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Abstract— In this paper, we consider direct policy optimization
for the linear-quadratic Gaussian (LQG) setting. Over the past
few years, it has been recognized that the landscape of stabilizing
output-feedback controllers of relevance to LQG has an intricate
geometry, particularly as it pertains to the existence of spurious
stationary points. In order to address such challenges, in this
paper, we first adopt a Riemannian metric for the space of
stabilizing full-order minimal output-feedback controllers. We
then proceed to prove that the orbit space of such controllers
modulo coordinate transformation admits a Riemannian quotient
manifold structure. This geometric structure is then used to
develop a Riemannian gradient descent for the direct LQG
policy optimization. We prove a local convergence guarantee with
linear rate and show the proposed approach exhibits significantly
faster and more robust numerical performance as compared
with ordinary gradient descent for LQG. Subsequently, we
provide reasons for this observed behavior; in particular, we
argue that optimizing over the orbit space of controllers is the
right theoretical and computational setup for direct LQG policy
optimization.

I. INTRODUCTION

Direct policy optimization (PO) synthesizes controllers by
formalizing constrained optimization problems over controller
parameters rather than solving for value functions or Lyapunov
certificates using matrix inequalities. In recent years, PO
has been shown to be an effective first order procedure for
a number of feedback synthesis problems, while providing
a natural bridge between control synthesis and data-driven
methods and learning.

In the PO setting, design problems such as LQR, LQG, H∞
subject to H2 or H∞ constraints [1], [2], are first formalized in
terms of the corresponding feedback parameters; subsequently,
some variants of first order methods are adopted to update
these parameters with the goal of at least a local convergence
guarantees. Such a “direct” synthesis procedure has let to the
need for a deeper analysis of the control objectives in relation
to the space of controllers [3], [4]. A primary example of such
a perspective is the observation that when LQR is written
directly in terms of the control parameters, it is gradient-
dominant, allowing gradient descent to have a linear rate of
convergence for its solution.

In the context of PO–as it turns out–LQG has a more
intricate landscape as compared with the LQR [5], hindering a
straight forward adoption of first order methods for LQR for its
solution. In fact, to our knowledge, there are no local conver-
gence guarantees for LQG. There are a number of reasons for
this. First, the domain of output-feedback controllers similar
to the case of state feedback are non-convex. However, as
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opposed to the LQR case, the LQG cost admits strict and non-
strict saddle points. Furthermore, the coordinate-invariance of
LQG implies that each stationary point lies within an orbit of
stationary points. Moreover, some systems admit degenerate
LQG controllers, hence greatly impacting the convergence rate
for optimization algorithms. In fact, the LQG controller can
be non-minimal and have small stability margins [6]. Last, the
search space of full-order controllers is large with n2+nm+np
dimensions, where n, m, and p are the dimensions of the state,
control, and output, respectively.

In this paper, we present a geometric approach for resolving
many of these issues; the key ingredient is framing PO for
LQG over the Riemannian quotient manifold of full-order min-
imal controllers modulo coordinate transformation. Equipping
a search space with a Riemannian metric for optimization is
a popular technique in controls and machine learning [7]–[9].
We prove this setup is well-defined and show how to perform
Riemannian gradient descent (RGD). We show this technique
is far faster than GD and performs well at avoiding saddle
points, and we present a proof of local convergence.

Although PO for control synthesis is a relatively recent
research direction, our work benefits from tools historically de-
veloped in geometric system theory pertaining to orbit spaces
of linear systems. In fact, examining such orbits was initiated
by Kalman and Hazewinkel in the early 1970s [10], [11] for
system identification. In this paper, we show that these tools
are rather powerful for PO and data driven control since the
set of output-feedback controllers is a family of linear systems.
In the meantime, optimization over the geometry induced by
orbits of linear (dynamic) controllers comes hand in hand with
a number of technical issues that are addressed in this work.
For a brief modern survey of geometric system theory, we
recommend [12], as well as the older references [13], [14]
that examine a broader set topics in this discipline.

