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Abstract
The ensemble empirical mode decomposition (EEMD) has become a preferred tech-
nique to decompose nonlinear and non-stationary signals due to its ability to create
time-varying basis functions. However, current EEMD signal cleaning techniques are
unable to deal with situations where a signal only occurs for a portion of the entire
recording length. By combining change point detection and statistical hypothesis test-
ing, we demonstrate how to clean a signal to emphasize unique local changes within
each basis function. This not only allows us to observe which frequency bands are
undergoing a change, but also leads to improved recovery of the underlying informa-
tion. Using this technique, we demonstrate improved signal cleaning performance for
acoustic shockwave signal detection.
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Fig. 1 A chirp with white noise decomposed by EEMD. The boxed-in areas identify when each basis
function is picking up the sinusoidal signal. Notice how the increasing frequency of the sinusoid makes it
such that no basis function picks up the signal for the entire duration

1 Introduction

The ensemble empirical mode decomposition (EEMD) method has become an impor-
tant technique for the decomposition of nonlinear and non-stationary signals in
fields including medicine [20, 22], hydrology [29], seismology [28], and mechani-
cal engineering [6, 35]. A reason for its success has been EEMD’s ability to create
data-adaptive, rather than predefined, basis functions called intermediate mode func-
tions (IMFs). These adaptive basis functions can be non-stationary and nonlinear,
making them ideal for complex signals that are not as natural to express in Fourier or
wavelet bases.

However, this data-adaptive nature of the EEMD’s basis functions can make
it hard to know a priori in which basis function a signal may end up. For
instance, consider a chirp signal linearly increasing in frequency perturbed with
white noise. When decomposed by EEMD, we can see in Fig. 1 that the signal
glides between IMFs 8 and 6. Common EEMD signal cleaning techniques such
as those used in [5, 8, 10, 15, 18, 19, 21, 32] first decompose the signal into
its base IMF functions, but then treat the entire length of an IMF as either sig-
nal or noise. However, in this example, due to the increasing frequency of the
chirp signal, no basis function is consistently signal or noise. To properly clean
this signal, a more nuanced technique that is able to identify subsections of IMF
as signal or noise is necessary. In this paper, we provide a novel example of
an EEMD signal cleaning technique, local change detection, and signal cleaning
(LCDSC), that is able to identify and clean subsections of EEMD signals. More-
over, we show how this technique can improve the identification of acoustic shock
waves.
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2 Local Change Point Detection and Signal Cleaning

2.1 EMD

The empirical mode decomposition (EMD) was invented in 1998 as a novel technique
for analyzing nonlinear and non-stationary time series data [12]. Using iteratively
computed, adaptive filters, the EMD performs an additive decomposition of a signal
X(t) into:

X(t) =
n∑

j=1

IMF j (t) + r(t). (1)

Here, IMF j (t) is a approximately narrow-banded the j th basis function, referred to
as an intermediate mode function (IMF), and r(t) is the residual. As the EMD is a
numerical algorithm, there exists a variety of stopping criteria to indicate when the
algorithm has converged. One of the most common stopping criteria, S-stoppage, [13]
results in the remainder term r(t) becoming a monotonic or a constant function. In
either case, the resulting r(t) can easily be subtracted from the original signal X(t) to
create a decomposition with no residual term. Thus, for the purposes of this paper, we
will assume that either X(t) has an r(t) of 0, or X(t) has had its remainder subtracted
out resulting in

X(t) =
n∑

j=1

IMF j (t). (2)

Using the Hilbert transform, each IMF j ’s instantaneous amplitude a j (t) and instan-
taneous frequency w j (t) time series can be extracted as the sum of a time-varying
amplitude function a j (t) multiplied by an equally time-varying frequency function
eiw j (t),

X(t) =
n∑

j=1

IMF j (t) = R
⎡

⎣
n∑

j=1

a j (t)e
iw j (t)

⎤

⎦ . (3)

As a j (t) andw j (t) are functions of time, this decomposition allows for the analysis of
time-varying amplitude and frequency signals. This contrasts with the Fourier decom-
position in which the amplitude a j and instantaneous frequency w j are no longer
functions of time, but constants.

