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Extracting Higher Central Charge from a Single Wave Function
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A (2 + 1)D topologically ordered phase may or may not have a gappable edge, even if its chiral central
charge c_ is vanishing. Recently, it was discovered that a quantity regarded as a “higher” version of chiral
central charge gives a further obstruction beyond c_ to gapping out the edge. In this Letter, we show that the
higher central charges can be characterized by the expectation value of the partial rotation operator acting
on the wave function of the topologically ordered state. This allows us to extract the higher central charge
from a single wave function, which can be evaluated on a quantum computer. Our characterization of the
higher central charge is analytically derived from the modular properties of edge conformal field theory, as
well as the numerical results with the v = 1/2 bosonic Laughlin state and the non-Abelian gapped phase of
the Kitaev honeycomb model, which corresponds to U(1), and Ising topological order, respectively. The
Letter establishes a numerical method to obtain a set of obstructions to the gappable edge of (2 + 1)D
bosonic topological order beyond c¢_, which enables us to completely determine if a (2 + 1)D bosonic
Abelian topological order has a gappable edge or not. We also point out that the expectation values of the
partial rotation on a single wave function put a constraint on the low-energy spectrum of the bulk-boundary
system of (2 4 1)D bosonic topological order, reminiscent of the Lieb-Schultz-Mattis-type theorems.
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Introduction.—(2 + 1)D topological phases with bulk
energy gap host various intriguing physical phenomena [1].
One of the most striking is the bulk-edge correspondence,
where the property of the bulk heavily constrains dynamics
at its boundary. The most celebrated example is the integer
quantum Hall effect, where the nonzero bulk Chern number
implies the presence of gapless charged edge modes [2].
Even without charge conservation, systems with nonzero
chiral central charge c_, which signals nonzero thermal
Hall conductance, has gapless edge modes [3]. We have a
good theoretical understanding of these quantities through
coarse-grained Chern-Simons theory, and we can extract
them from microscopic wave functions [4—13].

In the presence of anyonic excitations, there are properties
beyond c_ that enforce the presence of gapless edge modes.
In many cases, nontrivial braiding statistics between anyons
can present an obstruction to gapping out all anyonic degrees
of freedom simultaneously at the boundary [14,15]. Such
phases of matter are said to have an ungappable edge.
Recently, it was discovered that a quantity called “higher
central charge” can partially capture the “ungappability” of
the edge [16,17]. In particular, higher central charges of an
Abelian topological order completely determine whether it
has an ungappable edge [18]. However, so far, the quantity
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has been characterized purely through the topological
quantum field theory (TQFT) framework, and a microscopic
understanding of higher central charges has been lacking.

In this Letter, we show that the expectation value of the
“partial rotation” operator—the rotation operator that acts
only on a part of the system—can be used to reliably
extract higher central charges of topologically ordered
systems. This is the first proposal that relates the wave
function of a topological ordered state to its higher central
charges, and our operational definition even allows its
evaluation on a quantum computer. Our finding is sup-
ported by an analytical conformal field theory (CFT)
calculation, as well as numerics on the non-Abelian phase
of the Kitaev honeycomb model and v = 1/2 bosonic
Laughlin state. This Letter establishes a general numerical
method to obtain obstructions to a gappable edge of a
bosonic topological order beyond c_, which enables us to
completely determine if bosonic Abelian topological order
has a gappable edge.

Definition and properties of higher central charge.—
The higher central charges {, are complex numbers
characterizing a topologically ordered state, labeled by a
positive integer n. {, can be easily computed from the
properties of anyons in the topological order; for a given
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bosonic (2 + 1)D topological order, ¢, is defined as the
following phase:

A
DA

where the sum is over all anyons in the topological order, d,,
is quantum dimension, and 6, is topological twist of an
anyon a. When n = 1, {; reduces to the Gauss sum formula
for chiral central charge modulo 8, ¢} = e(2#/8)c- hence ¢,
formally provides a generalization of c_.

