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A ð2þ 1ÞD topologically ordered phase may or may not have a gappable edge, even if its chiral central

charge c− is vanishing. Recently, it was discovered that a quantity regarded as a “higher” version of chiral

central charge gives a further obstruction beyond c− to gapping out the edge. In this Letter, we show that the

higher central charges can be characterized by the expectation value of the partial rotation operator acting

on the wave function of the topologically ordered state. This allows us to extract the higher central charge

from a single wave function, which can be evaluated on a quantum computer. Our characterization of the

higher central charge is analytically derived from the modular properties of edge conformal field theory, as

well as the numerical results with the ν ¼ 1=2 bosonic Laughlin state and the non-Abelian gapped phase of

the Kitaev honeycomb model, which corresponds to Uð1Þ2 and Ising topological order, respectively. The

Letter establishes a numerical method to obtain a set of obstructions to the gappable edge of ð2þ 1ÞD

bosonic topological order beyond c−, which enables us to completely determine if a ð2þ 1ÞD bosonic

Abelian topological order has a gappable edge or not. We also point out that the expectation values of the

partial rotation on a single wave function put a constraint on the low-energy spectrum of the bulk-boundary

system of ð2þ 1ÞD bosonic topological order, reminiscent of the Lieb-Schultz-Mattis-type theorems.

DOI: 10.1103/PhysRevLett.132.016602

Introduction.—ð2þ 1ÞD topological phases with bulk

energy gap host various intriguing physical phenomena [1].

One of the most striking is the bulk-edge correspondence,

where the property of the bulk heavily constrains dynamics

at its boundary. The most celebrated example is the integer

quantum Hall effect, where the nonzero bulk Chern number

implies the presence of gapless charged edge modes [2].

Even without charge conservation, systems with nonzero

chiral central charge c−, which signals nonzero thermal

Hall conductance, has gapless edge modes [3]. We have a

good theoretical understanding of these quantities through

coarse-grained Chern-Simons theory, and we can extract

them from microscopic wave functions [4–13].

In the presence of anyonic excitations, there are properties

beyond c− that enforce the presence of gapless edge modes.

In many cases, nontrivial braiding statistics between anyons

can present an obstruction to gapping out all anyonic degrees

of freedom simultaneously at the boundary [14,15]. Such

phases of matter are said to have an ungappable edge.

Recently, it was discovered that a quantity called “higher

central charge” can partially capture the “ungappability” of

the edge [16,17]. In particular, higher central charges of an

Abelian topological order completely determine whether it

has an ungappable edge [18]. However, so far, the quantity

has been characterized purely through the topological

quantum field theory (TQFT) framework, and amicroscopic

understanding of higher central charges has been lacking.

In this Letter, we show that the expectation value of the

“partial rotation” operator—the rotation operator that acts

only on a part of the system—can be used to reliably

extract higher central charges of topologically ordered

systems. This is the first proposal that relates the wave

function of a topological ordered state to its higher central

charges, and our operational definition even allows its

evaluation on a quantum computer. Our finding is sup-

ported by an analytical conformal field theory (CFT)

calculation, as well as numerics on the non-Abelian phase

of the Kitaev honeycomb model and ν ¼ 1=2 bosonic

Laughlin state. This Letter establishes a general numerical

method to obtain obstructions to a gappable edge of a

bosonic topological order beyond c−, which enables us to

completely determine if bosonic Abelian topological order

has a gappable edge.

Definition and properties of higher central charge.—

The higher central charges ζn are complex numbers

characterizing a topologically ordered state, labeled by a

positive integer n. ζn can be easily computed from the

properties of anyons in the topological order; for a given
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bosonic ð2þ 1ÞD topological order, ζn is defined as the

following phase:

ζn ¼

P

ad
2
aθ

n
a

j
P

ad
2
aθ

n
aj
; ð1Þ

where the sum is over all anyons in the topological order, da
is quantum dimension, and θa is topological twist of an

anyon a. When n ¼ 1, ζ1 reduces to the Gauss sum formula

for chiral central charge modulo 8, ζ1 ¼ eð2πi=8Þc− , hence ζn
formally provides a generalization of c−.
Higher central charges put a constraint on the gappability

of the edge; it was proven in [16] that ζn ¼ 1 for all n such

that gcdðn;NFSÞ ¼ 1 give necessary conditions for a gap-

pable edge. Here, NFS is called the Frobenius-Schur

exponent, defined as the smallest positive integer satisfying

θ
NFS
a ¼ 1 for all anyons a. For example, Uð1Þ2 × Uð1Þ−4
Chern-Simons theory has ζ3 ¼ −1, which shows that the

topological order has an ungappable edge even though

c− ¼ 0. For ð2þ 1ÞD bosonic Abelian topological phases,

one can also derive sufficient conditions: the higher central

charges fζng for gcdfn; ½NFS= gcdðn;NFSÞ�g ¼ 1 give both

necessary and sufficient conditions for a gappable boun-

dary [18].