IMFs also comewith several crucial properties. By definition, an IMF is a nonlinear
oscillatory function that satisfies the requirements [2]:

1. For each IMF, the number of local extrema and zero crossings must differ by at
most one.

2. Let g j,max(t) and g j,min(t) be smooth functions connecting the local maxima and
minima of the j th IMF (These functions are commonly referred to as the upper
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and lower envelope of X(t)). At any time point t , the mean of the upper envelope
of the j th IMF, g j,max(t), and the lower envelope, g j,min(t), is zero:

g j,max(t) + g j,min(t) = 0. (4)

Moreover, [14] illustrated that IMFs are close to mutually orthogonal; this allows
us, with a high degree of accuracy, to decompose the total energy of the signal,
[
∑T

t=1 X(t)2] into the sum of the energy of the individual IMFs:

T∑

t=1

X(t)2 =
T∑

t=1

nIMF∑

j=1

IMF j (t)
2 (5)

2.2 EEMD

While the EMD demonstrated its effectiveness as a signal decomposition tool, it was
noted in [11] that signals which exhibit intermittency can lead to a phenomena dubbed
“mode-mixing” where an IMF fails to separate the high-frequency intermittency from
more continuous behavior. This behavior ruins the desirable narrow-bandedness of
IMFs potentially complicating the analysis [11]. To account for this, [33] developed a
variant of EMD known of the “Ensemble Empirical Mode Decomposition” (EEMD).
In the EEMD, one generates many signals X̃(t) which are perturbed with white noise
w(t), X̃(t) = X(t) + w(t). X̃(t) is then decomposed using EMD into its constituent
IMFs. This procedure is then repeated overmultiple replicates, and the IMFs from each
replicate are average together. These ensembled IMFs demonstrate greater robustness
to mode-mixing, which improves the decomposition and delineation of signal.

2.3 Additive Noise Model

In performing local change point detection, we will operate under the assumption that
there exists an observed signal X(t) that consists of mean zero Gaussian noise R(t)
occurring throughout the entire duration and an underlying true signal S(t) which is
only observable during the interval A. If we assume an additive decomposition, this
gives the setup

X(t) = S(t)IA(t) + R(t), (6)

where IA(t) is an indicator function that returns 1 if t ∈ A and 0 otherwise. The
additional assumption of statistical independence between R(t) and both S(t) and the
set A completes the additive local noise model.

2.4 Change Point Detection of the IMFs

Under the additive local noise model, the goal of signal cleaning is to recover the true
signal S(t) by first estimating the interval A, or when the true signal is occurring,
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and then performing a signal cleaning on X(t) for t ∈ A to recover S(t). To identify
when changes are occurring in X(t), we first decompose X(t) into its constituent IMFs
and then perform a change point detection procedure on each IMF. Here, IMF is the
ensembled IMF from the runs of the EEMD. From a statistical perspective, identifying
change points entails finding the set of time points {τ (i)

1 , . . . , τ
(i)
n j } such that:

f (IMF j (t1)) �= f (IMF j (t2)),

∀t1 ∈ [τ (i)
k , τ

(i)
k+1],

∀t2 ∈ (τ
(i)
k+1, τ

(i)
k+2],

∀k ∈ [1, . . . , k − 2].

(7)

Here, f (IMF j (t)) represents the distribution of the ensembled IMF j at time t . How-
ever, as the distribution of each IMF is generally unknowable a priori outside of
well-known distributions such as white noise [30], it can be difficult to create a change
point detection algorithm that is able to rapidly identify when a change is occurring. To
make this more tractable, we utilize several of the properties of IMFs and the additive
local noise model to construct a more feasible change point detection problem.

According to our additive local noise model

X(t)2 =
{

(S(t) + R(t))2 If t ∈ A

R(t)2 If t /∈ A.
(8)

Combining thiswith the statistical independencebetween R(t), S(t) and Aweassumed
in the additive local noise model, this implies that

E
[
X(t)2

] =
{
E

[
S(t)2

] + E
[
R(t)2

]
If t ∈ A

E
[
R(t)2

]
If t /∈ A.