Higher central charges put a constraint on the gappability
of the edge; it was proven in [16] that {,, = 1 for all n such
that ged(n, Ngg) = 1 give necessary conditions for a gap-
pable edge. Here, Ngg is called the Frobenius-Schur
exponent, defined as the smallest positive integer satisfying

05 =1 for all anyons a. For example, U(1), x U(1)_,
Chern-Simons theory has {3 = —1, which shows that the
topological order has an ungappable edge even though
c_ = 0. For (2 + 1)D bosonic Abelian topological phases,
one can also derive sufficient conditions: the higher central
charges {¢, } for ged{n, [Ngs/ gcd(n, Ngs)]} = 1 give both
necessary and sufficient conditions for a gappable boun-
dary [18].

Main result.—To extract higher central charges from a
single wave function, we consider a (2 + 1)D topological
ordered state located on a cylinder. The state on the cylinder
is labeled by the anyon a, which corresponds to a
quasiparticle obtained by shrinking the puncture at the
end of the cylinder. Suppose we have realized a ground
state |¥) on the cylinder labeled by the trivial anyon 1. Let
us take a bipartition of the cylinder into the two subsystems
labeled by A and B and write the translation operator for the
A subsystem by the angle € along the circumference as 7’5
(see Fig. 1). We then find that the following quantity
extracts §,,:

L , (1)

2 2L veo
T, (;”) = (P|Tpaa|¥) o 76 ;dzez, (2)

where « in this Letter always means being proportional up
to a positive real number. In the special case where n = 1,
the rhs becomes 1 since >, d260, « e?7/8)- consistent
with the fact that the 2z rotation of the cylinder A gives the
identity. For n > 1 and gcd(n, Nps) = 1, the above rhs
becomes proportional to £, and gives a nontrivial obstruc-
tion to gapped boundary beyond c_. Since c¢_ can be
extracted from a single wave function [6,7], our method
allows a complete characterization of all higher central
charges.

For (2 + 1)D bosonic Abelian topological order, one can
show that partial rotation, together with topological entan-
glement entropy [19,20], fully determines if its edge is
gappable. See the Supplemental Material [21] for an
explicit algorithm determining gappability. We also note
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FIG. 1. (a) The setup for which we considered the gappability
problem. The obstruction can be captured by c_ and higher
central charge {,. (b) Schematics of the partial rotation of a
cylinder bisected into A and B subsystems.

A B

that partial rotation, which is unitary, can be easily
evaluated on a quantum computer using methods such as
the Hadamard test.

Analytic derivation.—Equation (2) can be derived by
employing the cut-and-glue approach established in [19,27],
which describes the entanglement spectrum of the A sub-
system at long wavelength by thatof the (1 + 1)D CFToniits
edges [28]. Namely, the reduced density matrix for the A
subsystem is effectively given by py = pa,; ® pa.,, where
PausPa.r denote the CFTs on the left and right edges,
respectively. The left edge lies at the end of the whole
cylinder realizing the ground state of CFT; the right edge of
the A subsystem entangled with the B subsystem is
described by a thermal density matrix of a perturbed edge
CFT [29]. The form of the perturbation in the entanglement
Hamiltonian is not universal. In the following, we assume
that the entanglement Hamiltonian is that of the unperturbed
CFT py., = e ?Hrand check the validity of this assumption
with our numerics.

Since the operator 7 .4 acts as the translation of the edge
CFT, the partial rotation is expressed as the expectation
values of translation operators within the edge CFT as

T (277) Tr[eiP’%e_%H’]Tr[eiPr%e_%Hr]

iI\— = : -
Tr[e~ i Tr[e ]

0 hnG-h

n

; (3)

where we introduced the velocity », correlation length
& = vp,;, &, = vf,, and the circumference of the cylinder L.
P; and P, are translation operators on the left and right edge
P;=—(1/v)H,;, P, = (1/v)H,. y(7) is the CFT character
of the trivial sector with modular parameter 7. In our setup,
where L < &), the characters for the left edge are approxi-
mated as

ifl 2njc_ lgl 1 278jc— _mic—
— | ReLH, —+— | reT de o, 4
X1 (L) X1 (L +n (4)