The outline of the paper is as follows. In §II, we introduce
notation and mathematical background. In §III, we present
the main algorithm, its implementation details, and discuss
why it has superior performance over gradient descent (GD).
In §IV, we delve into the theoretical setup for the proposed
algorithm followed by its convergence analysis in §V. In §VI,
we compare the performance of our algorithm with ordinary
GD adopted for LQG PO for various examples. Lastly, §VII,
future directions for research are discussed.

II. PRELIMINARIES

Consider the continuous-time linear system,

ẋ(t) = Ax(t) +Bu(t) + w(t), y(t) = Cx(t) + v(t), (1)
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as our plant model, where the process w(.) and measure-
ment v(.) noise terms are zero-mean Gaussian with covariance
matrices W ∈ S+

n (positive semidefinite) and V ∈ S++
p

(positive definite), respectively. We also assume (A,B) and
(A,W 1/2) are controllable and (A,C) is observable. An
output-feedback controller of order 1 ≤ q ≤ n for this plant
is now parameterized as,

ξ̇(t) = AKξ(t) +BKy(t), u(t) = CKξ(t), (2)

where AK ∈ Rq×q , BK ∈ Rq×p and CK ∈ Rm×q . Let C̃q
be the set of all such qth-order output-feedback controllers,
represented as

K =

[
0m×p CK

BK AK

]
∈ R(m+q)×(p+q) (3)

Now, let Jq : C̃q → R be the LQG cost for qth-order
controllers, with Q ∈ S+

n and R ∈ S++
m as the state and

control cost matrices. We assume that (A,Q1/2) is observable.
In order to examine output-feedback synthesis, we first

consider the combined plant/controller closed loop as,[
ẋ

ξ̇

]
=

[
A BCK

BKC AK

] [
x
ξ

]
+

[
In 0n×p

0n×n BK

] [
w
v

]
(4a)

[
y
u

]
=

[
C 0p×q

0m×n CK

] [
x
ξ

]
+

[
0p×n Ip
0n×n 0n×p

] [
w
v

]
. (4b)

The realized closed-loop system and observation matrices
are now, respectively,

Acl(K) ∈ R(n+q)×(n+q), Bcl(K) ∈ R(n+q)×(n+p),

Ccl(K) ∈ R(m+p)×(n+q), Dcl(K) ∈ R(m+p)×(n+p).

Hence, (2) is stabilizing when Acl(K) ∈ Hn+q , where Hk is
the set of k × k Hurwitz stable matrices.

Let C̃min
q be the set of minimal (i.e., controllable and

observable) qth-order output-feedback controllers. Our first
observation is as follows.

Lemma 2.1: C̃min
q ⊂

op
C̃q and C̃min

q is a generic subset of C̃q .

We will see an elegant interaction between C̃min
q and C̃q in the

context of PO subsequently. A key construct for our geometric
approach is the Lyapunov operator L(A,Q), mapping A ∈ Hk

and Q ∈ S+
k to the unique solution of AP + PA⊺ = −Q. In

fact, defining the maps

Qcl(K) :=

[
Q 0n×q

0q×n C⊺
KRCK

]
, (5a)

Wcl(K) :=

[
W 0n×q

0q×n BKV B⊺
K

]
, (5b)

X(K) := L (Acl(K),Wcl(K)) , (5c)

on C̃q , facilitate recognizing that Jq(K) = tr (Qcl(K)X(K))
is the LQG cost. We note that the Euclidean gradient and
Hessian of Jq have been computed in [5].

A. Riemannian Geometry

We recommend [15], [16] for optimization-oriented ref-
erences to Riemannian manifolds. More comprehensive re-
sources on Riemannian geometry can be found in [17]–[19].

