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Abstract

Cyclic charging and discharging of Lithium-ion (Li-ion) battery cells lead to
the contraction and expansion of the battery electrodes. These contractions
and expansions result in the development of internal stresses within the elec-
trodes, further culminating in the growth of cracks. Typically, the cracks in
anodes lead to an increase in the surface area hence facilitating a faster SEI
layer growth, and a lot of research to model such faults has already been
conducted in this area. However, when it comes to cracks in the cathode, the
research is still a little under-explored. Not detecting the potential cathode
crack growth may lead to quick degradation of battery cells which results in
capacity fade or resistance growth. If these kinds of faulty batteries are not
detected, it may result in hazardous scenarios like battery fires even during
nominal usage. Therefore, the real-time monitoring of these cathode cracks
is essential for health-conscious battery operation. This paper is an attempt
to design such real-time monitoring algorithm that can detect and identify
crack growths in the cathode. The algorithm is developed by fusing a vari-
ation of the Single Particle Model (SPM) capturing Lithium concentration
dynamics in the cathode and an empirical model capturing crack growth –
in conjunction with real-time feedback-based coupled filters. The coupled
filter consists of two filters working in cascade where the first filter generates
a primary residual based on cathode SPM and terminal voltage feedback.
Subsequently, the second filter utilizes this primary residual as feedback in
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conjunction with the empirical crack growth model – ultimately producing an
estimate of the crack growth. This estimated crack growth is used to detect
and identify the cathode cracking mechanism. Proposed approach is tested
with experimental as well as simulation studies, illustrating its effectiveness.

Keywords:
Batteries, Cathode Cracking, Mechanical Failure, Battery Faults,
Observers, Detection, and Identification.

1. Introduction

There are numerous reasons why batteries degrade over time. These rea-
sons could be any of the following few listed - chemical reactions within the
battery cell due to the charging and discharging, impact of operating condi-
tions like temperature and environment, the inherent shelf-life of the battery
cells, internal damages that arise due to manufacturing defects, and external
damages that may occur by abusive conditions. This degradation can poten-
tially manifest themselves as abnormal Solid Electrolyte Interface (SEI) layer
growth, Lithium plating, mechanical degradation inside the electrode, loss of
Lithium inventory or active material [1]. This work focuses on a specific
type of mechanical degradation, namely, cathode cracking [2] – and develops
a real-time monitoring algorithm that can detect and identify cathode crack
growths.

Various efforts have been made to model crack propagation and growth
in battery electrodes – ranging from physics principle based models to sim-
plified empirical models. The works [3], [4] and [5] describe the process
of crack propagation as a result of the stresses induced due to repeated
cell charge/discharge. [6] investigates the degradation mechanisms of high-
capacity 18650 lithium-ion batteries with Si-graphite anode and nickel-rich
NMC cathode. In [7], a comprehensive review of mechanical degradation
models have been performed while connecting them to the electrochemical
battery models. In [8], Barai et al. modelled the effect of crack growth to
a more fundamental quantity – changes in the effective diffusion constant,
which ultimately is used to model the reduction in the cell capacity. In [9], a
single particle battery model with chemical/mechanical degradation physics
has been proposed for the purposes of battery health estimation. Along sim-
ilar lines, Dong et al. proposed a physics-based aging model with coupled
chemical/mechanical degradation mechanisms, which essentially shows the
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effect of crack growth in cell capacity fade [10].
Another line of research is focused on the experimental investigation of

cathode cracking in battery cells. For example, the work [11] focuses on the
experimental validation of the cracks that are developed due to over-charging
of the battery cells in the cathodes. The experimental validation was per-
formed using the images collected from the advanced scanning transmission
electron microscope, which resulted in a conclusion that a high cutoff voltage
cycling induced intragranular cracking in the cathode. Xu et al. designed
cycling tests to investigate the influence of voltage window and C-rate on
electrode degradation[12].

In addition to these mentioned research findings, it was found that Zhang
et al. discuss the challenges and progress in designing cathodes [13]. Lim
et al. explored the intrinsic origins of crack generation in cathode materials
for Li-ion batteries [14]. Bland et al. in their work discussed the chemical
and electrochemical conditions present within stress corrosion and corrosion
fatigue cracks, which are major causes of material failure [15]. In a similar
line of research, Xu et al. have conducted an experimental investigation
of the mechanical and structural degradation of (Nickel Manganese Cobalt)
NMC cathodes [16].

Although the aforementioned works shed light on the cathode crack mech-
anisms through modeling, analysis, and experimental investigations, there
has been a lack of research in real-time monitoring of such cathode cracks.
Particularly, models can be practically limited due to one or more of the
following factors: computational complexity and lack of adaptability in real-
world scenarios. In this context, simplified model-based estimators that uti-
lize real-time feedback can be useful in monitoring cathode cracks. Along this
line, an electrochemical model-based observer was designed in [17] where the
effects of intercalation-induced stresses on electrode diffusion were consid-
ered. This work estimates Lithium concentration as well as the radial and
tangential stresses within the electrode. There are a few key differences be-
tween [17] and our current work. First, [17] focuses mainly on anode stresses.
Second, the algorithm in [17] estimates the electrode stresses, however, it does
not extend these estimates to actual crack information in the electrode. Such
crack information can be crucial in predicting the battery life – depending
on when the crack area reaches its maximum allowable limit. Hence, there
exist a gap in literature where real-time monitoring of cathode crack mecha-
nism remains under-explored. In our current work, we consider the cracks in
cathode and utilizes a crack model to directly estimate the crack area which
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in turn can be used for battery life prediction.
Based on the aforementioned discussion, the main contribution of this

