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Quantum critical systems constitute appealing platforms for exploring novel measurement-induced
phenomena due to their innate sensitivity to perturbations. We study the impact of measurements on
paradigmatic Ising quantum-critical chains using an explicit protocol, whereby correlated ancillae are
entangled with the critical chain and then projectively measured. Using a perturbative analytic framework
supported by extensive numerical simulations, we demonstrate that measurements can qualitatively alter
critical correlations in a manner dependent on the choice of entangling gate, ancilla measurement basis,
measurement outcome, and nature of ancilla correlations. We further show that measurement-altered Ising
criticality can be pursued surprisingly efficiently in experiments featuring of order 100 qubits by
postselecting for high-probability measurement outcomes or, in certain cases, by averaging observables
separately over measurement outcomes residing in distinct symmetry sectors. Our framework naturally
adapts to more exotic quantum-critical points and highlights opportunities for realization in noisy
intermediate-scale quantum hardware and in Rydberg arrays.
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I. INTRODUCTION

Measurements are increasingly viewed as not only a
means of probing quantum matter, but also as a resource
for generating novel quantum phenomena that may be
difficult or impossible to realize solely with unitary evolu-
tion. For instance, local measurements that tend to suppress
entanglement can compete with entanglement-promoting
dynamics—Ieading to entanglement transitions when these
effects compete to a draw [1-3]. Well-studied examples
include the volume-to-area-law entanglement transition in
random Clifford circuits [4-7] and the transition from a
critical phase with logarithmic scaling to an area-law phase,
e.g., in monitored free fermions [8—10] (see also Refs. [11—
31]). Measurements additionally provide shortcuts to pre-
paring certain long-range entangled quantum states [32]
including wave functions associated with topological order
[33—37] and quantum criticality [38,39], and can also induce
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spontaneous symmetry breaking via quantum monitoring of
asystem [40]. With the advent of analog quantum simulators
and noisy intermediate-scale quantum (NISQ) hardware,
these directions are becoming increasingly experimentally
relevant. Indeed, recent experiments have reported signa-
tures of measurement-induced entanglement transitions
[41,42] as well as measurement-assisted preparation of
the toric code with a finite-depth quantum circuit [43].

Despite the impressive progress in this arena, dealing with
inherent randomness associated with quantum measure-
ments poses a nontrivial ongoing challenge. Measurement-
induced quantum phenomena of interest commonly occur
within particular measurement-outcome sectors. Moreover,
applying conventional averages of observables over meas-
urement outcomes tends to erase measurement effects
altogether. Verification is therefore subtle and can proceed
along several possible avenues, e.g., brute-force postselec-
tion [42], decoding to “undo” randomness injected by
measurement using classical postprocessing [39,44],
machine learning [45,46], or active feedback, and condi-
tional control [5,41,43], considering nonunitary circuits that
are space-time duals to unitary evolution [47-49], or via
cross-entropy benchmarking [50].

Quantum critical systems offer promising venues for
exploring nontrivial measurement-induced behavior. First,
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Protocol used to explore measurement-altered Ising criticality (left) and summary of the main results (right). (a) The upper

chain is always prepared in the ground state |y} of the critical transverse-field Ising model. The ancilla chain is initialized into the
ground state |y,) of the Ising model either in the paramagnetic phase or at criticality. (b) After a unitary that entangles the two chains
followed by (c) ancilla measurements, the ancilla chain enters a product state |5) while the upper chain enters a state |y;) dependent on
the measurement outcome 5. (d) Physical operators A for the top chain are then probed in the state |y;). The table () summarizes our
predictions for the four cases that we explore, distinguished by the ancilla measurement basis and symmetry of the postmeasurement

wave function |y;).

gaplessness renders such systems inherently sensitive to
small perturbations, suggesting that even weak disturb-
ances generated by measurements can yield profound
consequences. Second, quantum criticality traditionally
manifests in long-distance correlations among local
observables; one might then anticipate that developing
verification protocols here poses a gentler challenge rela-
tive to, say, identifying more nuanced entanglement mod-
ifications. The pioneering work by Garratt et al. [51]
demonstrated that even arbitrarily weak measurements
can indeed qualitatively impact long-distance correlations
in a one-dimensional gapless Luttinger liquid, opening up a
new frontier of “measurement-altered quantum criticality.”
More precisely, Ref. [51] showed that, in close analogy
with the classic Kane-Fisher impurity problem [52], meas-
urement effects can be turned “on” or “off” by varying the
Luttinger parameter that characterizes the interaction
strength. Reference [51] additionally proposed detection
protocols both for postselected and (unconventionally)
measurement-averaged correlators. Earlier works [53-55]
also showed that measurements can nontrivially impact
entanglement in quantum-critical states, albeit with quite
different protocols. Subsequently, Ref. [56] associated
certain effects of measurement on Luttinger liquids with
an entanglement transition. Measurements have since been
further investigated in the context of (2 + 1)-dimensional
quantum-critical points [57]; see also Refs. [58-60].

In this paper, we develop a theory of measurement-
altered criticality in paradigmatic one-dimensional Ising
quantum critical chains. Ising quantum-critical points arise
in myriad physical contexts—ranging from Mott insulating
spin systems to Rydberg atom arrays—and can also arise in
noninteracting model Hamiltonians, thus greatly facilitat-
ing analytical and numerical progress. We consider the
explicit protocol summarized in Fig. 1; to retain nontrivial
correlations in the critical chain’s wave function, the
protocol entangles the critical degrees of freedom with a
second chain of correlated ancillae and then projectively
measures the latter. Our use of ancillae not only provides a
practical tool for weakly measuring the critical chain, but
further opens a large phase space in which to explore
measurement effects. Numerous questions naturally arise
here: How are critical correlations modified in specific
postselected measurement outcomes? How do such mod-
ifications depend on the choice of entangling gate and
ancilla measurement basis used in the protocol? What role
do correlations among the ancillae play? And how can one
extract nontrivial effects of measurement in practice?

On a technical level, the Ising conformal field theory
governing the quantum-critical chains we study does not
admit any marginal operators that can serve to tune the
impact of measurements, unlike the Luttinger-liquid setting
[51], naively suggesting mundane behavior. On the con-
trary, we find that measurements can wield exceptionally
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rich and experimentally accessible consequences on Ising
quantum-critical spin correlations: (i) Scaling dimensions
that are otherwise “non-negotiable” in the pristine Ising
conformal field theory can become continuously variable in
translationally invariant measurement postselection sectors.
(i1) For certain unitary entangling gates in our protocol,
coarse-grained spin-spin correlations can be formally
obtained from a perturbed Ising conformal field theory
for arbitrary measurement outcomes. (iii) Measurements
can catalyze order-parameter condensation with a spatial
profile dependent on the measurement outcome. Averaging
the square of the order parameter over measurement
outcomes returns a nontrivial result that appears to survive
in the thermodynamic limit. (iv) When the ancillae are also
initialized into a critical state, we argue that measurements
can alter power-law spin-spin correlations in a manner
qualitatively different from modifications generated with
paramagnetic ancillae. (v) For certain ancilla measurement
bases, measurement outcomes can be partitioned into
distinct symmetry sectors. We show that correlations
averaged over particular symmetry sectors retain nontrivial
signatures of measurements. Interestingly, appropriately
normalized differences in such symmetry-resolved aver-
ages closely mimic correlations evaluated with postselected
uniform measurement outcomes, yet as we show can
generically be extracted more efficiently compared to
postselection when the ancillae entangle sufficiently
weakly with the critical chain. (vi) By assessing the order
of magnitude of the experimental trials required to probe
measurement-altered criticality via symmetry-resolved
averages and postselection, we identify complementary
regimes in which each technique remains viable even for
large systems containing O(100) spins.

Figure 1 summarizes our main findings, all of which we
substantiate using a perturbative analytic framework sup-
plemented by extensive numerical simulations. Our results
collectively shed new light on the interplay between
measurements and quantum criticality, and can be poten-
tially tested experimentally in Rydberg arrays [61,62] and
presently available NISQ devices. In the latter realm, a
hybrid of classical algorithms for representing correlated
quantum states, and physical qubits that can exploit these
algorithms, was recently used to create the ground state of
the critical transverse-field Ising chain and measure order-
parameter power-law correlations [63]. Such experimental
developments bode well for future realization of measure-
ment-altered Ising quantum criticality.

We proceed in Sec. II by first reviewing the microscopic
model and continuum theory used throughout, and then
detailing our protocol. Section III derives an effective
action formalism that incorporates measurement effects
into a perturbation to the Ising conformal field action. We
critically assess the conditions under which our perturba-
tive action formalism is expected to be valid in Sec. IV.
Sections V and VI then examine consequences of our

protocol with different ancilla measurement bases. In
Sec. VII we develop the formalism of symmetry-resolved
measurement averages for detecting measurement-altered
Ising criticality and critically compare with post-selection-
based schemes. Finally, Sec. VIII provides a summary and
outlook.

II. SETUP AND PROTOCOL

A. Review of Ising criticality

Throughout this paper, we explore the effect of mea-
surements on an Ising quantum-critical point realized
microscopically in the canonical transverse-field Ising
model,

H=Y (-JZ;Zj, - hX;). (1)

Here, Z; and X; are Pauli operators acting on site j of a
chain with periodic boundary conditions (unless specified
otherwise). Additionally, we assume ferromagnetic inter-
actions J > 0 and a positive transverse field h > 0.
Equation (1) preserves both time-reversal symmetry
T —which leaves X; and Z; invariant but enacts complex
conjugation—and global Z, spin-flip symmetry generated
by G =1]] ;Xj. At h > J, the system realizes a symmetry-
preserving paramagnetic phase. For & < J, a ferromag-
netic phase emerges, characterized by a non-zero-order
parameter (Z;) # O that indicates spontaneously broken
Z, symmetry. The paramagnetic and ferromagnetic
phases are related under a duality transformation that
interchanges J < h.

Ising criticality appears at the self-dual point J = hA—to
which we specialize hereafter. The low-energy critical
theory is most easily accessed via a Jordan-Wigner trans-
formation to Majorana fermion operators

Yaj = <ka>zj’ YBj = <HXj>inZj' (2)
k<j k<j

In this basis, the J = h Hamiltonian becomes
H.= iJZ(}’Aj+1 - YAj)YBj- (3)
J

Focusing on long-wavelength Fourier components
of y4; and yp;, which comprise the important degrees of
freedom at criticality, yields the continuum Hamiltonian
H. =iv [ (d,y4)yp With v  J. Upon changing basis to
Ya=7Yr trr and yp =yg —yr, We arrive at

H, = —i”/(VROxYR = 71071 (4)
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which describes kinetic energy for right- and left-moving
Majorana fermions yx and y;.

Equation (4) corresponds to an Ising conformal field
theory (CFT) with central charge ¢ = 1/2 [64]. The Ising
CFT exhibits three primary fields: the identity 1, the “spin
field” o (scaling dimension A, = 1/8), and the “energy
field” e (dimension A, = 1). The spin field is odd under Z,
symmetry and represents the continuum limit of the
ferromagnetic order parameter. Consequently, only corre-
lators containing an even number of spin fields can be
nonzero at criticality. For instance, one- and two-point spin-
field correlators read

1
[ (5)

~
lx — x

(6(x)) =0, (o(x)o(x))

The energy field is a composite of right- and left-movers,
& = iygyy; this field is odd under duality and hence
represents a perturbation that moves the system off of
criticality. The operator product expansion for two fields at
different points determine the following fusion rules:

ocxo=1+e,
exe=1,

o x€e=o. (6)

Local microscopic spin operators admit straightforward
expansions in terms of the above CFT fields and their
descendants. In particular, we have

Zimote, (7)
X;—(X)~et -, (8)

where the ellipses denote fields with subleading scaling
dimension. Equation (7) follows from Z, symmetry
together with translation invariance of the ferromagnetic
phase [for the antiferromagnetic case J < 0, an additional
(=1)/ factor would appear on the right side]. In Eq. (8), (X)
denotes the (position-independent) ground-state expect-
ation value of X;, which is generically nonzero due to
the transverse field. In the thermodynamic limit at criti-
cality, one finds (X) = 2/z. Subtracting off this expect-
ation value from the left-hand side removes terms
proportional to the identity field on the right-hand side.
One can understand the appearance of ¢ in Eq. (8) by noting
that perturbing the microscopic Hamiltonian with a term
x> ;X ; moves the system off of criticality, corresponding
to the generation of the energy field in the continuum
theory. (The same conclusion follows by expressing X; in
terms of Majorana fermions and taking the continuum
limit [65].)

With the aid of relations like Egs. (7) and (8), standard
techniques relate ground-state expectation values of

microscopic operators to averages of CFT fields expressed
in path-integral language. We illustrate the approach in a
way that will be useful for exploring the influence of
measurements in Sec. III B. The ground-state expectation
value of a microscopic operator A in the critical chain’s
ground state |y,.),

(A) = (welAlye), ©)

can always be expressed as

1
(A) = lim — Tr{ePH/2Ae~PH/2} (10)

p—o0

The e ##</2 factors in the numerator project away excited-
state components from the bra and ket in each element of
the trace, and the partition function Z = limy_ ., Tr{e™#"}
in the denominator ensures proper normalization. Next, we
take the continuum limit of both sides:

(4) ~ (A) = lim %Tr{e—/fﬂc/me—ﬁwﬂ}. (11)

Calligraphic fonts indicate low-energy expansions of the
corresponding quantities in Eq. (10). For instance, if A =
Z;Z; then Eq. (7) gives A = o(x;)o(x;) for x; a continuum
coordinate corresponding to site i. Finally, Trotterizing the
exponentials and inserting resolutions of identity in the
fermionic coherent-state basis yields

) = fim 2 [ DrPreSAc=0) (12

with the Euclidean Ising CFT action

p/2 . .
SC://ﬂ/zdr[}/R((?,—lvax)YR‘f'VL(arHUax)h]- (13)

Note that in our convention, imaginary time 7 runs
from —p/2 to +p/2 with  — oco; the operator ordering
in Eq. (11) then naturally gives A evaluated at 7 =0
in Eq. (12).