Let M ⊂ RN be a smooth manifold. A smooth curve is a
smooth function c : R → M. The tangent space at x, denoted
as TxM, is the set of the tangent vectors ċ(0) of all smooth
curves c(·) with c(0) = x. For example, as an Euclidean open
set, the tangent spaces of C̃q identifies as

TK C̃q ≡ Vq :=

{[
0m×p G
F E

]
∈ R(m+q)×(p+q)

}
.

For matrix manifolds, tangent vectors are matrices. We use
boldface letters, e.g., V, to denote such. The disjoint union of
tangent spaces is called the tangent bundle, written as TM.

Let F : M → N be a smooth function between two smooth
manifolds M and N . The differential dFx : TxM → TF (x)N
of F at x along v ∈ TxM is the linear mapping defined as

dFx(v) :=
d

dt

∣∣∣
t=0

(F ◦ c)(t),

where c(·) is any smooth curve satisfying c(0) = x and ċ(0) =
v. For example, the differential of the Lyapunov operator L
is,

dL(A,Q)(V,W) = L(A,VL(A,Q) + L(A,Q)V⊺ +W).

When the differential dFx(.) is independent of x, we will drop
|x and simply write dF (.).

A Riemannian metric is a smooth state-dependent inner
product ⟨., .⟩x : TxM × TxM → R. Given open U ⊂ M,
a local frame is a set of linearly independent vector fields
(Ei : U → TM)dimM

i=1 . The coordinates G(x) ∈ S++
n of the

metric at x ∈ U are

Gij(x) = ⟨Ei|x,Ej |x⟩x. (6)

With Gij := (G−1)ij , the gradient of f : M → R at x is,

∇f(x) =
n∑

i=1

n∑
j=1

Gij(x)dfx(Ei|x)Ej |x. (7)

We will denote the Euclidean gradient as gradf and the
Riemannian gradient as ∇f ; similarly, Hess f and ∇2f for
the corresponding Hessians.

A retraction is a smooth mapping R : S ⊂ TM → M
where S is open, (x, 0x) ∈ S for all x, and the curve
c(t) := Rx(tv) ≡ R(x, tv) satisfies c(0) = x and ċ(0) = v
for each (x, v) ∈ S . Retractions are the central constructs in
Riemannian optimization. When M ⊂ Vn, one can use the
Euclidean metric and retraction:

⟨V,W⟩K := tr(V⊺W), RK(V) := K +V. (8)

When S = TM, we enjoy an abundance of local convergence
guarantees for first-order optimizers. Care must be taken for
convergence proofs when S ⊊ TM [20, Remark 2.2].

With these basic ingredients of Riemannian optimization in
place, the Riemannian Gradient Descent (RGD) of f under
(⟨., .⟩,R) is defined as,

xt+1 := Rxt(−st∇f(xt)), (9)



x1

x2
−∇f(x1)−∇f(x2)

Tx1
M

Tx2M

M

Fig. 1. Visualization of RGD. Here, x2 = Rx1 (−s1∇f(x1))

where st ≥ 0 is a chosen step-size. Figure 1 is a visual
depiction of the RGD procedure.

III. OUR ALGORITHM

In this section, we introduce our proposed first-order op-
timizer for LQG. Algorithm 1 is RGD over the domain of
C̃min
n . The optimizer uses the Euclidean retraction and the

Riemannian metric defined in §III-A. We optimize over C̃min
n

instead of C̃n for two reasons. First, the orbit space of C̃min
n

modulo coordinate transformation admits a quotient manifold
structure. This is not the case for C̃n. Second, the metric is
coordinate-invariant, and so RGD over the (n2 + nm + np)-
dimensional Riemannian manifold C̃min

n coincides with RGD
over the much smaller (nm + np)-dimensional Riemannian
quotient manifold. This will be explained in detail in §IV.