work can be summarized as follows: We propose a model-based scheme for
detection and identification of cathode cracks in real-time. We utilize a combi-
nation of electrochemical model (namely, Single Particle Model (SPM) [18]),
a crack model affecting the cathode diffusion coefficient [8], and a set of diag-
nostic filters to develop the algorithmic framework. It consists of two filters
working in cascade. The first filter, denoted as the primary residual filter,
utilizes SPM cathode model and terminal voltage feedback to generate a
primary residual signal. This primary residual signal is essentially the differ-
ence between the estimates from a closed-loop filter and an open-loop filter
– where both filters use SPM cathode, however, one with voltage feedback
(closed-loop) and the other without feedback (open-loop). The second filter,
denoted as the crack estimation filter, utilizes this primary residual signal as
feedback along with a crack propagation model [8] to estimate the cathode
crack area in real-time.

Next, we clarify the novelty of this work in relation to some of the previ-
ous works from our group where electrode-level estimation/diagnostics were
performed using cascaded observer/filter-based schemes. The works [19, 20]
proposed electrode-level charge and health estimation techniques, however,
they utilized phenomenological integrator-type simplified electrode models
and did not consider specific cathode crack phenomenon in their formulation.
The work in [21] performs voltage and thermal fault detection under electro-
chemical and thermal anomalies, but it does not specifically focus on cathode
crack detection and estimation. The conference paper [22] developed some
preliminary ideas used in this current work, especially the use of the differ-
ence between closed-loop and open-loop estimates as electrode-level residual
signals. This current work extends our preliminary conference work [22] by:
(i) specifically focusing on cathode cracking, instead of generic electrode-level
faults considered in [22], (ii) further elaborating on the mathematical con-
vergence analysis of the algorithm, and (iii) performing experimental studies
to illustrate the effectiveness of the proposed algorithm.

The rest of the paper is organized as follows: Section 2 discusses the
modeling of the Cathode Cracking Mechanism. Section 3 discusses the crack
detection and identification algorithm developed by us for this problem and
finally, the results and conclusions are discussed in detail in section 4.
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2. Battery Model

We discuss the nominal cathode dynamical model followed by the cracking
dynamics.

2.1. Modeling of nominal cathode operation

The first step in the modeling process is to capture the nominal cathode
dynamics which generally involves charge and discharge. Here, we adopt Sin-
gle Particle Modeling (SPM) framework which captures the charge/discharge
process in terms of Lithium concentration within the electrodes [18, 23]. Es-
sentially, SPM leads to two parabolic Partial Differential Equations (PDEs)
involves diffusion of lithium ions in cathode and anode. From this SPM
framework, we utilize the cathode diffusion PDE, as given below:

∂C+

∂t
=

D+
s

r2
∂

∂r

(
r2
∂C+

∂r

)
, (1)

∂C+

∂r
|r=0 = 0;

∂C+

∂r
|r=R+ =

+I

a+s FD+
s A

+L+
, (2)

where the superscript + indicates the positive electrode, Lithium concentra-
tion [mol/m3] in electrodes is C, Input current A is represented by I, the
specific surface area [m2/m3] is represented by as, F is Faraday’s constant,
effective diffusion coefficient in solid phase [m2/s] is represented by Ds, the
radius of the particle [m] is represented by R, the area of the current collector
[m2] is represented by A and finally, the length of the electrode [m] is rep-
resented by L. In addition, the positive current represents the current from
the battery (discharging) and the negative current represents the current into
the battery (charging).

Next, the SPM framework models the terminal voltage of the battery by
mapping the Lithium concentrations of anode and cathode into the open cir-
cuit potentials – along with a few other terms arising from Butler-Volmer ki-
netics and film resistances [18]. However, such open circuit potentials (OCPs)
maps are difficult to obtain in practice, as the exact material properties of
anode and cathode materials may not be always known. To overcome this
limitation, we use two sequential transformations to capture the open circuit
behavior. First, we map the cathode surface concentration C+|r=R+ to anode
surface concentration leveraging conservation of Lithium [24]. Then, we map
the anode surface concentration to state-of-charge (SOC). Next, we use the
open circuit voltage OCV-SOC map to capture the open circuit behavior.
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Note that OCV-SOC maps are much easier to obtain even for commercial
cells, as compared to OCP maps. To this end, the terminal voltage expression
now becomes:

V = U(C+|r=R+)− IR(C+|r=R+ , I), (3)

where U(.) is the composite function arising from the composition of cathode-
to-anode transformation, anode-to-SOC transformation, and OCV-SOCmap.
The resistance R is nonlinear function of the current I and surface concentra-
tion state C+|r=R+ . This nonlinear resistance expression can be found from
the Butler-Volmer kinetics and film resistances [18].

2.2. Modeling of cathode cracking mechanism

After the nominal cathode operation is modeled, the next step is to in-
troduce the dynamics that arise due to the increment in cathode crack, and
ultimately couple those dynamics with the nominal cathode model. Here we
adopt a crack model from [8], where the crack damage propagation in time
is related to the applied current, and such crack further affects the cathode’s
diffusion coefficient.