Main result.—To extract higher central charges from a

single wave function, we consider a ð2þ 1ÞD topological

ordered state located on a cylinder. The state on the cylinder

is labeled by the anyon a, which corresponds to a

quasiparticle obtained by shrinking the puncture at the

end of the cylinder. Suppose we have realized a ground

state jΨi on the cylinder labeled by the trivial anyon 1. Let

us take a bipartition of the cylinder into the two subsystems

labeled by A and B and write the translation operator for the

A subsystem by the angle θ along the circumference as TA;θ

(see Fig. 1). We then find that the following quantity

extracts ζn:

T 1

�

2π

n

�

≔ hΨjTA;2π
n
jΨi ∝ e−2πið

2
n
þnÞc−

24 ×
X

a

d2aθ
n
a; ð2Þ

where ∝ in this Letter always means being proportional up

to a positive real number. In the special case where n ¼ 1,

the rhs becomes 1 since
P

a d
2
aθa ∝ eð2πi=8Þc− , consistent

with the fact that the 2π rotation of the cylinder A gives the

identity. For n > 1 and gcdðn;NFSÞ ¼ 1, the above rhs

becomes proportional to ζn and gives a nontrivial obstruc-

tion to gapped boundary beyond c−. Since c− can be

extracted from a single wave function [6,7], our method

allows a complete characterization of all higher central

charges.

For ð2þ 1ÞD bosonic Abelian topological order, one can

show that partial rotation, together with topological entan-

glement entropy [19,20], fully determines if its edge is

gappable. See the Supplemental Material [21] for an

explicit algorithm determining gappability. We also note

that partial rotation, which is unitary, can be easily

evaluated on a quantum computer using methods such as

the Hadamard test.

Analytic derivation.—Equation (2) can be derived by

employing the cut-and-glue approach established in [19,27],

which describes the entanglement spectrum of the A sub-

system at longwavelength by that of the ð1þ 1ÞDCFTon its

edges [28]. Namely, the reduced density matrix for the A
subsystem is effectively given by ρA ¼ ρA;l ⊗ ρA;r, where

ρA;l; ρA;r denote the CFTs on the left and right edges,

respectively. The left edge lies at the end of the whole

cylinder realizing the ground state of CFT; the right edge of

the A subsystem entangled with the B subsystem is

described by a thermal density matrix of a perturbed edge

CFT [29]. The form of the perturbation in the entanglement

Hamiltonian is not universal. In the following, we assume

that the entanglement Hamiltonian is that of the unperturbed

CFT ρA;r ¼ e−βrHr and check the validity of this assumption

with our numerics.

Since the operator TA;θ acts as the translation of the edge

CFT, the partial rotation is expressed as the expectation

values of translation operators within the edge CFT as

T 1

�

2π

n

�

¼
Tr½eiPl

L
ne−

ξl
v
Hl �Tr½eiPr

L
ne−

ξr
v
Hr �

Tr½e−
ξl
v
Hl �Tr½e−

ξr
v
Hr �

¼
χ1ð

iξl
L
þ 1

n
Þχ1ð

iξr
L
− 1

n
Þ

χ1ð
iξl
L
Þχ1ð

iξr
L
Þ

; ð3Þ

where we introduced the velocity v, correlation length

ξl ¼ vβl, ξr ¼ vβr, and the circumference of the cylinder L.
Pl and Pr are translation operators on the left and right edge

Pl ¼ −ð1=vÞHl, Pr ¼ ð1=vÞHr. χ1ðτÞ is the CFT character

of the trivial sector with modular parameter τ. In our setup,

where L ≪ ξl, the characters for the left edge are approxi-

mated as

χ1

�

iξl

L

�

≈e
2πξl
L

c−
24 ; χ1

�

iξl

L
þ
1

n

�

≈e
2πξl
L

c−
24e−

2πi
n
c−
24 : ð4Þ

Meanwhile, the edge CFT at the right edge cutting the

system has high temperature L ≫ ξr. These characters can

(a) (b)

