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Abstract— Control of networked systems, comprised of
interacting agents, is often achieved through modeling the
underlying interactions. Constructing accurate models of
such interactions—in the meantime—can become prohibitive
in applications. Data-driven control methods avoid such
complications by directly synthesizing a controller from the
observed data. In this paper, we propose an algorithm re-
ferred to as Data-driven Structured Policy Iteration (D2SPI),
for synthesizing an efficient feedback mechanism that re-
spects the sparsity pattern induced by the underlying in-
teraction network. In particular, our algorithm uses tempo-
rary “auxiliary” communication links in order to enable the
required information exchange on a (smaller) sub-network
during the “learning phase”—links that will be removed
subsequently for the final distributed feedback synthesis.
We then proceed to show that the learned policy results in
a stabilizing structured policy for the entire network. Our
analysis is then followed by showing the stability and con-
vergence of the proposed distributed policies throughout
the learning phase, exploiting a construct referred to as
the “Patterned monoid.” The performance of D2SPI is then
demonstrated using representative simulation scenarios.

Index Terms— Structured control, Patterned monoids,
Data-driven Policy lteration, Networked control systems

[. INTRODUCTION

N RECENT years, there has been a renewed interest in

distributed control of large-scale systems. The unprece-
dented interdependence and size of the data generated by such
systems have necessitated a distributed approach to policy
computation in order to influence or direct their behavior
and performance. In these scenarios, collective actions are
often synthesized via local decisions, informed by a structured
information exchange mechanism. An important roadblock for
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A preliminary version of this work has been presented at the 60" IEEE
Conference on Decision and Control [1]. In comparison, the current
manuscript expands on connections to broader related works, provides
proofs of all results, as well as including the suboptimality guarantees.
Extended simulation results have also been included in this version of
the manuscript.

centralized control design methods, is thereby, their scalability
and shortcomings in utilizing the underlying structure of large-
scale interconnected systems.'

Structured control synthesis in the meantime is generally
an NP-hard constrained optimization problem [4]. Hence,
distributed control design for large-scale systems has often
been pursued not necessarily to characterize optimal policies
per se, but to devise efficient (possibly suboptimal) control
mechanisms that exploit the inherent system structure. In par-
allel, recent advances in measurement technologies have made
available an unprecedented amount of data, motivating how
offline and online data-processing can be leveraged for data-
driven decision-making on high-dimensional complex systems.

In this work, we propose the linear-quadratic regulator
(LQR)-based algorithm, coined Data-driven Structured Policy
Iteration (D2SPI), to iteratively learn stabilizing controllers
for unknown but identical linear dynamical systems that are
connected via a network induced by the coupling in their
performance. The setup is a particular realization of coop-
erative game-theoretic decision-making (see remarks under
Footnote 2). This class of synthesis problems is motivated
by applications such as formation flight [5] and distributed
camera systems [6], where the dynamics of the network nodes
(agents) cannot be precisely parameterized. D2SPI is built
upon a data-driven learning phase on a subgraph in a large
network. This subgraph includes the agent with maximum
degree in the network and requires enabling auxiliary links
within this subgraph in order to iteratively learn a stabilizing
structured controller (optimal for the subgraph) for the entire
network—see Figure 1. This “extension” synthesis procedure
utilizes a symmetry property of the networked systems, that
we refer to as the Patterned monoid (see Section II-A).

The remainder of the paper is organized as follows. In §II
we introduce the problem setup and motivation behind our
work, and provide an overview of the related literature (§11-B).
In §III, we present and analyze the D2SPI algorithm, followed
by the theoretical analysis in §IV. Illustrative examples are
provided in §V, followed by concluding remarks in §VI.

Notation. The operator diag(-) makes a square diagonal
matrix out of the elements of its argument; vech(-) on the other
hand, takes a square matrix and stacks the lower left triangular
half (including the diagonal) into a single vector. We use

'O(n3) complexity of solving the Algebraic Riccati Equation [2] and
scalability issues of Model Predictive Control [3] are among such examples.
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Fig. 1: Addition of auxiliary links (dashed red) to the subgraph G,
during the policy learning phase. The size of the subgraph depends
on the maximum degree of the original graph G.

N = 0 (= 0) to declare N as a positive-(semi)definite matrix.
The ith eigenvalue and spectral radius of M are denoted by
Ai(M) and p(M); M is called Schur stable when p(M) < 1.
We say that an n-dimensional linear system parameterized by
the pair (A, B) is controllable if the controllability matrix
C=[B AB A"~1B] has a full-rank. We denote the
Kronecker product of two matrices by ®. For a block matrix F,
by [F],« we imply the rth row and kth column “block” com-
ponent with appropriate dimensions. An (undirected) graph is
characterized by G = (Vg,Eg) where Vg is the set of nodes
and & C Vg x Vg denotes the set of edges. An edge exists
from node i to j if (the unordered pair) (i,j) € &g; this
is also specified by writing j € N, where N is the set of
neighbors of node i. We designate the maximum degree of
G by dmax(G). Finally, the graph G can be represented using
matrices such as the Laplacian Lg or the adjacency Ag. To
distinguish between system dynamics quantities related to the
entire graph and a subgraph, we utilize hat and tilde notation,
respectively. A semigroup is a set and a binary operator
in which the multiplication operation is associative (but its
elements need not have inverses). A monoid is a semigroup
with an identity element. A group is a monoid each of whose
elements is invertible. We denote the set of symmetric n X n
real matrices by S™, and the set invertible ones by GL(n, R)—
which is a group under matrix multiplication also known as
the general linear group.

I[I. PROBLEM SETUP

Consider a network of identical agents with interdependen-
cies induced by a network-level objective. In particular, we
assume that the system contains N agents forming a graph
G = (Vg,&g), where each node of the graph in Vg represents
a linear discrete-time system,

Lit+1 :Awi,t"_Bui,ta 1= 1727"'7N7 (1)

with z; ; € R™ and u;; € R™ denoting the state and input
of agent ¢ at time-step t, respectively. The unknown system
matrices A € R" "™ and B € R™"™*™ are assumed to form
a controllable pair. The network dynamics can compactly be
represented as,

Xit1 = A%, + Bﬁtv (2

where %, € RV" and &, € RN™ are comprised of the states
and inputs of entire network, %, = [@], ... @] ,]T, @ =

[ul, ... ul,]T, with A € RN"Nn and B € RVXN™ are
in block diagonal forms A = Iy ® A and B = Iy ® B.
The agents’ interconnections are represented by edges &g C
Vg x Vg that can facilitate a distributed feedback design. We
do not assume that G is necessarily connected; the motivation
for this becomes apparent subsequently. Let N; denote the set
of neighbors of node ¢ in G (excluding itself). Then, based
on the underlying communication graph and for any choice
of positive integers ¢ and b, we define a linear subspace of
real-valued aN x b[N matrices as,

Upy(G) = {M € R®N| [M];; = 0if j ¢ N; U {i},
[M];; € R, 4,5 =1,--- ,N}.

Without having access to the system parameters A and
B, we are interested in designing linear feedback gains,
consistent with the desired sparsity pattern induced by the
network, using data generated by (2). More precisely, given an
initial condition X1, the distributed (structured) optimal control
problem assumes the form,

E ') AT A~ A ~T AN
ming >0, X/ Qx; + a/Ruy

. 3
st (), Keul,9), ©

4, = Kx,
where K stabilizes the pair (A, B) (i.e., p(A + BK) < 1),
R= Iy ®R and Q = IN®Q1+Lg Q2 for some given cost
matrices Q1 = 0, Q2 = 0, R > 0. Note that Q € uﬁn(g)
is positive definite. Such interdependence induced through the
cost has been considered in a graph-based distributed control
framework; see for instance [7]-[10]. In a nutshell, the first
term in Q encodes the cost pertinent to state regulation for
each agent, while the second term, captures the “disagreement”
cost between the neighbors.?