The modeling of the crack is given as follows:

∂Acr

∂t
= β4(Amax − Acr)|I| (4)

D+
s = D+

s0

(
1− Acr

Amax

)β5

(5)

where Acr is the amount of damage in the cathode (dimensionless [8]), Amax

is the maximum possible damage to the cathode, D+
s0 is the original diffusion

constant in [m2/s] in the presence of no crack, D+
s is effective diffusion coeffi-

cient in [m2/s] in the presence of crack, and β4 and β5 are tuning parameters
of this model. The value of Amax is computed by the relation as follows [8]:

Amax = −0.5902

+
0.7173 + 0.0027R+ + (−0.15/R+)

1 + |(0.0223Ic)− (0.2115 + (−0.002)R+)|
(6)

where R+ is the radius cathode particle and Ic is the C-rate (proportional to
the current I) at which the battery is being charged/discharged.
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2.3. State-space model formulation

In this subsection, we formulate a state-space model for the cathode dy-
namics. First, we write the state-space version of the crack model (4) as

ż = β4(Amax − z)|I|, (7)

where z = Acr and I is the current.
Subsequently, we focus on nominal cathode model (1)-(2). We use finite

difference method to discretize the continuum cathode concentration C+ into
finite number of states denoted by the vector C =

[
C+

1 C+
2 . . . C+

N

]T
[25].

Following the finite difference method utilized in [21, 25], we formulate the
following state-space model capturing the nominal cathode operation.

Ċ = h(z)AC + h(z)BI, (8)

V = f(C, I), (9)

where (8) is derived from (1)-(2), and the output equation (9) is derived from
(3). The function h(z) = (1 − z

Amax
)β5 captures the dependence of diffusion

coefficient on the crack area as shown in (5). The function f(.) is given in
(3), and as described in [22], the A and B matrices are given by:
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(D+
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∆2
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1
2

−2 3
2

. . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1− 1
N−1

−(1− 1
N−1

)

 ,

B = −
(
1 +

1

N − 1

) [
0 0 . . .

(
D+

s0θ

∆

)]T
(10)

where D+
s0 is the original diffusion constant in the presence of no crack, ∆

is the width of the discretized element (radially), and θ is a constant which
is given by θ± = 1/(Fa+D+

s A
+L+). In summary, (7) and (8) represent the

state dynamics equation while (9) represent the measured output equation.

3. Crack detection and identification algorithm

In this section, we describe the algorithmic framework for detecting and
identifying cathode cracks. The dynamical models of cathode concentration
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and cathode crack propagation are adopted from existing literature, as dis-
cussed in Sections 2.1 and 2.2. In Section 2.3, we formulate a state-space
model based on these dynamical models where cathode concentration and
crack area are defined as the system states. In Section 3, we have created a
filter structure based on the state-space formulation. The filters are a com-
bination of open-loop state-space model and a feedback term which consists
of a design parameter called filter gain. These filter gains are designed based
on mathematical conditions described later. Finally, these filters are run on-
line to estimate the system states including the crack area. The crack area
is a direct indicator of cathode fracture growth. This is how the proposed
approach uses filters to track cathode crack propagation.

A schematic of the framework is illustrated in Fig. 1. It consists of
two blocks: primary residual filter and crack estimation filter. The primary
residual filter utilizes the state-space model (8)-(9)along with terminal volt-
age feedback to generate a primary residual r. The crack estimation filter
uses this residual r as feedback along with the state-space model (7) to gen-
erate a crack estimate ẑ. A crack is detected when ẑ crosses a threshold zh,
and ẑ also serves as an estimate to identify the crack area.

In other words, we aim to achieve the following properties: If there is
crack, i.e. z ̸= 0, then r should be non-zero and ẑ is a close estimate of z.
On the other hand, if there is no crack, i.e. z = 0, then r and ẑ should be
close to zero.

We have created a cascaded filter structure instead of a more integrated
single filter structure. The main reason behind the choice of such cascaded
structure is the ease of analysis and design. The analysis is separated into
two parts – the first part deals with cathode concentration dynamics and
the second part deals with the crack propagation dynamics. The analysis
of error and residual convergence has become simpler due to the cascaded
and separated structure. Furthermore, for a more integrated filter structure,
two filter gains (one for the cathode concentration dynamics and another
one for the crack propagation dynamics) would have to be designed using a
single design condition due to their interdependencies – which would have
led to numerical complications and additional nonlinearities. However, for
the cascaded structure, we separated the two filter gain designs into two
sequential conditions – leading to a simpler design approach.

The following subsections discuss these two blocks in detail.
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Figure 1: Cathode Cracking detection and identification schematic.

