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SCATTERING AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO
THE VLASOV-POISSON SYSTEM IN HIGH DIMENSION*
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Abstract. We consider the repulsive Vlasov—Poisson system in dimension d > 4. A condition
on the decay rate of the associated electric field is presented that guarantees the scattering and de-
termination of the complete asymptotic behavior of large data solutions as t — co. More specifically,
we show that under this condition the spatial average of the particle distribution function converges,
and we establish the precise asymptotic profiles of the electric field and macroscopic densities. An
L scattering result for the particle distribution function along the associated trajectories of free
transport is also proved. Finally, we construct small data solutions that display this asymptotic
behavior. These solutions do not require smallness of || fo||co or derivatives, as only a condition on
integrated moments of the distribution function is imposed.
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1. Introduction. We consider the electrostatic Vlasov—Poisson system with ¢ >
0 and z,v € R%, namely

Of +v-Vof + E-V,f=0,
(VP) p(t,x) :/Rd ft,z,v)dv,

—1 1 r—y
B(ta) = Va8 plta) = 7= [ (e dy
where wy represents the volume of the unit ball in R%. Here, the particles are dis-
tributed in phase space at time ¢t > 0 according to the function f(¢,z,v), and the
initial distribution is given by f(0,z,v) = fo(z,v). Additionally, E(¢,z) represents
the electric field induced by the charged particles, p(t,z) is the charge density, and
the current density is defined by

j(t7$)=/vf(t,x,v) dv.

For simplicity, we have taken only a single species of charge and normalized the particle
mass. Assuming fo € L'(R??), the solution remains integrable in phase space as the
total charge is conserved in time, namely

//f(t,x,v) dvdac:/ folz,v) dvde =: M.

Furthermore, given smooth initial data (VP) has been shown to possess a smooth
global-in-time solution [20, 25, 27] for d = 3, though such results have yet to be suc-
cessfully extended to d > 4. These global existence theorems depend upon either the
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propagation of higher (spatial, velocity, or transported) moments or precise estimates
on the growth of the characteristics associated to (VP), which are defined by

(1) {m,m,v) —V(t,72,0),

V(t7 T’ x’ U) = E(t7 X(t7 T7 1‘7 U))

with initial conditions X (7, 7, z,v) = x and V(7, 7, x,v) = v. For additional background,
we refer the reader to [9, 26] as general references concerning (VP) and associated
kinetic equations.

Though the well-posedness of solutions to (VP) has been thoroughly studied, their
time asymptotic behavior is less understood. Partial results concerning the asymptotic
growth or decay of quantities in the system are known in some situations, including
small data [1, 8, 17, 19, 30], monocharged and spherically symmetric data [3, 15, 22],
and lower-dimensional (d = 1,2) settings [2, 4, 10, 11, 12, 29]. In particular, these
results provide either time asymptotic growth estimates of characteristics or decay
estimates of the electric field and charge density. We specifically note that small data
solutions for d > 4 were constructed in [30] using vector field methods, and many of
those constructed in three dimensions [1, 28] can be extended to higher dimensions
as well. While these solutions are shown to achieve sharp decay rates of the field
and charge density, the asymptotic limits of such quantities are not determined. Our
results remedy this issue and will apply immediately to those solutions, but we will also
construct small data solutions with less restrictive smallness assumptions that further
display the sharp large time behavior and asymptotic limits of the field, density, and
particle distribution.

One generally expects that the field and charge density tend to zero as t — oo
like t1=¢ and ¢t~ respectively, for all smooth solutions of (VP) due to the dispersive
properties induced within the system by the transport operator d,+v-V,, the repulsive
force generated by the electric field, and the velocity averaging inherent to these
quantities. In fact, it is known that the Cauchy problem does not possess smooth
steady states (cf. [13]). That being said, it remains a longstanding open problem to
demonstrate that for some d € N all smooth solutions of (VP) satisfy these decay
properties or scatter to a profile along the trajectories generated by the (possibly
modified) free transport operator as ¢ — oo. Further evidence has been provided
indicating that this behavior should be likely to occur in higher dimensions. Indeed,
under the assumption of neutrality the well-known phenomenon of Landau Damping
[21] has been shown to occur for any d € N, and even without neutrality, the dispersive
effects within the Vlasov equation are expected to dominate the influence of the force
field in higher dimensions more so than in lower dimensions [4, 23]. Admittedly,
the physical significance of (VP) becomes less obvious when posed in higher spatial
and momentum dimensions, but understanding the inherent properties of the system
and the behavior of solutions for d > 4 may lead to greater insights concerning the
three-dimensional problem or its lower-dimensional analogues. Hence, the goal of the
current work is to establish a precise condition on the decay of the electric field that
allows one to identify and establish the precise large time behavior of any solution
to (VP), and also construct small data solutions that display exactly this asymptotic
dynamic.

1.1. Overview and organization. As we are primarily concerned with large
time estimates, we use the notation

A(t) < B(t)
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to represent the statement that there is C' > 0 such that A(¢t) < CB(t) for all ¢t > 0.
In this vein, we will often use the bracket notation

(u) = /T F [l

for any u € R?. When necessary, C will denote a positive constant (independent of the
solution) that may depend upon dimension d > 4, « > 0 (fixed below), and initial data
and can change from line to line. Throughout we take fo € C(R??), which represents
the space of continuously differentiable functions that tend to zero as |x| — oo, so
that we may consider smooth solutions, and let f(¢,z,v) denote the corresponding
C} solution of (VP) launched by fy. Additionally, we take the initial distribution to
be nonnegative, i.e., fo(x,v) > 0, which is a property well known to be maintained
in time by the solution. Unlike [23] we do not assume compactly supported initial
data, and instead propagate translated spatial moments of the distribution function
in time. In addition to the spatial decay as || — oo, the regularity assumptions on
initial data could possibly be altered to arrive at similar convergence results in weaker
topologies (see [19] for d = 3). Still, we will require only C! initial data rather than
higher derivatives in L' or L? (as for vector field and harmonic methods) and can
address all dimensions d > 4 simultaneously.