In this work, we propose a data-guided suboptimal solution
for (3), not relying on knowledge of the system parameters A
and B. Instead, our approach relies on the system’s input-state
time series for synthesizing distributed feedback control on G.
A summary of challenges in analyzing this problem is listed
as follows:

1) The constrained optimization problem in (3) is in general
NP-hard [4], [12]. In particular, the problem of stabilization by
decentralized static state feedback is NP-hard if one imposes
a bound on the norm of the controller [12]. Even though the
result is not shown for the case with no bound on the controller

20ne instance of such an interactive cost among agents appears in the
cooperative game setup where agent ¢ aims to solve the minimization problem,

oo
min Ji(%1,0¢) = N x! x; ¢ +ul, Ru;
(ui,t),‘;ioeeg z( 1 t) ;( z,th 1,t it 1,t
+ Z (@t — @ie) Qo (mje — wzt))

JEN;

Then, it is well-known that the set of Pareto front solution of this game can
be obtained by minimizing the parametric cost function,

N
min ZaiJi(fq,ﬁt),

(w1,6)§20:(uN,1)§20 €02 T

parameterized by ai,...,an where a; € [0,1] and >, a; = 1 (see e.g.
[11]). Therefore, a cost such as in (3) can be viewed as a special case of the
fair Pareto optimal solution with the choice of o; = 1/N for all 3.
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parameters, the general problem is commonly believed to
be a computationally hard problem. Note that stabilization
is a necessity for feasibility of optimization problem in (3)
for arbitrary initial state xy whenever J; > 0. This is
simply because the cost is unbounded for an unstable policy.
Nonetheless, based on the complete knowledge of the system
parameters, this problem has been investigated under variety
of assumptions [7], [13]-[15], or approached directly with the
aid of projected gradient-based policy updates [16], [17].

2) In the meantime, policies obtained via data-driven ap-
proaches, do not necessarily respect the hard constraints on
K e uﬁ,n(g) posed in (3). In particular, we point out that
“projection” onto the intersection of the constraint imposed
by the network and stabilizing controllers is not straightfor-
ward due to the intricate geometry of the set of stabilizing
controllers [18].

3) Another key challenge in adopting data-driven methods
for the entire network is rooted in the “curse of dimensional-
ity” inherent in analysis of large-scale systems. In fact, even
collecting data from the entire network can be prohibitive.

4) Finally, it is often impossible in applications to pause
the operation of the network for data collection or decision-
making purposes.’

A. Structures in the Problem and our Approach

In this work the sparsity requirement K € uﬁ,n(g) is
considered as a hard constraint for control synthesis, and as
such, the corresponding optimization is challenging in general.
Hence, we shift our attention from the optimal solution of (3)
towards a “reasonable” suboptimal stabilizing distributed con-
troller with a scalable computational cost. We aim to exploit
the problem structure that is incurred due to the homogeneity
of system dynamics and the pattern in performance index re-
specting the underlying graph topology—see the definition of
Q depending on the graph Laplacian Lg in (3). Additionally,
as system parameters in (2) are unknown, we adapt a Q-
learning procedure to our setup that provably converges to
a distributed policy with suboptimality guarantees.

In the absence of the sparsity constraint K € uy (9.
a learning approach for solving the optimal control problem
(3) is the well-known Q-learning procedure that was first
introduced by Bradtke in [19], [20]. Adopting this approach
for (3) would require utilizing the input-state data trajectories
of the entire networked systems in (2) to implement a quasi-
Newton method for iteratively updating K introduced by
Hewer in [21]. If the system is controllable, Hewer’s algorithm
converges to the globally optimal solution with a quadratic
rate, and so does the Bradtke’s algorithm if in addition the
data trajectories are “informative” enough—this is usually
satisfied by a sufficient condition on the input signal referred
to as “persistence of excitation.” The main issue with this
approach is the fact that the policy obtained in this way,
will not respect the hard constraint of K € UN . (G) as was
posed in the optimization (3). This issue is particularly critical

3For example, consider an operational large-scale group of homogeneous
aerial vehicles that need to coordinate their relative states (in addition to their
respective state regulation) over a network induced by their proximity [5].

when a projection of the iterated policy on the set U2, (G)
is not practical, or even fails to be stabilizing. Additionally,
collecting data trajectory from entire networked system in (2)
can be expensive.

Inspired by the Q-learning approach, we propose a model-
free structured policy iteration scheme for the synthesis prob-
lem (3) with iterative stability, convergence, and reasonable
performance guarantees. While the detailed algorithm is pre-
sented subsequently in Section III, in what follows we sum-
marize the key steps of our design procedure for distributed
data-driven policy iteration:

1) Inherent to our distributed learning algorithm is a synthe-
sis sub-problem whose dimension is related only to the max-
imum degree in underlying graph rather than the dimension
of the original network. In particular, we will reason that for
the learning phase, our method only requires data collection
from a (specific) smaller sub-network G; C G with size
d = dmax(G) + 1. This subgraph is substantially smaller than
the original graph whenever di,.x(G) is significantly smaller
than N, reflecting the empirical feature of many real-world
networks. In the meantime, our approach requires adding
temporary communication links to the subgraph G, to make
it a clique during the learning phase— we will discuss why
this learning phase clique is required in Step 3 below—see
Figure 1. The additional links are subsequently removed for
the final data-driven feedback design. In robotic applications,
such a clique can be established by temporary increasing the
transmission range for neighboring nodes of the agent with
maximum degree. Since longer range information transfer is
generally costly, power levels for these agents are “dialed
back” to their original settings following completion of the
learning phase.

2) Then, we adapt the Q-learning technique in order to
learn a specific optimal policy for this sub-problem using data
only from the systems in the subgraph G,. In particular, the
proposed algorithm learns an optimal policy for the subgraph
with a (off-)diagonal pattern consisting of two distinct system-
level policies K* and L*, representing the “individual” and
“cooperative” components, respectively. Specifically, for any
integer r > 2, we can define a linear subspace of R™*"™ as

L(r x n,R) := {N, € R"™*"™ | N, =
I,®(A—-B)+ 1,17 ® B, for some A,B},

which is also closed under matrix multiplication. Then, the
policy learned for the subgraph G, takes the form K* =1; ®
(K* — L*) + 117 ® L* which also implies that the closed-
loop system 1112 = A + BK* lies in L(d x n,R). This is
particularly useful from a design perspective as it becomes
clear in the next step.

3) Next, we define the Patterned monoid as

PM(r x n,R) := {N, € L(r x n,R) N GL(rn,R) |
for some A € GL(n,R)NS", B € S"}.
Note that the Patterned monoid PM(r x n,R) is indeed a

sub-monoid of GL(rn, R)—following by Lemma 2—i.e., it is
closed under matrix multiplications and contains the identity

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 22,2024 at 03:34:45 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3366038

PREPRINT

matrix*. The next observation underscores the relevance of
Patterned monoids in system analysis.

Proposition 1: For a Schur stable matrix A € L(r x n,R)
and 0 < @Q € S™, let P denote the unique solution
to the corresponding discrete-time Lyapunov equation, i.e.,
P = ATPA+ Q. Then, P € PM(r x n,R) if and only if
Q € PM(r x n,R).

The invariance of the Lyapunov equation under the action
of Patterned monoid has important implications for our data-
driven synthesis for large-scale networks—see Proposition 2.
Another key ingredient of our approach, motivated by utilizing
the Patterned monoid in the context of Q-learning, involves
allowing temporary communication links on the subgraph G4
in order to make it a clique only during the learning phase—
links that are subsequently removed. It then follows that the
state cost parameter Q for the subgraph G4 lies in PM(d x
n,R). Then, as the obtained closed-loop system Ay at each
iteration of the learning phase lies in L(d xn, R), Proposition 1
would imply that the associated cost matrix P must lie in
PM(d x n,R) with two components P; € GL(n,R)NS™ and
P, e S".

4) Next, an iterative Q-learning procedure is designed
based on both the patterned structure of the policy with
system-level components K and L, and the cost matrix with
P, and P, components. This procedure provably converges to
an optimal policy for the subgraph G;—see Theorem 2.

5) We note that terminating the operation of the entire
networked system for the purpose of data collection/learning
is often infeasible in real-world applications. For example,
disrupting the operation of power generators and loads for
improving their respective network-level performance is highly
undesirable. Therefore, in addition to learning the optimal
policy for the subgraph, in this work, we aim to simultaneously
devise and update a policy for the rest of the network. In
this direction, our algorithm iteratively learns a “stability
margin” 7 according to the learned components of the policy
at each iteration—see Proposition 3. This feature, together
with homogeneity of the network, facilitates extending the
policy synthesis procedure to a stabilizing policy for the
entire network by utilizing the individual and cooperative
components learned from the subgraph G;—see Theorem 1.

6) After the Q-learning procedure has converged, the learn-
ing phase is terminated. The framework now allows removing
the temporary links added to G4 during the “clique subgraph
learning phase” and the stability of the final learned policy
will be guaranteed—see Corollary 1.

7) Finally, note that the learned policy for the entire graph
will be, in general, a suboptimal solution to the optimization
in (3). Yet, we provide guarantees on its sub-optimality gap
in Theorem 3 and illustrate its numerical performance in
Section V.