(9)

Thus, when we are in interval A, there is an increase in expected power in X(t) (power
being X(t)2). Furthermore, by the orthogonality of the IMFs, this directly implies that
an increase in power in X(t)must lead to a corresponding increase in at least one of the
constituent IMFs. Formally, if t ∈ A, then there exists a subset of IMFs η ⊂ {1, . . . , n}
such that for j ∈ η, IMF j (t) displays an increase in power during t ∈ A.

∀t ∈ A, t∗ /∈ A, ∃ j ∈ η �= ∅ : E
(
IMF j (t)

2
)

≥ E
(
IMF j (t

∗)2
)

(10)

Additionally, as each IMF has a mean of zero with respect to its envelope, an increase
in power in an IMF implies an increase in the variance in that IMF

E
[
IMF j (t)

2
]

= E
[
(IMF j (t) − E(IMF j (t))

2
]

= Var
(
IMF j (t)

)
. (11)
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Using Eq.3, we can write the variance of an IMF as:

Var
(
IMF j (t)

)
= Var(R[a j (t)e

iw j (t)]) (12)

If the variance of an IMF increases, this could be because a j (t) has changed or because
eiw j (t) has changed. However, in simulation, we observe that changes in the variance
of an IMF are better expressed in the amplitude term, a j (t) rather than the frequency
term, eiw j (t). Thus, to identify a local signal,wewill look for IMFswhich are exhibiting
a change in the variance of their amplitudes.

2.5 Change Point Detection

To identify when the amplitude of an IMF is experiencing an increase in variance,
we employ techniques from statistical change point detection. Many change point
detection problems can be framed in the form of minimizing an objective function of
the form:

min
m

min
τ1,...τm−1

m−1∑

i=1

L
(
Xτi−1 , Xτi , Xτi+1−1

) + βD(m), (13)

where τ0 is 1 and τm is the length of the signal, m is the number of change points, τi
is the location of the i th change point, β is a constant, L is a function that decreases
when τ is a true change point, and D(m) is a penalization function that increases with
the number of change points selected. By balancing L and D(m), the objective seeks
to select the correct number and locations of changes in variance.

For our particular type of local signal, since the background noise is Gaussian, we
focus our attention to L and D(m) that is well suited to noticing changes in Gaussian
signals. One such L is the likelihood ratio test for changes in variance of Gaussians
[16].

L
(
Xτi−1 , Xτi , Xτi+1−1

) = Cτi

Cτi+1−1
− τi − τi−1

τi+1 − 1 − τi−1
(14)

Here Cτi is the cumulative normalized second moment,
∑τi

k=τi−1+1(X(k) − Xτi )
2

and Xτi is the cumulative mean, 1/(τi − τi−1 + 1)
∑τi

k=τi−1+1 X(k). This L has
the ability not only to consistently select the correct location, but correct num-
ber of change points under an asymptotic scheme but also has strong performance
in the finite sample case [16]. As for βD(m), this is a penalization term that
combines some function of the number of change points, D(m), with a constant,
β to ensure that the correct number of change points are selected [26]. While
there exist many popular penalty terms such as Akaike’s information criterion
(βm) [1] and Bayesian information criterion (m log(n)) [25] (n is the total sig-
nal length), many still lack theoretical justifications in the context of change point
detection. One exception is the modified Bayesian information criterion (mBIC)
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Table 1 List of EMD/EEMD signal cleaning techniques

Cleaning method Description

LCDSC Our method

k-Highest Removal all but the k-highest IMFs [32]

l-Lowest Removal all but the k-lowest IMFs [10]

k-Highest and l-Lowest Combination of k-Highest and l-Lowest [5]

Power set cleaning Perform a best subset selection over all possible subsets

WHT Wavelet hard thresholding each IMF [17]

WIT Wavelet interval thresholding each IMF [17]

No cleaning No signal cleaning

(− 1
2 (3m + log(n) + ∑m+1

i=1 log(τi − τi−1)) [34]. The modified Bayesian Informa-
tion Criterion frames change point detection as a model selection problem, where
we are choosing between Gaussian processes that have differing number and size of
change points even allowing for the detection of changes in means and variances.
Under this perspective, the number and location of change points returned by mBIC
accord with the model that yields the largest Bayes factor. For these principled prop-
erties, in our discussions below, we will be employing the mBIC as our penalization
term.