Algorithm 1 Riemannian Gradient Descent
Require: K0 ∈ C̃min

n , ϵ > 0, T ∈ N, st ≥ 0
K ← K0, t← 0
while t ≤ T and ∥∇Jn(K)∥K ≥ ϵ do

K ← K − st∇Jn(K)
t← t+ 1

return K

A few remarks are in order. In the case where K+ =
RK(−s∇Jn(K)) is non-stabilizing, one has to choose a small
enough st in Algorithm 1; analogously, when K+ is non-
minimal, one can perturb the step direction (Lemma 2.1). Next,
∇Jn(K) is computed via (6) and (7) in each iteration1. In this
context, the global frame (Ei)

N
i=1, where N = n2+nm+np,

can simply be a fixed basis of Vn. Lastly, the differential of
the LQG cost is,

dJn|K(V) = tr (dQcl|K(V)X(K) +Qcl(K)dXK(V)) ,

where

dQcl|K(V) =

[
0n×n 0n×n

0n×n G⊺RCK + C⊺
KRG

]
dWcl|K(V) =

[
0n×n 0n×n

0n×n FV B⊺
K +BKV F ⊺

]
dXK(V) = dL(Acl(K),Wcl(K))(dAcl(V), dWcl|K(V)).

A. Krishnaprasad-Martin Metric
Let K ∈ C̃min

n and V ∈ Vn be a tangent vector. Define the
mappings

Ê(V) := dAcl(V) =

[
0n×n BG
FC E

]
1One can use Cholesky decomposition to reduce per-iteration time.

F̂(V) := dBcl(V) =

[
0n×n 0n×p

0n×n F

]
Ĝ(V) := dCcl(V) =

[
0p×n 0p×n

0m×n G

]
.

Next, let Wc(K) and Wo(K) denote the controllability and
observability Grammians of (Acl(K), Bcl(K), Ccl(K)). Con-
sider now the following Riemannian metric,

⟨V1,V2⟩KM
K :=w1tr[Wo(K) · Ê(V1) · Wc(K) · Ê(V2)

⊺] (10a)

+ w2tr[F̂(V1)
⊺ · Wo(K) · F̂(V2)] (10b)

+ w3tr[Ĝ(V1) · Wc(K) · Ĝ(V2)
⊺], (10c)

where w1 > 0, w2, w3 ≥ 0 are constants.
This metric was derived from a similar setup in [21], [22].

In literature, the original metric is called the Krishnaprasad-
Martin (KM) metric [12]. Although we have slightly aug-
mented the original metric, we will keep the original termi-
nology.

B. Limitation of gradient descent on LQG landscape

For S ∈ GL(q) (invertible q × q matrices), define the
diffeomorphism TS : C̃n → C̃n:

TS(K) =

[
0m×p CKS−1

SBK SAKS−1

]
. (11)

We call (11) a coordinate transformation. Abusing notation,
we have dTS(V) = TS(V) since (11) is linear.

A function F on C̃q×Vq is called coordinate-invariant when,

F(K,V) = F(TS(K), dTS(V)). (12)

A function F : C̃q × Vn → Vn is coordinate-equivariant if

F(TS(K), dTS(V)) = TS(F(K,V)).

We can now discuss the limitations of GD over Jn. Take
note that the GD procedure lacks coordinate-equivariance.
This is due to the fact that the Euclidean metric, despite
its simplicity, is not coordinate-invariant. As such, GD has
to search through dim(GL(n)) = n2 redundant dimensions.
Furthermore, if we initialize K0 ∈ C̃n with particularly “bad”
coordinates, one ends up with a large value of ∥K0∥F ; in that
case, ∥gradJn(K)∥F will also be large. Such ill-conditioned
coordinates in turn result in numerical instabilities. These two
issues are resolved however when the metric is coordinate-
invariant and retraction is coordinate-equivariant.

C. Coordinate-invariance of the KM Metric

In this section, we will prove the above mentioned proper-
ties of the KM metric.