Meanwhile, the edge CFT at the right edge cutting the
system has high temperature L > ¢,. These characters can
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be approximately computed by performing proper modular
S, T transformations as [30]

] L 1 2are-
){1<1Lé>—z$1axa<l§>%5ew, (5)
e 1 ) iL 1

X1 <T—;> = Z(ST S)i.aXa <n2—§r+z>

a

c—

Qic— 27,
~ (ST"S), e~ ens™
1 iy 25 2
= 2mi(n+3)57 pn2e, 2 d2o" (6)
2 E a%a>
a

where n is assumed to be small, satisfying n> < L/&,. The
sum is over the anyons a that label the conformal block of

the edge CFT, and D = +/>_,d> is the total quantum
dimension. By combining the above approximations of the
characters, 7 (2z/n) in Eq. (3) is expressed as Eq. (2).

A similar computation can be performed when the
ground state lives in a generic topological sector,

2 2zl (2 c—
T, <_”> ox @B ¢ L 7)
n s

where 7, (27/n) = (¥4|Ta2z/n|¥s), With |[¥,) being the
ground state in the topological sector labeled by an anyon
a. We defined the twisted higher central charge

{iz.a = Zsabdbeg7 (8)
b

which is proportional to {,, when a = 1. The derivation of
Eq. (7) is relegated to the Supplemental Material [21].

While the definition of the quantity (2) is akin to that of
the momentum polarization in the large n limit [31,32], we
emphasize that the partial rotation by the finite angle
T ,(27/n) extracts a completely different universal quantity
from the momentum polarization. Indeed, the momentum
polarization with n — oo does not give the higher central
charge, which is expressed as

2 i c. c_L?
lim7T, (=" g, — =B
e “(n)“eXp[n <h“ 24 245%” ®)

Remarkably, while Eq. (9) depends on the circumference L
and the nonuniversal correlation length £,, Eq. (2) solely
gives a constant universal value as the combination of
c_ and ¢,,. In the Supplemental Material [21], we describe
how the behavior of the partial rotation interpolates
between higher central charge and momentum polarization.

Numerical results.—We demonstrate the validity of the
formula (2) for two examples: the Ising TQFT realized by
the Kitaev honeycomb model and the U(1), TQFT realized
by the v = 1/2 bosonic Laughlin state. Their {,, and

TABLEL The phases of {, , and the partial rotation 7, (27 /n)
for n = 1, 2, 3, 4 in each topological sector of Ising and U(1),.
We write 0 when the magnitude is vanishing.

Sector a Cna T ,(2x/n)
. Trivial 1 ¢2mi/16) ,(i/16) o(65i/16) o(4xi/16) 1, |,(27/9) o (xi/16)
Ising 1,0, 1,0 1,0, e, 0
Trivial 1 e2mif8) () p=(25i/8) | e(137/9) | o(137i/8)
2 Semion s e~ (2ni/8) 1 o(21i/8) 1,1, €9 0

expected values of the partial rotation 7 ,(2z/n) are
summarized in Table I. For some of the n’s in a given
topological sector, the magnitude of 7'; vanishes. However,
this could only occur when ged(n, Ngg) # 1, which there-
fore does not obscure the examination of whether the
topological order has a gappable boundary.

The Kitaev honeycomb model is defined on a honey-
comb lattice with a qubit on each vertex, with the
Hamiltonian

= ZXX+JZY

(tj €Redge (ij) €Bedge
Y ZiZi+k) X7 (10)
<l] €Y edge (ijk)

where the last term is introduced by turning on the
magnetic field, which realizes the non-Abelian gapped
phase [4]. The non-Abelian phase is known to host Ising
TQFT with anyons 1, o, and yw with topological twists
0,=1,0,=e"/1% and 6, = —

To compute partial rotation, we employ a cylinder
geometry terminated with zigzag boundary condition on
both ends as depicted in Fig. 2, and we act on the left half of
the system with partial rotation.