B. Protocol

Performing local projective measurements to all sites of
the critical chain reviewed above would simply collapse the
corresponding wave function into a trivial product state,
thereby destroying all existent correlations. Hence, we
introduce a second, ancillary transverse-field Ising chain
that enables us to enact different types of generalized
measurements on the critical Ising chain and characterize
their nontrivial effect on its entanglement structure.
Specifically, the ancilla Hamiltonian is
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Hanc = Z( Jd[lCZ Zj+1 hancf(j)7 (14)
J

where Z ; and X ; are Pauli operators for the ancilla spins,
and we assume J ., iy, > 0. Throughout we work in the
regime h,,. > Jac; 1.€., the ancillae are either critical or
realize the gapped paramagnetic phase, so that the spin-flip
symmetry generated by G = 11 j X ; 18 always preserved in
the ground state.

Inspired by Ref. [51], we consider the following protocol
(see Fig. 1 for a summary):
(a) Initialize the system into the wave function

lwellwa), (15)

where |y.) is the ground state of the top (critical)
chain, and |y,) is the ground state of the bottom
(ancilla) chain.

(b) Apply a unitary gate U; to each pair of adjacent sites
from the critical and ancilla chains, sending

lwas) = lwu) = (HU)IWL wa).  (16)

The unitaries we apply generally consist of single-spin
ancilla rotations followed by a two-spin entangling
gate, and are always implemented in a translationally
invariant manner.

(c) Projectively measure all ancilla spins in some fixed
basis, e.g., Z or X, yielding measurement outcome

{3;} (17)

with §;€ 4+ 1. The wave function correspondingly
collapses to |y5)|3); here, ;) denotes the postmea-
surement state for the top chain, which depends on the
outcome 5. More precisely, this step sends

|V/GS> =

Ky

> measure

[ws)[5)
- = (M6, w09

where the normalization

lyu

p =l (TTU5) 610, )l 19

specifies the probability for obtaining measurement
outcome 5.
(d) Probe correlations on the top chain for the postmea-
surement state |ys).
Inspection of Eq. (18) reveals that the ancilla measure-
ments can nontrivially impact correlations in the critical
chain only if the measurement basis and unitaries are

chosen such that [|3;)(5;|, U;] # 0 [66]. Even in this case,
however, extracting measurement-induced changes in cor-
relations poses a subtle problem. For an arbitrary critical-
chain observable A, performing a standard average of
(y5]Aly;) over ancilla measurement outcomes simply
recovers the expectation value (wy|Alwy) taken in the
premeasurement state. Indeed, using Egs. (16) and (18)
yields

;P§<W§|A|W§>
= Stwl (D51 )A( T 51w
—Z:szl(l;[lﬁj ,I)Alww (wulAlpy).  (20)

The second equality follows from the fact that the
projectors [5;)(3;| commute with A (because they act on
different chains) and square to themselves, while the third
follows upon removing a resolution of the identity for the
ancilla chain.

Our protocol performs a particular physical implemen-
tation of generalized measurements that combines addi-
tional degrees of freedom provided by the ancilla chain, a
unitary entangling transformation, and projective measure-
ments (see, e.g., Ref. [67]). More importantly, it allows us
to assess how quantum correlations among the ancillae,
tunable via the ratio /A,,./Jne, impact the measurement-
induced changes in the critical chain’s properties. Let us
make this connection more explicit. The postmeasured state
lw;) given in Eq. (18) can be written as

) = —— Myly,), (21)

VPs

where, given measurement outcome 5, M5 = (5| [[; U,|w,)
denotes the measurement operator acting on the critical
chain. The full set of measurement operators satisfy the
completeness relation Y. MIM; =1, If |y,) was a
product state, then we could factorize M; = Hj M; i
terms of on-site measurement operators M. However, for
nontrivially entangled |w,), which we always consider
below, this exact factorization no longer holds, though an
approximate factorization can nevertheless suffice to cap-
ture the essential influence of measurement, depending on
the precise form of M; and the range of ancilla correlations.
We return to this point in Sec. VIII.

Subsequent sections investigate the protocol with differ-
ent classes of unitaries and measurement bases using a
combination of field-theoretic and numerical tools. The
techniques combine covariant-matrix techniques for
Gaussian states (explained in Appendix B) when character-
izing a single chain, exact diagonalization to exactly
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evaluate averages over measurement outcomes, and
tensor network methods [68] using the density-matrix
renormalization-group (DMRG) method [69] and its
infinite variant (iDMRG) [70] to evaluate correlations on
specific measurement outcomes. As a prerequisite, next
we develop a perturbative formalism that we use exten-
sively to distill measurement effects into a perturbation to
the Ising CFT action.

III. EFFECTIVE ACTION FORMALISM

Table I lists the four classes of unitaries U; that we
examine, together with the corresponding ancilla measure-
ment basis taken for each case. In the second column, (X) =
(we|X;lw.) as defined previously, C is a constant, and u
characterizes the strength of the unitary, i.e., how far U is
from the identity. As we see later, the symmetry of U;
depends on whether C =0 or C #0 in a manner that
qualitatively affects critical-chain correlations after meas-
urement. Throughout our analytical treatment, we assume
small # < 1 that does not scale with system size. Our goal in
Sec. IIT A is to recast the postmeasurement state in the form

) = L lo=Hu/2 22
ws) N we)- (22)
Here U’ is a unitary operator acting solely on the critical
chain, while H,, is a Hermitian operator organized system-
atically in powers of u that encodes the nonunitary change in
|wy) imposed by the measurement. One can view this
representation of |y;) as arising from a polar decomposition
of the measurement operator M5 in Eq. (21), up to an overall
constant (dependent on §) that is absorbed into the normali-
zation factor V. Section III B uses the form in Eq. (22) to
develop a continuum-limit CFT framework for character-
izing observables given a fixed ancilla measurement
outcome.

A. Perturbative framework

All four unitaries in Table I take the form

U= £i1(0;=0)0; (23)

TABLE I.  Four classes of unitaries used in our protocols, along
with the corresponding ancilla measurement basis. In cases II and
IV, C is a constant that controls whether or not the postmeasure-
ment state |yp;) preserves global spin-flip symmetry for the
critical chain.

Case Unitary U, Ancilla measurement basis
I expliu(X; — (X))X}] z
II expliu(Z; — C)X; Z
11 expliu(X; — (X))Z;] X
v expliu(Z; — C)Z,—] X

The constant 4 is either (X) (cases I, III) or C (cases II, IV),
while O; and 0 ; denote Pauli matrices that, respectively,
act on the critical chain and ancilla. We refer to Appendix A
for a detailed derivation of the postmeasurement state,
providing here the final expression of U’ and H,, appearing
in Eq. (22). Defining U’ = "', we obtain to O(u?),

H = uza(j)(Oj —(0)), (24)

H, = MZZm,.(oj - (0))
+u) Vu(0;-(0))(0; = (0)).  (25)

J#k

For later convenience, we organize the contributions in
terms of O; — (0), where (O) = (y.|O;|y.) is the expect-
ation value of O; in the initialized state, prior to applying
the unitary and measuring. Equation (25) contains coef-
ficients

Vi = a(j. k) — a(j)a(k). (26)

m; = =20[1 —a(j)*| +2((0) = 0)> Vi (27)

k#j
where
. (310)lwa) ali _ (510,0dlya)
R 7 B A R

We stress that U’ = ¢ factorizes into a product of
operators acting on a single site j—i.e., one can always
decompose U’ = []; U, at order O(u?)—whereas e~/
admits no such factorization due to the V. term. The
leading corrections to H' and H,, arise at O(u*) and O(u*),
respectively.

The derivation of the postmeasurement state assumed
(S|y.) # 0, which holds provided measurement outcome 3§
can arise even at u = 0, where the unitary applied in our
protocol reduces to the identity. As we see below, however,
symmetry can constrain (3|y,) = 0 for a class of X-basis
measurement outcomes. In the latter case, our expansion
for H,, and H' breaks down [as evidenced by the vanishing
denominator in a(iy, ..., iy f) from Eq. (A7)]. Nevertheless,
even without an action-based framework, in Sec. VII we
use a nonperturbative technique to constrain correlations
resulting from such measurement outcomes. For now, we
neglect this case and continue to assume (5|y,) # 0 in the
remainder of this section.
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B. Continuum limit

Using Eq. (22), the expectation value of a general
critical-chain observable A in the state |y;) associated
with measurement outcome § reads

1
(4); = g wele 2 Age Ry ), (29)

where A, = U'TAU’. The numerator on the right-
hand side of Eq. (29) has the same form as the right side
of Eq. (9), but with A — e~#n/2A,e=Hn/2 as a conse-
quence of the unitary and measurement applied in our
protocol. Furthermore, the normalization constant N =
(w.|e~Hn|y.) also has the form of Eq. (9) with A — e~
Following exactly the logic below Eq. (9) for both the
numerator and demoninator leads to the continuum
expansion

1
= lin 3 [ DrDrpe S Au iz =0) - (0)

that generalizes Eq. (12). The new partition function is

2 = / DyrDy e (SctSn), (31)

Most crucially, the Ising CFT action S, from Eq. (13) has
been appended with a “defect line” acting at all positions x
but only at imaginary time 7 = 0, encoded through

Sy = / Hop(z = 0) (32)

with H,, the continuum expansion of H,,. The explicit
form of the defect-line action S,, depends on the unitary U
and measurement basis, and is explored in depth in
Secs. V and VI for cases I-IV in Table I. Specifically,
we seek to understand its impact on observables A,
which are also evaluated at 7 =0 in the path-integral
description, thereby potentially altering critical properties
of the original Ising CFT in a dramatic manner.
(Technically, Ay is sandwiched between two factors of
e~/ evaluated at slightly different imaginary times. We
approximate this combination as Age~5» since the lead-
ing scaling behavior is unchanged by this rewriting.) It is
important, however, to first understand the conditions
under which the perturbative expansion developed above
is expected to be controlled. To this end we now study the
properties of the V;; and m; couplings in Eq. (25).

IV. PROPERTIES OF Vj AND m; COUPLINGS

In general, both V j; and m; vary nontrivially with the site
indices in a manner dependent on the measurement

outcome. The couplings V ;. control the interaction range
in H,, and exhibit a structure reminiscent of a connected
correlator. That is, V ;. specifies how the overlap between
the initial ancilla wave function and the measured state
changes under a correlated flip of spins at sites j, k. It is
thus natural to expect that V; statistically averaged over
measurement outcomes, denoted V jk» decays with |j — k|—
either exponentially if the ancillae are initialized into the
ground state of the gapped paramagnetic phase or as a
power law if the ancillae are critical. We confirm this
expectation below. The statistically averaged m; coeffi-
cients denoted /n; would then not suffer from a divergence
in the presence of the ) _,.; V; term in Eq. (27), so long as
Vi decays faster than 1/|j — k| (which does not always
hold as we see later).

For a particular measurement outcome 3, control of the
expansion leading to H, in the previous subsection
requires, at a minimum, that V;; and m; for this outcome
are similarly well behaved. For example, if the amplitude of
m for a particular § grows with system size N, then u <1
does not suffice to control the expansion (assuming that u
does not also scale with system size). Additionally, if V
for a given § does not decay to zero with |j — k|, then the
correspondingly infinite-range interaction in Eq. (25)
makes the expansion suspect. Thus, it is crucial to quantify
not only the mean but also the variances Var(V ;) and
Var(m;) of the couplings in H,,, which will inform which
set of measurement outcomes we analyze later on. Next, we
address this problem for the four classes of unitaries and
ancilla measurement bases listed in Table 1.

In all four cases, we statistically average using the u = 0
distribution for the ancilla measurement outcomes,

_Hm

ps = Glwa)2wele ™ w.) ~ By = p¥, (33)

since m; and Vj already come with u® prefactors. In
Eq. (33) and many places below, we take advantage of the
fact that the overlaps (5|y,) are non-negative, which
follows because the transverse-field Ising model
[Eq. (14)] is stoquastic [71]. That is, on a given computa-
tional basis state |v)—in this case, the Z or X local basis
—(v|H gpe|w) <0 for v # w, from which it follows that
(v|y,) > 0 for arbitrary basis states v. Hence, all elements
a(iy, ..., iy,) from Eq. (A7) are also non-negative. Finally,
since the fermionized H,, is quadratic in Majorana
fermion fields, we exploit the Gaussianity of both |y,)
and [5) to evaluate the elements a(iy,...,iy,) using
covariance-matrix techniques; see Appendix B. These
tools, along with standard results for transverse-field
Ising chain correlators, allow us to compute the proba-
bilities p\”
Vi« below.

as well as the mean and variance of m j and
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FIG. 2. Variance of V; for Z-basis measurements. Panels (a)
and (b), respectively, correspond to paramagnetic and critical
ancillae. The variance decays exponentially with |j — k| in the
former but decays approximately as |j — k| in the latter. Data
are obtained using the methods in Appendix B with a system
size N = 20.

A. Z-measurement basis

When the ancillae are measured in the Z basis, the mean
and variance of Vj; evaluate to

Vi = Z”go) Vi =0, (34)

0
Var(V ) = ZPE )V?k - (Vi)?

=1+ _pa(a(k)a(j)ak) ~2a(j.k)]

(35)

Figure 2 illustrates Var(V ;) versus |j—k| determined
numerically at N = 20, for both Fig. 2(a) paramagnetic
ancillae and Fig. 2(b) critical ancillae (hye/Jgne = 1). In
Fig. 2(a) and all subsequent simulations that use para-
magnetic ancillae, we take hy,./Jane = 1.5. Additionally,
when using periodic boundary conditions we present
numerical results for correlations as a function of
(N/z)sin(z|j — k|/N) to reduce finite-size effects [61].
The variances in Fig. 2 clearly tend to zero at large |j — k|,
exponentially with paramagnetic ancillae and as a power
law (with decay exponent approximately equal to 4) for
critical ancillae. This decay suggests that typical Z-basis
measurement outcomes yield well-behaved, decaying inter-
actions in the second line of Eq. (25).

Because of the dependence on 6 and (O) in Eq. (27),
the mean and variance of m; depend on the unitary applied
in the protocol. For case I in Table I we have 8 = (O) =
(X) = 2/x, while case II corresponds to 6 = C, (O) = 0.
For these cases, we find

=ml =0, (36)

Var(nf) =4(x2 |1+ Sl @7

Paramagnetic ancilla Critical ancilla
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FIG. 3. Standard deviation of m; for Z-basis measurements. For
paramagnetic ancillae [panels (a) and (c)], in either case I or case
II, the standard deviation decreases with N, with the trend
suggesting saturation to a finite value in the thermodynamic
limit. With critical ancillae [panels (b) and (d)], the standard
deviation increases extremely slowly with N in both cases but
remains comparable to the values with paramagnetic ancillae.
Data are obtained using results from Appendix B.

