for the Advancement of Science, American Statistical
Association, and Institute of Mathematical Statistics. From 2013 to 2015, he was
the Editor-in-Chief of the Journal of Computational and Graphical Statistics,
from 2015 to 2018, and the Chair of the Department of Statistics, UC Davis. He
is also the Review Editor of the Journal of the American Statistical Association.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on June 21,2024 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