FIG. 1. (a) The setup for which we considered the gappability

problem. The obstruction can be captured by c− and higher

central charge ζn. (b) Schematics of the partial rotation of a

cylinder bisected into A and B subsystems.
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be approximately computed by performing proper modular

S, T transformations as [30]

χ1

�

iξr

L

�

¼
X

a

S1;aχa

�

iL

ξr

�

≈
1

D
e
2πL
ξr

c−
24 ; ð5Þ

χ1

�

iξr

L
−
1

n

�

¼
X

a

ðSTnSÞ1;aχa

�

iL

n2ξr
þ

1

n

�

≈ ðSTnSÞ1;1e
−2πi

n
c−
24e

2πL

n2ξr

c−
24

¼
1

D2
e−2πiðnþ

1
n
Þc−
24e

2πL

n2ξr

c−
24

X

a

d2aθ
n
a; ð6Þ

where n is assumed to be small, satisfying n2 ≪ L=ξr. The
sum is over the anyons a that label the conformal block of

the edge CFT, and D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

P

a d
2
a

p

is the total quantum

dimension. By combining the above approximations of the

characters, T 1ð2π=nÞ in Eq. (3) is expressed as Eq. (2).

A similar computation can be performed when the

ground state lives in a generic topological sector,

T a

�

2π

n

�

∝ e
2πi
n
ha−2πið

2
n
þnÞc−

24 × ζn;a; ð7Þ

where T að2π=nÞ ≔ hΨajTA;2π=njΨai, with jΨai being the

ground state in the topological sector labeled by an anyon

a. We defined the twisted higher central charge

ζn;a ≔
X

b

Sabdbθ
n
b; ð8Þ

which is proportional to ζn when a ¼ 1. The derivation of

Eq. (7) is relegated to the Supplemental Material [21].

While the definition of the quantity (2) is akin to that of

the momentum polarization in the large n limit [31,32], we

emphasize that the partial rotation by the finite angle

T að2π=nÞ extracts a completely different universal quantity

from the momentum polarization. Indeed, the momentum

polarization with n→ ∞ does not give the higher central

charge, which is expressed as

lim
n→∞

T a

�

2π

n

�

∝ exp

�

2πi

n

�

ha −
c−

24
−
c−

24

L2

ξ2r

��

: ð9Þ

Remarkably, while Eq. (9) depends on the circumference L
and the nonuniversal correlation length ξr, Eq. (2) solely

gives a constant universal value as the combination of

c− and ζn. In the Supplemental Material [21], we describe

how the behavior of the partial rotation interpolates

between higher central charge and momentum polarization.

Numerical results.—We demonstrate the validity of the

formula (2) for two examples: the Ising TQFT realized by

the Kitaev honeycomb model and the Uð1Þ2 TQFT realized

by the ν ¼ 1=2 bosonic Laughlin state. Their ζn;a and

expected values of the partial rotation T að2π=nÞ are

summarized in Table I. For some of the n’s in a given

topological sector, the magnitude of T 1 vanishes. However,

this could only occur when gcdðn;NFSÞ ≠ 1, which there-

fore does not obscure the examination of whether the

topological order has a gappable boundary.

The Kitaev honeycomb model is defined on a honey-

comb lattice with a qubit on each vertex, with the

Hamiltonian

H ¼ Jx
X

hiji∈R edge

XiXj þ Jy
X

hiji∈B edge

YiYj

þ Jz
X

hiji∈Yedge

ZiZj þ κ
X

hijki

XiYjZk; ð10Þ

where the last term is introduced by turning on the

magnetic field, which realizes the non-Abelian gapped

phase [4]. The non-Abelian phase is known to host Ising

TQFT with anyons 1, σ, and ψ with topological twists

θ1 ¼ 1, θσ ¼ e2πi=16, and θψ ¼ −1.

To compute partial rotation, we employ a cylinder

geometry terminated with zigzag boundary condition on

both ends as depicted in Fig. 2, and we act on the left half of

the system with partial rotation.

The model is equivalent to a system of free Majorana

fermions coupled to the Z2 gauge field by rewriting the

qubits using Majorana fermion operators c, which act

as dynamical free fermions, and b, which describes the

Z2 gauge field. As demonstrated in the Supplemental

Material [21], the partial rotation for the state on the

cylinder lying in the trivial sector can be expressed as

T 1

�

2π

n

�

∝ Tr

�

1þ ð−1ÞF

2
e−HETA;2π

n

�

; ð11Þ

where HE is the entanglement Hamiltonian for the free

fermion state in the A subsystem with the fixed flat Z2

gauge field, with the boundary condition in the y direction

taken to be antiperiodic. The operator ½1þ ð−1ÞF�=2 gives
a projector onto the Hilbert space with even fermion parity.