The distributed control underpinning of the method pro-
posed in this work follows its model-based analogues studied

4The proposed Patterned monoid and characterizing its interplay with the
Lyapunov equation is considered as a key contribution in our approach. Note
that, with reference to [1], PM(r x n,R) requires further qualifications to
be a linear subgroup of GL(rn,R).The monoid characterization is sufficient
for our purposes and further extensions are deferred to our future work.

in [7], [9]. In this work, our contribution is to build on these
approaches and propose a model-free structured policy itera-
tion algorithm, which is not only computationally efficient, but
also practical for operational large-scaled networked systems.

B. Related Literature

Distributed control is a well-established area of research
in systems theory. The roots of the field trace back to the
socioeconomics literature in 1970’s [22] and early works in the
control literature followed suite later during that decade [23].
The main motivation for these works was lack of scalability in
centralized planning and control, due to information or compu-
tational limitations [24], [25]. Fast forward a few decades, suf-
ficient graph-theoretic conditions were provided for stability of
formations comprised of identical vehicles [26] and, along the
same lines, graph-based distributed controller synthesis was
further examined independently in works such as [7], [10],
[16], [27]. The topic was also studied from the perspective
of spatial invariance [15], [28] and a compositional layered
design [29], [30]. Moreover, from an agent-level perspective,
the problem has been tackled for both homogeneous systems
[7], [9], [10] and more recently heterogeneous ones [31].

Having access to the underlying system model is a common
assumption in the literature on distributed control, where the
goal is to find a distributed feedback mechanism that con-
forms to an underlying network topology. However, deriving
dynamic models from first principles could be restrictive
for large-scale systems and complex mission scenarios [32].
Such restrictions also hold for parametric perturbations that
occur due to inefficient modeling or other unknown design
factors. For instance, even the LQR solution with its strong
input robustness properties, may have small stability margins
for general parameter perturbations [33]. Robust synthesis
approaches could alleviate this issue when the perturbations
follow specific models, in both centralized [34] and distributed
[35] cases. However, if the original estimates of system
parameters are inaccurate or the perturbations violate the
presumed model, then both stability and optimality of the
proposed feedback mechanisms can be compromised. Data-
driven control, on the other hand, circumvents such drawbacks
and utilize the available data generated by the system when
its model is unavailable. This point of view has historically
been examined in the context of adaptive control and system
identification [36], particularly, when asymptotic properties
of the synthesized system are of interest. For more recent
works that have adopted a non-asymptotic outlook on data-
driven control, we mention [37]—-[39] that used batched data
for synthesis, as well as online iterative procedures [40],
[41]. Furthermore, in regards to the adaptive nature of such
algorithms, there is a close connection between online data-
driven control and reinforcement learning [19], [42]. In these
latter works, policy iteration has been extended to approximate
LQR by avoiding the direct solution of Algebraic Riccati
Equation (ARE); yet majority of these works do not have
favorable scaling properties.

Control and estimation for large-scale systems offers its
unique set of challenges due to higher levels of uncertainty,
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scalability issues, and modeling errors. Nevertheless, model-
free synthesis for large-scale systems, as a discipline, is still in
its infancy. From a control theoretic perspective, the work [43]
addresses some of the aforementioned issues using ideas from
mean-field multiagent systems and with the key assumption
of partial exchangeability. The work [44] on the other hand,
provides a decentralized LQR algorithm based on network
consensus that has low complexity, but potentially a high
cost of implementation. Lastly, SDP projection-based analysis
has been examined in [45], where each agent will have a
sublinear regret as compared with the best fixed controller
in hindsight. The problem has also been considered from a
game-theoretic standpoint [46]-[48], where agents can have
conflicting objectives.

In the following, we propose our algorithm that iteratively
learns necessary control components from a sub-network that
would be used to design a distributed controller for the entire
network. We also show that depending on the structure of
the problem, not only would our scheme be computationally
efficient, but also more applicable when model-based control
in high dimensions is (practically) infeasible. The structure
of our distributed control design is inspired by [7], that was
subsequently extended to discrete-time in [9].

[1l. MAIN ALGORITHM

In this section, we present and discuss the main algorithm
of the paper, namely, D2SPI. Given the underlying communi-
cation graph G, the networked system is considered as a black-
box, whereas the designer is capable of injecting input signals
to the system and observe the corresponding states. The goal
of D2SPI is then to find a data-guided suboptimal solution for
(3) without knowledge of system parameters A and B. To this
end, our approach involves considering the synthesis problem
on a subgraph G; C G, with the associated time-series data.
Before presenting the main algorithm, we formalize two useful
notions in order to facilitate the presentation.

Definition 1: Given a subgraph G’ C G and a node labeling,
let Policy (Vg/) denote the concatenation of policies of the
agents in Vg, i.e., Policy Vg) = [u] ul --- u\Tvg/|]T7
where w; is the feedback control policy of agent ¢ in the
subgraph G’ as a mapping from {z;|j € N; U {i}} to R™.
Furthermore, we use Policy (Vg )|: to denote the realization of
these policies at time ¢. Similarly, we define, State (Vg ) =
[x] =] --- m\Tv /‘]T.

The D2SPI algoritflm is introduced in Algorithm 1 with the
following standard assumption.

Assumption 1: The initial controller K; is stabilizing for
the controllable pair (A, B), and e; in Algorithm 2 is such
that Policy(Vg )|+ remains persistently exciting (PE); more
precisely, if we collect the state and input difference signals
in the vector form ¢; as defined in Algorithm 2, then the PE
condition requires that [20]: there exists a positive integer Ny
and positive constants €y < €y such that

N
1
ol < Z bi_i¢T_; <&, for allt > Ny and N > Np.

=1
Remark 1: Note that the controllability of the pair (A, B)
and the PE condition are sufficient assumptions to guarantee

well-posedness of the data-driven control problem that are
commonly adopted in literature [49], [50]. This PE condition
is an adaptation of “strong persistent excitation” in [49] to
the least-squares problem of recovering unknown parameters
of the so-called Q-function. The PE condition can be easily
satisfied in our setup by ensuring a rich randomness in the
signal e;, such as a non-degenerate Guassian distribution.
A more modern treatment of PE condition is stated by a
rank condition on the input Hankel matrices in the context
of Willems’ Fundamental Lemma [50], [51]. We also refer to
[51] for a discussion on how these assumptions can be relaxed.
Furthermore, assuming initial stabilizing controller Ky is also
common in the policy iteration literature. For instance, in the
case of open loop stable system A, K is simply chosen to be
zero. For an unknown and unstable pair (A, B), more elaborate
online stabilization techniques have been adopted that are out
of the scope of this work. Refer to [52] for one such method.

1) The Learning Phase: We refer to the main loop of
the algorithm in Line 8 as the learning phase. During the
learning phase, we include temporary “auxiliary” links to
Gq and make the communication graph a clique. We show
such distinction by Gglearn, Where [Vg,| = |Vg,....| but
Gd,lcarn 18 a clique. Inherent to D2SPI is a policy iteration on
Gd learn that characterizes components K, and Ly, intuitively
representing “self” and “cooperative” controls at iteration k,
respectively. In particular, during the learning phase, we utilize
these control components in order to design and update an
effective stabilizing controller for the rest of the network
g \ gd,learn~

We do so by ensuring that during the learning phase,
information is exchanged uni-directionally from Ggjcarn tO
the rest of the network; hence, the policy of the agents in
G \ Gdlearn is dependent on those in Gg jearn, and not vice
versa. After the learning phase terminates, we remove the
temporary links added during the learning phase (re-initialize
to the original network topology), and synthesize a suboptimal
stabilizing control for the entire network. In the learning
phase of D2SPI, we use a Recursive Least-Squares (RLS)-
based recursion to estimate the unknown parameters of the
Q-function at iteration k, referred to as Hy,.

2) The Subgraph Policy Evaluation (SPE) Subroutine: This
process is performed in SPE (Algorithm 2) subroutine by
inputting (sub-)graph G, G jeam, the mapping policy(Vg, ),
and the previous estimate of Hy_1. As will be discussed
in Section I-A, Hj contains the required information to
determine the two control components K and Ly from data.
We extract this square matrix through a recursive update on the
vector 01, derived from half-vectorization of Hy_1, solving
RLS for the linear equation R(X:, 0;) = (61, where
R(%¢, 4;) denotes the local cost and (; € R? contains the data
measurements. We use subscript k for policy update and ¢ for
data collection. The adaptive nature of the algorithm involves
the exploration signal e; to be augmented to the policy vector
in order to provide persistence of excitation.