The model is equivalent to a system of free Majorana
fermions coupled to the Z, gauge field by rewriting the
qubits using Majorana fermion operators ¢, which act
as dynamical free fermions, and b, which describes the
Z, gauge field. As demonstrated in the Supplemental
Material [21], the partial rotation for the state on the
cylinder lying in the trivial sector can be expressed as

_1\F
T, (ZZ) aTr(H_(Zl)e_HETA;z_n), (11)

where Hp is the entanglement Hamiltonian for the free
fermion state in the A subsystem with the fixed flat Z,
gauge field, with the boundary condition in the y direction
taken to be antiperiodic. The operator [1 + (=1)F]/2 gives
a projector onto the Hilbert space with even fermion parity.
Following [31], one can further evaluate it from the
entanglement spectrum of the free Majorana fermions,
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FIG. 2. (a) Geometry of the Kitaev model on a cylinder. Red,

blue, and yellow lines correspond to X-, Y-, and Z-type Ising
interactions, respectively. The lattice is periodic in the y direction
and has the zigzag boundary condition in the x direction. (b) The
partial rotations 7 ,(2z/n) evaluated in the Ising topological
phase of the Kitaev model at n = 3, 4. The o sector at n = 4 is
not shown since it evaluates zero. We used J, =J, =J, =1,
k = 0.1 for computation.

2 1ehb/n p—ehl/n &y
T,— tanh——
1 ( ’ ) « m T ™

ikyLy/n 1+€ikyLy/n émk
tan

+H[1_e . h 2] (12)

where &, is the entanglement spectrum for Hp, carried
by a quasiparticle with momentum k, in the y direction.
Analogously, the partial rotation for the o sector is
expressed in terms of the entanglement Hamiltonian H¢
given by setting the periodic boundary condition in the y
direction, 7 ,(27/n) o Tr(e ™ ™:T ».,/,), which can also be
computed from entanglement spectrum of HY.

We show the result of this evaluation for 1, ¢ sectors in
Fig. 2. We see that Arg[7 ,(2z/n)] converges to predicted
values. We only present for n >3 and |7 ,(27z/n)| > 0.
T .(27/n) is always real (no phase) for n = 1 and 2 since
the phase part exactly cancels.

The second example is the v = 1/2 bosonic Laughlin
state, which realizes the U(1), Chern-Simons theory. Its
only nontrivial anyon is the semion s with 8, = i.

The model we study is a half filled lowest Landau level
(LLL) of two-dimensional bosons with a contact interaction
Vo = 1 plus a small perturbation 6V, = 0.1, where V,, are
the Haldane pseudopotentials [33,34]. We consider an
infinite cylinder geometry [Fig. 3(a)] and use infinite
density matrix renormalization group calculations [35] to
obtain the infinite matrix product state (iMPS) representa-
tion of the ground state |¥).

Compared to other numerical methods, the MPS repre-
sentation is advantageous for evaluating the action of
partial rotation. If rotation is a good symmetry, the
Schmidt states |@),,p across subsystems A and B have

() (b)

Cut --..--..--.---.---.---.---.A-Kl
AAAA
Taz0|V)rses

AAAA
e 0.0'*A‘AAAAAAAAAAAA
' 5 ®eag=1:n=3
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20 T 109gg90000000000
< .o.
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FIG. 3. (a) A schematic of the infinite cylinder geometry and
the LLL orbital basis of the MPS. Partial rotation along a real-
space cut can be accomplished by acting a unitary operator on the
auxiliary bond of the MPS obtained by the RSES algorithm.
(b) Arg7 ,(2z/n) of the v = 1/2 bosonic Laughlin state ex-
tracted using Eq. (13). The dotted lines are the CFT predictions
given in Table I.

definite momentum k§ along the circumference. Thus, the
action of partial rotation can be evaluated by

0) = A0, (13)

where 4, is the corresponding Schmidt value. We can easily
obtain both k§ and 4, from the momentum label K; fig:a and
the Schmidt value Ajiz:e Of the auxiliary bond 7g across
subsystems A and B.