2.6 IMF Cleaning

Once the significant segments are identified, we must determine how a signal is
cleaned. Similar to how high-pass, low-pass, and band-pass filters clean signals by
removing basis functions that are beyond a given threshold in the Fourier domain,
in EEMD signal cleaning, there exist methods which remove IMFs which seem
to contain background noise (see Table 1 for examples). In this spirit, we will set
a signal segment to 0 if it is not identified as containing a significant spike in
amplitude compared to surrounding segments. More specifically, we would like to
test:

H0 : σ 2
during ≤ γ ∗ max

(
σ 2
before, σ

2
after

)

H1 : σ 2
during > γ ∗ max

(
σ 2
before, σ

2
after

)
, (15)

where σ 2
before is the variance of the previous interval, σ 2

during is the variance of the

current interval, σ 2
after is variance of following interval, and γ is assumed to be greater

than or equal to 1.
By rearranging the alternate hypothesis, γ >

σduring
max(σbefore,σafter)

, we can see that γ

serves as a measure of how much the ratio of variances much increase to be con-
sidered significant. Setting γ = 1 tests if there has been any statistically significant
increase in variance. The test statistic for (15) is the F-statistic for change in vari-
ance
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Fbefore/during = γ ∗ max
(
S2before, S

2
after

)

S2during
,

where Sbefore is the sample variance used to estimate σbefore. Fbefore/during is com-
pared against the F distribution with degrees of freedoms, d f1 = nduring, d f2 =
max(nbefore, nafter) (where nduring is the length of the during interval) to determine the
p value and thus significance.

As this process involves performing a hypothesis test at every potential change
point, across every IMF, this can quickly lead to a large number of tests being
performed for the same goal: identifying a significant segment. This large num-
ber of tests can lead to the multiplicity issue where one or more spurious false
positives may occur. To perform these tests so they collectively have an α (1 >

α > 0) probability of a false positive (which is known as the family-wise error
rate), we employ the multiple testing correction method, Holm–Bonferroni method
[9]:

The Holm–Bonferroni Procedure

1. Say that in total, K hypothesis tests were performed with p values. Sort the p
values from smallest to largest to get: p(1), . . . , p(k)

2. If p(1) ≥ α
K , none of the tests are significant. Otherwise, continue.

3. Test the second p value. If p(2) ≥ α
K−1 , then the procedure is stopped and no

further p values are significant. Otherwise, continue testing till all p values are
significant or the i th p value is such that:

p(i) ≥ α

K − i + 1
.

If the p value is significant after the Holm–Bonferroni correction, then we can claim
that the interval contains the desired signal. If not, the interval does not contain the
true signal and is cleaned by setting it to 0. If an IMF only has one change point
(and thus cannot have a before, during, and after interval), then max(σ 2

before, σ
2
after)

is replaced with σ 2
after. If there are no change points, then the entire IMF is set to 0.

If there are no change points in an IMF, then there is no identifiable local signal so
the entire IMF is set to 0. We note here that if a segment of an IMF is considered
significant, that segment is included in its entirety. It is likely that one can further
improve the performance by including a smoothing or SURE-based cleaningprocedure
to clean the significant segments in addition to setting nonsignificant segments to
zero. However, to do this, careful work must be put into determining the appropriate
level of cleaning for each IMF, a nontrivial question which may require stronger
assumptions.
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Algorithm 1 Cleaning of nonlinear signal X(t) using LCDSC
Require: Nonlinear signal X(t), number of EEMD replications nEEMD , Type I Error control level α,

sensitivity parameter γ

Ensure: Cleaned IMFS, C IMFi (t)

1: function LCDSC(X(t), nEEMD, α)
2: for l ← 1 to nEEMD do
3: X̃(t) ← X(t) + w(t)
4: EMDIMFl,i (t) ← EMD Cleaned IMF
5: end for
6: nI MF ← Number of IMFs generated
7: for i ← 1 to nI MF do
8: EEMDIMFi ← ∑nEEMD

l=1 (EMDIMFl,i )/nEEMD
9: {Si,1, . . . .Si,nseg(i) } ← Segments of EEMDIMFi identified by the change point detection algo-

rithm with mBIC. nseg(i) is the number of segments.
10: end for
11: ntests ← nseg(1) + · · · + nseg(nI MF )