3) Persistence of Excitation and Convergence of SPE: In our
setup, e; is sampled from a normal distribution e ~ A/ (0, X))
where the choice of the variance > > 0 is problem-specific.
In practice, excitation of the input is a subtle task and has
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Algorithm 1 Data-driven Structured Policy Iteration (D2SPI)

1: Inmitialization (¢ < 1, k < 1)

2:  Choose Gg C G with d = dmax(G) + 1

3:  Obtain Q1, Q2, R, and set Qg + Q1 + dQ2

4:  Get x1 € R and Hy € RP*P, p =d(n + m)

5. Set Py < Bl,(p11)/2 for large 8> 0 and fix X

6: Set K stabilizing (1), L1 =0, AK; = K3

7:  Turn on temporary links in G4 and set 71 < 0

8: While (K, L) has not converged, do (“learning phase”)
9:  Set Policy; (Vg) such that for each i € Vg,

u; +— AKpx; + Ly, ZjGNi %wj,
U; < AKk:Bi +Lk Z

if i € Vg\gd
ievg, xj, if 1 € ng

10: _Evaluate ﬁk from Algorithm 2 _
Hj, < SPE(G, Gd learn, Policy,(Vg), Hi_1,7)
11:  Recover X1, X2,Y7,Y2, 71 and Z5 from Hy,
X; < Hy[l:n, 1:n]
Y1 <—ItIk[dn+1 sdn+m, dn+1:dn+m]
Z1 « Hyldn+1:dn+m, 1:n)
X2<—ITIk.[1:n, n—|—1:2n]
Yy < Hyldn+1:dn+m, dn+m+1:dn+2m+1]
Zo « Hy[dn+1:dn+m, n+1:2n)
AX +— X1 —Xo, AY <Y1 —Ye, AZ < Zy— Zo.
12:  Update the control components
Flei—(d-1D)Ya(Yi+(d-2)Y) Y
G (Yi+(d-1)Y2) ' Yo (Y1 —Ye) "
Kyy1 —FZ1 4+ (d—1)GZ3,
Liy1 < —FZy+GZ1 + (d — 2)G 2o,
AKyt1 < Kiy1 — L

13:  Obtain the stability margin

Ek+1 —AX — Qd =+ AKl-chrlAZ
+ AZTAKkJrl + AK/I—H (AY — R)AKkJrl

Tt Amin (AK] RAK 41+ Qq)

/Amax (Ek+1 +Li 4 (AY - R)Lk+1)

Thr1 /iy /(L + Yes1)

14: Goto Line 8 and set k +— k + 1

15: Switch OFF the temporary links and retrieve G,

16: Set Policy;,(Vg) such that for each i € Vg,
u; +— AKpx; + %Lk ZjEN’i T

been realized in a variety of forms such as random noise [19],
sinusoidal signals [53], and exponentially decaying noise [54].
We denote by P the projection factor that is reset to Py > 0 for
each iteration. Convergence of SPE—guaranteed based on the
persistence of excitation condition—is followed by the update
of Hj, that encodes the necessary information to obtain Ky
and Ly.

4) Learning Control Components using Patterned Monoid:
Learning the control components K}, and Lj is achieved by
first recovering the block matrices X1, X2, Y1, Y2, Z1, and Z
from Hj, that are further utilized to form intermediate variables
F and G. Matrix inversions on line 12 of Algorithm 1 will be
justified in Section IV Lemma 2. Such recovery of meaningful

blocks from Hy, is due to the specific structure resulting from
adding extra links to G, that is captured systematically by
the Patterned monoid; this point will be discussed further
subsequently in Proposition 2.

5) Learning Gain Margin and the Distributed Feedback De-
sign: Each iteration loop is completed by updating the param-
eters 7y, and 7, that prove instrumental in the stability analysis
of the proposed distributed controller for the entire network.
Finally, with the convergence of D2SPI, G, is retrieved by
removing the temporary links and the structured policy is
extended to the entire graph G in Line 16.

Let us point out a few remarks on the computational
complexity of the proposed algorithm. First, note that the
inverse operations on line 12 occur on matrices of size
m x m, and hence computationally inexpensive. Furthermore,
the complexity of finding extreme singular values—as on
line 13 in Algorithm 1—is known to be O(n?) [55]. Hence,
the computational complexity of D2SPI is mainly due to the
SPE recursion that is equivalent to the complexity of RLS
for the number of unknown system parameters in G4, i.e., the
computational cost is O (d?(n +m)?) [56]. This implies that
the computational complexity of the algorithm is fixed for any
number of agents IV, as long as the maximum degree of the
graph retains its order.

Remark 2: Adding temporary links within the subgraph G,
is an effective means of learning optimal K and L, for
the subgraph G jcarn by utilizing dynamical interdependencies
among the agents. Although initializing K} such that (1) is
Schur stable is a standard assumption in data-driven control,
obtaining this initial gain for an unknown system is nontrivial.
While we invoke this assumption in this work, the interested
reader is referred to [40], [57] for more recent works pertaining
to this assumption and related system theoretic intricacies [51].

IV. CONVERGENCE AND STABILITY ANALYSES

In this section, we provide convergence and stability analy-
ses for the D2SPI algorithm. First, we study the structure and
stability margins of each local controller and proceed to estab-
lish stability properties of the proposed controller for the entire
network throughout the learning process. Lastly, we show the
convergence of D2SPI to a stabilizing suboptimal distributed
controller followed by the derivation of a suboptimality bound
characterized by the problem parameters. For clarity, we defer
some of the subtleties of the analysis and detailed proofs to
Appendix L.

First, let us demonstrate how a specific structure and stabil-
ity of the controller for the subgraph Gg jcarn, When properly
initialized, can be preserved throughout the D2SPI algorithm.

Proposition 2: Let K = I; ® (Kk. — Lk) + 117 ® Ly,
for all £ > 1, with Ky and Lj as in Algorithm 1. Under
Assumption 1 and throughout the learning phase (for all
k > 1), Ky is stabilizing for the system in Gg jearn and
Policy;, (Vg em) |t = Ki State(Vg, )|t for all t. Further-
more, AK}y, = K} — Ly, stabilizes the dynamics of a single
agent, i.e., A + BAKj is Schur stable.

Note that Proposition 2 proves the existence of a stabilizing
controller AK}, and its corresponding cost-to-go matrix APj.
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In the sequel, our goal is to design a distributed suboptimal
controller for the entire networked system on G based on the
components that shape AKj,. This extension is built upon the
stability margin derived next.

Proposition 3: At each iteration k£ > 1, let Ky, L and 7%
be obtained via Algorithm 1. Then, A+ B(Ky—aLy) is Schur
stable for all « satisfying |a — 1| < 7.

The stability margin 7 in Proposition 3 is upper-bounded
by the stability margin of the pair (A+ B(Ky — Ly), B). This
implies that if the original closed-loop system for an agent
does not have a favorable stability margin, then 7, can be
small-reducing the influence of the agent’s neighbors on its
policy (Line 16 of Algorithm 1). Nonetheless, Proposition 3
provides model-free stability gain margins 7, at each iteration
of the algorithm for the dynamics of a single agent in G. In our
analysis, we take advantage of these margins to characterize
stability guarantees for the controller proposed during the
learning phase. This is captured in the following result.

Theorem 1: Suppose K}, L and 7 are defined as in
Algorithm 1. Then, under Assumption 1, the control policy
Policy,(Vg) designed during the learning phase (line 9)
stabilizes the network G at each iteration of the learning phase
and for any choice of Vg, .

Theorem 1 establishes that the proposed feedback mecha-
nism stabilizes the entire network, facilitating control of agents
outside of G4, during the learning phase. In the meantime, the
practicality and suboptimality of the algorithm depend on its
convergence addressed next.

Theorem 2: Under Assumption 1 and (long enough) finite
termination of Algorithm 2, Algorithm 1 converges, i.e., K —
K* Ly, — L* and 7, — 7 as k — oo, where K* = 1; ®
(K * L*) 4+ 117 ® L* is the optimal solution to the infinite-
horizon state-feedback LQR problem with system parameters
(ABQR)deﬁnedasA Ig ® A, B—Id®BQ
I1®(Q1+dQ2) —11T®Qs, and R=1; ® R.

Finally, we note that as the temporary links introduced
during the learning phase are removed, the structure of the
agents’ interaction is once again the original network G. As
such, it is vital to provide stability guarantees after Algo-
rithm 1 terminates and components of the control design have
converged. This issue is addressed in the following corollary
whose proof is similar to that of Theorem 1 and thus omitted.

Corollary 1: Suppose that K*, L*, v*, and 7" are given
as in Theorem 2 under a convergent Algorithm 1. Then
Policy(Vg) (defined on Line 16), stabilizes the entire net-
worked system in (2).