Lemma 3.1: For the system (A,B,C) in (1) and K ∈ C̃min
q ,

we have (Acl(K), Bcl(K), Ccl(K)) is minimal.
Proof: The proof involves using the Popov-Belevitch-

Hautus (PBH) test to verify the controllability and observabil-
ity of (Acl(K), Bcl(K), Ccl(K)) and omitted for brevity.

Theorem 3.2: The mapping defined in (10) is a Riemannian
metric and coordinate-invariant.

Proof: It is clear that for any K, the mapping ⟨., .⟩KM
K is

smooth, bi-linear, and symmetric. It thus suffices to show that



this map is positive-definite. Since Acl(K) ∈ H2n, it follows
that,

Wc(K) = L(Acl(K), Bcl(K)Bcl(K)⊺), (13a)
Wo(K) = L(Acl(K)⊺, Ccl(K)⊺Ccl(K)). (13b)

Since the closed-loop system (Acl(K), Bcl(K), Ccl(K)) is
minimal, we have Wc(K),Wo(K) ∈ S++

2n . Hence, (10) is
positive-definite.

Now, we will show that the KM metric is coordinate-
invariant. Let S ∈ GL(n) and L := TS(K). Then

(Acl(L), Bcl(L), Ccl(L)) = TŜ(Acl(K), Bcl(K), Ccl(K)),

where Ŝ :=

[
In 0n×n

0n×n S

]
. It follows that,

Acl(L) = ŜAcl(K)Ŝ−1

Bcl(L)Bcl(L)
⊺ = ŜBcl(K)Bcl(K)Ŝ⊺

Ccl(L)
⊺Ccl(L) = Ŝ−⊺Ccl(K)⊺Ccl(K)Ŝ−1

Thereby,

Wc(L) = ŜWc(K)Ŝ⊺, Wo(L) = Ŝ−⊺Wo(K)Ŝ−1, (14)

where we have used coordinate transformation property of the
Lyapunov operator. We also have,

Ê(dTS(Vi)) = ŜÊ(Vi)Ŝ
−1 (15a)

F̂(dTS(Vi)) = ŜF̂(Vi) (15b)

Ĝ(dTS(Vi)) = Ĝ(Vi)Ŝ
−1; (15c)

now, plug (14) and (15) into (10) to conclude the proof.

IV. ORBIT SPACE OF OUTPUT-FEEDBACK CONTROLLERS

In this section, we go over key features for Riemannian
quotient manifolds of controllers. We suggest referring to
[15], [16] for the salient features of such a construction; we
highlight some of the key points of quotient manifolds next.

Let M̃ be a smooth manifold with group action G. For
example, the family of coordinate transformations {TS(.) :
S ∈ GL(q)} ≡ GL(q) is a group action over C̃q . The orbit
space of M̃ modulo G is the collection of all orbits under the
quotient topology:

M ≡ M̃/G := {[x] : x ∈ M̃}. (16)

Here, [x] = {y ∈ M̃ : ∃g ∈ G, g(x) = y} is the orbit of x.
See Figure 2 for a visual depiction. We say U ⊂ M is G-stable
if x ∈ U implies [x] ⊂ U . If M is a quotient manifold, then
dim(M) = dim(M̃)− dim(G); this is particularly desirable
for optimization due to the reduced dimension of the quotient
manifold.

Let Vx := ker dπx be the tangent space of [x] at x. Here,
dπx is the differential of the quotient map π(x) := [x]. Next,
let2 Hx := V⊥

x . Since dπx|Hx : Hx → T[x]M is a bijection,
we identify ξ ∈ T[x]M with liftx(ξ) := (dπx|Hx)

−1(ξ) ∈ Hx.
Convergence analysis of our proposed RGD procedure

involves showing Cmin
n := C̃min

n /GL(n) is a smooth quotient

2The orthogonal complement is taken with respect to the metric, not the
dot product. With C̃min

n , it does not coincide with [5, Prop. 4.2].

x1
x2 x3

x4
x5

x6

[x1] [x2] [x3] [x4] [x5] [x6]

π : M̃ → M

M̃ [x1]
[x2] [x3] [x4] [x5]

[x6]

M

Fig. 2. Illustration of a manifold and its orbit space

manifold and inherits a Riemannian metric and retraction from
the KM metric and Euclidean retraction. We state these results
and omit their proofs for brevity.