Var(m!l) :402{—1 +Z§:p§°) [a( j)? —Zvjk] 2}. (38)

K#j

Figure 3 illustrates the numerically evaluated standard

deviation Var(mj-’") versus inverse system size 1/N,

again for both paramagnetic and critical ancillae. (For case
II, we assume C # 0 here, since otherwise m; simply
vanishes.) With paramagnetic ancillae, the standard
deviation clearly converges at large N to a finite value
for both case I and case II. With critical ancillae, in both
cases the standard deviation is modestly larger for the
system sizes shown, albeit showing very slow, potentially
saturating, growth with N. Although here we cannot
ascertain the trend for the thermodynamic limit, we expect
that for experimentally relevant N values the variance of m;
remains of the same order of magnitude as for the para-
magnetic case.

The behavior of the variances discussed above suggests
that, at least for paramagnetic ancillae, any typical string
outcome yields a well-behaved defect-line action amenable
to our perturbative formalism. To support this expectation,
we illustrate V; and m; for select measurement outcomes.
First, Fig. 4 displays Vj for a uniform measurement
outcome with |3) =|--- 111 ), which, along with its

041042-8



MEASUREMENT-ALTERED ISING QUANTUM CRITICALITY

PHYS. REV. X 13, 041042 (2023)

Paramagnetic ancilla Critical ancilla

~|j — k|-3:99
-2.5 U=k
= -5
% -5.0
2 0
(a) -7.5
00 05 10 15 0 1 2
.l —k| oo (=K
loglsin(®7—)1 log[¥sin(Z-4))

FIG.4. V, profiles for a uniform measurement outcome in case
I of Table I. Translation invariance of the uniform string outcome
implies that V. depends only on [j—k[. Decay in V is
exponential with paramagnetic ancillae [panel (a)] but power
law (~|j — k|™*) with critical ancillae [panel (b)]. The data are
obtained for N = 280 for critical ancillae using results from
Appendix B.

all-down partner, occurs with highest probability pf:o) (as
confirmed numerically for systems as large as N = 26).
Figures 4(a) and 4(b) correspond to paramagnetic and
critical ancillae, respectively. In the former, V; decays
exponentially with |j — k|, while in the latter it decays as
|j —k|™. In both cases m; is translational invariant, as
dictated by uniformity of the measurement outcome.
Moreover, we numerically verify that m; saturates to a
constant value with increasing system size in the para-
magnetic case, whereas it slowly grows (at the level of the
third decimal digit) for critical ancillae. The Vj and m;
values discussed here can be combined to infer the (also
uniform) m; profile for case II, which at N — co will
simply differ from m; for case I by a finite value given the
“fast” decay in V.

The next-most-probable set of measurement outcomes
correspond to configurations with isolated spin flips intro-
duced into the uniform § string considered above. Rather
than consider such outcomes, we next examine a lower-
probability configuration with two maximally separated
domain walls: |5) = |--- L] ). (Because of peri-
odic boundary conditions considered here, domain walls
come in pairs.) Figure 5 displays both V; and m; for this
measurement outcome with domain walls at j = 0, 100 for
a system with N = 200 assuming case . Since V;; now
depends on j and k due to nonuniformity of the measure-
ment outcome, in Figs. 5(a) and 5(b) we show V. versus k
for three different j values. Overall decay with |j — k]|
similar to that for the uniform measurement outcome
persists here. For fixed j, a relative bump appears when
k sits close to a domain wall, but the height of the bump is
nonetheless orders of magnitude smaller than when £ is
close to j (see insets). In Figs. 5(c) and 5(d), the m; profiles
resemble those for the uniform case, but with dips that tend
to zero from below in the thermodynamic limit for j’s on
either end of a given domain wall. We also verify that

Paramagnetic ancilla Critical ancilla
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FIG. 5. Vj; and m; profiles for a two-domain-wall measure-
ment outcome in case I of Table I. Domain walls reside near sites
0 and 100 in a system with N = 200. Left and right columns
show data for paramagnetic and critical ancillae, respectively.
Because of loss of translation symmetry, we show V. versus k
for several j values. As shown in the insets, V ;; decays with the
distance |j — k|, although we find a relative bump close to the
domain walls. The corresponding m; profiles [panels (c) and (d)]
exhibit dips near zero in the immediate vicinity of the domain
walls, but are otherwise roughly uniform matching the values
obtained for a uniform string outcome (black dashed lines). Data
obtained using results from Appendix B.

still-lower-probability random § strings also yield well-
behaved Vj; and m; couplings.

B. X-measurement basis

Switching the ancilla measurement basis from Z to X
qualitatively changes the statistical properties of m; and
V ix. By construction, the initialized ancilla wave function
lyr,) is an eigenstate of the Z,-symmetry generator G =

II; X ; with eigenvalue +1. For X-basis measurements, a
given ancilla state |3) obtained after a measurement can
also be classified by its G eigenvalue; we refer to
measurement outcomes with G|5) = +|3) as “even strings”
and outcomes with G|5) = —|5) as “odd strings.” (Because
of the form of the unitary U applied prior to measurement
in this case, both sectors can still arise despite the
initialization.) Consider now an even-string measurement
outcome with (3|w,) # 0, as assumed in the perturbative
expansion developed in Sec. III A. Crucially, due to
mismatch in G eigenvalues, (5(i;...iy ,)|[wa) then vanishes
for any odd number of flipped spins N. It follows that
a(j) = 0 in Egs. (26) and (27), leaving
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Vi =a(j,k),  m;=-20+2((0

vak

k]

Notice that Vj here is always non-negative [recall the
discussion below Eq. (33)].

The mean and variance of V; then reduce to simple
ground-state ancilla correlation functions:

Var(vjk) =1- <l//a|ZjZk|l//a>2‘
(40)

‘_/jk = <Wa|ZjZk‘Wa>,

At large |j—k|, the mean always decays to zero:
For ancillae initialized in the paramagnetic phase
with correlation length & we have Vj, ~ e l=K/¢ while
if the ancillae are critical ¥, ~ 1/|j — k|'/*. The variance
of V., by contrast, grows toward unity at large |j — &|.
Correspondingly, the Vj’s for particular measurement
outcomes can differ wildly from the mean, and in particular
need not decay with |j — k|.

Remarkably, for case III in Table I m; takes on the same
j-independent value for any even-sector measurement
outcome:

mll = 2(X). (41)

For case IV, however, m; depends nontrivially on V 3 and
hence, the measurement outcome; here we find

mlV = —2c< + Zvjk) (42)

k#j

=QCP> (Vi = VpVu)  (43)
Py,

Var(m!Y)

with ij given in Eq. (40). Suppose that the ancillae are
paramagnetic. Exponential decay of V;; with |j — k| yields
a finite mean m though the variance diverges linearly

with system size Var( n; V) ~ N due to contributions from

the Vs term with k' near k. With critical ancillae, power-
law decay of V jk generates divergent mean and variance:
mlY ~ N34 and Var(m!¥) ~ N"/*. In both scenarios, the
fluctuations of m; increase with system size faster than the
average value.

We therefore can apply only the perturbative formulation
developed in Sec. IITA to a restricted set of X-basis
measurement outcomes that lead to a well-behaved,
decaying interaction term in H,, and correspondingly
well-behaved m; couplings. Fortunately, the most probable
measurement outcomes do indeed satisfy these criteria.

Figure 6 plots V. for the highest-probability outcome
corresponding to the uniform string |3) = |- -+ > —— -+ +)
[72]. For Fig. 6(a), paramagnetic ancillae V. decays to
zero with |j — k| exponentially, while for Fig. 6(b), the
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FIG. 6. 'V profile for a uniform X-basis measurement out-
come. Decay of V. is exponential with paramagnetic ancillae
and power law (approximately |j — k|~!) with critical ancillae. In
the critical case, note the significantly smaller exponent com-
pared to Fig. 4. Data obtained using results from Appendix B
with system size N = 280 for critical ancillae.

critical ancillae decays as approximately |j — k|~!. In case
IV with C # 0, Eq. (39) implies that the associated m;
converges to a finite value as N increases for paramagnetic
ancillae, but it diverges as In N with critical ancillae. (For
C = 0, m; again simply vanishes.) Therefore, modulo this
possible logarithmic factor, the uniform string presents a
“good” X-basis measurement outcome.

As an example of a “bad” measurement outcome,
consider next the domain-wall configuration [3) = |- -+ —
-). Figure 7 shows that here V; becomes
highly nonlocal. More precisely, V ;. takes on sizable values
whenever both j and & reside in the “«” domain, regardless
of their separation. One can gain intuition for this obser-
vation by considering the ancilla ground state deep in the
paramagnetic regime. Here the ground state takes the form
lw,) =|—>— -+ =)+, where the ellipsis denotes per-
turbative corrections induced by small J ./ A To leading
order, these corrections involve spin flips on nearest-
neighbor sites induced by J,,. 1i.e., admixture of
| -+ >—><««—— ...) components into the wave function.

S -

Paramagnetic ancilla Critical ancilla
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FIG.7. V. profile for a two-domain-wall X-basis measurement

outcome. The first 30 sites point in the energetically favorable —
direction, while the remaining 30 sites point in the unfavorable «
direction. Nondecaying behavior of V ;. occurs when j, k both
reside in the unfavorable domain. Data obtained using results
from Appendix B for system size N = 60.
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Now consider the domain-wall outcome |3). Flipping two
spins at sites j, k in the energetically unfavorable « domain
tends to increase the overlap with the ground state,
naturally leading to V. = ((5(j.k)|w,)/(5|w,)) that can
exceed unity even for distant j, k as seen in our simulations.
Flipping one spin within each of the two domains takes the
energetically favorable “—” domain and introduces a single
« spin. That domain then no longer resembles the ground
state, which always harbors an even number of flipped
spins. The coupling V j; is therefore generically small with
j and k in opposite domains, also as borne out in our
numerics. Finally, flipping two spins in the — domain again
decreases the resemblance with the ground state—more so
as the separation between the flipped sites j and k increases.
The corresponding V j; diminishes with |j — k| in line with
simulations yet again.

More generally, “good” measurement outcomes are those
for which flipping two faraway spins invariably decreases
overlap with the ground state such that V;; — 0 as |j — |
increases. In addition to the highest-probability uniform
string, the next-highest-probability set of strings, which
contain dilute sets of nearest-neighbor flipped spins relative
to the uniform background, also satisfy this property.
Indeed, starting from such configurations, flipping spins
at well-separated sites always locally produces regions with
an odd number of flipped spins in a background of
energetically favorable — spins, thereby obliterating the
overlap with the ancilla ground state and hence, V .

V. PROTOCOL WITH Z-BASIS MEASUREMENTS

We now use our perturbative formalism to examine how
correlations in the critical chain are modified by particular
outcomes of Z-basis ancilla measurements in our protocol.
In Sec. IV, we see that for this measurement basis both the
mean and variance of Vj vanish as |j— k| — oo, sug-
gesting that generic measurement outcomes yield well-
behaved decaying interactions in H,, [Eq. (25)]. Moreover,
with paramagnetic ancillae the variance of m; trended to a
finite value at large system sizes, suggesting that the single-
body piece in H, is also well behaved for generic
measurement outcomes. Thus, for paramagnetic ancillae,
below we proceed with confidence considering unrestricted
measurement outcomes from the lens of the continuum
defect-line action obtained in Sec. IIIB. For critical
ancillae, we see that the variance of m; grows slowly with
system size, warranting more caution in this scenario.

Let us illustrate an example for case I where m; o
1 —a(j)? with a(j) = ((5(j)lwa)/ (5y.)). After the uni-
form strings, the next most likely measurement outcomes
are those containing a single spin flip. Consider one such
state |§) with a single flipped spin at site jg;,. Subsequently
flipping the spin at jg;, converts |3) back into the most
probable, uniform string. We thereby obtain a(jg,) > 1
and hence m; < 0 for this measurement outcome. With

paramagnetic ancillae, this negative m Jtip value saturates to

a small constant as the system size increases. With critical
ancillae, by contrast, we find that the magnitude of this
negative value continues to increase over accessible system
sizes, but very slowly similar to the standard deviation
shown in the right panels of Fig. 3. We thus expect our
formalism to apply also to general Z-basis measurement
outcomes even for critical ancillae, at least over system
sizes relevant for experiments.

We now consider the unitaries in cases I and II from
Table I in turn.

A. Case 1

We start with case I where the unitary reads U; =

iu(X;—(X)

e )X; . This form of U ; preserves the Z, symmetries G

and G for the critical and ancilla chains, but does not
preserve time-reversal symmetry 7 (which sends U; —
Uj-). Thus, although the Z-basis measurements break G
symmetry, the postmeasurement state |y/;) remains invariant
under G. These considerations tell us that, for case I, U’ =
e in Eq. (22) is generically nontrivial [as one can indeed
see from Eq. (24)], while H,, and hence S,, must preserve G
symmetry. Indeed, Eq. (25) now takes the manifestly G-
invariant form

H, = uzzmj(xj - (X))

Uty V(X = (X)) (X = (X)) (44)
7k

with

m; = =2(X)[1 - a(j)?. (45)
and V; given (as for all cases) by Eq. (26). The defect-line
action using the low-energy expansion from Eq. (8) then
reads

S, = u? [ m(x)e(x, 7 =0)
—I—u2/ , V(x,y)e(x,7 =0)e(y,z = 0). (46)

Here, m(x) and V(x,y) represent the coarse-grained, con-
tinuum-limit counterparts of m; and V.

Provided V/(x,y) scales to zero faster than 1/|x —y],
which is indeed generally the case both for paramagnetic
and critical ancillae, we can approximate the second
line of Eq. (46) as a local interaction obtained upon
fusing the two & fields according to the fusion rules
summarized in Eq. (6). The leading nontrivial fusion
product is —iygd,yg + iy 0.y, Which is a descendent of
the identity that, crucially, has a larger scaling dimension
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compared to the ¢ field appearing in the first line of Eq. (46)
[64]. It follows that for capturing long-distance physics we
can neglect the V(x,y) term altogether and simply take

S, ~u? [ m(x)e(x,7 = 0). (47)

We are primarily interested in computing the two-point
correlator

(Z;Zj); ~ (o(xj)o(xy))s (48)

in the presence of Eq. (47). Technically, according to
Eq. (29) we need to conjugate the Z; operators with the
unitary U’, which in case I rotates Z about the X direction.
Such a rotation mixes only in operators in the low-energy
theory with (much) larger scaling dimension compared to ¢
[73]. Hence, Eq. (48), which is the same as what one would
obtain by ignoring U’ altogether, continues to provide the
leading decomposition for the correlator.