1.2. Main results. Fixing a > 0, we define for any ¢ > 0 the kth transported
moment of f(t) by

My (t) ://|x—v(t—|—a)|kf(t,a:,v) dvdzx.

Our results can be summarized within three theorems. First, we show that a suffi-
ciently rapid rate of decay for the electric field implies the expected dispersive decay
rate and uniformly bounded moments.

THEOREM 1.1 (improved decay). Let d > 4. Assume M, (0) < oo for some
n>d(d—1) and « >0, and
(A) [E@) oo S (E+ )"

for some a > a(d) := %. Then,

[E@o St+a)'™  and  Mi(t) <1

for all0<k<n.

We note that a(d) is decreasing for d >4 with a(d) — 1 as d — oco. Thus, a slower
decay rate of the electric field is required in higher dimensions in order to obtain the
dispersive decay rate stated in the conclusion of Theorem 1.1.

Remark 1.1. As an alternative to (A), one may impose a growth condition on
translated moments, namely

M, (t) S (t+ )@ (=2)

for some n > d(d — 1) and a > a(d), in order to arrive at the same result. For d
sufficiently large this yields

M, (t) S (t+a) 2t
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for n > d(d — 1) and some small € > 0. The growth of such quantities has been
investigated recently in [7] for d = 3. Though moments satisfying n > d(d — 1) = 6
were not included therein, the authors do obtain the estimate

9k—11
T

Mi(t) S (t+ )

for k — 12—1_, which may be close to the above estimate, depending upon the value
of d. In addition, instead of estimating moments, one can take fo € C!(R??) and
estimate the growth of the maximal translated spatial characteristics, namely

R(t) =sup {|X(¢,0,x,v) — (t + @)V(¢,0,2,v)| : (z,v) € supp(fo)}-

Then, the field decay assumption (A) can be replaced by a rate of growth on these
characteristics, namely

R(t)S(t+a) 7

for some a > a(d). As a(d) — 1 as d — oo, we have 1 — % — 1 as d — oo, and using

the best available estimate of the velocity support for d = 3 [31], one can currently
derive the growth estimate

R(t) < (t+a)F.

While this power would be insufficient to obtain (A) even for d > 4, we note that it
is not significantly distant from the required growth rate when d is sufficiently large,
and an advance in this direction may ultimately show that all smooth solutions of
(VP) scatter and satisfy the asymptotic behavior stated in Theorem 1.2, especially in
higher phase space dimensions.

Next, we show that (A) provides suitable information to obtain the precise asymp-
totic behavior of many quantities in the system, including the macroscopic densities
and the distribution function along the flow generated by the linear transport opera-
tor.

THEOREM 1.2 (asymptotic behavior). Let d > 4. Assume the conditions of
Theorem 1.1 hold and (x — av)P fo € WH>°(R2?) for some p>d+1 and a>0. Then,
we have the following:

(a) There ezists a continuous Fy, € LY (RT)NL>(R?) such that the spatial average

F(t,v):/f(t,x,v) dx
satisfies F(t,v) = Foo(v) uniformly as t — oo with

[F(t) = Foolloo S (t+0a)*~7.
(b) Define Eqo(v) =V, (A,) 1 Es(v). Then, we have the self-similar asymptotic

profiles
sup ((t+ )" Bt 2) = Boo [ —— )| S (t4+0) "7,
zER4 t+0[ ~
t dp(t,z) — Foo | —— || < (2 -1
;élﬂgd(ﬂw) p(t,x) w<t+a>‘w(+a) ;
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X T
su t+a)%jt,z) — ——Fo | — || <(t+ )"t
. frartinn) - ore ()| S

(¢) There is a continuous fo € L*(R24) N L= (R??) such that
ft,z+v(t+a),v) = foolz,v)
uniformly as t — 0o, namely we have the convergence estimate

sup |f(t,z+o(t+),0) = foolw,0)| S (t+a)* 77
(z,v)ER24

We note that due to the faster dispersive decay rate of the electric field for d >4 in
comparison with d = 3, modifications to the trajectories along which the distribution
function scatters are not needed, which differs from the results of [19, 23].

Remark 1.2. The reader may notice that the optimal rate of (t+a)~! is not quite
achieved for the convergence of the field to its limiting function. This can be remedied
by further assuming (z — av)P(v)9fy € W1>°(R2?) for some p > d+1, ¢ >d,a >0 and
uniformly bounding these moments in time. The methods of Lemma 3.3 then allow
one to show

IF(t) = Foolls S (¢ +)*™,

which can be used in the proof of Lemma 3.4 to obtain the (t+«a)~! convergence rate
of the field.

Remark 1.3. Theorems 1.1 and 1.2 can be extended to d = 3, but require a
stronger decay assumption than (A) and a modification to the trajectories along
which f scatters (see [19, 23]). Furthermore, the results of [23] can be extended to
d > 4, but require fo € C1(R??). For such initial data, the tools of [23] show that no
mass, momentum, or energy is lost in the limit, and the decay rates of the field and
densities in the case of a neutral (i.e., M = 0), multispecies system are actually faster
than stated above if the limiting charge density vanishes.