The quotient manifold structure of Cmin
n follows from the

remarkable theorem that the quotient space of minimal system
realizations Lmin

n,p,m forms a smooth quotient manifold [13].
Since Cmin

n is an open subset Lmin
n,p,m, then our claim is a

consequence of the following lemma:
Lemma 4.1: If M := M̃/G is a quotient manifold and

Ñ ⊂
op

M̃ is G-stable, then N := Ñ/G is a quotient manifold.

The inherited Riemannian structure on Cmin
n is a result of

the invariance properties of the KM metric and retraction. In
particular,

⟨ξ, η⟩KM
[K] := ⟨liftK(ξ), liftK(η)⟩KM

K (17)

R[K](ξ) := [RK(liftK(ξ))], (18)

where K ∈ C̃min
n and ξ, η ∈ T[K]Cmin

n . This is the result of the
following lemma in the general setting:

Lemma 4.2: Suppose M̃ is equipped with a G-invariant
Riemannian metric. Pick x ∈ M̃, g ∈ G, and ξ ∈ T[x]M.
Then dgx(liftx(ξ)) = liftg(x)(ξ).

Intuitively, this also implies that performing RGD over the
higher-dimensional C̃min

n coincides with its performance over
the lower-dimensional Cmin

n [15, Sect. 9.9].

V. CONVERGENCE ANALYSIS

In this section, we conduct a convergence analysis for our
algorithm. Let Jn and J̃n denote the LQG cost over Cmin

n and
C̃min
n , respectively. We make the following assumption on the

non-degeneracy of the LQG controller. We found empirically
that this property is generic among minimal LQG controllers.

Assumption 5.1: The cost J̃n admits a (minimal) global
minimum K∗ on C̃min

n with null(Hess J̃n(K
∗)) = null(dπK∗).

We now present the proof of guaranteed local convergence
of Algorithm 1 to optimality with a linear rate.

Theorem 5.2: There exists a neighborhood U ⊂ Cmin
n of

[K∗] and L > 0 such that given [K0] ∈ U , the resulting
sequence ([Kt])t≥0 via K+ = F̃ (K) := RK(− 1

L∇J̃n(K))
stays in U and converges to [K∗] at least linearly.

The key idea for this analysis is to build up the two
conditions to execute [15, Thm. 4.19]. The first condition
requires that the LQG controller is a non-degenerate global
minimum (Assumption 5.1). Non-degeneracy is a corollary
of Lemma 5.3, which establishes a relationship between the
Euclidean and Riemannian Hessians for LQG.



The second condition requires constructing a domain L0 ⊂
Cmin
n on which our RGD procedure F (.) is well-defined and

invariant. To ensure F (.) is well-defined, since our retraction
(8) is only defined on a strict subset of T C̃min

n , we rely on
a stability certificate (Lemma 5.5) for our analysis. With
this construction, we then proceed to choose our domain
sufficiently small so that F (.) is well-defined. To show that
F (.) is L0-invariant, we present convexity-like (Lemma 5.4)
and Lipschitz-like (Lemma 5.6) inequalities useful for analysis
of first-order methods adopted for smooth manifolds.

Lemma 5.3: Let gradJn(K∗) = 0 and (s−, s0, s+) be the
signature of Hess J̃n(K

∗). Then ∇Jn([K
∗]) = 0 and the

signature of ∇2Jn([K
∗]) is (s−, s0 − n2, s+).

Proof: At stationary points, the signature of the Hessian
is invariant of the Riemannian metric [15, Prop. 8.71.]. So,
∇2J̃n(K

∗) and Hess J̃n(K
∗) share the same signature. By

[15, Ex. 9.46.], the eigenvalues of ∇2J̃n(K
∗) are exactly the

eigenvalues of ∇2Jn([K
∗]) with n2 additional zeros.