3.1. Primary residual filter

Primary residual filter consists of two filters. Filter #1 is a closed-loop
filter given by:

˙̂
C1 = AĈ1 +BI + L1(V − V̂ ), (11)

V̂ = f(Ĉ1, I), (12)

where Ĉ1 is the estimated states by this closed-loop filter and L1 is the filter
gain to be designed. Filter #2 is an open-loop filter given by:

˙̂
C2 = AĈ2 +BI, (13)

where Ĉ2 is the estimated states by this open-loop filter. The primary resid-
ual is defined as r = Ĉ1 − Ĉ2. Typical residual generation techniques, such
as model- and observer-based ones, use the difference between an estimate
and a sensor-measured signal (of the same physical variable) to compute the
residuals. The idea behind the residual is to compute the difference between
two signals which represent the same physical variable such that the designed
residual is sensitive to anomaly or fault. However, for primary residual gen-
eration, the system state is cathode concentration, which is not measured by
any sensors in commercial battery systems. In the absence of a measured
cathode concentration signal, we needed to create two estimates of the cath-
ode concentration in order to subtract them from each other and subsequently
compute the residual which will in turn be sensitive to the anomaly. These
two estimates came from an open-loop observer and a closed-loop observer.
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This is the motivation behind using the difference between closed-loop and
open-loop cathode concentration estimates as primary residual. Next, we
will use the following propositions to prove the following: If z ̸= 0, then r
should be non-zero, and r ≈ 0 when z = 0.

Proposition 1. Define the estimation error between the closed-loop filter
estimate and actual state as e = C−Ĉ1, and consider a linear approximation
of the function f(C1, I) ≈ α1C1 + α2I where α1 and α2 are linearization
constants. Then, (i) the dynamics of e is stable, and (ii) the steady-state
value of e is a function of z, if (h(z)A−L1α1) is Hurwitz stable ∀z ∈ [0, Amax].

Proof. Differentiating e with respect to time, and considering (8), (11), and
(12) gives us:

ė = Ċ − ˙̂
C1 = h(z)AC + h(z)BI − AĈ1 − BI

− L1(f(C1, I)− f(Ĉ1, I))

= h(z)Ae+ (h(z)− 1)(AĈ1 +BI)

− L1(f(C1, I)− f(Ĉ1, I)) (14)

Considering a linear approximation of f(.), we can write f(C1, I) ≈ α1C1 +
α2I where α1 and α2 are linearization constants. Under this linearized ap-
proximation, (14) becomes:

ė = (h(z)A− L1α1)e+ (h(z)− 1)(AĈ1 +BI), (15)

Choosing the filter gain L1 such that (h(z)A−L1α1) is Hurwitz stable ∀z ∈
[0, Amax], we can conclude that the dynamics of e given in (15) is stable.

Following the stability of (15) and putting ė = 0, we can find the steady-
state expression of e as:

e = −(h(z)A− L1α1)
−1(h(z)− 1)(AĈ1 +BI), (16)

which confirms that the steady-state value of e is a function of z.

Proposition 2. If Proposition 1 is true, then (i) the dynamics of primary
residual r is stable, and (ii) the steady-state value of r is a function of z.
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Proof. Differentiating e with respect to time, and considering (13), (11), and
(12) gives us:

ṙ =
˙̂
C1 − ˙̂

C2 = AĈ1 − BI − AĈ2 − BI

− L1(f(C1, I)− f(Ĉ1, I))

= Ar − L1(f(C1, I)− f(Ĉ1, I)) (17)

Again, considering the linear approximation f(C1, I) ≈ α1C1 + α2I, (17)
becomes:

ṙ = Ar − L1α1e, (18)

Applying the expression of e from (16), we can write (18) as

ṙ = Ar + L1α1(h(z)A− L1α1)
−1(h(z)− 1)(AĈ1 +BI). (19)

Since A is Hurwitz stable by the nature of discretization, we can conclude
that the dynamics of r given by (19) is stable. Furthermore, L1α1(h(z)A −
L1α1)

−1(h(z) − 1)(AĈ1 + BI) serves as an excitation term in (19), making
r a function of z. That is, z ̸= 0 =⇒ h(z) ̸= 1 =⇒ L1α1(h(z)A −
L1α1)

−1(h(z)− 1)(AĈ1 +BI) ̸= 0, and this ultimately makes r ̸= 0.
We can further see that under no crack, that is, z = 0 and h(z) = 1, we

have

ṙ = Ar. (20)

This indicates that r ≈ 0.

3.2. Crack estimation filter

Crack estimation filter utilizes primary residual r as feedback signal. As
shown in (19), r carries the signature of z. We denote the steady-state
expression of this signature as r = g(z). Next, the crack estimation filter
structure is given by

˙̂z = β4(Amax − ẑ)|I|+ L2(r − g(ẑ)), (21)

where ẑ is the estimated crack and L2 is the filter gain to be designed. Next
proposition proves the convergence of the estimation.
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Proposition 3. Consider the filter structure (21) and define the crack esti-
mation error as z̃ = z − ẑ. Furthermore, consider a linear approximation of
the function g(z) ≈ α3z + α4, where α3 and α4 are linearization constants.
Then, the error z̃ remains bounded if the following condition is satisfied:
(−β4|I| − L2α3) < 0.

Proof. Subtracting (21) from (7), the error dynamics can be written as

˙̃z = ż − ˙̂z = −β4z̃|I| − L2(g(z)− g(ẑ)). (22)

Consider a linear approximation g(z) ≈ α3z + α4, where α3 and α4 are
linearization constants. Under this linearized approximation, (23) becomes:

˙̃z = (−β4|I| − L2α3)z̃. (23)

If L2 is chosen such that (−β4|I| − L2α3) < 0, then the dynamics (23) is
stable, and the error z̃ will remain bounded and converge close to zero.