When m(x) is independent of x, as arises for uniform
measurement outcomes, the above defect-line action is
marginal, though for general measurement outcomes, 71(x)
retains nontrivial x dependence. References [75-77]
employed nonperturbative field-theory methods to study
the effects of this type of defect line on spin-spin correlation
functions in the two-dimensional Ising model. In particular,
Ref. [77] derived the spin-spin correlation function for an e
line defect whose coupling is an arbitrary function of
position. We report here their main result:

xu?

(0(x)o(¥))s ~ b = ¥ [l HF 0, (49)
where

x d —+)2 21 1+xu?m(x")
f(x,x’):/ dym(y)d—ln[(y Yy +al]

' =) @]t
- / " dydy[1 + kutm(y)] L%m(y)}
« iln[(y _ y/)2 + aZ]‘ (50)

dy

Above, a is a short-distance cutoff, and « is a dimensionless
parameter that captures an overall constant neglected on the
right side of Eq. (8) as well as difference in normalization
conventions between our work and Ref. [77]. We simply
view k as a fitting parameter in our analysis. Since F (x, x’)
in Eq. (49) already contains an O(u?) prefactor, to the order
we are working it suffices to simply set # = 0 in Eq. (50).
Some algebra then gives the far simpler expression

2

<6(x)0(xl)>g ~ |x - xl|_i_%[m<x)+m(x/)]e%z, (x.x") (51)

with
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FIG. 8. Correlation function (Z,Z;); for uniform measurement

outcomes. The first row corresponds to case I from Table I, while
the second corresponds to case III. At u = 0, the curves exhibit an
exponent 1/4 that follows from the pristine Ising CFT. Turning
on u # 0 yields a measurement-induced increase in the scaling
dimension in all panels, as predicted by Eq. (54) for case I and
Eq. (68) for case III. Data are obtained using infinite DMRG with
bond dimension 1000 for paramagnetic ancillae and 2000 for
critical.

A ¥ (y—x)2+a2 i
flx,x) = K dylIn [—(y T az] i m(y).  (52)

Equations (51) and (52) capture coarse-grained spin-
spin correlations for general measurement outcomes,
though for deeper insight, we now explicitly examine some
special cases.

For a uniform measurement outcome (e.g., s; = +1 for
all j) giving constant m(x) = meyng, Eq. (51) simplifies to

1

Nm (uniform 3), (53)

(1 + 2Ku2mconst> (54)

consistent with the result found in Refs. [75,76] in the limit
|x — x| > a and to O(u?). Remarkably, the defect line in
this postselection sector yields an O(u?) change in the
scaling dimension of the ¢ field compared to the canonical
result in Eq. (5). We confirm this change using infinite
DMRG simulation reported in Figs. 8(a) and 8(b): With
both paramagnetic and critical ancillae, the scaling dimen-
sion of the o field A,(u) exceeds 1/8 when u # 0, as is
particularly clear at u > 0.3. The fact that the scaling
dimension increases (rather than decreases) with u is
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FIG. 9. Scaling of the power-law exponent for (Z,Z;); with a
uniform measurement outcome. Data correspond to case I in
Table I assuming paramagnetic ancillae and are obtained using
iDMRG. The numerically extracted exponent a scales approx-

imately linearly with »? at small u, in quantitative agreement with
2A,(u) predicted by Eq. (54). A linear fit to Eq. (54) yields
KMeonet = 1.14.

consistent with the fact that in this case the e~Hn/?
nonunitary implements weak measurement in the X basis,
thereby naturally suppressing Z correlations. The scaling-
dimension enhancement is quite similar for the paramag-
netic and critical cases, as expected given that m; is only
slightly larger in the latter [see black dashed line in
Figs. 5(c) and 5(d)]. Figure 9 shows the dependence of
the numerically extracted power-law exponent a as a
function of u?, revealing a linear dependence in agreement
with Eq. (54). The linear fit also allows us to extract a value
k = —1.12; note that xm,y > 0, ensuring that A, (u)
increases with u in the presence of the defect line as
observed in our numerical simulations.

Next we examine a measurement outcome [§) =
[ P4 -+ ) with a domain wall. This outcome yields
nearly uniform m; [see black dashed lines in Figs. 5(c)
and 5(d)] except for a window around the domain wall
where it approximately vanishes. We model the associated
continuum m(x) profile as

m(x) = Meons {O[(xo — d) = x] + Ofx = (xo +d)]}, (55)

where x is the domain-wall location, d is the spatial extent
of suppressed m(x) region on either side, and © is the
Heaviside function. Adequately capturing detailed behav-
ior near the domain wall likely requires incorporating short-
distance physics, though we expect that our low-energy
framework can describe correlations among operators
sufficiently far from xy. With this restriction in mind, we
consider the two-point correlator (o(x)o(x')); with x far to
the left of the domain wall (x < x;) and x’ > x. If X’ also
sits to the left of the domain wall, then f(x, x') = 0 and the
correlator retains—within our approximation—exactly the
same form as in Eq. (53). If, however, x’ sits to the right of
the domain wall with x’ > x;, then we obtain

1 1
F(x,x') & ddmgng <— +— ) , (56)
Xop— X X — X
resulting in a modest enhancement of the correlator ampli-
tude compared to the domain-wall-free case. Summarizing,
for the single-domain-wall measurement outcome, we get

1
m 5 X < X0,
<6()C)U(X/)>§ ~ %Kuzdmcons((ﬁJrﬁ) , (57)
W , X > Xp.

To test Eq. (57), we perform DMRG simulations for a
system of size N = 256 with open boundary conditions so
that we can accommodate a single-domain-wall measure-
ment outcome. Figure 10 plots the numerically determined

function

<Zij'>§,DW - <Z jZ j’>§,unif
(Z,Z;) ’

5(2,2;) = (58)

3,unif

i.e., the difference in the microscopic two-point correlator
with and without a domain wall, normalized by the

1x10°2
15{ (@) I 1x10™
-~ . v j=60
N ¥ 4 j=90 N
N 1.0 " %
9 i
0.5 i 4
00| ——= 2
0 64 Xo 192 256 x, 192
1x1072
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(b) ] e
= 61 =
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',E‘T i :
S i
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0 64 Xo 192 256 192

Site j' > j

FIG. 10. Relative correlation function §(Z;Z ;) [Eq. (58)] for a
domain-wall measurement outcome in case I from Table I. Main
panels illustrate the relative change in the two-point function
resulting from insertion of a domain wall. Panel (a) corresponds
to u = 0.1 and panel (b) to u = 0.3. The domain wall resides near
site xp = 128 in an N =256 system with open boundary
conditions. When j and j' both sit on one side of the domain
wall, the change in correlations is negligible. When they sit on
opposite sides, however, the correlations increase relative to the
uniform measurement outcome. As we discuss in the main text,
the behavior captured here reproduces the main qualitative
features of the analytical prediction in Eq. (57). Data are obtained
using DMRG with paramagnetic ancillae.
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correlator for the uniform measurement outcome. Quite
remarkably, the figure reveals the main qualitative features
predicted by our result in Eq. (57): When both j and j' sit to
the left of the domain wall, the difference in correlators
approaches zero, while the correlator in the presence of a
domain wall exhibits a small enhancement when j and j' sit
on opposite sides of the domain wall. Moreover, the
enhancement factor modestly increases as j approaches
the domain wall, also in harmony with Eq. (57). The
agreement between numerics and analytics here provides a
very nontrivial check on our formalism.

In the presence of multiple well-separated dilute domain
walls, the behavior of the correlator (o(x)o(x')); follows
from a straightforward generalization of Eq. (57). For x and
x' within the same domain, the correlator again reproduces
that in a uniform measurement outcome, whereas moving
X' rightward leads to a relative uptick in the correlator upon
passing successive domain walls. For dense domain walls,
the m; pattern changes significantly, necessitating a sep-
arate analysis.

B. Case I1

The unitary in case Il U; = ¢™Z%~% is invariant under

G but preserves neither G nor 7. Thus, the postmeasure-
ment state generically breaks all microscopic symmetries.
A special case arises, however, when C = 0: Here, U j and
hence the postmeasurement state preserve the composite
operation G7 . In line with these symmetry considerations,
case II yields

Hm = uZZmJZJ + MZZijZjZk (59)
J J#k

with

m; = —ZC{l —a(j)? + Zvjk} . (60)

k#j

Indeed, the m; term, which is odd under G, appears as long
as C # 0. The unitary U’ = ', by contrast, is generically
nontrivial even for C = 0 and always preserves G7: H' in
Eq. (24) is odd under G in case II, but in U’ the minus sign
is undone by i — —i from time reversal. Nevertheless, we
consider only Z; correlators below, which here are invariant
under conjugation by U’

The associated continuum defect-line action, now using
Eq. (7), is

+u? /XV V(x,y)o(x,7 =0)o(y,z=0). (61)

As in case I, V(x,y) decays fast enough that we can
approximate the second line with a local interaction

obtained here by fusing the pair of ¢ fields. The leading
nontrivial fusion product is € [see Eq. (6)]. For C =0,
where the m(x) term drops out by symmetry, Eq. (61) then
reduces to the form

Sp= ule(x)e(x,Tzo), (C=0) (62)

studied in the previous subsection with M(x) = [ V(x,y).
One-point correlators (Z;); vanish by symmetry (to all

s
orders in u due to preservation of G7 symmetry), while
two-point correlators (Z;Z;); can be computed using the
methods deployed above. For the remainder of this sub-
section, we therefore take C # 0. In this regime the o field
arising from the first line of Eq. (61) has a smaller scaling
dimension compared to the ¢ field emerging from the
second line. We can therefore neglect the latter term,

yielding

AU [ m(x)o(x,7 =0), (C#0). (63)

Physically, m(x) plays the role of a longitudinal magnetic
field that acts only at z = 0.

For uniform strings where m(x) = mggy, the defect-line
action in Eq. (63) constitutes a strongly relevant perturba-
tion. Clearly then, o(x, 7 = 0) and hence Z; take on uniform,
nonzero expectation values in this postselection sector:

(Z)): ~ (o(x)))s = 9(u) (uniform 5),  (64)
where the function g(u) vanishes as u — 0 but tends
to a nonzero constant at u# # 0 in the thermodynamic
limit. In sharp contrast, prior to measurements we have
(wulZ;|lwy) = 0 for all u. Infinite DMRG results for (Z;);
presented in Fig. 11 confirm the qualitative behavior
predicted by Eq. (64).

Case 11 Case IV
—(2y= = 124052

- (2Z)= =1.18u%%

FIG. 11.  One-point function (Z;) with a uniform measurement
outcome. Panels (a) and (b), respectively, correspond to cases II
and IV from Table I. Results are obtained using infinitt DMRG
with C = —1, assuming paramagnetic ancillae. The nonzero
value generated by measurement at u # 0 validates analytic
predictions, e.g., Eq. (64). Moreover, the fits shown by the
dashed lines exhibit excellent agreement with the u# dependence

extracted using renormalization-group arguments.
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FIG. 12. Average of (Z;)? over measurement outcomes in case
II of Table I. Data are obtained using exact diagonalization for
two chains of length N =6, 7, 8, 9, 10 with C = —1. Panels (a)
and (b) reveal well-behaved scaling with system size; larger
values of u correspond to darker blue, with the darkest color
corresponding to u = 0.13. Panels (c) and (d) show the extrapo-
lated dependence of E((Z;)?) with u. For small u, we find
approximately u* scaling, consistent with the crude expectation

that (Z;). ~ u>m; for a particular measurement outcome.

For a more quantitative treatment, we apply the
renormalization-group (RG) technique to obtain the
dependence of (o(x;)); on u. Rescaling the spatial coor-
dinate x by a factor b and defining x' = x/b, the o field
transforms as o(x) = b~'/86'(x'). The defect-line action
Sy = UMeong [dxo(x) is then rewritten as S, =
UMb ™1/® [ dx’'e’(x') and in particular exhibits a renor-
malized coupling strength u?b7/3. Suppose now that at
some coupling strength ufef, the magnetization is a fixed
constant (6'(0)); = M ;. We can back out the observables
at arbitrary u by finding the RG map that takes u — u.
First, choose the scaling parameter b such that
W?b’8 =2, e, b= (u/ue;)7'%7. We then obtain
(6(0)); = b™"/8M ¢ o u*/7. Despite the simplicity of this
argument, a fit of (Z;) in Fig. 11 yields a scaling of
approximately #%?7 with an exponent that agrees well with
our prediction of 2/7 ~0.29. It is also interesting to ask
about two-point connected spin correlations in the presence
of the uniform relevant defect-line action from Eq. (63). In
Ref. [78] we explain that, for arbitrary u, power-law
correlations persist with rigid exponents that are distinct
from those of the pristine Ising theory.

We are not aware of works that compute the one-point
function in the presence of arbitrary position-dependent
m(x)’s that arise with generic measurement outcomes.
Nevertheless, we expect that, at least for smoothly varying
m(x) profiles, (c(x)); polarizes for each x with an

orientation determined by the sign of m(x). Since m;
averages to zero as shown in Sec. IV, averaging (Z;); over
measurement outcomes then naturally erases the effects of
measurements as must be the case on general grounds. In
contrast, such a cancellation need not arise when averaging

(Z;)? over measurement outcomes. We thus anticipate that

s
> _ps(Z); #0. (65)
N

Very crudely, if for a random measurement outcome
(Z;)s ~u*m;, then the nonlinear average above would
be proportional to u*Var(m;). Our exact diagonalization
results presented in Fig. 12 support these predictions. The
top panels show (Z />§ averaged over all Z-basis measure-
ment outcomes versus 1/N for several values of u. For both
paramagnetic and critical ancillae, extrapolation to N — oo
yields nonzero values for all u # 0 cases; additionally, the
lower panels show that the extrapolated values indeed scale

very nearly as u* for small u.

VL. PROTOCOL WITH X-BASIS MEASUREMENTS

Recall that for X-basis measurements, our perturbative
formalism applies only to the highest-probability subset of
even-string (G|5) = +|5)) measurement outcomes. These
outcomes, on which we exclusively focus in this section,
include the uniform state with §; = +1 on every site and
descendant states containing a dilute set of adjacent spin
flips. Interestingly, even in this restricted space of measure-
ment outcomes, we encounter qualitative differences
between paramagnetic versus critical ancillae in our protocol.