We conclude this section by exploring the suboptimality
of the proposed policy. Given the problem parameters, let
KZ,.. denote the globally optimal distributed solution for
the structured LQR problem in (3) with the associated cost
matrix P’S"truc Given any other stabilizing structured policy K
associated with cost matrix P, we define the optimality gap as
gap(K) = tr[P — PZ,.]. The following theorem provides an
upperbound on the optimality gap of structured policy learned
by D2SPI based on the problem parameters. In particular,
when the system is “contractible,” the derived upperbound
depends on the difference of the distributed controller with
that of unstructured optimal LQR controller.

Algorithm 2 Subgraph Policy Evaluation (SPE)

Input: Graph G, subgraph G’ C G, Policy(Vg), H, P
Output: Updated cost matrix H' associated with G’
While H has not converged, do

Set X; < State(Vgr)|: and @y < Policy(Vgr)|:

Choose e; ~ AN (0,X) and update Policy(Vg:)|¢ as Gy
ut + e forall 7 € Vg/

Run G under policy Policy(Vg)
7: Collect State(Vg)|¢41 only from G and set

Xt+1 < State(Vg/)|t+1, ut+1 — POlle(Vg/)|t+1
8 Set ¢y + [X] 0T T

NhEwn =

a

[Xt+1 uyy ]
Compute {; = vech(¢:¢; ) and

R(%e,0) = %{ (I1® Qg — 11T ® Q2)%¢ + af (I® R)
10:  Set 6 « Vech( ) and update
P P — PG P/ 1—|—C PCt)
11:  Find HT = vech™1(0), update H <~ H and ¢ + ¢t + 1

Theorem 3: Let K* be the structured policy learned by
Algorithm 1 at convergence, corresponding to the cost ma-
trix P*. Moreover, let Klqr denote the optimal (unstruc-
tured) solution to the infinite-horizon state-feedback LQR
problem with parameters (A B,Q,R) with the cost matrix

qur If A = A+ BK1qr is contractible then 0 <
gap(K*) < tr(M)/[l —o?nax(AKlqr)], where M = (f{ +
BTP*B)(K*K'T — K ;K[ ) + 2ATP*B(K* — Kiq,).

Remark 3: First, recall how the converged policy by The-
orem 2 is related to the optimal Linear Quadratic Regulator
(LQR) policy on the fully connected subgraph G jearm- Sec-
ond, the optimality gap is characterized by tr(M) which is
essentially proportional to the difference K* — Kj;; i.e., how
close our designed structured policy is to the unstructured LQR
that directly depends on the connectivity of the graph topology.
Third, the contractibility of the pair (A, B) is more restrictive
condition than regularizability of the system [40], a notion that
has recently been employed in iterative data-guided control
methods [58], [59]. Contractibility also facilitates the validity
of assuming access to the initial stabilizing controller.

V. SIMULATION EXAMPLES

In this section, we examine the performance and conver-
gence of D2SPI. In order to assess the suboptimality of the
synthesized controllers, we report the trace of cost matrices,
tr(lsk), associated with the proposed distributed controller
learned by D2SPI at iteration k. As the optimal distributed
design is unknown, we compare these results against the
optimal cost for the unconstrained LQR problem, tr(f’LQR),
obtained via the solution of the Algebraic Riccati Equation
with parameters (A, B,Q, f{) Note that this is an infeasible
solution to the problem in (3); nevertheless, it provides a
theoretical lowerbound to evaluate the performance of any
feasible solution—including the optimal one.’

A. Convergence—Randomly Selected Parameters

In the first example, we sample continuous-time system
parameters of a single agent (A, B) from a zero-mean normal

5All the simulations were run on a 3.2 GHz Quad-Core Intel Core i5 CPU
and in MATLAB. The scripts are publicly available at https://github.
com/shahriarta/D2SPI.
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Fig. 2: Convergence of Algorithm 1 for 100 randomly sampled
system parameters (A, B).
distribution with unit covariance, such that A € R®*5 and
B € R®*3, We then consider a path-graph of 10 agents and
demonstrate how Algorithm 1 converges for this network using
different instances of the system parameters. The continuous-
time system dynamics of a single agent is discretized with a
sampling rate of AT = 0.1s. We set Q1 = 0.2I5, Q2 =I5
and R = I3 in (3). We assume a random exploration signal
sampled from a normal distribution e; ~ N'(0, 02), where the
variance o2 is chosen accordingly for different input channels.
Figure 2 shows the performance of the synthesized con-
troller by illustrating the normalized suboptimality error for the
entire network with respect to the (infeasible) LQR controller.
This figure depicts the simulation results for 100 random
system parameters and shows the progress of the proposed
method at each iteration in Algorithm 1. The actual simula-
tions are plotted in faded color, whereas their statistics are
plotted in solid black. Note that almost all realizations of
the network have converged after 5 iterations of the learning
phase, due to its fast quadratic convergence rate. Assessing
the suboptimality of the proposed controller compared against
the (infeasible) centralized LQR controller, reveals an average
improvement by a factor of 200.

B. Network of homogeneous plants

In this example, we apply D2SPI to two other simulation
scenarios involving homogeneous networks of agents with
unknown and unstructured model uncertainties. In particular,
we use the dynamics of plants with continuous-time system
parameters (A, B) (as reported in Appendix F of [60]), in con-
junction with random d-regular graph topologies of different
sizes. We then examine the efficacy of D2SPI by illustrating
the cost associated with the proposed distributed controller as
a function of nodes in the graph. The rest of the problem
parameters are chosen identical to the setup in Section V-A.
Uncertainty in the model are introduced in this example as
follows. Each agent follows an unknown LTI dynamics similar
to (1) with A replaced by A+ A A, where entries of AA are
sampled from a normal distribution (0, 0.05). Assuming that
one has access to a stabilizing controller K; for the system

with nominal parameters A and B, we set the initial stabilizing
controller to be the LQR optimal controller with parameters
(A,B,Q1,R).

Figure 3 shows the results of the second simulation ex-
ample, illustrating how the cost of the proposed controller
changes with respect to the number of nodes in a path
graph with different number of nodes. Figure 3a compares
the cost associated with our design P against the cost of
the initial controller f’l, and the (infeasible) LQR controller
f’LQR. Figure 3b illustrates the evolution of the normalized
suboptimality of our proposed algorithm (with respect to the
infeasible LQR controller) as a function of number of nodes
in the corresponding graphs. Figure 3c and Figure 3d show
similar results for the random 3-regular graph topologies with
even number of nodes.

As it can be validated from Figure 3, the cost associated
with our final proposed distributed controller has significantly
improved the optimality of the initial controller. In particular,
the normalized suboptimality errors of our final design are
less than 6% and 2.4% for path-graph and random 3-regular
graph topologies, respectively. Furthermore, this normalized
error generally decrease as the number of nodes in the corre-
sponding graphs increase.

VI. CONCLUDING REMARKS

In this paper, we have proposed the D2SPI algorithm as
an efficient model-free distributed control synthesis process
for potentially high-dimensional network of homogeneous
linear systems. D2SPI is built upon a construction referred
to as Patterned monoid, that facilitates exploiting network
symmetries for policy synthesis consistent with the underlying
network. Such symmetries allow a data collection procedure
during the learning phase (with temporary additional links)
for a smaller portion of the network. Using data collection
on this smaller subnetwork, we are then able to synthesize a
distributed feedback mechanism for the entire system—even
during the learning phase. Moreover, D2SPI builds upon
parameter estimation techniques that represent an end-to-end
policy prediction directly from the observed data. Extension
of the setup proposed for D2SPI involves heterogeneous
networked systems, that is currently being examined as part
of our future work.

APPENDIX |
ANALYSIS AND PROOFS

In this section, we provide the building blocks needed for
the proofs and analysis of our algorithm. We first provide some
insights on how the setup is connected to the classic model-
based LQR machinery and some previously established results
that we leverage from the literature. The main proofs then
follows.