Next, we demonstrate that R-balls3 about [K∗] satisfy a
strong convexity-like inequality:

Lemma 5.4: Let (M, ⟨., .⟩,R) be a Riemannian manifold.
Let f : M → R be smooth with ∇f(x∗) = 0 and ∇2f(x∗) >
0. Then there exists ρ > 0 for which ∇2f > 0 on D :=
Bx∗(ρ), and M > 0 such that D contains the unique connected
component L0 of the sublevel set L(f,M) := {y ∈ M :
f(y) ≤ M} containing x∗.

Proof: Choose small enough ρ > 0 so that D ⊂
dom(Rx∗) and ∇2f > 0 on D. By [15, Prop. 5.44],

f(Rx∗(v)) = f(x∗) +
1

2
⟨∇2f(x∗)v, v⟩x∗ +O(∥v∥3x∗).

Since 1
2 ⟨∇2f(x∗)v, v⟩x∗ = O(∥v∥2x∗) is positive-definite, then

f(Rx∗(v)) > f(x∗) for all ∥v∥x∗ ≤ ρ for a small enough
ρ > 0. It follows f(x∗) < f(y) for all y ∈ D − {x∗}.

Pick ϵ > 0 small enough so that M := min f(∂D) − ϵ >
f(x∗). Pick y ∈ L0. Let c : [0, 1] → L0 be any curve from
x∗ to y in L0. If c(t) ∈ D for only 0 ≤ t ≤ tmax < 1, then
f(c(tmax)) ≥ M + ϵ > M , a contradiction. So, y ∈ D.

Let ρ > 0 be small enough so that D̃ := BK∗(ρ) ⊂ C̃min
n .

Since D := B[K∗](ρ) ⊊ π(D̃), then ensure ρ > 0 is
additionally small enough so D satisfies the constraints in
Lemma 5.4. This lemma grants us M > 0 and L0 ⊂ D ⊂ Cn.

Next, we must construct a stability certificate [9] for C̃min
n :

Lemma 5.5: Define the stability certificate4

s(K,V) :=
1

2∥Acl(V)∥2λ(L(Acl(K), I2n))
> 0.

Then RK(tV) ∈ C̃n for t ∈ [0, s(K,V)).
Proof: Set P := L(Acl(K), I2n). Then

tλ(Acl(V)P + PA⊺
cl(V)) ≤ 2t∥Acl(V)∥2λ(P ) < 1,

and so t(Acl(V)P + PAcl(V)⊺) ≺ I2n. Since Acl(.) is
linear and Acl(K)P + PA⊺

cl = −I2n, we have Acl(K
+)P +

PAcl(K
+)⊺ ≺ 0, where K+ = K + tV.

Now, we will guarantee a Lipschitz-like inequality. For K ∈
C̃min
n , define r(K) := 1

2∥∇J̃n(K)∥−1
K min∥V∥K=1 s(K,V).

3A R-ball is Bx(ρ) := {Rx(ξ) : ∥ξ∥x < ρ}.
4Take note this does not ensure K + tV is minimal.

Lemma 5.6: Let K ⊂ C̃min
n be compact. Define T :=

{(K,V) ∈ T C̃min
n : K ∈ K, ∥V∥K ≤ r(K)}. Next, define

T ∗ := {(TS(K), dTS(V)) : (K,V) ∈ T , S ∈ GL(n)}. Then
there exists L > 0 where for all (K,V) ∈ T ∗,

J̃n(RK(V)) ≤ J̃n(K) + ⟨∇J̃n(K),V⟩K +
L

2
∥V∥2K . (19)

Proof: Remark that r(.) is continuous and T ⊂ T C̃min
n ⊂

T C̃n is compact. Since J̃n is also analytic over C̃n, then J̃n ◦
R : T → R is well-defined and analytic over compact T .
It follows its derivatives are bounded uniformly, and hence
satisfies (19) [15, Lemma 10.57].

