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Abstract

The use of uncrewed aerial vehicles (UAVs) in cell-free networks is poised to unleash a number

of new opportunities to further improve wireless networks. However, cell-free UAV networks present

major challenges related to the wireless nature of access and fronthaul links. This manuscript studies the

uplink of cell-free systems where users connect to UAVs, the latter devices forwarding the information

to a processing point through imperfect wireless fronthaul links. Three multiple access alternatives are

considered for the fronthaul, namely frequency division multiples access, spatial division multiple access,

and combinations thereof. Deterministic equivalent expressions for the spectral efficiency under these

fronthaul schemes and minimum mean-square error reception are derived. Then, the optimization sub-

problems of (a) the 3D deployment of the UAVs, (b) the user transmit powers, and (c) the UAV transmit

powers, are investigated. The joint optimization of these subproblems yields superior performance, with

the 3D deployment being the main source of improvement.

Index Terms

Cell-Free, UAV, fronthaul, FDMA, SDMA, deployment optimization, power optimization

I. INTRODUCTION

The race towards 6G wireless networks has begun and many ideas are under investigation

[1], with uncrewed aerial vehicles (UAVs) as a potential game changer. Indeed, the inclusion of

UAVs in wireless networks, and in particular their deployment as flying access points (APs) in
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cellular-based systems, is a research problem of growing interest [2]–[13]. Such flying APs

are an attractive alternative to their terrestrial counterparts in terms of coverage, cost, and

deployment flexibility. In particular, their flexibility makes flying APs enticing whenever the

fixed infrastructure is disrupted. With respect to terrestrial APs, UAVs serving as flying APs

pose two distinct challenges: (i) the ground-to-air and air-to-ground character of the radio access

links (uplink and downlink, respectively) and (ii) the necessarily wireless nature of the fronthaul

connecting the UAVs to the rest of the network. The bulk of the research on this topic has thus

far been on the former challenge, including UAV deployment, trajectory optimization, power

control, or interference management [14]–[21], always assuming an ideal fronthaul.

Concurrently with the integration of UAVs, wireless systems are progressing towards software-

defined architectures [22]–[24] under the umbrella of centralized radio access networks (C-

RANs). This goes hand in hand with transcending the time-honored cellular paradigm and moving

to cell-free network structures. In such networks, each user can potentially communicate with

multiple APs by joint processing of the signals at the APs [25]–[39]. A cell-free framework is

especially suitable for UAV networks since UAVs can create strong interference to adjacent cells

because of the line-of-sight (LoS) nature of their channels. In a cell-free network, not only can

this potential interference be mitigated, but it can actually be turned into useful signals. Initial

results confirm the efficacy and benefits of organizing networks where UAVs serve as APs in

a cell-free fashion [40], [41]. Again, these early results focus on the radio access, under the

premise of ideal fronthauling.

The present paper broadens the scope to encompass both the radio access and the wireless

fronthaul, in recognition that an isolated study of one aspect may be deceiving because of

potential bottlenecks in the other. With this broader view, UAVs go from being ideal conduits to

having to face a constrained wireless fronthaul. This, in turn, brings to the fore issues such as

the multiple access in that fronthaul, with alternatives that range from simple frequency-division

multiple access (FDMA) to more sophisticated space-division multiple access (SDMA). While

this work remains application-agnostic, the performance of the different fronthaul alternatives,

and combinations thereof, are tackled. Particularly, the simplicity of FDMA, where the signal

isolation reduces the interference, comes at the expense of a higher demand for bandwidth and

therefore a reduction in the spectral efficiency. Alternatively, in SDMA, co-channel interference

is the price of a multiplexing gain that enables parallelizing transmissions, thereby increasing

the spectral efficiency. Finally, the hybrid FDMA-SDMA fronthaul alternative provides more
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flexibility and can combine the best of both methods. For the sake of specificity, the paper

concentrates on the radio access uplink, with the equally important downlink relegated to future

work.

While, motivated by massive MIMO principles, much of the cell-free literature considers

matched-filter reception for the radio access uplink [26]–[28], the present work posits minimum

mean-square error (MMSE) reception [28]–[30], which is optimum from a signal-to-interference-

and-noise (SINR) perspective and reverts to matched filtering in some limiting regimes. This

endows the results with broader generality.