For both cases III and IV, the unitary U’ = e’ is trivial
in the even-string measurement sector. This result immedi-
ately follows from Eq. (24) using the fact that a(j) = 0 for
any even-string 5. Hence, in the ensuing analysis we need
consider only H,, and the associated defect-line action S,,,.
Note also that the U; unitaries for cases Il and IV explicitly
violate G symmetry; nevertheless, ancilla measurements
project onto an even-string § (by assumption) so that both
the initial and postmeasurement states are G eigenstates
with eigenvalue +1. The situation is reversed compared to
the protocol with Z-basis measurements, where the U j
unitaries preserve G while measurements produce a wave
function that is not a G eigenstate.

A. Case 111

The case III unitary U; = eX=X))Z; yields a defect-
line action

Sy = uzm/e(x,rz 0)

+u? /” V(x,y)e(x,7=0)e(y,z=0). (66)
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Equation (66) has the same form as Eq. (46) from case [—
with the crucial difference that here m(x) is replaced with a
constant m = =2(X) that is the same for all of the
(restricted) strings that we consider. For paramagnetic
ancillae, results from Sec. IV imply that V(x,y) decays
exponentially with |x — y|, allowing us to once again fuse
the ¢’s in the second line into a subleading term compared
to the first. More care is needed for critical ancillae, since
for the uniform string outcome V(x,y) decays like
1/]x —y|. The second line then represents an inherently
long-range, power-law-decaying interaction. Such a term
is, however, still less relevant by power counting compared
to the first line. Thus, similar to case I, we can approximate
the defect-line action as simply

s, Nung(“_O) (67)

In this case, one-point (Z;) correlators again vanish by
symmetry, while two-point correlators correspondingly
behave as

1

(o(x)o(x))s A

1
A, (u) :§(1 +2ku’m).

(68)

At least within the approximations used here, a pristine
power law with O(u?)-enhanced scaling dimension occurs
for any even-string measurement outcome conforming to
our perturbative formalism, even if the outcome is not
translationally invariant. Surely, additional ingredients
beyond those considered here would restore dependence
on the measurement outcome; such terms, however, reflect
subleading contributions, e.g., the neglected V(x,y) term
above. By contrast, for case I the dependence on meas-
urement outcome is already encoded in the leading m(x)e
term in the defect-line action.

The lower panels of Fig. 8 confirm the modified power-
law behavior for the uniform measurement outcome, which
again is especially clear at u > 0.3. Notice that for u = 0.1,
the fitted scaling dimension is nearly the same for cases |
and III, and for both paramagnetic and critical ancillae. This
similarity is expected from our perturbative framework
given that the leading defect-line actions [Egs. (47) and
(67)] take the same form with similar coupling strengths in
the uniform measurement-outcome sector. At the larger
value of u = 0.3, the extracted scaling dimensions in case
I differ for paramagnetic and critical ancillae, even though
our O(u?) theory predicts precisely the same exponent in
both scenarios. Such a correction is not surprising, given
that at higher orders in u, even the leading term in the
defect-line action can discriminate between paramagnetic
and critical ancillae. Indeed, we have checked that in the
paramagnetic case, A, (u) scales like u” over a wider range
of u compared to the case with critical ancillae.

. Proeg SR yl899 .
107! - = L
=102 5] d
7107 @ 5 o] ()
o
1073 ' d
0.0 0.1 -2.0 -1.5 -1.0
1/N system size log(u)
FIG. 13.  Average of (Z;)? over measurement outcomes in case

IV of Table I. All parameters are the same as in Fig. 12, except
here we consider only paramagnetic ancillae. The scaling of
E((Z;)?) with u in panel (b) is much steeper (approximately u”)
compared to the scaling found in Fig. 12.

B. Case IV

For case IV, with unitary U; = eiu(2-C)Z
action reads

, the defect-line

+ uz/ V(x,y)o(x,z =0)o(y,z=0), (69)

which has identical structure to that of case II but with
modified couplings m(x) and V(x, y) due to the shift in the
ancilla measurement basis. As in case II, the special limit
C = 0 still yields m(x) = 0, as required by symmetry.

Let us first take C # 0. Following the logic used for case
IIT above, the second line is always subleading compared to
the first, independent of whether the ancillae are para-
magnetic or critical. [Technically, however, m(x) diverges
logarithmically with system size when the ancillae are
critical, so extra care is warranted when applying our
perturbative formalism in this scenario.] For the uniform or
nearly uniform measurement outcomes that we can treat
here, the strongly relevant m(x)o perturbation leads once
again to a nonzero one-point function (o); # 0 that scales
as u*7, as reproduced in DMRG simulations [Fig. 11(b)].
Similar to our previous discussion in case II, we numeri-
cally find that (Z;)? averaged over all measurement out-
comes also appears to yield a nonzero value at large N (at
least for paramagnetic ancillae), even though our pertur-
bative formulation now applies only to a restricted set of
measurement outcomes. See Fig. 13 and notice the rather
different scaling with u compared to Fig. 12. The results for
critical ancillae, however, do not show an obvious trend and
so we do not report them.

When C =0, the approximation invoked above no
longer applies, and the defect-line action instead becomes

S, = u? /xy V(x,y)o(x,7=0)o(y,z=0) (C=0).

(70)
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FIG. 14. Correlation function (ZyZ;); for case IV in Table I
with C =0 and critical ancillae. (a) At u > 0 the correlator
appears to decay faster than a power law for || less than O(10) in
response to the measurement-induced long-range interaction in
Eq. (70). Data are obtained using iDMRG with bond dimension
2000. (b) Two-point correlator at # = 0.2 for a range of bond
dimensions y. Over the separations shown in (a), the data are well
converged. For larger separations, however, the data continue to
evolve with bond dimension.

Here the nature of the initial ancilla state becomes pivotal.
For gapped ancillae, exponential decay in V(x,y) enables
fusing the o fields into a single ¢ field. One then obtains the
form in Eq. (62) that, for uniform or nearly uniform
measurement outcomes, modifies the power-law correla-
tions in (o(x)o(x’)); as described previously. For critical
ancillae, this prescription breaks down since V(x, y) scales
like 1/]x — y|. The resulting power-law-decaying interac-
tion between ¢’s in Eq. (70) is strongly relevant by power
counting; the system’s fate then depends on whether the
power-law interaction is ferromagnetic or antiferromag-
netic. On one hand, ferromagnetic ¢(x,7 = 0)o(y,7 = 0)
interaction would promote order-parameter correlations at
7 = 0—possibly replacing power-law decay in the spin-
spin correlation function with true long-range order, i.e.,
turning the critical chain into a cat state [79]. On the other
hand, antiferromagnetic interaction would produce frus-
tration, leading to a subtle interplay with ferromagnetic
order-parameter correlations built into the premeasurement
critical theory.

Since V(x,y) is always non-negative in case IV, S,, in
Eq. (70) realizes the antiferromagnetic scenario. Figure 14
presents infinite DMRG simulations of (Z,Z;); for this
case [80]. For separations |j| smaller than O(10), we find
signatures of faster-than-power-law decay induced by
measurements. For larger separations, however, we find
a possible revival of correlations (though in this regime the
DMRG data continue to evolve over the bond dimensions
simulated). While correlations might exhibit exponential
decay at short distances, we expect algebraic decay to take
over at long distances, which may be related to physics of
antiferromagnetic long-range Ising chains analyzed in
Refs. [81,82]. This expectation is consistent with the fact
that, as we show in an upcoming work [78], when a short-
range-correlated system entangles with critical ancillae,
measuring the critical system imprints long-range

correlations into the former. Hence, it is natural to antici-
pate that tuning the short-range-correlated system to
criticality further enhances only its long-range correlations.

With critical ancilla, the full two-chain system prior to
measurement corresponds to a free-fermion problem with
total central charge ¢ = 1/2 + 1/2. Thus, here the setup
resembles a single-channel Luttinger liquid in the special
case with Luttinger parameter K = 1. For the Luttinger-
liquid measurement protocol considered in Ref. [51], uni-
form measurement outcomes were shown to produce a
marginal defect-line action. Our protocol, by contrast,
yields a relevant defect-line action both for C =0 and
C # 0 in case 1V, thereby qualitatively modifying correla-
tions as discussed above. Interestingly, it follows that the
total central charge alone does not dictate the impact of
measurements on long-distance correlations. Additional
factors including the allowed physical operators and details
of the measurement protocol also play a role. For example,
the protocol from Ref. [51] used an uncorrelated ancilla
chain to mediate measurements on the Luttinger liquid,
whereas in our effective ¢ = 1/2 4+ 1/2 setup, measure-
ments are enacted “internally” without invoking an addi-
tional auxiliary chain.

VII. EXACT AVERAGING OVER EVEN OR ODD
STRINGS IN X-MEASUREMENT PROTOCOL

A. Symmetry-resolved averages

With X-basis measurements, outcomes 5 can be divided
into sectors according to whether G|5) = +[3) or —|3).
Here we exploit this neat even- and odd-string dichomot-
omy to obtain illuminating, exact expressions for the
average of critical-chain observables A over measurement
outcomes confined to a particular € = 41 parity sector.
Using Egs. (18) and (19), the average in sector € reads

(A)e = ZPK<W?|A|W\>

SO IUAUALLY y CRIH) LAMAT7S

= <Wa|<WC|UTP6UAU|Wc>|Wa>’ (71)

where U =[] ; Uj represents the unitary applied prior to
measurement and A;, = UTAU. In the last line,

Po= Y561 =

S€e

(1+¢€G) (72)

N =

projects onto the measurement-outcome sector with
parity e. For the unitaries in either case III or IV from
Table I, the anticommutation relation {Z;, G} = 0 implies
that UTG = GU. We can therefore express Eq. (71), after
also using Gly,) = |w,), as
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€
5 <l//a| <l//c|U2AU|l//c> |l//a>

(73)

<l//a|<l//c|AU|l//c> ‘l//a> +

| =

(A)e =

Notice that the second term is real for any Hermitian
operator A, since any imaginary part vanishes by parity
constraints. Summing over the even and odd sectors yields
(A), + (A)_ = (wal (welAulwo) ), which, in agreement
with Eq. (20), is simply the result one would obtain without
performing any measurements. The difference between the
even- and odd-sector correlators, by contrast, isolates the
second term in Eq. (73),

(A)y = (A = (wally |V Aulwly,).  (74)

and does retain nontrivial imprints of the measurements
enacted in our protocol. Equation (74) is equivalent to the
expectation value of the nonlocal operator AG taken in the
premeasurement state Ulw.)|y,); crucially, measuring
the ancilla in the X basis provides access to such nonlocal
information.

There is, however, no free lunch here: On general
grounds, the right side of Eq. (74) should decay to zero
with system size N for any fixed u # 0. To see why, let
Pe = Y se. D5 denote the probability for obtaining parity
sector € after a measurement, and consider the difference

Ap=p.—p_= Wl U we)lwa).  (75)

Equation (75) simply corresponds to Eq. (74) with A being
the identity. At u = 0, where U also reduces to the identity,
we obtain Ap = 1, reflecting the fact that the initial ancilla
state |y, ) resides in the even-parity sector by construction.
Turning on u < 1, the state U?|y)|w,) = [T, U3lw.)lw.)
exhibits a small O(u?) probability for flipping a particular
X-basis ancilla spin. Yet the net effect over a macroscopic
number of sites N inevitably translates into a “large”
change in the probability for remaining in the even-parity
sector. In terms of Eq. (75), this logic implies that
U?|lw.)|y,) becomes orthogonal to |y )|y,) at fixed
u# 0 with N - o0, leading to Ap = 0. The insertion of
Ay in Eq. (74), assuming it represents physically relevant
combinations of local operators, cannot change this con-
clusion, implying that (A), — (A)_ vanishes with N as
well. In Appendix D, we numerically show that, with
paramagnetic ancillae, these quantities decay exponentially
with system size.
We propose the ratio

(A=A (v UAuly ) lwa)
Ap Wal(welUlw ) lwa)

r(A) = (76)

as an appealing diagnostic of X-basis measurement effects
on Ising criticality. Equation (76) need not vanish in the

thermodynamic limit. Moreover, both the numerator and
denominator comprise linear averages over experimentally
accessible quantities. (But again, there is no free lunch; the
individually small numerator and denominator would need
to be obtained with sufficient accuracy to yield a mean-
ingful ratio as we quantify further below.)

The formalism developed in Sec. IIl A and Appendix A
allows us to rewrite r(A) in a more illuminating form that
directly connects with the results from Sec. VI. For
simplicity, we focus for now on observables A that
commute with U so that U?A;, = AU? (see below for a
comment on the generic case). As detailed in Appendix C,
we can express the ratio in Eq. (76) as

(welAe "

V)
(wele My,

r(A) = ; (77)

where through our perturbative formalism we obtain at
o(u?),

Hy, =) m'(0; = (0))

+u?) Vi(0;,-(0))(0, — (0)).  (78)
J#k

Equation (78) is analogous to Eq. (25) but involves distinct
couplings

V;k = 2<Wa|ZjZk|Wa>ﬂ (79)
m’ = —40+2((0) - 0)) Vi, (80)
k£0

Most notably, compared to the V;; and m; couplings from
cases Il and IV of Table I, V7, here depends only on |j — k|

and follows from the expectation value of Z;Z, in the initial
ancilla ground state (rather than depending on some
particular measurement outcome). For similar reasons,
m” does not depend on position. If [A, U] # 0, then
Eq. (77) holds together with an additional subleading term
resulting from the commutator. For example, if we are
interested in A = ZjZ I in case III from Table I, then
(Z,;.U]==2iY jsin(u)[icos(u6) Z+sin(ud)|[ ;e 0%
Given that Y; maps to a CFT operator with larger scaling
dimension than that for Z;, we can already deduce that the
additional term coming from the commutator involves
subleading contributions that we can safely neglect. For
further analysis, see Appendix C.