12: for i ← 1 to nI MF do
13: if nseg(i) = 1 then
14: CS1(t) ← 0
15: end if
16: if nseg(i) = 2 then
17: if σi,1 significantly larger than γ σi,2 after Bonferroni Holm then
18: CS2(t) ←0
19: end if
20: if σi,2 significantly larger than γ σi,1 after Bonferroni Holm then
21: CS1(t) ←0
22: end if
23: end if
24: if nseg(i) > 2 then
25: for l ← {2, . . . , nseg(i) − 1 } do
26: if σi,l not significantly larger than γ Max(σi,l−1, σi,l+1) after Bonferroni Holm then
27: CSi,l (t) ← 0
28: end if
29: end for
30: end if
31: C IMFi (t) ← Concatinate the cleaned segments {CSi,1, . . . .CSi,nseg(i) }
32: end for
33: return {C IMF1(t), . . .C IMFnIMF (t)}
34: end function

3 Simulation

3.1 Simulation 1: Doppler Signal

To demonstrate this signal cleaning procedure, we take a synthetic example where
a Doppler signal is hidden in the midst of Gaussian white noise. The Doppler is a
classic example of a nonlinear signal with variable frequency, exactly the kinds of
signals that the flexible EMD algorithm is well suited for. We will refer to this as the
local Doppler example. For Simulation 1, we will use a local Doppler of length 2000
with the Doppler occurring during the middle of the signal:
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Fig. 2 EEMD of the local Doppler signal. In the EEMD, none of the IMFs are purely signal or noise
necessitating a local signal cleaning procedure

X(t) =
{
R(t) if t < 1500, t > 1500

S( t−1000
1500 ) + R(t) if 1000 ≤ t ≤ 1500.

(16)

S(t) is the Doppler signal from [7] rescaled to occur between [1000,2000]:

S(t) = 7(t(1 − t)0.5 sin(2π(1 + 0.05)/(t + 0.05)). (17)

The goal of the this simulation would be to have the algorithm:

• Identify when the signal started and ended (time points: 1000–1500)
• Clean the Signal that was isolated

As can be seen in Fig. 2, the Doppler signal in the middle is expressed in most IMFs
with the lower IMFs expressing the higher frequency parts of the signal and the latter
IMFs expressing the lower frequency sections. Moreover, no single IMF is ever purely
signal or purely noise necessitating a local change point detection and signal cleaning.
All figures were generated using R 4.2.2.

Running the change point detection algorithm in Fig. 3 at an α = 0.05 type I error
level and γ = 1 identifies many locations at which a change in the signal was detected.
While IMFs 1, 3–6 correctly identify two changes, one when the Doppler signal starts
within their IMF and one when it ends, in IMFs 7–12, many spurious change points
are detected that are not necessarily due to the Doppler signal. To remove these, the
F-test cleaning step is performed.

The resulting cleaned signal in Figs. 4 and 5 illustrates how all of the change points
outside of the duration of the Doppler signal were deemed nonsignificant by Holm–
Bonferroni and set to zero. Not only does this provide a good estimation of the shape
of the Doppler signal, matching the general sinusoidal shape and increasing frequency,



Circuits, Systems, and Signal Processing (2023) 42:4669–4690 4679

Fig. 3 Change points that were detected in the local Doppler signal in Fig. 2 when employing the normal
likelihood ratio objective function and the Modified Bayesian Information Criterion over-fitting penalty

Fig. 4 IMFs in Fig. 3 after each section that was identified by the change point detection algorithm was
cleaned using the F-test/Hole–Bonferroni procedure with γ = 1. Notice how the basis functions are set to
1 when the signal is not present within the basis function

but LCDSC provides a good estimate of when the Doppler signal starts, as the first
nonzero point in IMF1 is at point 1010, only 1% of the way into the start of the Doppler
signal.
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Fig. 5 Comparison of the original signal with the cleaned signal. The LCDSC recovers much of the original
signal. It performs especially well at cleaning the signal to closely match the true start and end points

3.2 Simulation 2: Doppler Signal-Comparison Study

To compare the performance of our algorithm, we extend our Doppler simulation
from Simulation 1 and compare our performance against other EEMD signal cleaning
techniques. These techniques come in two general varieties. Techniques 2–5 in Table
1 are based on identifying some subset of the IMFs as containing only noise and
cleaning the signal by completely removing the noise IMFs.With some of the cleaning
procedures, the user must pre-specify how many basis functions to set to zero or
clean through a trial-and-error process. To account for any possible variability in
performance due to these subjective judgments, we will come up with an upper-bound
for the performance of each algorithm by computing the best possible set of IMFs for
each of the algorithms in question.