With MMSE reception on the radio access and various alternatives for the wireless fronthaul,

the analysis then takes place in the asymptotic regime in which the number of UAVs, users,

and antennas at the C-RAN gateway, all grow large. This enables leveraging random matrix

theory results [42]–[46] to derive deterministic equivalents (finite-dimensional approximations

that become exact asymptotically) to the spectral efficiency; importantly, the analysis allows to

flexibly define finite subsets of users being served by each UAV, and vice versa, whereby the

signal processing complexity remains bounded even as the aforementioned quantities are scaled

up. While the aforementioned references study the large-dimensional regime of one-hop cellular

networks, to the best of our knowledge this is the first UAV work that provides an asymptotic

analysis for two-hop networks, either cellular or cell-free. Two-hop channels are much more

difficult to deal with as their overall distribution may not have a closed-form, and in fact the

information-theoretic capacity of a multi-hop channel is not yet known. Algorithms that handle

point-to-point two-hop settings have been proposed [47]; however, there are still many open

problems in a multi-hop network setup. The addition of a wireless fronthaul therefore poses

new challenges to UAV networks, especially under Rician fading, where new asymptotic results

under zero-forcing reception are derived that might be of independent interest.

Armed with the deterministic equivalents for the spectral efficiency, three key problems are

addressed, namely the optimization of (i) the UAV deployment, including altitude, (ii) the user

transmit powers, and (iii) the UAV transmit powers. These problems are studied separately

given their lack of convexity and, for the deployment problem specifically, a combination of

gradient-based (GB) and Gibbs sampling (GS) methods is invoked [48]. The joint optimization

of the UAV deployment and the user and UAV transmit powers drastically improves the spectral

efficiency, with the lion’s share of the benefits being associated with the deployment given that

larger feasible sets, i.e., the 3D space, can be explored compared to traditional performance
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optimization schemes, such as power or rate control. Altogether, the main contributions of the

paper can be summarized as follows:

• An analytical framework is set forth for the uplink of a cell-free UAV network with Rician

fading, channel estimation, realistic antenna patterns, and MMSE reception on the radio

access, as well as a wireless fronthaul.

• Deterministic equivalents are derived for the spectral efficiency in the above framework,

under various fronthaul alternatives.

• For each of the fronthaul alternatives, and with the maximization of the minimum spectral

efficiency as objective, the UAV deployment and the user and UAV transmit power problems

are confronted.

• The impact on the optimization gains of network parameters such as the pathloss exponent

or the antenna directivity is established.

The remainder of the paper is organized as follows. Sec. II lays down the system and

communication models. In Sec. III, the transmission schemes are unveiled, including the cell-

free aspects and the different fronthaul alternatives. Then, in Secs. IV–VI, these alternatives are

successively studied. Sec. VII subsequently focuses on the deployment optimization problem

while numerical results are presented and discussed in Sec. VIII. Concluding remarks are

provided in Sec. IX.

II. SYSTEM MODEL

Consider the uplink of a cell-free network featuring M UAVs, located at qm = (xm, ym)

and altitude Hm, serving K cochannel single-antenna users at wk = (xk, yk). The channel

coefficient between user k and the single-antenna UAV m is denoted by gk,m, drawn from a

Rician distribution such that [49, Sec. 3.4.1]

gk,m =

√
β0 gm(dk,m)

dκk,m

[√
Kk,m

Kk,m + 1
ejψk,m +

√
1

Kk,m + 1
ak,m

]
, (1)

where β0 and κ are the pathloss at a reference distance of 1 m and the pathloss exponent,

respectively, while dk,m is the distance. The Rician factor is Kk,m = A1e
A2 arcsin(

Hm
dk,m

)
for

environment-dependent parameters A1 and A2 [50]. The phase of the LoS component, ψk,m,
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is uniformly random to reflect drifting [34]–[36] whereas ak,m ∼ NC(0, 1) to account for the

small-scale fading. Finally, [51]

gm(dk,m) = 2 (αm + 1)
Hαm
m

dαm
k,m

(2)

models the antenna gain at the mth UAV, with αm regulating the trade-off between coverage

and directivity.1 Hence, the channel correlation coefficient is

rk,m = E{|gk,m|2} (3)

= 2 (αm + 1) β0
Hαm
m

dαm+κ
k,m

. (4)

Upon reception by the UAVs, the collected data is forwarded to the C-RAN gateway, whose

coordinates are q = (x, y) with altitude H . Given its air-to-ground nature, a Rician model is

invoked for the fronthaul as well. The channel vector connecting the mth UAV with the N -

antenna C-RAN gateway is

hm =

√
β0
dκm

[√
Km

Km + 1
ejψmsm +

√
1

Km + 1
am

]
(5)

where dm and Km are the distance and Rician factor between UAV m and the C-RAN, re-

spectively. Additionally, ψm accounts for the drifting, again modelled as uniformly random.

Moreover, sm ∈ CN×1 is the array response to the mth UAV. For an N -antenna uniform linear

array (ULA), the array response satisfies

[sm]n = ej
2πfc

c
d(n−1) sin(θm) cos(ϕm) (6)

given the azimuth θm, elevation ϕm, and antenna spacing d. The small scale fading is am ∼

NC(0,Ωm) for some spatial correlation matrix Ωm among the gateway antennas. Therefore, the

overall covariance matrix for a given fronthaul link is

Rm = E{hmh∗
m} (7)

=
β0

(Km + 1)dκm

[
Kmsms

∗
m +Ωm

]
. (8)

A toy example of this two-hop structure containing wireless access and fronthaul is depicted in

Fig. 1. While the access links are cell-free-based, the fronthaul allows for FDMA, SDMA or

the combination FDMA-SDMA.