Taking the continuum limit, the ratio in Eq. (77) can be
recast in terms of a path integral perturbed by a defect-line
action akin to Eq. (32); recall the steps below Eq. (29). Let
us now specialize to paramagnetic ancillae, where V%
decays exponentially leading to a purely local action and
finite m”. We can then immediately import results from
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FIG. 15. Ratio r(ZyZ;) in Eq. (76) involving symmetry-
resolved measurement averages. The data correspond to case
III from Table I with paramagnetic ancillae, and different system
sizes between N = 20 [light colors in (a)] and N = 115 [dark
colors in (a)]. At u > 0, the curves exhibit power-law decay with
exponent exceeding 1/4 in agreement with Eq. (81). The shift in
scaling dimension becomes particularly clear for larger values of
u when compared with the black dotted lines corresponding to a
power-law-decay exponent 0.25. The tendency continues upon
extrapolating to the thermodynamic limit, as shown in (b). The
power-law exponents « displayed in panel (a) are obtained from
fitting the data with the largest system size available. Data are
obtained using finite DMRG with periodic boundary conditions
and bond dimension 1000.

Sec. VI to obtain r(A) for spin correlators of interest. For
case III, we find

HZ,Zy) ~ |j — k|22 (case III) (81)

with nontrivially modified scaling dimension

Al (u) = < (1 + 2ku*m"), (82)

o0 | ==

where m” = —4(X). This result is, remarkably, nearly
identical to the prediction for postselected uniform meas-
urement outcomes in case III; comparing with Eq. (68), the
sole difference is that m" is twice as large as m, leading to a
more pronounced upward shift in scaling dimension. For
case IV with C # 0, we similarly find that

r(Z;) ~u*"  (case IV,C #0), (83)

which also emulates predictions for the corresponding
postselected uniform measurement outcome.

We perform a numerical experiment of Eqgs. (81) and
(83) using DMRG, focusing again on paramagnetic ancilla.
Figure 15 presents the results for r(ZyZ;) in case III, which
indeed reveals power-law decay with scaling dimension
exceeding 1/8 at u > 0. In Fig. 16, we further contrast the
data with the power-law exponents obtained for (Z(Z;);
with a uniform measurement outcome in case III. There we
use finite DMRG for a system size of N = 88 to treat
both quantities with a common numerical method.
Our perturbative formalism predicts that, at small u, the

0.331 o r(Z2) v
— 2.01u?2 e
. 2 _ 4 e m
031 ~ 22W2=27ut o
= (ZZ)s 1

1.43U2/2 ,/, .
S 0.291
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FIG. 16. Comparison between power laws for the 7(Z(Z;) ratio
and (ZyZ;); correlator with a uniform measurement outcome in
case III. The measurement-induced shift in power-law exponent
for r(ZyZ;) exceeds that of (Z,Z;);, in qualitative agreement
with perturbative analytical predictions (though the enhancement
is smaller than the predicted factor of 2). The green dashed line
represents a quartic fit (1/4 + kmeouqu?/2 + bu*) in u of the
exponent for the r ratio, while the orange and purple lines are the
result of a quadratic fit (1/4 4 kmoqu*/2). Data correspond to
paramagnetic ancillae and are obtained with finite DMRG for a
system of size N = 88 with periodic boundary conditions and
bond dimensions 800 and 1000.

measurement-induced change in the power law for r(ZyZ;)
should exceed that for (Z,Z;); by a factor of 2. We indeed
recover a more pronounced enhancement for the former,
albeit by a factor smaller than 2. Note also that the r(Z,Z;)
power-law exponent clearly exhibits more dramatic higher-
order-in-u corrections that are beyond our leading pertur-
bative treatment. Figure 17 reports the results for 7(Z;) in
case IV with nonzero C. Just as in Fig. 11 taken for uniform
measurement outcomes in cases II and IV, we obtain good

0.001¢ (a) (2)~ —u°B ~0.75 Qw/
-0.2 - u=0.10 - u=0.25
0.25 0801 =~ y=015 = u=030
_ ~ u=020
= — — —— e
N 0.50 0.85
=
-0.75 s -0.90
-1.00 e 095
-1.00
0.0 0.2 0.4 0.02 0.04
u /N

FIG. 17. Ratio r(Z;) in Eq. (76) involving symmetry-resolved
measurement averages. The data correspond to case IV from
Table I with paramagnetic ancilla C = —1 and system sizes
between N = 20 [light colors in(a)] and N = 115 [dark colors in
(a)]. Panel (a) shows that the small-u data are well fit by an
approximate u%%3 scaling form consistent with the prediction
from Eq. (83). As shown in (b), increasing u suppresses the
dependence on system size such that 7(Z;) quickly saturates to a
finite value. Data are obtained using finite DMRG with periodic
boundary conditions and bond dimension 1000.

041042-19



MURCIANO, SALA, LIU, MONG, and ALICEA

PHYS. REV. X 13, 041042 (2023)

quantitative agreement with the prediction in Eq. (83).
Moreover, panel 17(b) shows that the r(Z;) values quickly
saturate as N increases, at least for u > 0.2.

Despite the striking resemblance discussed above
between r(A) and correlators in postselected uniform
measurement outcomes, we stress that these quantities
are not quite identical. The distinction becomes particularly
apparent with critical ancillae for which V7 encodes a

power-law interaction in the associated defect-line action
with much slower decay (exponent 1/4) compared to the
decay found in cases III and IV (exponent 1). In case IV
with C =0, the inherently long-range oo interaction
mediated by V7%, is much more strongly relevant compared

to the (also strongly relevant) interaction encountered in
Eq. (70). Moreover, in case IV with C # 0, m” correspond-
ingly diverges rapidly with system size, signaling a clear
breakdown of the perturbative expansion used above. By
contrast, in Sec. VI B we see that critical ancillae yield only
a mild logarithmic divergence in m;. We leave a detailed
investigation of the properties of r(A) with critical ancillae
for future work.

B. Comparison with postselection

We now critically assess the experimental feasibility of
probing measurement-altered criticality via symmetry-
resolved averages and contrast with the alternative strategy
of postselection of an a priori specified measurement
outcome [83]. For the technique, we focus in particular
on postselecting the uniform ancilla measurement string
Suni>» Which as we saw previously is the most likely
measurement outcome and leads to clear measurement-
induced changes of correlators that closely resemble
symmetry-resolved averages. Quite different challenges
accompany these two approaches. For the experimental
extraction of symmetry-resolved averages, every protocol
iteration—regardless of the specific ancilla measurement
outcome—can in principle nontrivially inform evaluation
of the ratio r(A) in Eq. (76). As stressed above, however,
the numerator and denominator both decay exponentially
with system size, suggesting that obtaining sufficient
statistics to reliably measure r(A) requires a correspond-
ingly large number of experimental trials. With postselec-
tion, nearly all protocol iterations yield outcomes which
differ from the target ancilla measurement outcome 3.
But within the rare instances in which the target outcome
emerges, evaluating (y; |Aly; ) becomes relatively
straightforward for two reasons. First, this expectation
value generally does not decay exponentially with system
size [contrary to Eq. (74)]. Second, due to translation
invariance of |y ), one can interrogate all system spins in
the postmeasurement state to reduce the number of recur-
rences of §,,; needed to resolve correlations to a desired
accuracy; even a single successful trial suffices to approxi-
mate the expectation value of both one- and two-point

correlations with an error scaling as 1/y/N, with N the
system size. In what follows, we quantify the number of
trials required for both approaches.

Let us first assess symmetry-resolved averages and,
respectively, write the numerator and denominator of
r(A) as

N = ZP§€§A§’ Ap = Zpieiﬂ (84)

where A; = (w;|Aly;), and e; denotes the parity for
measurement outcome 3. Both quantities decay exponen-
tially with system size as

N, Ap ~ e~ sra()N (85)

The function g () vanishes as u — 0, reflecting the fact
that, in the « = 0 limit, we obtain Ap = 1 exactly while N/
reduces to the critical correlator (y.|A|w.) that (at least for
the few-body operators A of interest) does not decay
exponentially with system size. For simplicity, we assume
that in a given protocol iteration yielding a particular §, one
can determine both ¢; and Aj; in a single shot. (In practice,
each iteration would yield an eigenvalue of A, and
determining A; would require multiple iterations yielding
the same outcome §. Our assumption mods out these
standard repetitions. Moreover, since averaging over meas-
urement outcomes restores translation invariance, here too
one can probe all system spins to reduce the required
number of repetitions, similar to the situation noted above
for postselection.) After M experimental protocol iterations
€5, and observables Aj , the quantities in Eq. (84) can be
estimated by

1 M
NM :—2651'1451"

M i=1

1M
Apy = M;egi. (86)
In the limit M — oo, one obtains the exact results A/}, = N
and Ap,, — Ap.

It is crucial to now understand the variance of the
sampling distribution that quantifies the quality of these
estimations at finite M. Given an estimator ¢,,, the sample
variance is

Vary,(0) = —Va;/l(é) , (87)

i.e., the population variance Var(0) = > . p;0? — (0)?
divided by the sample size M. Intuitively, this quantity
implies that the larger the sample size M, the smaller the
variance of the sampling distribution of 8,,. For the A/ and
Ap estimators, we have
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Var V) = (S0psa2 - 47) = ot (89

Vany(Ap) =2 (1-Ap)m (89)

M
where on the rightmost sides, we use the fact that both A/
and Ap decay exponentially with system size. Comparing
to Eq. (85), we see here that accurately determining both
the numerator and denominator of r(A) requires a number
of trials M that grows exponentially with N. The relative

error /Vary (Ap)/Ap in determining Ap, for instance,
becomes smaller than 1 for M > e2sra ()N ; similar reason-

ing applies to .

We are primarily interested in the number of trials
required to reliably estimate r(A) itself. The corresponding
ratio estimator reads

ru(A) = N (90)
while to O(M™"), its variance is [84]
1
Vary[r(A)] = 2y [Vary (V) + r(A)*Vary (Ap)
—2r(A)Covary (N, Ap)]. (91)

Evaluating the terms in brackets and neglecting contribu-
tions that are exponentially small in system size yields

Vary[r(A)] {Var(A) + [r(4) = (A)P}. (92)

T MAp?
The dominant remaining system-size dependence appears
through Ap in the denominator. Consequently, accurate
extraction of the symmetry-resolved average ratio r(A)
requires a number of trials satisfying [85]

1
MSRA E —Apz ~ ezﬂSRA(M)N (93)

(which is the same criterion for separately determining the
numerator and denominator).

To diagnose a potential advantage of this approach with
respect to postselection, we next estimate the minimum
sample size required to obtain the target measurement
outcome 5, with high likelihood. The probability to
measure this string

Puni = <l//U|§uni><§uni|1//U> ~ e~V (94)

also decreases exponentially with system size, as expected
from the fact that it arises from the overlap of two very
different many-body wave functions. Importantly, the func-
tion #,,; (), unlike ygga (), generically does not vanish as

u — 0: At u = 0, exponential decay with N persists due to
nontrivial overlap between |5,,;) and the initial ancilla wave
function, except in the extreme limit /,,./J,,c = 0. Since
the probability of not measuring 5., after M trials is
(1 — puni)™, the probability of finding this measurement
outcome at least once i8S Pgecess = 1 — (1 = puni)™. The
number of trials required for postselecting the uniform
measurement outcome with high success probability
Psuccess = 1 — € (ideally 1) accordingly satisfies

logle) 1

mi =T~ ~ e”uni(“)N. (95
" log(l = puni)  Puni )

Both the symmetry-resolved average and brute-force
postselection approaches thus require an exponentially
large (in system size) number of measurements specified
by Egs. (93) and (95), respectively. It is crucial to observe,
however, that the scaling with N is tunable via the choice of
entangling gate and ancilla initialization in a manner that
differs for the two methods. On very general grounds, since
nsra (0 = 0) vanishes whereas 7,,; (4 = 0) is positive, there
always exists a window of sufficiently small u for which
symmetry-resolved averages can be probed more efficiently
compared to postselection. To be more quantitative,
Appendix D provides numerical evidence that for small
u these functions typically behave as

Nsra (1) R Cspall’, Muni () T+ et (96)
Here cgra, Cun; are positive constants, ¢ is a case-dependent
exponent that we extract (see Fig. 22), and T determines
the probability of finding the uniform measurement out-
come at u = 0 (see Appendix B and Fig. 20). Equation (96)
implies that when 2cqra > cyni» Which we find holds in
practice, Mqga grows with system size exponentially but
with a slower rate compared to M ,; for u between 0 and
u, = (T/2cspa — Cuni)/¢. When u increases just beyond
u,, postselection begins to become more efficient than
symmetry-resolved averages. Intuitively, as the ancilla
correlation length increases, the probability for obtaining
the uniform measurement outcome decreases, thereby
enhancing u, and broadening the window in which
symmetry-resolved averages are advantageous. In case
IV with critical ancillae, we find that Ap does not decay
monotonically to zero with &V, but rather changes sign along
the way. Equation (96) does not capture such nonmono-
tonic behavior; similar conclusions nevertheless hold also
in that case as we will see.

We validate the preceding picture by numerically ana-
lyzing the ratio M ,;/Mgga ~ Ap?/puni» in particular, by
simulating the system-size dependence of Ap?/p,. for
different u values in cases III and IV. (When uN < 1, the
unitary entangling gates are sufficiently close to the identity
that they do not induce appreciable decay of either Ap or
Punis hence, we restrict the range of u such that the N values
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FIG. 18.  Comparison between symmetry-resolved

averages and postselection. The vertical axis captures the ratio
M i/ Msga ~ Ap?/ puni» Where M ,; characterizes the number of
trials needed for postselection that targets the uniform measure-
ment outcome, and Mgg, characterizes the number of trials
required for evaluation of symmetry-resolved averages with
order-one variance. All panels are consistent with symmetry-
resolved averages providing more favorable scaling with system
size N over a window of small u, as argued on general grounds in
the main text. Data are obtained using finite DMRG with bond
dimension y = 800 and periodic boundary conditions; case IV
results use C = —1.

accessible in our simulations include regimes with uN 2 1.
With this constraint, we also avoid possible artificial
phenomena appearing as a result of scaling # with system
size.) Growth of Ap?/ p,,; with N indicates more favorable
scaling for symmetry-resolved averages, while decay with
N indicates an advantage for postselection. Figure 18
presents our results. For paramagentic ancilla (left
panels), data for cases III and IV are consistent with
postselection becoming favorable for u 2 0.1. For critical
ancilla (right panels), the data show that symmetry-resolved
averages can remain advantageous out to larger values of u,
consistent with the intuition above, especially in case III.
Nonmonotonic behavior evident in Fig. 18(d) arises
because of the aforementioned sign changes in Ap arising
in case IV with critical ancillae.