As solutions in higher dimensions have not been widely studied, with the ex-
ception of [30], only the small data solutions [1, 28] established in three dimensions
can be readily extended to d > 4 (see [6]) For this reason, our last result serves to
establish global-in-time solutions launched by small initial moments in L'(R??) by
taking advantage of the increased dispersive effects of the system posed in d >4 and
their influence on the electric field. One particular novelty of these solutions is that,
unlike previous small data solutions [1, 19, 28] for d =3 and [30] for d >4, they allow
Il follo to be arbitrarily large and further do not require a smallness assumption on
derivatives of initial data.

THEOREM 1.3 (small moment solutions). Let d > 4. Assume (x — av)P fy €
W (R2) for some p>d+1 and o > 0. Then, there exists eg > 0, depending only
on d, a, and n, such that for all 0 < e <e¢q, if M,,(0) <€ for some n>d(d—1), then
the classical solution of (VP) launched by fo exists globally in time and satisfies

M, (t) <2e
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and

2)(d+1)

(d—
1Bl Se = (t+a)' ¢

Furthermore, the conclusions of Theorem 1.2 immediately apply.

Remark 1.4. The introduction of the parameter o > 0 is only used to unify the
three results and eliminate the singularity within the estimates that occurs as t — 0.
One may take a = 0 in Theorems 1.1 and 1.2 and use known estimates (cf. [5]) to
control all quantities for sufficiently small time. For this reason, we will inherently
assume « > 0 within the proofs of these two theorems. However, as Theorem 1.3
focuses on small data solutions, a > 0 is needed to obtain control of the field near ¢ = 0.
Furthermore, note that taking o = 0 in Theorem 1.1 requires only |z|" fo € L*(R2?),
while the additional condition in Theorem 1.2 is merely (z)? fo € W>°(R??). Hence,
our results allow for classical solutions with heavy tails in the velocity variable, as
well as infinite kinetic energy.

Remark 1.5. The reader will note that we only study the repulsive Vlasov—Poisson
system, rather than also considering the possibility of an attractive force field arising,
for instance, within the analogous gravitational model. Indeed, while our methods
do depend upon the repulsive nature of the force field (see the comment preceding
Lemma 2.2), this dependence may not be crucial to our main arguments. Hence, it is
likely that similar methods can be used in the attractive case to study the asymptotic
behavior of small data solutions (cf. [19]). However, it is known [16] that any smooth
solution of the attractive Vlasov-Poisson system for d > 4 that possesses negative
energy can only exist on a finite time interval. Thus, the dynamical behavior of
solutions in the attractive case may be quite different.

1.3. Strategy of the proofs. To establish the theorems we will reformulate
the original problem within a dispersive reference frame that is co-moving with the
particles. More specifically, let

g(t,x,v) = f(t,x +v(t + a),v),

and apply a change of variables inspired by [19] (see the proofs of Lemmas 3.4 and 3.5)
to the field and charge density so that (VP) becomes

Org — (t+ ) E(t, m—i—v(t—l—a)) ng—i—E (t,z+v(t+a) Vyg=0,

VPo) N Btz 4 ot + a)) = (¢ + ) // € 9(“‘”’ 5++) duwds

with

r—w
ta)=(t+a) ¢ taw, —— | d
)=+ [ g(tw T ) o

and the initial conditions ¢(0,x,v) = fo(z + av,v). Additionally, the translated mo-
ments merely become

Ma(t) = / @l g(t, 2, v) dvde

for every k > 0. This reformulation is performed because g possesses nicer prop-
erties than the original distribution function f. Indeed, both spatial moments and
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derivatives of g can be uniformly bounded in time (Lemmas 3.1 and 3.2), while the
corresponding quantities for f must grow in time. Additionally, we note that the
convolution in the electric field is now in the velocity variable rather than the spatial
variable. Hence, as t — 0o one expects

~ « 1_di i w,v— wdf = S R - v
B(t,ao(t+a)) ~ (t+a)' / / a0t v—) dudg=(1+0)' Y, (8,) " F (1.0

locally in z. Because of this, estimates of the field require an understanding of the
growth of spatial moments of g to control F(t,v), and velocity derivatives of g will
be instrumental in demonstrating the asymptotic limit of the field. Thus, our results
may also provide better tools to obtain a priori estimates on the growth of moments
of g and velocity derivatives V, g, which are the two main ingredients in the theorems.

In the next section, we establish preliminary estimates on the electric field and
integrated moments of the distribution function, then use them to prove Theorem 1.1.
Section 3 assumes the decay rate of the field guaranteed by Theorem 1.1 and then
establishes estimates on derivatives of the field and the convergence of the spatial
average. The precise asymptotic behavior of the electric field and the charge and
current densities is also obtained, as is the scattering of the distribution function
stated in Theorem 1.2. Finally, the construction of global-in-time small data solutions
via the proof of Theorem 1.3 is provided in section 4.

2. Preliminary lemmas and proof of Theorem 1.1. We first generalize an
identity described within [18, 24] for the three-dimensional Vlasov—Poisson system and
use it to obtain a priori bounds on the second moment of the translated distribution
function, as well as a decay estimate for the potential energy.

LEMMA 2.1. Let f(t) € C}(R?) be a classical solution of (VP) and M2(0) < oo
for some ae > 0. Then, the following identity holds:

d

o (Mg(t)+(t+a)2/|E(t,x)|2 dm) :(4—d)(t+a)/|E(t,m)\2 dx.