Following [31], one can further evaluate it from the

entanglement spectrum of the free Majorana fermions,

TABLE I. The phases of ζn;a and the partial rotation T að2π=nÞ
for n ¼ 1, 2, 3, 4 in each topological sector of Ising and Uð1Þ2.
We write 0 when the magnitude is vanishing.

Sector a ζn;a T að2π=nÞ

Ising
Trivial 1 eð2πi=16Þ, eð2πi=16Þ, eð6πi=16Þ, eð4πi=16Þ 1, 1,e

ð2πi=9Þ, eðπi=16Þ

σ 1, 0, 1, 0 1, 0, e−ðπi=9Þ, 0

Uð1Þ2
Trivial 1 eð2πi=8Þ, 0, e−ð2πi=8Þ, 1 eð13πi=9Þ, eð13πi=8Þ

Semion s e−ð2πi=8Þ, 1, eð2πi=8Þ, 0 1, 1, eðπi=9Þ, 0
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T 1

�

2π

n

�

∝
Y

m;ky

�

1þeikyLy=n

2
þ
1−eikyLy=n

2
tanh

ξmky

2

�

þ
Y

m;ky

�

1−eikyLy=n

2
þ
1þeikyLy=n

2
tanh

ξmky

2

�

; ð12Þ

where ξmky
is the entanglement spectrum for HE, carried

by a quasiparticle with momentum ky in the y direction.

Analogously, the partial rotation for the σ sector is

expressed in terms of the entanglement Hamiltonian Hσ
E

given by setting the periodic boundary condition in the y

direction, T σð2π=nÞ ∝ Trðe−H
σ
ETA;2π=nÞ, which can also be

computed from entanglement spectrum of Hσ
E.

We show the result of this evaluation for 1, σ sectors in

Fig. 2. We see that Arg½T að2π=nÞ� converges to predicted

values. We only present for n ≥ 3 and jT að2π=nÞj > 0.

T að2π=nÞ is always real (no phase) for n ¼ 1 and 2 since

the phase part exactly cancels.

The second example is the ν ¼ 1=2 bosonic Laughlin

state, which realizes the Uð1Þ2 Chern-Simons theory. Its

only nontrivial anyon is the semion s with θs ¼ i.
The model we study is a half filled lowest Landau level

(LLL) of two-dimensional bosons with a contact interaction

V0 ¼ 1 plus a small perturbation δV2 ¼ 0.1, where Vm are

the Haldane pseudopotentials [33,34]. We consider an

infinite cylinder geometry [Fig. 3(a)] and use infinite

density matrix renormalization group calculations [35] to

obtain the infinite matrix product state (iMPS) representa-

tion of the ground state jΨi.
Compared to other numerical methods, the MPS repre-

sentation is advantageous for evaluating the action of

partial rotation. If rotation is a good symmetry, the

Schmidt states jαiA=B across subsystems A and B have

definite momentum kαy along the circumference. Thus, the

action of partial rotation can be evaluated by

T aðθÞ ¼
X

α

λ2αe
ikαyLyθ; ð13Þ

where λα is the corresponding Schmidt value. We can easily

obtain both kαy and λα from the momentum label K̄n̄B;α
and

the Schmidt value λn̄B;α of the auxiliary bond n̄B across

subsystems A and B.
For the ν ¼ 1=2 bosonic Laughlin state, we work in the

Landau gauge and the corresponding LLL orbital basis. To

accelerate the calculation and obtain the momentum label

mentioned above, we incorporate both particle number

Ĉ¼
P

n Ĉn≡
P

nðN̂n−νÞ and momentum K̂ ¼
P

n K̂n ≡
P

n nðN̂n − νÞ conservation, where N̂n is the number

operator at site n. We find that T að2π=nÞ converges at

bond dimension χ ¼ 3200, cylinder circumference

Ly ¼ 40lB, and on site boson number cutoff Nboson ¼ 5.

We note that there are a few technical complications in

applying Eq. (13) to compute T aðθÞ, we will sketch here;

readers can find more details in the Supplemental Material

[21]. First, there are a few ambiguities in extracting the

physical momentum kαy from the momentum label K̄n̄A;α
.