A. Underlying Model of the Subsystem G4

The configuration of the synthesis problem in D2SPI in-
tertwines an online recursion on the subsystem correspond-
ing to G4 and the original system G. In particular, during
the learning phase, considering the same cost structure and
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Fig. 3: Suboptimality of the distributed controller learned by Algorithm 1 for a network of N homogeneous plants with path-
graphs structures in (a) and (b), and with random 3-regular graphs structures in (c) and (d).

problem parameters as in (3)—but for the completed subgraph
G learn— results in the (A, B, Q,R) parameters as defined
in Theorem 2. Then, similarly from (1) the dynamics of the
subgraph Gg jcarn assumes the form,

it+1 = Ait + Bﬁt, (4)
where x; and u; are formed from concatenation of state and
control signals in Gg jcarn—rtecall that G, is also denoted by
Policy (Vg, 1ear )|¢ in the algorithm to emphasize the temporal
implementation of a specific policy in Algorithm 2. From
the Bellman equation [61] for the LQR problem with these
parameters, the cost matrix Py of Ggjearn is correlated with
the one-step LQR cost as,

&)

where R(%X;, ;) = X]Q%, + aJRi, and P}, satisfies the
Lyapunov equation,

P, = (A + BK;) Py (A + BK;) + Q + KIRK;, (6)

)N(;rPk)NCt = R(f(u ﬁt) + i;r+1Pk)~(t+17

and I~{k is the controller policy at iteration k. The dynamic
programming solution to the LQR problem suggests a linear
feedback form @, = KX, for the subsystem Gg jearn at each
iteration. Combining (4) and (5) with some rearrangements
result in

Q+ATP,LA ATP,B

NTf) s _ 5T + ALY, Feb |
TERXETZ BTP,A R+ BTPB|
o Hen Hiliz| - e -
=z [~k o Z: =z ] Hpzy,  (7)
! LHk]m [Hpl|

where z; = [X] @]]T. Then, the following policy update (due

to Hewer) is guaranteed to converge to the optimal LQR policy
under controllability assumption [21]:

~ ~ o~ o~ ~\—1 . - - ~ ~
K1 = - (R+BTPB)  BTPLA = —[HyJ3 [Hilan,
3

which is also reconstructed by information in H,,. Further-
more, the cost matrix in (6) can also be reconstructed by the

same information:
Py = [Hil11 + [Hp12Ke + KL [Hylo1 + K] [Hil22Kg.  (9)

Hence, Hj, provides the required information to perform
both policy update (8) and policy evaluation steps (9) in a

policy iteration algorithm. We will see that because of the
particular structure of our setup, Hj enjoys a special block
pattern captured by the proposed Patterned monoid, justifying
the recovery of the block matrices Xy, X, Y7, Y2, Z1, and
Z> from Hy, in line 11 of D2SPIL. D2SPI leverages this idea to
implicitly learn H;, from data (by adapting the idea of [19])
and exploit these matrix blocks in order to find an efficient
suboptimal solution to the main distributed problem in (3).

Here, in addition to the policy update from data as in (8),
we show that the same information can be used to also learn a
gain margin directly from data (see Proposition 3). This gain
margin is then used to guarantee the stability of the entire
network (see Theorem 1).

Finally, for technical reasons, recall that the infinite-horizon
state-feedback LQR problem with parameters (A, B, Q, R)
can be cast as the minimization of

fg(K) = tr [PKE] (10)

over the static stabilizing policy K, for some initial state
distribution with covariance ¥ = 0, where Pg is cost matrix
associated with K satisfying the following Lyapunov equation
[16], [17], [62]:

Px = (A+ BK)TPg(A+ BK) + Q + KTRK.
K).

Herein, we set 3 = I and consider fi(

B. Technical Observations and Main Proofs

In the remainder of this section, we first restate some well-
known technical facts to make the paper self-contained, and
then propose a few additional algebraic facts for our analysis
whose proofs are deferred to Appendix II. We then continue
with the proof of the main results.

Lemma 1: The following relations hold:

1) ([63]) When X > 0,

1
MTXN + NTXM = —(aMTXM + ~NTXN),
a

1
MTXN +NTXM < aMTXM + ~NTXN,
a

where M, N € R™"*™ with n > m and a > 0.
2) ([64, Lyapunov Equation]) Suppose that A € R™*™ has
spectral radius less than 1, i.e., p(A) < 1. Then ATXA+Q —
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X = 0 has a unique solution, X = 3> (AT)?QA’. In this
case, if Q) > 0, then X > 0.

3) ([63, Block matrix inverse forluma (0.8.5.6)]) The fol-
lowing identity holds for matrices A, B, C, and D with

compatible dimensions,

A B!
C D -
where D and H = A — BD~1C are invertible.

4) (Matrix Inversion Lemma [65]) The following identity
holds,

~H'BD™!
D'+ D 'CH-'BD!

H71
D 'CH!

(A+Ucv)t=At— A"\ U(Ct+vATlU) VAT,

for matrices A, U, C, and V with compatible dimensions
where A, C, and A + UCYV are invertible.

Finally, we provide the main technical lemma that stream-
lines the properties of the Patterned monoid under algebraic
manipulation which will be frequently used in the proofs of
Proposition 2 and Theorem 2.

Lemma 2: Suppose N, € PM(r x n,R) for some n and
r>2suchthat N, =1, ®(A—B)+1,17®B, for some A €
GL(n,R) N S"*™ and B € S™*". Then the following hold:

1) det(N,.) = det(A — B)""'det(A + (r — 1)B).

2) If N, > 0, then we have A+ ({ —1)B > 0 for all
¢=0,1,---,r. Furthermore, A — /(B (A+ ({ —1)B) "' Bis
invertible for £ =1,2,--- ,r — 1.

3) If N,. = 0, then N1 € PM(r x n,R); in fact,

N,'=L®(F+G,) - 11l ®G,,

with F,. and G, defined as,
F.=(A—(r—1)B(A+ (r—2)B)
G,=(A+(r—1)B) 'B(A-B)"".

4) If also M, € L(r x n,R), i.e. M, =1, ® (C — D) +
1,1T ® D for some C,D € R"*" then,

—1 1

B) 7,

N,M, =1,® (A - B)(C — D)
+ 1,17 @ (B(C - D) + (A~ B)D+rBD).

1) Proof of Proposition 1: For any Schur stable matrix A,
and any symmetric positive definite matrix () there exists a
unique positive definite solution P to the discrete Lyapunov
equation described by P = 37 ((AT)’QA’ (Lemma 1.2).
Note, that PM(r x n,R) C S™ N L(r x n,R) by
construction. Therefore, since PM(r x n,R) is a monoid
and L(r x n,R) closed under matrix multiplication by
Lemma 2, each summand falls in L(r x n,R) whenever
Q € PM(r x n,R). Also, as the infinite sum preserves the
structure, P € L(r x n,R). To show that P € PM(r x n,R)
it now suffices to note that P > 0 whenever () > 0 because
then every principle submatrix of P has to be positive definite
and thus invertible. Conversely, if P € PM(r x n,R), then
QQ = P — ATPAT also must lie in PM(r x n,R) as @ > 0.
This completes the proof. (]

2) Proof of Proposition 2: At iteration k of the learning
phase in Algorithm 1, the first claim is a direct conse-
quence of the structure of G jearn during the learning phase,
where Gy jearn = K (Gq) and hence u; = (Kj — Li)x; +
Ly, EjGng e i for all i € Vg, ,.,...» Which, in turn, results

inu; = kat with Kk as claimed. The stability of the policy
K, for the pair (A B) throughout the learning phase is then
argued in Section I-B.5 under Assumption 1.

Next, the cost matrix Pk associated with Kk satisfies the
Lyapunov equation (6). We can verify that A + BKk € L(dx
n, R) which is also Schur stable, and Q—i—KTRKk € PM(d x
n,R). Thus, by Proposition 1, we conclude that P, € PM(d x
n,R). So, let

P,=1;® (P —P)+ 11T ® P, (11)
for some Pp,P;. Note that Kj, is stabilizing and Q +
K]/RK; > 0, therefore P, >~ 0 from (6). But then, by
Lemma 2.Item 2 and the structure of f’k from (11), we claim
that APy := P; — P, > 0. Next, one can also verify that

=14 ® (AL, (APy)Ark,) + 117 @ (%),
Q+KIRK,
=I;® (Qd + (AKk)TR(AKk)) + 117 ® (%),
where AKy, = Ky — Ly, Aak, = A+ B(AKy), Qq =

Q1+ dQ3, and (*) is hiding extra terms. But then, by (6) and
(11) we obtain that A P, must satisfy:

AP, = ALk, (APy)Aak, +Qa + AKJRAKy,  (12)

which itself is a Lyapunov equation. Finally, since
Q4 + AK]RAK, > 0 and AP, > 0, by Lyapunov
Stability Criterion we conclude that Aag, is Schur stable.
This completes the proof. (]

3) Proof of Proposition 3: Define the Lyapunov candidate
function Vi (x;) = &] APy, with AP, > 0 as in (12) and
where x; contains the states of the closed-loop system x;y =
(A + B(K), — aLk))wt for some scalar «. We show that for
the given choice of «, Vj is decreasing. We define

AVi(xt) = Vi(Ti1) — V() = 2{ T,

where

Iy = (AAK,‘; + (1 — O()Lk)T AP, (AAKk, + (1 — Oz)Lk) — AP

Suppose « < 1, then from (12),

—(Qua+ AKTRAKy) + (1 — o) LI BTAP,BLy,
+ (1 — Oé) (ATAKkAPkBLk + LTBTAPkAAKk)