Proof. We first recall that the potential U(¢,z) satisfies AU = p, and thus

Ut,z) = x\2_d

m| *p(t, ).
With this, the field is given by
B(tz) = VUt o) = —— "« plt, 2).
dwgq |z|?
Then, computing the time derivative of the second transported moment gives

MY(t) = —2(t+ ) //(x Cw(t+a)) - E(t2)f(ha,v) dvds

= 72(t+a)/x~E(t,x)p(t,x) da:+2(t+oz)2/E(t,z) <j(t,x) dx
= —2(t 4+ a)A(t) + 2(t + a)?B(t).

Further, we compute

Alt) = / v Bt 2)p(t,z) da
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" dwg // = Idptx) olt,y) dy do
= dTJd/ |$—y\2*dp(t,x)p(t7y) dy da:—/y-E(t,y)p(t,y) dy

=(2-d) / U(t,2)p(t,z) do — A(t).

Hence, upon using p = AU and integrating by parts we find

A(t) = % U(t,z)p(t,x) d:z?:%/\b—](t,x)|2 dz.

Next, we compute the B term using the continuity equation
8tp + vac ' .] = 07

which is obtained by integrating the Vlasov equation in v. Then, integrating by parts
we find

B(t) = / ,x)-j(t,x) dx
/Ut:lc - j(t,z) dx

:/U(t,x)&gp(t,x) dx
_1ld
S 2dt

__1a 2
= 2dt/|Etw| dx.

With these expressions, the derivative of the transported second moment becomes

U(t,x)p(t,z) dx

M;(t)=(2—d)(t+a)/|E(t,x)|2 dx—(t+a)2%/|E(t,x)|2 da.

The right side can be rewritten as

;t<t+o< /|E (t,x)|? da:) +(4—d)(t+a)/\E(t7x)|2 da,

and the identity follows. |

As mentioned in [18], this identity holds only for the repulsive Vlasov—Poisson
system, as it implies decay of the potential energy, which we now demonstrate.

LEMMA 2.2. For d >4 we have

IE@)2 S (t+a)™
and
My(t) S 1.

Proof. We let

Y(t) = (t+ )| E@)]3

so that the identity in Lemma 2.1 reads
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»(t)

d (Mg(t) + W)) TR0

dt t+

With this, we have

& (M) +6(1) <0

as d >4 and v¥(t) > 0. Of course, this implies

P(t) < Mz(0) +(0) — Ma(t) S1

and

Ma(t) < Ma(0) +(0) —¥(¢) S 1,
and the stated estimates follow. 0

Next, we obtain improved field decay rates that follow from the main assump-
tion (A). First, we state a standard estimate on the gradient of the inverse Laplace
operator, which will be used throughout.

LEMMA 2.3. For any 1 <p<d<q<oo and ¢ € LP(R?) N LI(R?), we have

p(g—d) q(d—p)

IV(A)  8lloe S llellp ™ ol ™
In particular, for d#1, choosing p=1 and q= co yields

1 d-1
IV(A) " llo SISl 0]l -
Similarly, for any k> d(d—1) with d >4 we may choose p = ‘%‘2 and q = d%dk to find

(d+2)(k—d?+d) (d+k)(d—2)(d+1)

B ST ™7 O

Proof. To establish the estimates, we decompose the spatial integral into contri-
butions near and far from the singularity, so that

—1 9(y) 9(y)
V(A ¢(z)| S — = dy + ——==—dy:=1+11I.

lz—y|<R ‘.’L’ - y|d_1 z—y|>R |$C - y|d_1

As ¢ > d the first portion provides the estimate

q—1

R Ta 4
Is|mwu<A M*”“vﬁ>m> Slo@ R,

while the second analogously yields

p—d
TS le@)p R

as p < d. Combining these estimates and choosing
= (10
lo(t)llq

p(g—d) a(d—p)

V(@A) e@)] S ol llollg ™™

and the stated estimates follow. 0

gives
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LEMMA 2.4. For any k >0 we have
lo(t)l|ase S (¢ -+ @) T My (£) 7%
In particular, for d >4 using Lemma 2.2 with k=2 gives
lo(t)l|as2 S (t+ )2

Proof. For any R >0, we decompose the integral into

ot )| S /| L Jen v /| L fe
H%a—v<i o V>

4 R
Tto o

d
< (tfa> +W/lﬂv—v<t+a>|’ﬁ°<ta“> dv

SRYt+a) %+ R my(t,x)

where we have denoted my(t,z) = [ |z — v(t + @)|? f(t,2,v) dv. Choosing

1

R= (t+ )T T my(t, z) T
yields
p(t, ) < (t+ )~ TFFmy (¢, z) 7%

and thus
/p(t,x)%k dxi(t+a)’k/mk(t,z) do = (t+a)F Mi(2).

Raising this inequality to the djrik power gives the first result, and invoking Lemma 2.2
for k=2 produces the latter estimate. O

COROLLARY 2.5. Combining the final estimate of Lemma 2.3 and the results of
Lemma 2.4 for any k> d(d — 1) provides the estimate
(d=2)(d+1)

IE®)]loo < (t+ )™ My(t) 2=

Now that we have established control of the field in terms of moments, we will
bound moments in terms of the supremum of the field. This will be accomplished by
propagating moments in time via the Vlasov equation, but first we need an interpo-
lation estimate for Mj(t).