For iMPS, there is an overall ambiguity of momentum

labels on auxiliary bonds. The magnetic translation sym-

metry in quantum Hall systems further tangles the momen-

tum label K̄n̄;α ¼ h
P

n<n̄ K̂niα with the charge label

C̄n̄;α ¼ h
P

n<n̄ Ĉniα [36]. These ambiguities can be fixed

by matching the entanglement spectrum and the

edge CFT spectrum as elaborated in the Supplemental

Material [21].

Second, which topological sector subsystem A, B
belongs to depends on the cut. The ν ¼ 1=2 bosonic

(a) (b)

FIG. 3. (a) A schematic of the infinite cylinder geometry and

the LLL orbital basis of the MPS. Partial rotation along a real-

space cut can be accomplished by acting a unitary operator on the

auxiliary bond of the MPS obtained by the RSES algorithm.

(b) ArgT að2π=nÞ of the ν ¼ 1=2 bosonic Laughlin state ex-

tracted using Eq. (13). The dotted lines are the CFT predictions

given in Table I.

(a) (b)

FIG. 2. (a) Geometry of the Kitaev model on a cylinder. Red,

blue, and yellow lines correspond to X-, Y-, and Z-type Ising

interactions, respectively. The lattice is periodic in the y direction
and has the zigzag boundary condition in the x direction. (b) The
partial rotations T að2π=nÞ evaluated in the Ising topological

phase of the Kitaev model at n ¼ 3, 4. The σ sector at n ¼ 4 is

not shown since it evaluates zero. We used Jx ¼ Jy ¼ Jz ¼ 1,

κ ¼ 0.1 for computation.
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Laughlin state has a twofold ground state degeneracy,

characterized by root configuration (pattern of zeros) [01]

and [10] [37,38]. It turns out that cutting through the LLL

orbital center that corresponds to the 0s (1s) bisects the

system into two trivial sectors (semion) sectors. Finally,

when we work in the LLL orbital basis, an auxiliary bond

divides the system into two sets of LLL orbitals instead of

two regions of physical space. This problem can be

resolved using the real-space entanglement spectrum

(RSES) algorithm developed in [36]. We note that many

of the technicalities discussed here are not specific to the

ν ¼ 1=2 bosonic Laughlin state, but provide a general

procedure for computing higher central charge of arbitrary

wave function in the MPS form.

Finally, we present the result of T að2π=nÞ in both the

trivial and the semion sectors. As shown in Fig. 3(b),

T að2π=nÞ always converges to the expected phase as

shown in Table I at sufficiently large Ly.

Discussion.—In this Letter, we characterize the higher

central charges fζng in terms of the partial rotation

evaluated on a wave function of the ð2þ 1ÞD bosonic

topological order and confirmed the prediction using the

Kitaev honeycomb model and the ν ¼ 1=2 bosonic

Laughlin state. Partial rotation can be implemented easily

in quantum computing architectures with cheap SWAP

gates, such as Rydberg atom arrays, which opens up

another avenue to studying topological order directly on

a quantum computer. Together with topological entangle-

ment entropy, partial rotation allows us to fully determine

edge gappability of Abelian topological order.

It would be interesting to study applications of partial

rotation to generic non-Abelian topological phases.

Remarkably, even for non-Abelian phases, numerical

results of fT 1ð2π=nÞg put a tight constraint on the possible
low-energy spectrum of the bulk-boundary system. For

instance, suppose that we observed fT 1ð2π=pjÞg is a

nontrivial phase for a set of distinct prime numbers

fpjg. One can see that this leaves us two possibilities:

(1) the edge is ungappable, or (2) the edge is gappable,

where NFS must be divisible by
Q

j pj. If the minimal NFS

required for a gappable edge is large and physically

unrealistic, one can essentially determine that the boundary

must be ungappable.

Notably, the lower bound NFS ≥
Q

j pj for a gappable

edge implies the lower bound for the number of anyons r
given by r ≥ r0, with r0 the smallest integer satisfying

22r0=3þ832r0=3 ≥
Q

j pj. This is derived from the fact that

NFS of the bosonic topological order with r distinct anyons

has the upper boundNFS ≤ 22r=3þ832r=3 [39]. It implies that

the ground state on a torus must carry at least r0-fold
degeneracy in order to realize a gappable edge. This

argument is reminiscent of the Lieb-Schultz-Mattis-type

theorems [40–42], which constrain the low-energy spec-

trum for a given input of the symmetry action on the

ground state.

Also, it would be interesting to extract the higher Hall

conductivity proposed in [43], which gives an obstruction

to U(1) symmetry-preserving gapped boundary of the

fermionic topological order with U(1) symmetry beyond

electric Hall conductivity and c−.
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