Fix (K,V) ∈ T and S ∈ GL(n). Since K +V ∈ C̃n, so is
TS(K)+dTS(V). Due to the invariance properties, (19) holds
for (TS(K), dTS(V)).

Let L > 0 be the Lipschitz constant from Lemma 5.6 with
K := D̃. Ensure L sufficiently large so that 1

L ≤ min r(D̃).
The Lipschitz-like inequality holds for all (K,V) ∈ T ∗. Take
note that D̃∗ := π1(T ∗) =

⋃
S∈GL(n) TS(D̃) = π−1(π(D̃)).

Set L̃0 := π−1(L0). Then L̃0 ⊂ D̃∗

Lemma 5.7: We have F̃ (K) := RK(− 1
L∇J̃n(K)) ∈ L̃0

for K ∈ L̃0.
Proof: Let K+ := F̃ (K). Define the curve c(t) =

RK(− t
L∇J̃n(K)). Plugging this into (19), it follows

J̃n(K
+) ≤ J̃n(K). Also, π ◦ c is continuous, contained in

L0, and connects [K] to [K+]. Since L0 is closed, we must
have [K+] ∈ L0. Therefore K+ ∈ L̃0.

This all implies that F : L0 → L0, F ([K]) := [F̃ (K)]
is well-defined and smooth. Our local convergence guarantee
now follows from [15, Thm. 4.19].

VI. NUMERICAL EXPERIMENTS AND RESULTS

We will now compare RGD with ordinary gradient descent
(Figure 3). Our step size procedure is Algorithm 2.

Algorithm 2 Backtracking Line-Search
Require: K ∈ C̃min

n , γ ∈ (0, 1), β ∈ (0, 1), s̄ > 0
s← s̄
K+ ← K − s∇Jn(K))
while K+ ̸∈ C̃min

n or Jn(K)− Jn(K
+) < γs∥∇Jn(K)∥2K do

s← βs
K+ ← K − s∇Jn(K))

return s

We ran our numerical experiments against four representa-
tive systems. The parameters in our algorithm were chosen as
T = 104, γ = 0.01, β = 0.5, ϵ = 10−6, and s̄ = 1. We halted
the simulation when Jn(K) − J∗

n < 10−10. We initialized
K0 by generating a gain and observer with random pole
placement in (−2,−1). For GD, we used the same parameters
and starting point. We compared GD against two KM metrics:
(1) w1 = w2 = w3 = 1 and (2) with w1 = 1, w2 = w3 = 0.

The first system is Doyle’s famous counterexample. The
second system is a plant whose LQG controller is non-
minimal. These examples can be found in [5]. The third
system admits saddle points with vanishing Hessian. The
fourth system has dimensions (n,m, p) = (4, 3, 3) and entries
either set to zero or sampled from the standard Gaussian
distribution with probability 0.8.
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As we observe, in all four cases, Algorithm 1 significantly
outperforms GD. In fact, for the vanishing Hessian system, GD
gets stuck in the non-strict saddle point. Furthermore, note that
the first and second metrics used for RGD result in algorithms
with comparable performances, with one performing better
over the other for some examples. Lastly, we point out the
eventual linear rate of convergence of the corresponding RGDs
for all these examples.

VII. FUTURE DIRECTIONS

We intend to study second order PO methods and how they
perform for output feedback synthesis problems, particularly
their behavior around saddle points and achieving a super-
linear convergence rate. We also plan to study LQG PO
over reduced-order feedback controllers. In fact, we note that
most of the results delineated in this paper do not rely on
having full-order controllers. We also plan to expand on the
discrete formulation of our setup. Lastly, finite-horizon LQG
PO, Kalman filter PO, and connections between the KM metric
and the Riemannian metric used in [9], will be examined in
our subsequent works.
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