LEMMA 2.6. For any >0, p€[0,], and q € [0,00), we have

My(t) < My_p(£) 747 My q(t) 757
Proof. The proof is straightforward, but we include it for completeness. Sep-

arating the estimates into regions within which the moments are small and large,
respectively, we find

Mg(t):// |z —o(t + a)|*f(t,z,v) dvda
lz—v(t+a)|<R
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—|—// |z —v(t+ )| f(t,z,v) dvda
lz—v(t+a)|>R
< RPMy (1) + RMys (1)

_1
for any £ > p > 0 and ¢ > 0. Optimizing in R yields R = (%) Hq, and the

estimate follows with this choice of R. ]
LEMMA 2.7. For any k>3, if My(0) < oo, then for allt >0
t
My (1) ™= < My (0) 72 +c/ (5 + | E()]0 ds.
0
Proof. Taking a derivative of My/(t) gives

|Mi(D)] S (t+ )

/ |z —v(t+ )" 2z —v(t+a)) - E(t,z)f(t,z,v) dvdx
S (E+ ) [[E)[loo Mi—1(2).
Using Lemma 2.6 for any £ > 2 with p=/¢— 2 and ¢ =1 yields
Mo(t) € OMps (1
as Ms(t) <1 due to Lemma 2.2. Then, taking £ =k — 1 gives
My (1) S M (1) =2

Using this in the above inequality for the derivative then implies

3

IML(O] S (t+ Q)| E(t)]l oo M) =2,
and thus

i (M07) ] S (t+ )| B®)]loo-

Integrating yields the stated result, namely

Mu(t) ™= < My(0)™= 4 C / (5 + ) | E(3)]|oo ds. 0

With these estimates established, we can now prove the first theorem.

Proof of Theorem 1.1. Assuming (A) for some a > a(d) := A

a — a(d) > 0 so that T2y
IE(#)l|oo S (t+ )= D,
Using Lemma 2.7 with £ =n and inserting the above field estimate gives
]\4rt(t)ﬁ < an(o)ﬁ -l-/Ot(s—l—oz)l_‘i(d)_6 ds < Mn(o)ﬁ +max{1, (t+ a)2—a(d)—e}
and thus

My(t) S max{L, (t + )"},
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where
r=(2—-a(d) —e)(n—2).

Next, we use Corollary 2.5 so that
(d—2)( )
IE®) oo S (t+ )~ max{1, (t+ @)} T2 S max{(t+a)' "% (t+a) ),

where

(@-2@+1) _ |, (e (a(d 1) ([d-2)(d+1)

:1—
§ =2 d

Using the identity

(a(d) — 1)(d—2)(d+ 1) =da(d) — 2,
a brief calculation shows that this exponent can be rewritten as

s=—a(d) — ew.

Note that the original assumption on the decay of the field, namely (A), can be
expressed as

[E®) oo S Inax{(t +a)t= (t+ a)*&<d)7e} .

~

Thus, we have achieved an improved estimate, given by

[E(t)|e S max {(t +a)t (t+ a)’&(d)*fi(d_mfﬂn }

as

(2) Mf”:(l_gung

for d > 4. Tterating this process then gives

~

- — 1)\k
HE(t)HOO < max{(tJr Oé)lfd, (t + a)fa(d)fe((d 24t )) }
for any k € N. Due to (2), taking & sufficiently large implies

(t+a)—&(d)—5(4(d*2)d(d+1))k S(t‘*‘a)lidv

and thus the sharp decay rate for the field is ultimately achieved, namely

IE(®)lloo S (t+a)' 7.

Lemma 2.7 then provides the moment bound, namely

n—2 n—2

t
< <1+/ (s4a)? ds) <1.
0

Finally, the bound on My (t) for 0 <k <n is achieved via interpolation with My(t) =
M and M, (t). d

(05 (07 + [ (s 4+ )12 is)
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3. Asymptotic behavior and proof of Theorem 1.2. Next, we establish
a number of lemmas that will culminate in the proof of Theorem 1.2. In view of
Theorem 1.1, we assume throughout this section that the electric field decays at the
rate stated in the conclusion of that result, namely

IE@®)]loe S (t+ )

with uniform bounds on moment

M (t) S1

forall 0<k<n.
Prior to stating the lemmas, we first introduce some notation relating to the
translated distribution function. As mentioned in the introduction, we let

g(t,x,v) = f(t,x +v(t + a),v).

From the original characteristics given by (1), we define the new spatial characteristics
associated to this distribution function by

y(t7 T7I7/U) = X(t7 T7 x7 U) - (t—"_ a)v(t7 T?"E?/U)

with Y(7,7,2,v) =z — (T + a)v.
As our approach relies heavily upon the growth of the spatial moments and ve-
locity derivatives of g, we further define the useful quantities

6(0) =1+ sup ((@Pglt.o0))

z,vER
Go(t)=1+ sup [(x)"Vag(t,z,v)],
z,vER

and

Gu(t) =1+ sup [(@)PV,g(t,z,v)].
z,0ER

Notice that

G0O)=14+ sup [{(z)?fo(z+ av,v)|=1+ sup |[{(z —av)? fo(z,v)]|
z,vER? z,0ER?

and similarly for G, (0) and G,(0); hence, these quantities are all initially finite due to
the assumptions of the theorem.

Our first lemma uses the field decay to uniformly bound the moments of g and
obtain the sharp decay rate of the charge density.