As for the wavelet hard thresholding (WHT) and wavelet interval thresholding
(WIT) cleaning techniques, these are based on performing a wavelet-like thresholding
on each of the IMFs [17]. These compute the base noise level within each IMF and
perform a hard or soft thresholding if the IMF lies within the expected noise band.
While this method does not suffer from a subjective choice of IMF removal, it assumes
that the true signal occurs throughout the entire duration of the signal, leading to a
biased estimation of the base noise level.

The data model for the simulation will utilize the local Doppler model with the
middle containing our desired signal but with the total signal length T at differing
values:
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Fig. 6 RSS Comparison of common cleaning methods versus LCDSC. The center point represents the
mean RSS across 20 replicates and the bar represents one standard deviation from the center. From this,
we observe that LCDSC performs better than competing signal cleaning methods, able to create the closest
representation of the true signal. Note that this is RSS and not MSE so it is entirely expected that as the
signal gets longer, the RSS should also increase

X(t) =
{
R(t) if t < 2

5T , t > 3
5T

S(t) + R(t) if 2
5T ≤ t ≤ 3

5T .
(18)

T is tested at 1000, 2000, and 2500 time steps. R(t)will again be Gaussian white noise
but with the noise level varying from 0.2 to 0.5. The cleaned signal is then compared to
the underlying Doppler signal and error computed in terms of residual sum of squares
(RSS) as this corresponds to the total power difference between the estimated and the
cleaned signal:

RSS =
T∑

t=1

(X(t) − Cleaned(t))2. (19)

At each level of noise and signal length, 20 replicates of the simulationwere performed.
The results in Fig. 6 illustrate that across a wide scale of noise levels and sample

sizes, the LCDSC performs well at local signal cleaning, uniformly outperforming
other non-local signal cleaning techniques.

3.3 Simulation 3: Comparison Study—What if the Signal is Not Local?

While the LCDSC is built for the problem of local signal detection and clean-
ing, it is important to determine its performance as the duration of true signal is
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Fig. 7 Changes in residual sum of squares as the locality ratio is increased. When the noise ratio is low,
the LCDSC performs slightly worse than k-Highest and k-Highest & L-lowest, but once the noise ratio
increases above 1, the LCDSC becomes the best performing method. No cleaning was not plotted as it had
a much higher error than all the others and power set was near equivalent to k-Highest & l-Lowest

increased or decreased. We can express how local our signal is in terms of a “locality
Ratio":

locality Ratio = len(A)

T − len(A)
. (20)

len(A) is the length of the interval A when the true signal is being expressed and T
is the total length of the noisy signal. We vary the locality Ratio between 0 and 5,
making the local signal cleaning problem increasingly local and favorable to LCDSC.

Figure7 illustrates that when the locality ratio is at or below one, then LCDSC
is competitive with the best performing method such as k-Highest. However, once
the locality ratio goes beyond one, LCDSC becomes the dominant signal cleaning
technique followed by WIT. This gives us a rough guide for when to start considering
a signal cleaning problem local or global. When the noise ratio is below one, it can
be better to clean with global cleaning methods, whereas local cleaning methods are
better when the ratio is greater than one, while global methodsmay be preferable when
the locality ratio is less than 0.5.

3.4 Simulation 4: Additional Simulations—Distinguishing Consecutive Signals

In previous simulations, we have focused our attention on examples where we have
one true that is preceded and followed bywhite noise. However, because our algorithm
makes no assumptions about the number of true signals, it is also useful in situations
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where we are interested in isolating multiple true signals. To demonstrate this, we will
consider the situations where we have two Doppler signals separated by white noise
of length δ:

X(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R(t, σ ) if t < 500

S( t−500
1000 ) + R(t, σ ) if 500 ≤ t < 1000

R(t, σ ) if 1000 ≤ t < 1000 + δ

S( t−1000+δ
1500+δ

) + R(t, σ ) if 1000 + δ ≤ t < 1500 + δ

R(t, σ ) if 1500 + δ ≤ t < 2000 + δ

. (21)

Here, δ ∈ N controls the gapbetween the twoDoppler signals and R(t, σ ) ∼ N (0, σ 2)

controls the standard deviation of the Gaussian background noise. As we will see as
δ is decreased and σ is increased, it will become progressively difficult to distinguish
the Doppler signals from each other.