Assessing practicality of either scheme also requires
quantifying the separate values Msr and M ,; (as opposed
to just their ratio) for experimentally reasonable system
sizes. Relevant N values will certainly be platform depen-
dent, as will the number of trials that one can feasibly

Paramagnetic ancilla Critical ancilla

Case II1 Case II1 P

103 106 <
s 102 104
101 102

20 40 60 80 100120 20 40 60 80 100120
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—=— SRAu=0.125 === uni u=0.125
—— SRAu=0.150 =e- uni u=0.150
1 5
0 Case IV Case IV
10’
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102
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10t
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FIG. 19. Scaling of M ,; and Mgz, with system size N. The
number of trials needed for postselection of the uniform meas-
urement outcome and to extract symmetry-resolved averages are
here estimated by M, = 1/puni and Mggs = 1/(Ap)?, respec-
tively. Both approaches offer complementary regimes of exper-
imental viability even at large systems with N ~ O(100), as
evidenced by a number of required trials of O(10°) or smaller.
Data are obtained identically as in Fig. 18.

conduct on laboratory timescales. For concreteness, we
focus on N ~ O(100), which is relevant for present-day
hardware, and postulate that trials up to O(10°) are
accessible. Furthermore, we simply take Mgga = 1/(Ap)?
and M, = 1/ puni to roughly evaluate the trials required
for symmetry-resolved averages and for postselection,
respectively; Fig. 19 displays the N dependence of these
quantities for select u values. Remarkably, all four panels
explored in the figure reveal regimes for which symmetry-
resolved averages satisfy the experimental plausibility
criteria laid out above. With paramagnetic ancillae, post-
selection also enjoys regimes that require a surprisingly
moderate number of trials even out to fairly large system
sizes, ultimately because ancilla measurement outcomes
obey a highly biased, controllable distribution. For refer-
ence, had all measurement outcomes been equally likely,
one would obtain M,,; = 2V-10%* in an N = 80 system.
Figure 19 additionally reveals that M ,; increases relatively
slowly with u# (compared to Mqr,), extending the exper-
imentally plausible regime for postselection to larger u’s
that display correspondingly stronger signatures of meas-
urement-altered criticality.
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VIII. DISCUSSION AND OUTLOOK

We analyze the initialize-entangle-measure-probe proto-
col summarized in Fig. 1 to investigate how measurements
impact correlations in 1D Ising quantum critical points.
Specifically, we develop a perturbative formalism that
allows us to analytically study the outcome of our protocol
applied with the four classes of unitaries and projective
ancilla measurements listed in Table 1. Within this
approach, long-distance correlations of microscopic spin
operators are related to correlations of low-energy fields
evaluated with respect to the usual Ising CFT action
perturbed by a defect line. The detailed structure of the
defect line depends on the choice of entangling unitary, the
initial ancilla state, and the outcome of ancilla measure-
ments. We argue that, with Z-basis ancilla measurements,
this formalism applies to general measurement outcomes;
with X-basis ancilla measurements, however, well-behaved
defect-line actions emerge only for a restricted set of (high-
probability) measurement outcomes. In the latter context,
we hope that future work can develop a more complete
analytic theory capable of treating arbitrary measurement
outcomes and assessing their probabilities for general
ancilla initializations.

Various predictions follow from this framework, most of
which we support with numerical simulations. We reca-
pitulate our main findings here [see also Fig. 1(e)].

Case I: unitary U; = eX;=(X)X; 7 basis measure-
ments. Nonperturbative CFT results [77] allow one to
formally compute the coarse-grained two-point spin corre-
lation function (Z;Z;); for general measurement outcomes
5. For a uniform measurement outcome, which occurs with
highest probability, the two-point function exhibits power-
law decay with a measurement-induced change in the
scaling dimension. Our formulation also captures subtle
changes in correlations that arise with measurement out-
comes featuring a domain wall. The agreement we find
between analytical and numerical results here represents a
highly nontrivial check for the validity of our approach.

Case II: unitary U; = e(Zi=C)X; 7 _basis measurements.
With C # 0, the defect-line action includes a longitudinal-
field term that explicitly breaks the Z, symmetry
enjoyed by the critical chain prior to measurement.
Correspondingly, the one-point function (Z;); becomes
nonzero, with a spatial profile dependent on the measure-
ment outcome. Averaging (Z;); over measurement out-

s

comes yields a vanishing one-point function as required on

general grounds. By contrast, averaging (Z j>3 retains

B
memory of the measurements and yields a nonzero result
that, based on our exact diagonalization results, appears to
survive in the thermodynamic limit.

Case III: unitary U; = enX;=(X))Z; X _basis measure-
ments. Just as for case I, the uniform string measurement
outcome occurs with highest probability and yields a two-

point function (Z;Z;); with modified scaling dimension.

Case IV: unitary U; = et Zi, X-basis measure-
ments. As for case II, explicit breaking of Z, symmetry
induced by C # 0 yields a nonzero one-point function (Z;);
for the nearly uniform measurement outcomes amenable to
our perturbative formalism. Taking C =0 restores Z,
symmetry for the critical chain. Here, when the ancillae
are also critical, the defect-line action hosts a long-range
power-law-decaying interaction among CFT spin fields
that, based on iDMRG simulations, appears to qualitatively
alter (Z;Z;); correlations (for uniform or nearly uniform
measurement outcomes). That is, on short distances
the correlations decay faster than power law, though we
argue that on longer distances power-law correlations are
likely to reemerge. Further substantiating this scenario,
possibly drawing connections with previous work on long-
range-interacting Ising chains [81,82], raises an interesting
open problem.

In the cases with X-basis ancilla measurements, we
further propose a new method for detecting nontrivial
effects of measurements on Ising quantum criticality.
Here we exploit the fact that X-basis measurement out-
comes factorize into two symmetry sectors depending on

the value of the generator G = IT j X ; € £ 1 of the global

Z, symmetry for the ancilla. Although G is a nonlocal
operator, its eigenvalue for any outcome |3) follows
trivially given measurements of X j for each ancilla site;
one can, in turn, average critical-chain observables over
measurement outcomes separately within each symmetry
sector. We find analytically that the difference in averages
between the two sectors (normalized by the difference in
probability for accessing the sectors) encodes measurement
effects on Ising criticality that survive in the thermody-
namic limit. Strikingly, such ratios evaluated for one- and
two-point spin correlations mimic the behavior predicted
for uniform postselection outcomes by our perturbative
defect-line framework, as recovered also in our simulations.
The practical catch is that the ratio involves a numerator
and denominator that individually decay to zero as the
system size increases.

To address feasibility given this catch, we quantify the
number of trials needed to meaningfully extract symmetry-
resolved averages and contrast with the alternative
technique of postselecting for the uniform measurement
outcome. We establish very generally that symmetry-
resolved averages require exponentially fewer trials—
although still exponentially —many—compared to
postselection over a window of small-entangling-gate
strength u that widens as the ancillae become more
correlated. Moreover, within this window, symmetry-
resolved averages necessitate a strikingly modest number
of protocol runs estimated to be on the scale of 10> to 10°
for critical chains composed of O(100) spins. Another
important message of this work, however, is that post-
selection poses a far less daunting challenge compared to
the situation where all measurement outcomes are equally

Z,~C)
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likely. With paramagnetic ancillae in particular, we find that
in larger-u regimes where postselection outperforms sym-
metry-resolved averages, the uniform measurement out-
come can emerge with high probability after a similarly
modest number of protocol runs in systems with as large as
O(100) spins. Apparent viability of postselection here
originates from the fact that measurement outcomes are
far from random, but rather follow a highly biased
distribution that one can control via u and the initial ancilla
configuration. It would be valuable to understand the
effects of measurement errors and decoherence on both
symmetry-resolved averages and postselection to further
address their suitability for experimental application. More
broadly, might factorization into symmetry sectors as
exploited for symmetry-resolved averages prove fruitful
for detecting measurement-induced phenomena in other
contexts?

In much of this work, correlations in the initialized
ancilla state play an important role. Cases I and II, for
instance, become completely trivial if the ancillae are
initialized into the (product-state) ground state of Eq. (14)
at hgne/Jane = 0. In this extreme case, |y, ) is an eigenstate
of the U;’s used in our protocol for cases I and II. Hence,
those unitaries do not actually entangle the critical chain
with the ancilla, and measurements of the system do not
affect the former. Case IV highlights a more striking
example, where once again critical ancillae can produce a
defect-line action exhibiting inherently long-range interac-
tion among CFT fields, mediating physics qualitatively
different from what we find with paramagnetic ancillae.

Outside of this last example, we invariably conclude
that the defect-line action could be approximated by a
single term linear in either the o or ¢ field (depending on the
protocol details under consideration). Microscopically,

we show that for the postmeasurement state |y;) =
(1/V/N)U' e /2y ) [Eq. (22)], the important nonunitary
e~Mn/2 part generically does not factorize into a product of
operators acting at individual sites j due to the V; term in
Eq. (25). An approximate factorized form

lys) ~

- 97)
NS

nevertheless captures the leading defect-line action linear
in o or ¢ that we typically obtain. When m; is nonzero, the
factorized measurement operators M; follow by simply
setting V; = 0 in H,,; with m; = 0, one instead modifies
the Vj, term by “fusing” the constituent microscopic
operators (mimicking the CFT-field fusion rules) to arrive
at a factorizable form. Intuitively, the more highly
entangled the ancillae are, the worse this approximation
becomes, culminating in its complete breakdown in case
IV with C = 0 when the ancillae are critical. The break-
down is anticipated to be especially stark in the case of

symmetry-resolved averages due to the very slowly
decaying longer-range interaction generated by measure-
ment. It would be interesting to quantify the accuracy of
Eq. (97) from a microscopic viewpoint, e.g., by studying
the operator space entanglement of M; as a function of the
ancilla wave function.

Chains of laser-excited Rydberg atoms trapped in optical
tweezer arrays comprise a promising experimental platform
for measurement-altered Ising criticality. A single Rydberg
chain effectively realizes an antiferromagnetic spin model
with power-law-decaying Ising interactions supplemented
by both transverse and longitudinal fields—though the
latter can be tuned to zero by choosing an appropriate
detuning from resonance. The phase diagram hosts a
readily accessible Ising quantum phase transition (among
other more exotic critical points) [86] that is well-
understood also at the lattice level in this setting [61].
Moreover, a second Rydberg chain could furnish the ancilla
degrees of freedom in our protocol. Devising concrete
implementations of the requisite unitaries and ancilla
measurements in this venue poses a nontrivial problem
for future work. Additionally, the pursuit of measurement-
altered criticality in Rydberg arrays highlights several
fundamental open questions, including the impact of
antiferromagnetic Ising interactions, a nonzero longitudinal
field, integrability-breaking perturbations, etc. Erasure
conversion developed for Rydberg arrays in Ref. [62] is
a promising tool for probing measurement-altered quantum
criticality in this arena. Recent work in a quite different
setting has also shown the possibility of creating the ground
state of a critical transverse-field Ising chain using a
quantum computer [63], highlighting tantalizing prospects
for realization also in digital quantum hardware.

Finally, many other variations on the present work would
be interesting to explore. Extension to strongly interacting
CFTs, e.g., tricritical Ising, parafermionic, etc., is particu-
larly intriguing given their rich field content and corre-
spondingly rich set of possible measurement-induced
defect-line actions. Measurements could also be performed
in various alternative ways that add a new twist to the
problem; for instance, one could contemplate joint mea-
surements of operators on the critical and ancilla chains, or
measure different quantities in different regions of space.
We hope that the approach used here will prove useful for
addressing such problems in the future.

Note added.— Recently, we became aware of Refs. [87,88],
which examined the effects of measurement on Ising
criticality from a perspective largely complementary to ours.
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APPENDIX A: POSTMEASUREMENT WAVE
FUNCTION

Here we provide technical details leading to the post-
measurement state specified in Egs. (22), (24), and (25). We
start by observing that the ancilla measurement basis is
always orthogonal to 0 ;> hence, if measurement projects
ancilla site j to |3;), then 0 simply flips that measured
spin: O;[3;) = | —5;). For the unitary in Eq. (23), we can
then use properties of Pauli operators to express the
postmeasurement state defined in Eq. (18) as

{[H(C 5450 I P (A1)

Equation (A1) uses the shorthand notation

lys) =

C; = cos[u(0; — 0], S; = isin[u(0; - 0)], (A2)
which satisfy standard trigonometric identities even includ-
ing the Pauli operators in the arguments.

Observe that multiplying all elements in the product
from Eq. (A1) yields a sum of terms with anywhere from
Ny = 0to N flipped ancilla spins (N is the total number of
ancilla sites), and that these flipped spins can occur at
arbitrary sites iy < iy <--- <iy,. Let |5(i1, ..., in,)) be
the state with N, flipped ancilla spins at these sites, and let
F(iy, ..., iy /_) denote a product of C;’s for the unflipped

sites and §;’s for the flipped sites. For example,

|§(i1?i2)>:0i10i2|§>v
F(i],iZ) :Cl’""Cil—lSiICi1+l7"‘7Ci2—lSi2Ci2+1""

(A3)

We can then explicitly write

GG,

lys) =

in)Wa)

Nf 00 <ir<- <‘Nf

X F(iy,...iy ) |ye) (A4)
which, en route to the form in Eq. (22), can be trivially

reexpressed as

|w§>—¢;_sexp{ n| Gl o+ Y60 P ()

+Z (i, i) lwa)F iy i) +

i1<ia

with FO Cl?""CN'

Suppose now that (5|y,) is nonzero. In this case, we can
factor out the first term in the log from Eq. (A5) to obtain,
after some manipulation and absorbing an 3§-dependent
constant into a new normalization factor N/,

2

1
lys) = \/——Me_H‘e'“"/zhlfc),

Hiemp = 21H[1+Za )T, —I—Z a(iy, i, T'lTi2‘|‘"‘

i1<ip
-2) "In(C,

In the second and third lines we introduce the quantities

o By ) lwa)
a(ll,...,le): <S‘|[// >/ R Ti:Ci_ISi,

(A6)

(A7)

which are a generalization of Eq. (28) of the main text. At
this point, one can expand H ., to the desired order in
u < 1. To proceed, it is convenient to decompose H e, Via

Hynp = —2iH' + H,,, (A8)

where H', H,, are commuting Hermitian operators; U’ =
e is the unitary transformation from Eq. (22) while H,,
contains the crucial nonunitary effects from measurement.
Upon absorbing constants into the normalization A, to

O(u?) one obtains Egs. (24) and (25) in the main text.