LEMMA 3.1. We have
GH)S1  and  lp(t)lles S (t+a)™"
Proof. Define the operator U by

Bh=0h— (t+a)Et,z+v(t+a)) Vih+ E(t,x+v(t+a)) - Vyh

for any h = h(t,z,v) so that Bg=0. Then, applying the operator to (x)Pg yields
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B ((2)7g) = —p(t + ) (@) 20 - B(t,a +v(t +a))g(t,z,v).
Inverting the operator via integration along characteristics then gives

(2)Pg(t,z,v) = (¥(0))9(0,¥(0),V(0))
_p/o (s + ) (V(s))"72V(s) - E(s,Y(5))g(s,Y(s), V(s)) ds,

and this further yields
¢
1{2)Pg()lloe < [[{2)"9(0)[loc + C/O (s + ) E(s)]loo [[{2)"g(5)[| 0 ds
< |z —av)” folloo + C/Ot(s +a)? 4 (2)Pg(s)lloo ds.
Applying Gronwall’s inequality, we find
o0l Sesp ([ 507 as) 51,

which gives the former result.
With this, we estimate the charge density using the change of variables w =
x —v(t + «) so that

p(t,m):/g(t,x—v(t—i-a),v) dv

:(t—i—a)_d/g(t,w,":;:) dw

< (e [ty s (g 0.9 o

£ERT
<(+a) (0 [ ) aw)
St+a)™,
which provides the latter result. ]

The decay of the field and charge density leads directly to estimates of field
derivatives and derivatives of the distribution function. In particular, we show that
derivatives of g are uniformly bounded.

LEMMA 3.2. We have the estimates

||VQCE(75)||OO5(t—i—oz)_"lln(l—l—t—i—a)7 G,(t) <1, and G.(t) < 1.

Proof. We will establish an extension of the well-known three-dimensional esti-
mate of field derivatives (cf. [9, pp. 122-123]) to higher dimensions. In particular, we
apply a derivative to the field, use the identity
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Ti—Yi Ti—Yi
o () (553
A\ o -yl Y\ Jz =yl

and integrate by parts to find for any 0 < Ry < Rs

Oy, Ei(t,z) = C g O, ( Al L ) p(t,y) dy

|z —yl?
Ti —Yi
=C ! 0, p(t,y) d
Ti —Yi Ti—Yi
=C 0y, p(t,y) dy +C 170y, 0(t,y) dy
|:c—y\<R1 |1~_y‘d v |r—y\>R1 |x_y|d s
i — i i — i P
=C 00y, p(t,y) dy+C —ep(t,y) Tt dS,
\m—y|<R1|$ Yl |m—y\:R1|x yl |z =yl
i — s
+C s (%) p(t,y) dy
R1<|1:7y\<R2 |$_y|

Ti —Yi
) t d
+ C/my|>R2 8?4.7 <|Z‘—y|d> p(t,y) dy

=1-1V.

Next, we estimate each contribution so that

IS Vep(t) oo (/ z—y|" ! dy) SIVep(t)lloo Ba
l[z—y|<R1

and

IS p(®)]]oo </| n o =y d5y> S e oo-
T—yY|=i

To estimate the final two terms, we use

0, (Z=) | <clo— ol

|z —y|4
to find
—d * R2
IS [p(t) o o =yI7 dy | Slp()llooIn™ { 2=
Ri<|z—y|<R2 1
and
IV SRy p() | S Ry Y,
where
i <
In*(5) = 0 ?fs_l,
In(s) if s>1.
Taking
()] oo -3
Ri=——21%_ and  Ro=|p(t)]="
[Vap(t) oo
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yields

(3) Vo () oo (1 o ('V’)(t)'“’» 10(8) 1.
o)1 52

We note that this bound is increasing in the contribution of ||p(t)|lco, and using
Lemma 3.1 in (3) yields

IVa E@t)lloo S (141" ((+ )™ [ Vap(t) o)) (E+ )~

As in the proof of Lemma 3.1, we can bound the derivative of p using moments of
derivatives of g so that

Vaplts) S (1) [ \vwg (t,w,iﬁ;;")\ d S (1 +0) G, (1),
and thus
() 19 B0 5 (141G (0) ) ¢ +0)

for any 0 < g < d that can be chosen as close to d as desired.
Next, we estimate derivatives of ¢ in order to close the argument. Denoting the
translated Vlasov operator by U as before so that

Vh=0h—(t+a)E{t,z+v(t+a)) Vish+E(t,c+v({t+a)) - Vyh,
we take derivatives in the Vlasov equation and apply (z)? to find
%((w)pavkg> =—p(t+a) (@) 2z E(t,z +v(t+ )0y, g9(t,z,v)
+(t+a)(t+a)Veg—Vyg) 0p E(t,x +v(t+ a)).

Inverting the operator by integrating along characteristics and taking supremums then
gives

1661700, 9(0) o < 10, g0V + € [ s+ B el 0175
+ [+ VLB (<s T )IVag($)oe + ||vvg<s>||oo) s
<G,(0)+C / (54 0)29G, (s)ds
0

+/Ot(s+a)1Q<1+1n(gz(s))> ((s+a)gm(s)+gv(s)> ds,

where we have used (4) to estimate field derivatives. Summing over k=1,...,d gives

t
B amsie [ et (1me) (6.6 +6.6)
0
We estimate x derivatives in the same manner to find
m((é@p@mg) =—p(t+a) @)’z E(t,z +v(t + @))da, g(t, z,0)

+((t+)Vag = Vog) - O, Btz + 0(t + @),

and thus
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©  Gwsisf (s 4oyt (1160 ) (.09 +6u(5)) s
Defining

D(t) =e’+ G (t) +G, (t)
and adding (5) and (6) yields

D) <1+ /01(5 +a)?79D(s)In (D(s)) ds.

Invoking a variant of Gronwall’s inequality then yields

D(t) Sexp <exp (/Ot(s +a)* e ds)) <1

as ¢ is sufficiently close to d > 4. As D(t) is bounded, we find

Gu(t) <1 and G.(t) <1,

and the second and third conclusions follow. Additionally, the first conclusion is
obtained upon using the bound on G, (t) within the estimate of ||V, E(t)| given
d

by (4).
3.1. Convergence of the spatial average. Because the field and charge den-

sity decay rapidly in time and velocity derivatives of g are uniformly bounded, we can
establish the convergence of spatial averages.