Remark 1. The observer gains L1 and L2 are designed according to the
conditions given in Proposition 1 ((h(z)A − L1α1) is Hurwitz stable ∀z ∈
[0, Amax]) and Proposition 3 ((−β4|I|−L2α3) < 0), respectively. For numer-
ically computing the observer gains, we discretized the sample space [0, Amax]
into 20 different points, and the gain L1 was chosen to satisfy the condition
at each of these points. Similarly, for proposition 3, we check the condition
for some representative points within the sample space [Imin, Imax], and chose
the gain L2 to satisfy these points.

4. Results and Discussion

In this section, we discuss the results from experimental and simulation
studies performed to validate the proposed detection and identification frame-
work.

First, we discuss the experiments performed to characterize the models
discussed in Section 2. We used a commercial battery cell with the following
properties: 4.2V to 2.5V operating voltages, with a capacity of 3500 mAh, an-
ode and cathode which consists of a silicon-carbon composite and NMC811
(LiNi0.8Mn0.1Co0.1O2) composite respectively [26] [27]. The experiments
were conducted with battery cells inside the ESPEC thermal chamber, con-
nected to ARBIN battery testing equipment. The experimental schedules
were created and fed into the ARBIN systems using the software MITS Pro.
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An initial test of very low current (C/100 C-rate) was performed to obtain
the open circuit voltage (OCV) characteristics of the cells. The OCVs as
functions of state-of-charge are shown in Fig. 2.
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Figure 2: Open Circuit Potential maps for the battery cells.

Next, in order to differentiate the cracking from nominal no-crack scenar-
ios, it is important to have relevant experimental datasets for both scenarios.
To acquire such experimental data, we performed two controlled set of ex-
periments as follows:

1. Nominal scenario: Battery cell # 1 was cycled at 25oC with (i) constant
current constant voltage (CCCV) profile with 0.5C C-rate from 2.5V
to 4.2V, and (ii) dynamic discharge current derived from a scaled-down
Urban Dynamometer Discharge Schedule (UDDS), in order to emulate
a real-world battery operation.

2. Cathode crack scenario: Battery cell # 2 was cycled at 25oC with
(i) constant current constant voltage (CCCV) profile with 0.5C C-rate
from 2.5V to 4.5V, and (ii) same dynamic discharge current as the
nominal scenario.

Note that the only difference between nominal and cathode cracking sce-
narios above is the higher charge voltage limit. In the existing literature,
it has been found that higher voltage limits can potentially induce cathode
cracking [2] [11] [12]. The nominal cathode model and the crack model de-
scribed in Section Section 2 are identified based on the first 30 cycles of these
experimental data. The identified parameters are listed in Table 1. Further-
more, a comparison of the identified model voltage and experimental voltage
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for 30 cycles are shown in Fig. 3. In Fig. 4 and 5, the voltage comparison
are shown for cycle # 1 and cycle # 30, respectively. It has to be noted that
the first cycle in Fig. 4 for both nominal scenario, as well as the cathode
crack scenario, occurs after 12 hours of the experiments due to the presence
of initial tests on the fresh cells.
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Figure 3: Comparison of experimental voltage and identified model voltage under nominal
(no crack) and cathode crack scenarios. RMSE for nominal scenario is 0.031V, and RMSE
for crack scenario is 0.037V.

Table 1: Cathode’s identified model parameters

Notation Description Value [Units]
D+

s0 Diffusion coefficient 1× 10−14 [m2/s]
ϵ+ Volume fraction 0.5938
A+ Current collector area 0.1324 [m2]
L+ Thickness 7× 10−5 [m]
R+ Radius 8.21× 10−6 [m]
C+

max Max conc. capacity 5.139× 104 [mol/m3]
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Figure 4: Comparison of experimental voltage and identified model voltage in cycle # 1
under nominal (no crack) and cathode crack scenarios.

Due to the charge/discharge cycling of the battery cells, the battery cells
undergo nominal capacity loss even without cracking which is illustrated in
Fig. 6. Due to the numerous electrochemical reactions that occur during
the nominal operation of a battery cell, the battery tends to degrade result-
ing in a capacity fade. Two of the main reasons that lead to the battery
cell degradation are the lithium plating of the negative electrode [28] and
solid-electrode interface (SEI) layer growth [29]. On the other hand, the ef-
fect of the cathode crack manifested itself as higher levels of capacity loss
(compared to the nominal scenario), as shown in Fig. 6. The nominal capac-
ity loss (without the effect of cathode crack) was captured in the modeling
framework by making the cathode volume fraction decrease over time. Un-
der the nominal (no crack scenario) mentioned previously, this time-varying
nature of the cathode volume fraction is shown in Fig. 7. Next, the ad-
ditional capacity loss due to cathode crack manifested itself under cathode
crack experiments. This crack effects are captured by the change in crack
area Acr, which in turn induces a change in the cathode diffusion coefficient,
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Figure 5: Comparison of experimental voltage and identified model voltage in cycle # 30
under nominal (no crack) and cathode crack scenarios.

as shown in Fig. 8. In summary: (i) the capacity loss under nominal (no
crack) scenario is modelled by reducing the cathode volume fraction; and (ii)
the capacity loss under cathode crack scenario is modelled by by reducing
the cathode volume fraction and increasing the crack area (which in turn
reduces the cathode diffusion coefficient).