For the v = 1/2 bosonic Laughlin state, we work in the
Landau gauge and the corresponding LLL orbital basis. To
accelerate the calculation and obtain the momentum label
mentioned above, we incorporate both particle number
C= 2 C,=>,(N,—v) and momentum K =3, K, =
S, n(N, —v) conservation, where N, is the number
operator at site n. We find that Ta(27z/ n) converges at
bond dimension y = 3200, cylinder circumference
L, =407, and on site boson number cutoff Nyogn = 3.

We note that there are a few technical complications in
applying Eq. (13) to compute 7 ,(6), we will sketch here;
readers can find more details in the Supplemental Material
[21]. First, there are a few ambiguities in extracting the
physical momentum k§ from the momentum label K; iy
For iMPS, there is an overall ambiguity of momentum
labels on auxiliary bonds. The magnetic translation sym-
metry in quantum Hall systems further tangles the momen-
tum label K;, = (3 ,.:K,), with the charge label

Cro = (O e o)y [36]. These ambiguities can be fixed
by matching the entanglement spectrum and the
edge CFT spectrum as elaborated in the Supplemental
Material [21].

Second, which topological sector subsystem A, B
belongs to depends on the cut. The v = 1/2 bosonic
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Laughlin state has a twofold ground state degeneracy,
characterized by root configuration (pattern of zeros) [01]
and [10] [37,38]. It turns out that cutting through the LLL
orbital center that corresponds to the Os (1s) bisects the
system into two trivial sectors (semion) sectors. Finally,
when we work in the LLL orbital basis, an auxiliary bond
divides the system into two sets of LLL orbitals instead of
two regions of physical space. This problem can be
resolved using the real-space entanglement spectrum
(RSES) algorithm developed in [36]. We note that many
of the technicalities discussed here are not specific to the
v =1/2 bosonic Laughlin state, but provide a general
procedure for computing higher central charge of arbitrary
wave function in the MPS form.

Finally, we present the result of 7 ,(2z/n) in both the
trivial and the semion sectors. As shown in Fig. 3(b),
T ,(2r/n) always converges to the expected phase as
shown in Table I at sufficiently large L,.

Discussion.—In this Letter, we characterize the higher
central charges {{,} in terms of the partial rotation
evaluated on a wave function of the (2+ 1)D bosonic
topological order and confirmed the prediction using the
Kitaev honeycomb model and the v = 1/2 bosonic
Laughlin state. Partial rotation can be implemented easily
in quantum computing architectures with cheap SWAP
gates, such as Rydberg atom arrays, which opens up
another avenue to studying topological order directly on
a quantum computer. Together with topological entangle-
ment entropy, partial rotation allows us to fully determine
edge gappability of Abelian topological order.

It would be interesting to study applications of partial
rotation to generic non-Abelian topological phases.
Remarkably, even for non-Abelian phases, numerical
results of {7 (2z/n)} put a tight constraint on the possible
low-energy spectrum of the bulk-boundary system. For
instance, suppose that we observed {7(2z/p;)} is a
nontrivial phase for a set of distinct prime numbers
{p;}. One can see that this leaves us two possibilities:
(1) the edge is ungappable, or (2) the edge is gappable,
where Ngg must be divisible by || ; pj- If the minimal Ngg
required for a gappable edge is large and physically
unrealistic, one can essentially determine that the boundary
must be ungappable.

Notably, the lower bound Ngg > [ ] ;j pj for a gappable
edge implies the lower bound for the number of anyons r
given by r > ry, with ry the smallest integer satisfying
22r0/3+8320/3 > [T, p;. This is derived from the fact that
Ngg of the bosonic topological order with r distinct anyons
has the upper bound Ngg < 22/3+8327/3 [39]. It implies that
the ground state on a torus must carry at least ry-fold
degeneracy in order to realize a gappable edge. This
argument is reminiscent of the Lieb-Schultz-Mattis-type
theorems [40—42], which constrain the low-energy spec-
trum for a given input of the symmetry action on the
ground state.

Also, it would be interesting to extract the higher Hall
conductivity proposed in [43], which gives an obstruction
to U(l) symmetry-preserving gapped boundary of the
fermionic topological order with U(1) symmetry beyond
electric Hall conductivity and c_.
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