LEMMA 3.3. There erists a continuous Fy, € L*(R?) N L>=(RY) such that
F(t,v):/f(t,a:,v) dx
satisfies F(t,v) = Foo(v) in C(RY) as t — oo with

1F(£) = Fuclloo < (8 +0)*

Proof. Upon integrating the Vlasov equation of (2) in z and integrating by parts,
we find

at/g(t,x,v) dz

= ‘/E(t,x—i—v(t—i—a)) ((t+a)Vy —Vy)g(t,x,v) do

= ‘(t—i—a)/p(tw—}—v(t—i—a))g(hxw) dx

+/E(t,x+v(t+a)) -Vyg(t,z,v) do

S+ a)lp®) o F (8 0) + [ E@) |00 G (£)-

Thus, we use Lemmas 3.1 and 3.2 to find

|0:F (t,0)| S (t+a) " F (o) + (t+a)' %
As ||F(0)|loc <G(0) and the latter term above is integrable in time, we find

t t
F(t,v)gF(O,vH—/ 10,F (s,0)| ds§1+/ (5 + )1 F(s,v) ds,
0 0

and after taking the supremum and invoking Gronwall’s inequality, this yields
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t
") POl S ( [ )y -tas) 51
0
Returning to the estimate of 9;F', we use the uniform bound on [|F(t)|| to find

|0 (8, 0)] S (t+ )7,
which implies that ||0.F(t)|eo is integrable. This bound then establishes the estimate

for s>t
t
/&FT /||8t oo dT S (t+a) d

and taking s — oo establishes the limit. More precisely, as F'(t,v) is continuous and
the limit is uniform, there is F., € C(R%) such that

[E(t) = F(5)llc =

[F(t) = Faslloo S (t+a)* %
Furthermore, as [ F(t,v) dv = M for every ¢t > 0, we have F, € L*(R?) with 0 <
[ Foo(v) dv < M. O

3.2. Convergence of the field and macroscopic densities. Now that we
have shown the convergence of F(t,v), we establish the precise asymptotic profile of
the field and the charge and current densities. From the limiting density Fi,(v), we
define its induced electric field by

— 1
B (0) = Vo(80) Fa0) = - [ 3P0 6) e

for every v € R%. To ensure the necessary regularity of the limiting field we note that
due to Lemma 2.3 || Ex ||loo < 00, as Fi, € LY (RY) N L (R?) by Lemma 3.3. With this,
we establish a refined estimate of the electric field.

LEMMA 3.4. We have

sup S(t4a)T.

zERC

(t+ ) E(t2) - Po (tfa)

Proof. In order to properly decompose the difference of these quantities, we first
represent the field in terms of the translated distribution function. In particular, we
have

(t,z) dwd//| dgty u(t + ), u) dudy,

which, upon performing the change of varlableb

_*T7y
g_t+a

with respect to y and

w=z—(u+&)(t+a)

with respect to u, gives

B(t,z) = (t+ o)\ // o g( g) dwde.

Therefore, due to the convolution structure of F., we have
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8)  (t+a) " B(tz) — Ex (”C)

t+«a

1 I3 T —w x
“a [ (Jo (i e wvre (75 -9))

Next, we split the &-integrand so that

T — W X X X
/g(t,w,t+ 5) dw— F <t—|—a€>A1(t’t+a§>+A2(t’t+a€>

where
) Ay () = ( / ot w0, 0)dw — Foo(v)> — F(t0) — Fau(v)
and

(10) As(t,v) :/ <g (t,w,v - H“’@) - g(t,w,v)) duw.

Using this decomposition in (8), we have

(140 B0 - B (20 )| 9080 A0+ 90080 Aato)] .

To estimate the convolution terms on the right side of the inequality, we will use
Lemma 2.3.
Now, to estimate the 4; term we find

[Ar(®)[[1 = [|1F(t) — Fol <2M 1
and of course
AL () loo = 1F(1) = Foolloo S (t+ )™

Using these estimates with Lemma 2.3 yields

(d—1)(2—d)
d

(11) IV (A0) T As (bl S IF () = Fuolloo < (E+ )

To control the As term, we use the bound on spatial moments and velocity de-
rivatives of g, which yields

[A2(#) [0 = sup

w
t, VU T ) T t, ’ d
| o (= 7i5) e an
1
,Ssup// d(g(t,w,v—9w>)d0‘dw
’UGRd 0 d9 a
S(t+a)” sup/ /|w|‘ vg(twv 0>’dwd0
vERE

< (t+0)"1G,(1) ( / (w)l_pdw>
St+a)™
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In order to estimate || Az2(¢,x)||1, we merely use charge conservation so that

Il < [f ]g (tw - tfa) o

Combining this with the bound on ||A2(t)||c within Lemma 2.3 gives

dwdv <2M < 1.

(12) 190(80) " As (1)l S (84 0) T
Finally, collecting (11) with d >4 and (12) we conclude
t+a) Bt z) - Ba [ —— )| S (t+0a) 7",
sup (6 ) B ) - B (20 )| S e 0) :

Next, we estimate the charge density using the same tools.

LEmMA 3.5. We have

sup

rERY t+«

(t+a)pte.o) - P (22 )| S+

Proof. As for the field, we must rewrite this difference in terms of the translated
distribution function. To this end, we have

p(t,x) = /g(t,x —u(t+ «a),u) du,
and, upon performing the change of variables

y=z—u(t+ )

with respect to u, we find

p(t,x)= (t—|—a)7d/g (t,y,f;g) dy.