For no crack nominal scenario, we have accounted for the capacity fade
by using reduction in the cathode volume fraction (loss of active material).
However, when it comes to cathode crack scenario, the capacity fade occurs
not only due to loss of active material but also due to crack growth. This
crack growth results in the reduction of cathode’s diffusion coefficient, as
explained in [8]. To account for the capacity fade due to reduction in dif-
fusion coefficient, we have adopted the modeling approach presented in [30].
As mentioned in [30], reduction in the diffusion coefficient accounts for the
capacity loss due to rate capability. This rate capability loss occurs because
of the transport limitations induced by the formation of oxide layers on the
electrode. The solid phase diffusion coefficient is considered as the parameter
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to account for such losses.
It has to be noted that in Fig. 6 the capacity fade due to crack from

1st cycle to 30th cycle is from 3.284 Ah to 3.079 Ah. Which is a reduction
of around 6%. This is a significant reduction in the battery capacity which
shows a great sign of aging - good enough for modeling purposes of the
current work.
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Figure 6: Comparison of the capacity fade in nominal case versus cathode crack case.
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Figure 7: Evolution of cathode volume fraction with time due to nominal capacity loss.

Next, we discuss the performance of the proposed algorithm by using
experimental data. That is, the experimental voltage and current data are
fed to the algorithm as feedback signals. In turn, the algorithm detects and
identifies the cathode crack area.

First, we evaluate the performance under cathode crack case, that is,
using the date generated from cathode crack scenario in Section IV.A. As
discussed in Section III, the voltage data is fed to the primary residual filter,
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Figure 8: Crack area propagation and corresponding change in diffusion coefficient, under
no crack and cathode crack scenarios.

which generates the primary residual signal, as shown in Fig. 9. As expected,
the primary residual shows non-zero behavior, which arises from two compo-
nents: propagation of cathode crack area and other unmodelled dynamics of
cathode SPM. Next, we distinguish these two sources of errors. We see that
the bottom envelope of the primary residual signal, denoted by the red ∗ in
Fig. 9, show a strong correlation with the crack area propagation plotted in
the top plot of Fig. 8. The correlation between this bottom envelope and
the crack area generated from the crack model is shown in Fig. 10. Next,
we use this correlation to formulate the map g(z) discussed in Section III.B
(just before (21)). The map takes the form of g(z) = γ1z + γ2(z) where γ1 is
a constant, and γ2(.) is a state-dependent parameter.

Subsequently, the crack estimation filter will use this map to generate an
estimate of the crack area, as discussed in Section III.B. The crack estimation
performance is shown in Fig. 11, where the offline identified crack area from
the model and the online crack area estimate by the crack estimation filter
are shown to have reasonable similarity - establishing the promise of the
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Figure 9: Primary residual signal under cathode crack scenario.
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Figure 10: Correlating the primary residual envelope to the crack area propagation, under
cathode crack scenario.

proposed algorithm.
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Figure 11: Performance of the crack estimation filter under cathode crack scenario. The
average estimation error after convergence is 1.4× 10−2.
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Next, we evaluate the performance under the no crack case, that is, using
the data generated from the nominal (no crack) scenario in Section IV.A.
As discussed in Section III, the voltage data is fed to the primary residual
filter, which generates the primary residual signal, as shown in Fig. 12. The
correlation between the bottom envelope of primary residual signal and the
crack area generated from the crack model is shown in Fig. 13. Subsequently,
based on this primary residual signal, the crack estimation performance is
shown in Fig. 11, where the offline identified crack area from the model and
the online crack area estimate by the crack estimation filter are shown to have
reasonable similarity – establishing the promise of the proposed algorithm
under no crack scenario. It is important to note that the map g(z) = γ1z +
γ2(z) is tuned based on data from both cathode crack case and no crack case
to ensure desired response from the crack estimation filter.
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Figure 12: Primary residual signal under no crack (nominal) scenario.

Next, a few case studies are conducted to study the convergence properties
of the proposed filters. First, we study the convergence of the primary resid-
ual filter. Three different initial conditions are given to the primary residual
filter, as shown in Fig. 15. As can be seen, the residual signal converged
in all the three cases – illustrating the filter’s ability to converge from arbi-
trary incorrect initial conditions. The convergence of the crack estimation
filter under these three initial conditions of primary residual filter is shown in
Fig. 16, which confirms that the crack estimation filter’s performance remain
almost unaffected by these arbitrary incorrect initial conditions.

Next, we study the convergence properties of crack estimation filter when
it is initialized with different incorrect conditions. Three different initial
conditions are given to the crack estimation filter, for all of which the crack
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Figure 13: Correlating the primary residual envelope to the crack area propagation, under
no crack (nominal) scenario.
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Figure 14: Performance of the crack estimation filter under no crack (nominal) scenario.
The average estimation error after convergence is 3.69× 10−4.

20 40 60 80 100 120 140 160

Time [Hr]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

 C
o

n
c

p
 f

ra
c
ti
o

n

Initial conditions #1

Initial conditions #2

Initial conditions #3

Figure 15: Convergence study of the primary residual filter, under different primary resid-
ual initial conditions.
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Figure 16: Convergence of the crack estimation, under different primary residual initial
conditions.

estimate converged to similar values, as shown in Fig. 17. This verifies that
the crack estimation filter also possesses reasonable convergence properties.
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Figure 17: Convergence study of crack estimation filter, under different crack estimation
initial conditions.