< —(Qa+ AKJRAKy) + (1 — @)’LIBTAP,BLy,

+ (1 (aATAK APkAAKk (l/a)LZBTAPkBLk)
— (Qa+ AKJRAK}) + (1 — a)aA] i, AP Ank,
(

+(1—a)(1/a+1—a)L]BTAP.BL;
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where the inequality holds for any a > 0 due to Lemma 1.
Let 3 = (1 — «)/2 and choose a = (3 + /3% + 1. Then,
(1/a4+1—«a) = a and thus

Amax (Tk) < —Amin [Qq + AK] RAK) ]+
(1 — @)aAmax [ATAKk APy Aak, + LZBTAP;CBL;C]
Now, using the parameters (13) constructing the blocks of (7),
we obtain
LIBTAP,BL =L} (AY — R)Ly,
Al g, APy Apr, =AX — Qa+ AKJAZ + AZTAK},
+ AK,I(AY — R)AK;~C = Zp.

and

Thus, the latter bound can be obtained completely from data
as

)\max(rkr) S ((1 - a)a - ’Yk) /\max [Ek: + LZ(AY - R)Lk]
with
Yk = )\min [Qd + AK}IRAKI@] /)\max [Ek + LZ<AY - R)Lk} 3

which coincides with updates in Line 13 of Algorithm 1.
Finally, from the hypothesis 1 — 7, < o < 1 with 7, =
72 /(1 + ), we obtain that 77 — 432y, — 4% > 0. But,

since 7y > 0, this second-order term in -y, is positive only if

e > 282426V +1=28B+V/B2+1)=(1-a)a.

Therefore, AVi(x:) < 0 for 1 — 7, < a < 1. Similar
reasoning for 1 < o < 1+ 74 also shows that AV (x;) < 0
which completes the proof. |

4) Proof of Theorem 1: From Definition 1 (according to a
consistent choice of labeling of the nodes so that the last d
nodes are chosen as G;) and Proposition 2, the feedback policy
in line 9 of Algorithm 1 can be cast in the compact form,

: _ POhCyk (Vg\gd,leam )
Policr, () = | o (e

Ko, Lo, [Statek(Vg\gd,leam)]
0 Rk Statey, (ng,learn)

=: K, Statey(G),

where i;g\gd = %[Aghz ® Ly, f{k =1, (Kr — L) +
141} ® Ly, Kg\g, =In_a® Kj — (IN—d - %AQ\QJ ®
Ly, Ag denotes the adjacency matrix of G, and [Ag]12 is its
submatrix capturing the interconnection of G \ G4 and G4:

Ag = {Ag\gd [Aghz} _

* Agd

Note that the structure of Kk emanates from the fact that
the information exchange is unidirectional during the learning
phase. Now consider the closed-loop system of G,

Ag‘d = A + BKk

. In_a® A+ (IN,d(X)B)Kg\gd (IN,d@B)fJg\gd
B 0 Ag. ’

where _/Nkﬁk = A+ ]§I~{k is the closed-loop system of Gg.
Define S = In_aq — 7%7Ag\g, and let J be the Jordan
form of S according to the similarity transformation 7 €
RN=dx(N=d) guch that 757 ' = J. Now consider the
following similarity transformation of Ag|d,

T®l, 0 . Tol, 0 |
{0 Id®1n] (Ag‘d“ 0 Id®1n]

B IN_d(X)(A—i—BKk) —J® BLg X
= 0 Ag, |-

Note that Iy_q ® (A + BK;) — J ® BL; is a block
upper triangular matrix whose diagonal blocks are equal to
A+ B(Ky — Ai(S)Ly) for i = 1,--- , N — d. We already
know from Proposition 2 that Af{k is Schur stable. Hence, in
order to show that Ag|d is Schur stable, it suffices to show
that p(A+ B(K —XN(S)L)) < 1 for¢ = 1,--- ,N —d.
Recall that |\;(Ag)| < dmax [66], thus by definition of S and
the fact that dp,.x = d— 1, we conclude that |\;(S) — 1] < 7.
The claim now follows directly from Proposition 3. (|

5) Proof of Theorem 2: At iteration k of the learning phase
in Algorithm 1, consider Hy, and its corresponding blocks as
defined in (7). First, we consider the structure of the stabilizing
feedback policy Ky as shown in Proposition 2, together with
that of system parameters (A, B, Q, R), and apply Lemma 2
and Proposition 1 to conclude that [Hy]11, [Hg]22 € PM(d x
n,R) and [Hg]o1 € L(d x n,R). Thus, we get

[ﬁk]n =1 ® (X1 — Xa) + 117 ® X,
[ﬁk]zz =1;® (Y1 —Y2) + 11T ® Vs,
[ﬁk]m =14® (Z1 — Z2) + 117 ® Zo,

which coincides with the recovery of X;,Y; and Z, fori = 1,2
in Line 11 of Algorithm 1. We can also unravel the structure
of block matrices constructing Hj, and obtain that

X1 =Q1+(d-1)Q2+ATPIA, Y, =BTP,B,

Xo=—Q2+ ATRA, Z1 = BTP A,

Y. = R+ BTP,B, 7y = BTPA,
(13)

with P; and P, as in (11). Similarly, by Lemma 2, we obtain
Hylp =L (F-G)+11T® G,
where (by Lemma 2 Item 3) F' and G must satisfy
Fl=Yi— (d- 1)Ya(Y1 + (d—2)Y2) 'Yz,
G = (Y1 (d— 1)Y2) v, (Y1 - Yg) -

which coincides with the definitions in Line 12 of Al-
gorithm 1. Finally, by definition of Kji; and Lgi1 in
Line 12 and Lemma 2 Item 4, one can verify that Ky 1 =
—[Hy)55 [Hy]o1, which coincides with the policy iteration in
the Hewer’s algorithm [21] for the system in G4 jeam (see also
Section I-A). Note that by assumption the pair (A, B) is con-
trollable, so is the system (A, B) in Gy jearn. Therefore, these
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updates are guaranteed to remain stabilizing and converge to
the claimed optimal LQR policy K* provided that we have
access to the true parameters Hk.~

Next, consider LQR cost fi(K) as in (10) but for the
problem parameters (A, B, Q,R). For completing the proof
of convergence, it is left to argue that there exists a large
enough integer C' such that, at each iteration k of the learning
phase, the recursive least square in Algorithm 2 provides a
more accurate estimation, denoted by 65, of the true param-
eters 0, = vech(Hy), and the LQR cost fi(K) = tr(P )
decreases. This claim essentially follows by [19, Theorem
1] which we try to summarize for completeness. For that,
at iteration k, let us denote the policy obtained using the
estimated parameters by KZ which in turn estimates the true
policy Kk We then define a “Lyapunov” function candidate

sk= fiKR_y) + [[0—2 — 672

Following the same induction reasoning as that of [19, The-
orem 1] and under persistently exciting input, there exists an
integer C' such that

=~ = 2
)| — K5 [,

Sk+1 = Sk — 61(C)||9k_1 — 02_1” — 62(

for some positive constants €1(C) and ¢;(C) that are inde-
pendent of k. But then, s;; < s, and

(o ~ 2
ZHkaKz_ln < s1.
k=2

e1(C) D ||0k—1 — 631 || < 513 €2(C)

k=2

Also, s1 is bounded as K stabilizes (A, B). This guarantees
that, first, IN{Z remains stabilizing as fI(f(z,l) < sg and
Q = 0; second, the estimates 07 _; become more accurate;
and third, IN(Z - K* as IN{kH S K*atk — oo [21]. This
completes the proof. (]

6) Proof of Theorem 3: Consider the LQR cost fi(K) as
in (10) but for the problem parameters (A,B,Q,R) In
the “unstructured” case (i.e. ignoring the constraint K &
uﬁ,n(g )), we know that the optimal LQR cost matrix for the
entire networked system satisfies [67],

P, = A qurAK +K] RK;, +Q, (14

1qr
vyhere Klqr = argming fi(K). Moreover, tpe cost matrix
P*— associated with the structured policy K* learned by
Algorithm 1-satisfies

P* = AT P"Ag. +KTRK" +Q, (15)
where Ag. = A + BK* and K* ¢ uj,{n(g). Finally,
let KStruc € argming v (g) fi(K) denote a “structured”
stabilizing optimal LQR pOlle which is associated with the
cost matrix P:truc We know such a policy exists since the
smooth cost is lower-bounded and K; = Iy ® K| € Uy . (G)
is a feasible point of this optimization—as K is assumed to

be stabilizing for the single pair (A, B). Therefore,
o [Pi] = i (Kiye) < fi (Kie) < 1 (K7) = [P

where the last inequality above follows by the fact that K*isa
feasible solution to the structured problem by construction, i.e.,

N
K* € urn n

(G). Therefore, 0 < gap(K*) < tr {P* Pl*Olr

But then, one can obtain from (14), (15), and some algebraic
manipulation,

O * % T O * 5 /
P" = Pig = Ag. (P a qur)Aqur +M,
where
“ AR P AR S AL PiAg +KTRKS - Kl RKiq:.