Hence, the difference of the densities can be split into two terms as

e (525) < [ £22) oo 52)] o

t+ «
X X
Flt,— | - F
+’ (’t+a> °°<t+a>

=T1+1I.

<

Using methods similar to the previous lemma, the first term satisfies

IS(Ha)_l/Ol/IyI A (uy’i;iy)’d@/d@
S+ a0 ([ a) e,

while the second term is straightforward, namely

IT<|[F(t) = Foolloo S (t+ )™
Combining these estimates and using d > 4 then yields the stated result. ]

Finally, we estimate the current density in a similar fashion, but restricted to
spatial subsets with linear growth in .

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/27/23 to 138.67.175.41 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SCATTERING FOR VLASOV-POISSON IN HIGH DIMENSION 4747
LEMMA 3.6. We have

sup |(t+a)%j(t,z) —

2| St+a

x x
—Fo | — || S (¢ -t
t+ o (t+a>”“( +a)

Proof. Throughout, we consider only |z| <t + «. Performing the same change of
variables as in Lemma 3.5 transforms j(¢,z) into

. _ T—y -y
toax)=(t == dy.
it =+ [ (522)o (1o 2 ) o
Hence, the difference can be split into three terms as
x x Yy T—y
7Foo N < N tv v d
t+« (H—oz)"/ g( yt+ ) y’
—y x
—glt,y,— )|d
Al =)ol o
+|—=(F ti S N "
t+a t+a« t+a

=IT+I1I+1I1I.

(t+a)¥j(t,z) —

The first term is estimated using G(t) so that

1< (t+0) 16 (0) ( [ an) sea

The second term has similar structure, but involves velocity derivatives of g, and we
find

15 e+ @) 26,0 [ ray) S (e )
Finally, the third term is straightforward and yields
HIS |z|(t+a) FE) = Foolloo S (8 +a)*

Combining these estimates then yields the stated result. ]

3.3. Scattering of the distribution function. With the field and derivative
estimates solidified, we prove that the distribution functions scatter to a limiting value
as t — oo along their free-streaming trajectories in phase space.

LEMMA 3.7. There exists a continuous fo, € L*(R*?) N L>°(R??) such that
g(t,x,v) = foolx,v)
uniformly as t — oco. In particular, we have

sup |f (t,x+o(t+a@),0) = foolw,0)| S (t+ )77
(z,v)€ER24

Proof. Because g satisfies (VP), we have

hg=(0t+a)Et,x +v(t+a)) Vug(t,z,v) — E(t,z+v(t+a)) - Vyg(t,z,0v).
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Similar to the proof of Lemma 3.3, we wish to show that ||0;g(t)|| is integrable in
order to establish the existence of a limiting function in this norm.

To this end, we merely estimate the terms on the right side of the equation. Using
the field decay and Lemma 3.2, we find

|(t+ Q) E(t,x + vt +a))Vag(t,z,0)| S (E+ Q)| ()| cGa(t) S (¢ +a)* ™7

and

Btz +v(t+a))Vog(t,z,0)| S | E)l|Go(t) S (¢ +a)'

Combining yields

10eg(D) |00 < (¢ +)* ™

As d > 4, this bound is integrable in time and there is f., € C'(R??) such that

l9(t) = foolloo S (t+a)® .

Similar to the spatial average, the limiting function is integrable as

//g(t,x,v) dvdx = M

for all ¢ >0, and bounded as ||g(t)||oo < || folloo for all ¢>0. 0

With these lemmas firmly in place, Theorem 1.2 follows by merely collecting the
stated estimates.

4. Small moment solutions and proof of Theorem 1.3. In the final section,
we establish the global-in-time existence of small data solutions. We note that the
smallness condition neither involves derivatives of fy nor restricts the value of || fo/| o-

Proof of Theorem 1.3. Let M, (0) = ¢ > 0 for some n > d(d — 1), and denote
the maximal time of existence by Tiax > 0. We will impose conditions on € as we
continue. Let

Too =sup{t > 0: M,(t) < 2¢}.

Notice that T, > 0 by continuity. Throughout, constants may depend upon d, «, and
n, but not on any other quantities.
Next, we employ Corollary 2.5 with k =n to find

(d—2)(d+1 (d—2)(d+1)

)
IE()]loo < C(t+a)' ™" My(t) =2 <C(t+a)' "% e a2

for all t € [0,T). In particular, though the corollary (and Lemmas 2.3 and 2.4, on
which it depends) only states estimates for ¢ sufficiently large, the proofs hold for any
t > 0 whenever o > 0. We use this field estimate along with Lemma 2.7 for k =n so
that

Moy (H)72 < M, (0)7 +c/0 (54 )| E(5)]|o ds

1 (d—2)(d+1) [ _
<en—2 +C€ d(n—2) / (8+a)2 d ds
0

1
—1_ (d=2)(d+1) \ n—2
Sgn—z +C (6 d )
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for t €[0,T ). For d >4, we have

(d—ZLl(d—l—l)_( _2)(d+1)2

N | Ot

and thus taking € < 1 implies

1
d—2)(d+1 pr—
e

Therefore, we find
and taking e smaller if necessary yields
3
M, (t) < 3¢ < 2e

for all t € [0,T) and e sufficiently small. By the definition of T, it follows that
Too = Thax, and this further yields

(d-2)(d+1)
IE@)loc < Ce a2 (t+ )7

for the lifespan of the solution. The field estimate then provides a uniform upper
bound on moments of g, and Ty,.x = oo follows. With the field decay established,
Theorem 1.2 can be applied to provide the complete asymptotic behavior of solutions,
as well. 0
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