Next, we summarize the findings of our results. First, we have gathered
experimental data from commercial battery cells capturing two scenarios:
nominal (no crack) and cathode crack scenario. Inspired by experimental
studies in existing literature, cathode crack was induced by overcharging a
battery cell to a higher cut-off voltage. Next, coupled SPM and cathode
crack models are identified based on these two datasets. Subsequently, these
identified models are used to design primary residual filter. Then, the pri-
mary residual signal was correlated with the identified crack propagation.
This correlation was used to create a mapping from primary residual signal
to a nonlinear crack feedback signal. Next, this nonlinear map and crack
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model are used to design crack estimation filter, which estimates the crack
propagation. The efficacy of the proposed algorithm was tested using experi-
mental data. The convergence properties of primary residual filter and crack
estimation filter are tested by giving various incorrect initial conditions.

5. Conclusion

This work utilizes a coupled dynamical model consisting of modified elec-
trochemical SPM and cathode crack model. Based on this model, an algo-
rithmic framework consisting of two filters is designed. The first filter is the
primary residual filter which generates a primary residual signal using cath-
ode SPM and voltage feedback. The primary residual signal is essentially
the difference between closed-loop and open-loop estimates of cathode con-
centration. This primary residual signal is used by the second filter, denoted
as the crack estimation filter. The crack estimation filter uses primary resid-
ual signal as feedback, and in turn, estimates the crack propagation. First,
we have gathered experimental data from commercial battery cells capturing
two scenarios: nominal (no crack) and cathode crack scenario. Nominal ca-
pacity fade was captured by the reduction in cathode active material volume
fraction. The additional capacity fade due to the crack was captured by by
reduction in the effective cathode diffusion coefficient. These two datasets
are used to test the effectiveness of the proposed algorithm, which shows rea-
sonable performance. It has to be noted that the current work is validated on
only one particular battery chemistry over a limited number of operational
cycles. Further study is required to validate the algorithm’s effectiveness
under different cell chemistries and longer operational cycles. As a future
extension of this work, we plan to address these along with extending the
experimental studies to capture longer-term behavior under cathode cracks.
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[4] I. Laresgoiti, S. Käbitz, M. Ecker, D. U. Sauer, Modeling mechanical
degradation in lithium ion batteries during cycling: Solid electrolyte
interphase fracture, Journal of Power Sources 300 (2015) 112–122.

[5] J. Wang, J. Purewal, P. Liu, J. Hicks-Garner, S. Soukazian, E. Sher-
man, A. Sorenson, L. Vu, H. Tataria, M. W. Verbrugge, Degradation of
lithium ion batteries employing graphite negatives and nickel–cobalt–
manganese oxide+ spinel manganese oxide positives: Part 1, aging
mechanisms and life estimation, Journal of Power Sources 269 (2014)
937–948.

[6] X. Li, A. M. Colclasure, D. P. Finegan, D. Ren, Y. Shi, X. Feng, L. Cao,
Y. Yang, K. Smith, Degradation mechanisms of high capacity 18650 cells
containing si-graphite anode and nickel-rich nmc cathode, Electrochim-
ica Acta 297 (2019) 1109–1120.

[7] J. M. Reniers, G. Mulder, D. A. Howey, Review and performance com-
parison of mechanical-chemical degradation models for lithium-ion bat-
teries, Journal of The Electrochemical Society 166 (2019) A3189–A3200.

[8] P. Barai, K. Smith, C.-F. Chen, G.-H. Kim, P. P. Mukherjee, Reduced
order modeling of mechanical degradation induced performance decay in
lithium-ion battery porous electrodes, Journal of The Electrochemical
Society 162 (2015) A1751.

[9] J. Li, K. Adewuyi, N. Lotfi, R. G. Landers, J. Park, A single par-
ticle model with chemical/mechanical degradation physics for lithium

24



ion battery state of health (soh) estimation, Applied energy 212 (2018)
1178–1190.

[10] G. Dong, J. Wei, A physics-based aging model for lithium-ion bat-
tery with coupled chemical/mechanical degradation mechanisms, Elec-
trochimica Acta 395 (2021) 139133.

[11] P. Yan, J. Zheng, M. Gu, J. Xiao, J.-G. Zhang, C.-M. Wang, Intra-
granular cracking as a critical barrier for high-voltage usage of layer-
structured cathode for lithium-ion batteries, Nature communications 8
(2017) 14101.

[12] R. Xu, Theories and Experiments on the Electro-Chemo-Mechanics of
Battery Materials (2019).

[13] X.-D. Zhang, F.-S. Yue, J.-Y. Liang, J.-L. Shi, H. Li, Y.-G. Guo, Struc-
ture design of cathode electrodes for solid-state batteries: challenges and
progress, Small Structures 1 (2020) 2000042.

[14] J.-M. Lim, T. Hwang, D. Kim, M.-S. Park, K. Cho, M. Cho, Intrinsic
origins of crack generation in ni-rich lini0. 8co0. 1mn0. 1o2 layered oxide
cathode material, Scientific reports 7 (2017) 39669.

[15] L. G. Bland, J. S. Locke, Chemical and electrochemical conditions within
stress corrosion and corrosion fatigue cracks, npj Materials Degradation
1 (2017) 12.

[16] R. Xu, H. Sun, L. S. de Vasconcelos, K. Zhao, Mechanical and structural
degradation of linixmnycozo2 cathode in li-ion batteries: an experimen-
tal study, Journal of The Electrochemical Society 164 (2017) A3333.