Since P* — P* > 0 and AK is contractible by the
hypothesis, from the first part an& Theorem 1 in [68] we
obtain,

. tr(M/ tr(M
gap(K*) < ) = 5 ™M
1 — Jmax (Aqur) 1 — Umax (Aqur)
where the last equality follows by the cyclic permutation
property of trace and definition of Ag.. (]
APPENDIX Il

PROOF OF LEMMA 2

First, we show that the following algebraic identities hold
which will be used in the proof of Lemma 2.

Lemma 3: Suppose A and B are symmetric matrices such
that A, A— B, and A+ (n — 1)B are all invertible for some
integer n. Then the following relations hold:

) (A+nB)(A+(n—1)B) ' (A-B) = A—nB(A+
(n—1)B)"'B.

2) (A+nB)(A+(n-1)B) ' (A-B)=(A-B)(A+
(n-1)B)"'(A+nB).

3) (A+nB)(A—B)"'B=B(A-B) ' (A+nB).

Proof: These claims follow by the algebraic manipulations
below: First,

(A+nB)(A+(n—-1)B)" ' (A-B)
~((A+(m=-1B) +B)(4+(n-1)B)" (4~ B)
=(1+B(A+(n-1)B) ") (A~ B)
—A-B+B(A+(n-1)B)""
—A+B((A+m-1)B) T A-1)
—A+ B(A+(n— 1)3)*1(14_ (A+(n— 1)3))

~B(A+((-1)B)'B

A-B(A+(n—-1)B)"'B

~B(A+(n-1)B)"'B

-1

—A—(n—1)B(A+(n—1)B) 'B—B(A+ (n—1)B)
=A—nB(A+(n—1)B)"'B.

Second,

(A+nB)(A+ (n—1)B)"'(A- B)
=-n(A-B)(A+(n-1)B)" ( B)
+(n+1)AA+ (n—-1)B)" (A B)
——n(A-B)(A+(n—1)B) ' (A-B)
+(n+1)(I+(n-1)BA™) (A= B)
=—n(A-B)(A+(n—-1)B) ' (A-B)

+ (A~ B)((L+(n-1)BA)(A-B)) (A~ B)
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=—n(A-B)(A+(n—1)B) ' (A-B)
+(n+1)(A-B)((A-B) 1+
——n(A-B)(A+(n—1)B) ' (A- B)
+(n+1)(A-=B)(A+(n—-1)B) 4
=(A=B)(A+(n—1)B)" (A+nB).

(n—1)A

B)) (A~ B)

Finally,

(A+nB)(A-B)"'B

=(A-B+(n+1)B)(A-B) B
=(I+(n+1)B(A-B)"")B=B(I+ (n+1)(A—B)"'B)
— B(A-B) ' (A+nB). O
Proof of Lemma 2: Part 1) We prove the claim by induction.
First, note that both N, and its principle submatrix A are
invertible. For » = 2, by Schur complement of N2, we get

det(Ny) = det(A)det(A — BA™'B)
= det(A)det(I — BA™ ') det(I+ BA~

= det(A — B) det(A + B).

Dy det(A)

Now, suppose the claim holds for » = p. Then, for r = p+1,
similarly by Schur complement we get
det(Np41) = det(A) det (N, — 11T ® BA™'B)
= det(A) det(A — B)P~*
~det (A—BA™'B+ (p—
= det(A)det(A — B)P~1
-det (A — B+ pBA~'(A - B)),
= det(A) det(A — B)Pdet (I + pBA™"),
= det(A — B)P det(A + pB),

1)(B - BA™'B)),

where the second equality follows by applying the induction
hypothesis to N, — 11T ® BA™!B and some algebraic
manipulation. This completes the proof.

Part 2) From item 1 of the this lemma,
det(N, — AL ® 1)

= det(A — A — B)""'det(A— A+ (r — 1)B),

implying that the spectrum of N,. coincides with that of A— B
and A + (r — 1) B—modulo algebraic multiplicities. Hence,
N, = Oresultsin A— B > 0and A+ (r —1)B > 0. Fur-
thermore, N, > 0 if and only if its principal submatrices are
positive definite. So, by applying the latter result to principal
submatrices, we claim that A+ /¢B =0 for £ =0,--- ,r — 2.
Lastly, from item 1 of Lemma 3, for { = 1,--- ,7—1 we have

A—(B(A+(t-1)B)"'B

= (A+(B)(A+ (¢ -1)B)" (A - B),
which, by the first part of this claim, is invertible as a
multiplication of invertible matrices.

3) Since N, and A are invertible, the Schur complement
N, 1 — L.y A7'LT_| is also invertible where L, ; =

1,_1 ® B. We prove the claim by induction on r. For r = 2,
by [63, Block matrix inverse forluma (0.8.5.6)],

H! —~H 'BA™!
—AT'BH™' A™'+ A7'BH'BAT']’
where H = A — BA™!'B is the Schur complement of
A. By [63, Woodbury inversion formula (0.7.4.1)], H~! =
A' + A-'BH'BA~!, establishing the recurrence of di-
agonal blocks. Also, Ny is symmetric, so is N ! and thus

establishing that Ny € PM(2 X n,R). Now, from item 1 in
Lemma 3 with n = 1, we get that

A'BH ' = A'B(A-B) 'A(A+B)"

:A_lB(A-i-B) "A(A - )

— A'B(1+A47'B)'(A-B)""

= ([-(1+A7'B)")(A-B) ' =Ga,
AA+ BT = (A4
! derived from Lemma 3 item 2. Hence,
'BATY).

Assume that the claim holds for » = p. To extend the result
to 7 = p + 1, again by [63, Block matrix inverse forluma
(0.8.5.6)] and [63, Woodbury inversion formula (0.7.4.1)],

- A 3™ P! ~P'LIN, !
Nyi=|p N TN, P! )
P D p Lo

(N, — L,A"'L,)~
where P = A — L;N;le and L, = 1, ® B. Let N;l =

L, ® (Fp + Gp) — ]lp]lg ® G, where,
_ -1
F, = (A —(p—1)B(A+ (p—2)B) 13) ,
Gy=(A+(p-1)B)'B(A-B)",
where the inversions are valid from item 2 of the current
Lemma. By simplification we get P = A — pB (Fp —(p—
I)GP)B and from Lemma 3 items 1 and 2 for n = p — 1,

N;! =

where we also used (A - B)
B) 'A(A-B)~
N'=Le(H '+H 'BA™") - 1,1]® (H™

Fy=(p=1)Gy= (A= (p-1)B(A+ (p-2)B) 'B)
~(p-1)(A+(p-1B) 'B(A-B)"
=(A+(@-1)B) (A+(p-2)B)(A-B)"
—(p-1(A+(p-1)B) 'B(A-B)""
=(A+@-1)B)",

where the first term in the right hand side of the first equation
undergoes Item 1 and Item 2 in Lemma 3, consecutively. And,
the last equality follows by a direct simplification. The latter
established equality results in P = A—pB (A+(p 1)B) 'B.
Next, considering the off-diagonal blocks of Np 1> with some
simplification, each block of P~'LIN-' is equivalent to
P~'B(F,—(p—1)G)) and using the prev10us reasoning and
Lemma 3 it can be simplified to,

P'B(F, — (p— 1)Gy)

=P 'B(A+(p-1)B)"
= (A+pB)"'(A+(p-1)B)(A-B)
= (A+pB) 'B(A-B) .

1

—1 1

B(A+ (p— 1)B)7
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Similarly, each block of N 1L,P~! is also equal to (A +

(p—

1)B) 'B (A — B) - Therefore, it only remains to show

that the blocks of (Np — LpA’le) -1 are consistent with the
desired pattern in N;il. Note that N, — L,A~'L, = I® (A—

B)
we

is (A+pB) ' (A+(p—1)B) (A-B)

+11T® (B — BAle). Hence, with some algebraic rigor
can show that each diagonal term of (N, — L,A~*L,)~!
" and each off-diagonal

becomes —(A + pB)B(A — B) - Hence,

Nyt =1® (Fpp1 + Gpp1) = 117Gy,

with Fj,y; and G, defined as,

Fpi1=(A+pB) " (A+(-1)B)(A-B)™"

Gpi1= (A+pB)B(A—B)™".

4)With direct multiplication and using the mixed-product
property of Kronecker products,

N,M, =I, ® (A— B)(C - D) + 1,17 ® B(C — D)
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