APPENDIX B: GAUSSIAN OVERLAPS

Throughout the manuscript, we are interested in the
evaluation of correlation functions like the ones appearing
in Eq. (A7). To establish the main ideas, consider the case
in which the unitary involves X, we measure in the Z basis,
and we want to evaluate

GITIE X ya)
(wa '

Here, § is an arbitrary string outcome, and Ny denotes
the number of flipped spins generated by X; operators in the

a(iy, .. iy,) = (B1)
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product above. The ket |y,) is the ground state of the
transverse-field Ising model in Eq. (14) or, equivalently, of
its fermionic representation obtained via the Jordan-Wigner
transformation. We can collect the Majorana operators
appearing in the latter form of the Hamiltonian into a
vector y defined by

VA1

VA2

(B2)

=1

YAN |-

VB.1

VBN

2mk
§ 3 e

keQGs

h—cos(2£)+i sin(2£

where N is the system size and {7;,7,} = 26;;. To simplify
notation, in this appendix we suppress tildes on the
Majorana fermion operators for the ancilla, and also replace
Nane = hand J,,. — 1. The Hamiltonian is quadratic in the
fermionic operators, and any fermionic Gaussian state can
be described through the covariance matrix

i

<b’j’ 7k]>,

with [y, 7] the commutator of the two Majorana operators
y; and y;. From the definition, we observe that I' is a real
and skew-symmetric matrix. For the transverse-field Ising
chain, the covariance matrix is known analytically [89]. In
particular, it has a Toeplitz structure given by

h—cos(2£)—i sin(2£

\/[h cos(z”k)] +§1n(L)
0

0

b ; (B4)

G

where Qg, is the set of occupied momenta in the
simplifies as

—cos(22k)]2 +sin(2£5)2

ground state. In the limit N — oo, the equation above

h—cos(¢)—isin(¢)

0
1 s \/[h—cos(¢)]2+sin(¢)2
L= —ig(j—k)
ij 2n d¢€ h—cos(¢)+isin(¢h) 0 ’ (BS)
V/[h=cos(¢)]* +sin()?
We can also use an altgmative approach to determine the H; = _Zgjgj n 1Zj Zj 1 (B7)
covariance matrix. First, rewrite Eq. (3) as H = I
3> ik hjxyjye with h a matrix encoding the free-fermion
Hamiltonian. We proceed by finding the fermionic trans-  that, after a Jordan-Wigner transformation, reads
formation U that diagonalizes h; in this diagonal basis, the
correlation matrix associated with the ground state Iy, iS ~ 1 -
simply obtained by substituting —1 (41) for any positive H; = IZSJ'SHWAJHYBJ = Ezkhjkyjyk' (BS)
J J

(negative) eigenvalue [90]. To obtain I', we just need to
move back to the original basis, i.e., I' = UTFdiagU .

When we measure in the Z basis, |5) is not a Gaussian
state, but noticing that (5|X;ly,) = (3|X;Gly,) =
(—3X;|y ), we find

5)+1-3)
V2
The advantage of using the cat state |y ) is that now it is

Gaussian and corresponds to the ground state of a quadratic
Hamiltonian

(31X lwa) —\%Wﬁ)@lwa% )= (B6)

041

By applying the procedure described above, we can find the
covariance matrix I'; describing the Gaussian ground state
of Eq. (B8). Once we know the covariance matrix both for
the ground state of the ancilla and for the Hamiltonian H,
we can apply a result found in Ref. [71]: The absolute value
of the inner product (3|y,) is

|Blwa)| = /2N PAT + T), (B9)

where Pf is the Pfaffian of I" + I';.
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Evaluation of Eq. (B1) follows straightforwardly from
the above results since we know explicitly the action of
Hin,- on |3). For instance, if Ny = 1, XJ|§> = [5())); i.e
the action of X ; simply flips the spin at site j. We therefore
have to also compute the covariance matrix for the
Hamiltonian associated with the outcome 3(j), and then
extract the corresponding overlap with the ancilla ground
state using Eq. (B9) with § — 5(j). This procedure yields

a(j) = Pf(T+T5;) a(j, k)= Pf(r‘f‘rﬁ(j,k)).
Pf(T+T5) "’ ’ Pf(T+Ty) °

(B10)

other a(iy,...,iy,) coefficients from Eq. (BI) follow

similarly. Importantly, the absolute value in Eq. (B9) is
superfluous for the model we consider in this manuscript
due to the stoquasticity of the transverse-field Ising model.

When we measure in the X basis, |3) is automatically a
Gaussian state corresponding to the ground state of the
quadratic Hamiltonian

s == 5K =—i> S48
F J

Therefore, computing the corresponding covariance matrix,
we can again apply Eq. (B9) to evaluate

(B11)

1

2 o
(4 T5) =5, [ dbe 80610 1).G(.h) =

In order to evaluate pgo)

0.125

T

T T T =

0.10

0.075

0.05

0.025

FIG. 20. Coefficient T in Eq. (B15). The plot shows the
behavior of the coefficient describing the exponential growth
0)

uni

with system size of the probability p
measurement outcome at u = 0.

for obtaining the uniform

(8lya) = /27VPF(C + ). (B12)

as well as correlation functions like (3 |H \Z; wa)/

(S|y). We remark here that if |5) is the unlform meas-
urement outcome, '+ I'; is still a block-Toeplitz matrix
because the system preserves its translational invariance.
Indeed, for large N, it can be written as

0 h—cos(¢)—i sin(¢)
h—cos(¢)]*>+sin(¢)?
i Vl—cos(@P+sin(g) (B13)
___h—cos(¢)+isin(¢) -1 0
V/lh=cos(¢)P+sin(¢)?

in Eq. (33) for a uniform measurement outcome, we need to evaluate the Pfaffian (therefore, the

determinant) of I' 4 I'; using Eq. (B12). One of the main results of the theory of block-Toeplitz determinants is the Widom-
Szegd theorem [91]. According to it, the determinant of a block-Toeplitz matrix, like I' 4 I's, with symbol G(¢, i), behaves

for large N as

log det[I" + I';] ~ N/ —1ogdetg(¢ h) N/ d¢ {

This result allows us to compute explicitly the probability p 0

uni

(0) TN
Puni ™ € ’

TzlogZ—/
0

(B14)

Vh* —=2hcos(¢p) + 1+ h— cos(gb)}
VhE=2hcos(¢) + 1 '

for finding the uniform measurement outcome at u = 0:

th (B15)

2hcos(¢p) +1+h— cos((ﬁ)}
Vh*=2hcos(¢) + 1 '

In particular, the integral above can be explicitly solved for 42 = 1, i.e., when the ancilla chain becomes critical, and we

obtain

T = log?2 — 2Catalan/x,

(B16)

where Catalan’s constant is ~0.92. As Fig. 20 shows, T monotonically decreases to zero for 4 > 1.
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APPENDIX C: EFFECTIVE ACTION
FORMALISM FOR RATIO r(A)

In this appendix, we show how the formalism developed
in Sec. III A and Appendix A allows us to rewrite r(A) from
Eq. (76) in a more illuminating form that immediately
allows us to take advantage of the effective action formal-
ism exploited throughout this paper. Let us start from the
case where [A, U] = 0. The numerator of Eq. (76) can be
rewritten as

welAwa ][5+ $Z]lvalwe).  (C1)

where

Cl; = cos[2u(0; - 0)],

J

S = isin[2u(0; - 0)].

(C2)

Notice the extra factor of 2 in front of u compared to
Eq. (A2). The form of Eq. (C1) resembles Eq. (A1) and is
therefore amenable to similar manipulations that led to
Egs. (A6) and (A8). Following these steps, we reexpress the
ratio in Eq. (76) as in Eq. (77), where now

Hj, =—In [1 + > Wl Zi Zily )T TE + -

i1 <i

=2 In(Cy),.

(C3)

with 77 = (Cr)~'S7. Compared to Eq. (A8), the argument of
the log contains only terms with an even number of 77
operators. This difference results from the fact that
Glw,) = |w,), implying that only multipoint ancilla corre-
lators with an even number of Z operators give nontrivial
contributions. It turn, (y.|Ae=#»|y.) does not contain a
unitary contribution, even though (w,|(y JAU?|yw.)|w,)
naively does. This conclusion can be understood by noticing
that (o[ (We|AU?lwe) Wa) = (wal (W |AR(U?)lw ) lw)
with Re(U?) a nonunitary operator. Upon expanding H’,
to O(u?) and simplifying all constant terms between the
numerator and denominator, we obtain Eq. (78) in the
main text.

So far, we derived Eq. (77) assuming that [A, U] = 0.
When [A, U] # 0, we obtain a modified form of H, as
follows. Consider case III from Table I and suppose that we
are interested in observables A = Z;Z, with j # j". We start
by noticing that U?A;, = AU? + [U, A]U which leads to

<Wa|<WC|U2AU|WC>|Wa>
= <Wa|<WC|AU2|Wc> |l//a> + <Wa|<WC|[U7Zij’]U|WC> |l//a>‘
(C4)

Computing the commutator explicitly and using the notation
Ugj = [Tiy, "5 XD% then yields

Wallw | UPAylw o) o) = Wal (wel AU w ) ) —2isin(u) (w, [ (w | Y;Z [icos(u(X)) Z;+sin(u(X))]U .;Uly ) lw,)
— 2isin(u) (e 12,7 s licos(u(X)) Zy +sin(u(X))] Uy Ul )
+4sin(u) (| (we|Y;Y jlicos(u(X))Z; +sin(u(X))] [icos(u(X)) Zy +sin(u(X))|U ;s Ulw.) ).

Let us focus on the second term on the right side, which
can be recast into the form of Eqgs. (Cl) but with
C}, = sin(2u(X) — uX;), S; = icos(2u(X)—uX;) when
k=j, and given by Eq. (C2) otherwise. Hence, one
recovers the Hamiltonian H}, in Eq. (C3), although with
local modifications for terms involving the jth site. We

denote the resulting Hamiltonian as H %). All together, this
procedure allows the second term on the right side to be
compactly expressed as [up to constants that cancel when
normalized by the denominator in r(A)]

—2isin(u)(y.|Y;Zy e yr,). (C6)

Compared to H’, in Eq. (78), HY and HY’ are
very similar and differ only by some corrections involving

sites j or j'. Importantly, both <y/c|Yij/e‘H’(1{)|y/c> and

(Cs)

(y.|Z ij/e‘H%)h//C) contain Y operators, which map to a
CFT operator with larger scaling dimension than that for Z.
One can find an effective action also for the fourth term in
Eq. (C5), but since it contains operators Y;Y , its contri-
bution will be even more subleading with respect to the
previous ones. Therefore, as already mentioned in Sec. VII,
we can neglect their subleading contributions at large
distances.

APPENDIX D: DEPENDENCE OF r(4) ON
SYSTEM SIZE AND SCALING FORM OF Ap, p ..

In Sec. VII A, we argued that the symmetry-resolved
differences (A), — (A)_ = (y.| (.| U*Aulw,) v, with A
corresponding to correlators of local operators, vanish in
the thermodynamic limit N — oo. Figure 21 numerically
shows that with paramagnetic ancilla these quantities decay
exponentially with system size for the values of u
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FIG. 21. Exponential decay of symmetry-resolved differences (A), — (A)_ with system size. (a) Probability difference Ap
corresponding to A = 1. (b) One-point expectation value corresponding to A = Z;. The result does not depend on the evaluated
site j due to translation invariance. (c) Two-point correlator A = Zy,Z,, evaluated at a distance 10 from the reference site. Data are
obtained using (finite) DMRG with periodic boundary conditions for case IV (with C = —1) in panels (a) and (b), and case III in panels
(c) and (d) assuming paramagnetic ancilla.

Paramagnetic, case 111 Critical, case III Paramagnetic, case IV
u=0.100 u=0.100 u=0.100
4=0.125 u=0.125 u=0.125

= =~ ¢=0150 -~ u=0.150 -~ u=0.150
T : Zigégg -+ u=0175 1 -~ u=0.175
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X
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FIG. 22. Scaling of Ap and p,,;. Upper panels show that the ratio p,,;/ pﬁ?l)i exhibits excellent data collapse when plotted versus u* N,
with ¢ exponents specified in the horizontal axes. Lower panels show similar data collapse for Ap. These results are consistent with

scaling behavior Ap ~ e~esratN and DPuni/ pl(l?l)i ~ ¢~wi"’N Data are obtained using finite DMRG with bond dimension y = 800 and
periodic boundary conditions. Panels (e) and (f) for case IV correspond to C = —1.
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considered in the main text. In particular, panels Figs. 21(a)
and 21(b), respectively, show numerical results for case [V
(at C=-1) with A =1, i.e., the probability difference
Ap=p,—p_, and A =Z;. Figures 21(c) and 21(d),
respectively, show results in case Ill for Ap and A = ZyZ,.

In Sec. VIIB, when comparing symmetry-resolved
averages and postselection, we use the scaling forms Ap ~
esralN and p o~ e~mi(N Here we numerically estab-
lish that, for small u, these quantities in most cases conform
well to the more precise scaling behavior Ap ~ e~¢seat‘N

and pyni/ pfl?])i ~ e~wiN with cgpa, Cun cOnstants, ¢ an
exponent that depends on the entangling gate U and on the

initial ancilla wave function, and pl(l?l)l ~e ™ given in
Eq. (B15). Equivalently, the prefactors determining the
scaling with N obey nsga (1) = cspart® and (1) ~ T +
Canilt® at small u.

In agreement with the expressions above, Fig. 22 illus-
trates data collapse of both p,,;/e~ "V (upper row) and Ap
(lower row) when plotted versus u*N, with exponents ¢
indicated on the horizontal axes. The range of u and N
considered here are the same as those examined in the
figures of Sec. VIIB. Figures 22(a) and 22(b) and 22(c)
and 22(d) correspond to case III of Table I with paramagnetic
ancilla and critical ancilla, respectively. Figures 22(e)
and 22(f) correspond to case IV with C = —1 and para-
magnetic ancillae. The nonideal data collapse in Fig. 22(f)
possibly originates from neglected subleading corrections in
u (but in any event does not matter for the conclusions drawn
in Sec. VII B). In case IV with critical ancillae, we find good
data collapse for p,,; /e~ "V with ¢ = 0.25 (data not shown);
data collapse with our ansatz does not arise for A p, however.
The reason is that A p undergoes sign changes in this case as
a function of N for fixed u, thus no longer displaying
monotonic behavior.
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