[17] D. Zhang, S. Dey, L. D. Couto, S. J. Moura, Battery adaptive ob-
server for a single-particle model with intercalation-induced stress, IEEE
Transactions on Control Systems Technology 28 (2020) 1363–1377.
doi:10.1109/TCST.2019.2910797.

[18] S. Santhanagopalan, Q. Guo, P. Ramadass, R. E. White, Review of
models for predicting the cycling performance of lithium ion batteries,
Journal of power sources 156 (2006) 620–628.

25

http://dx.doi.org/10.1109/TCST.2019.2910797


[19] S. Sattarzadeh, S. Dey, A. Colclasure, K. Smith, Addressing the observ-
ability problem in batteries: Algorithm design for electrode-level charge
and health estimation, in: 2020 American Control Conference (ACC),
IEEE, 2020, pp. 1131–1136.

[20] S. Dey, Y. Shi, K. Smith, A. M. Colclasure, X. Li, From battery cell to
electrodes: Real-time estimation of charge and health of individual bat-
tery electrodes, IEEE Transactions on Industrial Electronics 67 (2019)
2167–2175.

[21] R. Firoozi, S. Sattarzadeh, S. Dey, Cylindrical battery fault detection
under extreme fast charging: A physics-based learning approach, IEEE
Transactions on Energy Conversion 37 (2021) 1241–1250.

[22] S. K. Padisala, S. Sattarzadeh, S. Dey, Reduced and reformulated
electrochemical model-based detection and isolation of electrode-level
faults in lithium-ion battery cells, IFAC-PapersOnLine 55 (2022) 734–
739. URL: https://www.sciencedirect.com/science/article/pii/
S2405896322029123. doi:https://doi.org/10.1016/j.ifacol.2022.
11.269, 2nd Modeling, Estimation and Control Conference MECC 2022.

[23] C. D. Rahn, C.-Y. Wang, Battery systems engineering, John Wiley &
Sons, 2013.

[24] S. J. Moura, N. A. Chaturvedi, M. Krstic, Pde estimation techniques
for advanced battery management systems—part i: Soc estimation, in:
2012 American Control Conference (ACC), IEEE, 2012, pp. 559–565.

[25] D. Di Domenico, A. Stefanopoulou, G. Fiengo, Lithium-ion battery state
of charge and critical surface charge estimation using an electrochem-
ical model-based extended kalman filter, Journal of dynamic systems,
measurement, and control 132 (2010).

[26] X. Li, A. M. Colclasure, D. P. Finegan, D. Ren, Y. Shi,
X. Feng, L. Cao, Y. Yang, K. Smith, Degradation mech-
anisms of high capacity 18650 cells containing si-graphite an-
ode and nickel-rich nmc cathode, Electrochimica Acta 297
(2019) 1109–1120. URL: https://www.sciencedirect.com/science/
article/pii/S0013468618326781. doi:https://doi.org/10.1016/j.
electacta.2018.11.194.

26

https://www.sciencedirect.com/science/article/pii/S2405896322029123
https://www.sciencedirect.com/science/article/pii/S2405896322029123
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2022.11.269
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2022.11.269
https://www.sciencedirect.com/science/article/pii/S0013468618326781
https://www.sciencedirect.com/science/article/pii/S0013468618326781
http://dx.doi.org/https://doi.org/10.1016/j.electacta.2018.11.194
http://dx.doi.org/https://doi.org/10.1016/j.electacta.2018.11.194


[27] T. M. Heenan, A. Jnawali, M. Kok, T. G. Tranter, C. Tan, A. Dim-
itrijevic, R. Jervis, D. Brett, P. Shearing, An advanced microstructural
and electrochemical datasheet on 18650 li-ion batteries with nickel-rich
nmc811 cathodes and graphite-silicon anodes, Journal of The Electro-
chemical Society 167 (2020) 140530.

[28] E. Redondo-Iglesias, P. Venet, S. Pelissier, Calendar and cycling
ageing combination of batteries in electric vehicles, Microelec-
tronics Reliability 88-90 (2018) 1212–1215. URL: https://www.

sciencedirect.com/science/article/pii/S0026271418305377.
doi:https://doi.org/10.1016/j.microrel.2018.06.113, 29th Eu-
ropean Symposium on Reliability of Electron Devices, Failure Physics
and Analysis ( ESREF 2018 ).

[29] Y. Zeng, F. Shen, B. Zhang, J. Lee, D. Chalise, Q. Zheng, Y. Fu, S. Kaur,
S. D. Lubner, V. S. Battaglia, et al., Nonintrusive thermal-wave sen-
sor for operando quantification of degradation in commercial batteries,
Nature Communications 14 (2023) 8203.

[30] P. Ramadass, B. Haran, R. White, B. N. Popov, Mathematical modeling
of the capacity fade of li-ion cells, Journal of power sources 123 (2003)
230–240.

27

https://www.sciencedirect.com/science/article/pii/S0026271418305377
https://www.sciencedirect.com/science/article/pii/S0026271418305377
http://dx.doi.org/https://doi.org/10.1016/j.microrel.2018.06.113

	Introduction
	Battery Model
	Modeling of nominal cathode operation
	Modeling of cathode cracking mechanism
	State-space model formulation

	Crack detection and identification algorithm
	Primary residual filter
	Crack estimation filter

	Results and Discussion
	Conclusion