Looking at an example of such a signal when (δ = 500, σ = 0.25), we can see
in Fig. 8 a plot of the IMFs, the instantaneous amplitudes, and the cleaned IMFs.
From this, we can already notice several properties. (1) the increases in instantaneous
amplitudes relative to the white noise is most apparent in the middle IMFs (3–5 for this
example). This is because the amplitude of the Doppler signal is highest in the middle
frequencies. Thus, we should expect the middle IMFs to be most distinguishable from
background noise while the smallest and largest IMFs do no show clear spikes in
amplitudes. (2) The Doppler signal is expressed at later and later time points as the
IMF number increases. This is due to a direct property of the IMF decomposition and
the Doppler Signal. Higher number IMFs express lower frequency signals and the
Doppler signal increases in frequency over time. Thus, while they will not necessarily
be occurring at the same time, there should still be two discernible spikes separated
by a gap in the cleaned IMFs.

Thus, for this simulation, wewill be evaluating howmany IMFswhen cleaned yield
two clear spikes with at least 50% of the space in between, identified as noise and set
to zero. So in the example of Fig. 8, when (δ = 500, σ = 0.25), IMFs 1–6 exhibit the
desired criteria while IMFs 7–9 do not.

In these simulation results in Fig. 3.4, we have generated 50 signals with σ drawn
from Uniform[0.05,1] and δ from Uniform[10, 500]. These signals are then decom-
posed into their constituent IMFs and then each IMF is cleaned using our algorithm. If
the IMF identifies, via human inspection, two clear spikes and more than 50% of the
space in between set to 0, we say that we have successfully cleaned both signals. The
results of this separability study are shown in Fig. 3.4. Here, we see that IMF1 is only
separable when there is lower than 0.25-−0.5 standard deviations of noise. Likewise,
IMF 2 also exhibits problems with separability when there is a high noise level, albeit
with issues now occurring when above 0.75. IMFs 2–6 seem to be separable regardless
of the level of background noise or gap size. But around IMF 7–10, the separability
of the IMFs seems to fall again, except unlike IMFs 1–2, the fall in separability seems
to occur uniformly until only 1 or 2 out of 50 simulations show separable IMFs. From
this, we can say that our algorithm into cleaning the signals into separable chunks
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Fig. 8 Top: Raw signal and IMFs for the consecutive Dopplers (Bottom Left): Instantaneous amplitudes
for the IMFs. (Bottom Right): Cleaned IMFs

depend on the level of background nose (especially for high-frequency IMFs), the
IMF number, but is fairly robust to changes in the gap size.

4 Application

4.1 Application: Detection of Gliding Events in Acoustic Explosions

On October 28, 2014, an Antares rocket operated by Orbital Sciences Corporation
exploded shortly after takeoff [24]. The resulting explosion was powerful enough that
acoustic shockwave arrivals were observed at stations over 2000km away from the
launch site. At the time, 226 acoustic and atmospheric stations from the Transportable
USArray network were located within range of the explosion, resulting in arrivals
from the explosion being picked up by the array’s infrasound sensors. Many of these
arrivals exhibited characteristics of dispersive waves at the infrasound level (<20 Hz).
This is of interest as dispersive waves were only recognized recently in the infrasound
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Fig. 9 An investigation of how LCDSC can separate multiple consecutive Doppler Signals. Delta controls
the gap between the Dopplers and Sigma controls the level of background noise. If half or more of the time
between Dopplers was correctly cleaned as noise, then it was deemed success separated. Separability was
best seen in low IMF numbers, particularly less than or equal to 6 and low sigmas. Delta had comparatively
less effect on separability

domain [23] and because the Antares explosion was one of the largest demonstrations
to date of the existence of infrasound dispersive waves [27]. These dispersive waves
are a result of the arrivals being reflected at different heights in the troposphere as well
as being influenced by atmospheric conditions such as temperature and wind speed.
This makes studying infrasound arrivals important tools in evaluating atmospheric
density models [27].

Isolating these dispersive waves can be complicated due to the relatively short
time periods when the explosion was detected as well as the complex weather and
atmospheric factors affecting recording conditions at each sensor.

However, this problem is well suited for LCDSC. First, each infrasound is relatively
quick (on the order of a few seconds within the 24-h monitoring of the USArray
sensors). Second, as seen in Fig. 10, one of the canonical features of an infrasound
dispersive wave is the presence of a “gliding" or steadily increasing frequency in the
signal. This makes infrasound dispersive waves display gliding similar to a Doppler
signal reversed, which the LCDSC has performed well at cleaning.

Performing LCDSC on the signal from one of the acoustic stations, we do indeed
observe inFig. 11 thatLCDSC cleans the signalwell especially compared toWITwhich
has made very little change to the signal due to the large period of noise throwing off
the estimation WIT’s baseline noise estimation.
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Fig. 10 A canonical example of an infrasound dispersive wave. Note the increase in frequency over the
duration of the signal in the spectrogram plot

Moreover, in Fig. 12, by increasing the threshold value, γ , we can clean the signal
further and further until only the acoustic explosions are singled out. This occurs when
gamma is around 2. This informs us that dispersive waves seem to lead to at least a 2
times increase in power in all of the IMFs.

5 Limitations

While we seek to demonstrate the utility of our LCDSC algorithm in this study, there
are two large limitations. First comes from the run time of the underlying EEMD
procedure. While the EMD is relatively quick with some results indicating that it has
similar run time complexity to the fast Fourier transform [31], the EEMD requires
multiple iterations of EMD and is thus considerably slower. We noted that it was
common for signals of length greater than 20,000 to take over an hour on our computing
hardware even when asking for less than 100 EEMD replicates. Thus, we recommend
that in situations when one would like to perform a local change point detection on
a signal of this length of greater, it may be prudent to split the signal into pieces and
have these analyzed separately, perhaps even in parallel. This is the approach taken in
CUDA [4] and Open-MP implementations [3] of EMD/EEMD.

The second limitation concerns the optimality of this procedure. While we have
attempted to base this algorithm using known guarantees from the statistical change
point detection literature, there are still gaps between the assumptions used to design
the change point detection process and what is known about theoretical properties of
the EMD/EEMD. As an example, the mBIC, which we employed in our change point
detection procedure, is derived using an asymptotic argument to approximate a Bayes
factor-based model selection procedure for discrete Gaussian processes. However, as
described above, the EEMD does not scale well with signal length, so it is conceivable
that the abundance of seeming false positives in Fig. 3 could be due to this application
of an asymptotic penalization term in a non-asymptotic situation. Based on this and
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Fig. 11 Comparison of uncleaned gliding signal with LCDSC cleaned signal and WIT cleaned signal. Note
that LCDSC performs a better job at cleaning the signal than WIT, especially in helping to isolate the two
spikes between 800 and 1000 that represent the infrasound dispersive wave

the relative dearth of known theoretical properties of the EMD/EEMD compared
to the competing Fourier transform and wavelet transform, this algorithm should be
viewed not as a guaranteed optimal signal cleaning procedure or change point detection
procedure, but rather as a first step in working toward the development of an optimal
cleaning procedure for local EMD signals.

6 Conclusion and Discussion

Here, we provided a demonstration of the utility of LCDSC for the problem of local
change point detection and signal cleaning. While other EEMD signal cleaning algo-
rithms can exhibit drawbacks when there are long periods of no signal, our LCDSC
does not suffer from the same disadvantage. This makes it ideal for the cleaning of
short-term signals such as acoustic shock waves. We believe that the future develop-
ment of EEMD signal decompositionwill benefit greatly from the further development
of methods based on local changes in basis functions.
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Fig. 12 Comparison of LCDSC signal cleaning as γ is increased. As γ is increased, this results in a sparser
and sparser signal cleaning, with γ = 2 most cleanly isolating the dispersive wave. This indicates that the
dispersive wave can be identified in each IMF as a twofold increase in SNR compared to background noise
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