1If multiantenna UAVs were considered, the generalization would be straightforward for IID fading while a spatial correlation

matrix would have to be incorporated otherwise.
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Fig. 1: Cell-free UAV network with wireless access and fronthaul links. In this example, the

multiple access employed in the fronthaul is FDMA-SDMA (see Sec. VI).

A. Channel Acquisition

The number of orthogonal pilot dimensions, denoted by τ , is constrained by the coherence

bandwidth Bc and the coherence time Tc. The latter depends on the maximum UAV velocity,

vmax, and the carrier frequency, fc, with the worst-case dependence being Tc =
c/fc
2vmax

for isotropic

scattering [49, Sec. 3.4]. The number of resource units within a fading block is τc ≈ TcBc,

typically a large number that enables τ to be itself large enough for pilot contamination to be

negligible [33], [52]; it also allows for the use of techniques such as random pilots [53]. For

instance, at fc = 2.4 GHz, and with conservative values vmax = 10 m/s and Bc = 1 MHz, we

have τc = 6250. Upon observation of the pilot transmitted by user k at the mth UAV, the MMSE

channel estimate ĝk,m satisfies gk,m = ĝk,m + g̃k,m, where ĝk,m is zero-mean with [54]

γk,m = E{|ĝk,m|2} (9)

=
r2k,m

rk,m + σ2

ptτ

, (10)

for given τ and pt, the latter denoting the pilot transmit power, while σ2 is the noise power at the

receiver. In addition, g̃k,m is zero-mean with variance ck,m = rk,m− γk,m. A similar approach is

applied to the fronthaul, operating at a frequency different from those of the access links, such

that pilot contamination between the two stages is avoided. Concretely, the channel estimates

between the mth UAV and the C-RAN gateway satisfy hm = ĥm+ h̃m where ĥm is zero-mean
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with covariance

Φm = E
{
ĥmĥ

∗
m

}
(11)

= RmΨ
−1
m Rm, (12)

for Ψm = Rm + σ2

ptτ
I . The error, h̃m, is zero-mean with covariance Cm = Rm −Φm.

III. DATA TRANSMISSION SCHEMES

This section describes the two-stage data transmission, namely the cell-free radio access and

the wireless fronthaul. For the latter, several alternatives are entertained: FDMA, SDMA, and

combinations thereof.

A. Cell-Free Radio Access

On a given time-frequency resource unit, the uplink channel matrix is

G =
(
g1, . . . , gK

)
, (13)

where gk ∈ CM×1 is the channel between user k and all UAVs, satisfying G = Ĝ + G̃,

with Ĝ and G̃ being the channel estimation and error matrices, respectively. The subset of

UAVs participating in the reception of each user is determined by the binary matrix M (s) =

(m(s)
1 , . . . ,m

(s)
K ) ∈ ZM×K

2 with entries

[
M (s)

]
m,k

=

1 if k ∈ Um

0 otherwise
,

where Um is the set of users regarded as signal by the mth UAV. Its complementary matrix is

M (i) = 1 −M (s), with nonzero entries indicating the users that each UAV regards as noise.

Pooling the observations from the M UAVs,

y = M (s) ◦Gx+M (i) ◦Gx+ n (14)

= M (s) ◦ Ĝx+
(
M (s) ◦ G̃+M (i) ◦G

)
x+ n, (15)

where ◦ denotes Hadamard product, y = (y1, . . . , yM)T, x = (
√
p1s1, . . . ,

√
pKsK)

T with

symbols sk having unit power, pk being the transmit power, and n ∼ NC(0, σ
2I).
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B. Wireless Fronthaul

At the fronthaul stage, the mth UAV transmits tm =
√
ρmym, where

ρm =
pm

E{|ym|2}
(16)

=
pm

K∑
k=1

rk,mpk + σ2

(17)

ensures an average transmit power of pm. Within this general framework, the various fronthaul

alternatives can be modeled.

1) FDMA: The bandwidth availability at mmWave and sub-THz frequencies makes FDMA

an enticing solution, in which signals are perfectly isolated. Here, single-antenna reception at

the C-RAN gateway suffices—this is a special case of the FDMA-SDMA strategy with N = 1

receive antennas presented later in this section. As a consequence, the observed signal at the

C-RAN gateway over the band allocated to the mth UAV is then

zm = hmtm + nm, (18)

where nm ∼ NC(0, σ
2).

2) SDMA: Systems suffering from bandwidth limitations for the fronthaul might consider

SDMA, where UAVs transmit concurrently. Their signals are untangled at the C-RAN gateway

by the fronthaul combiner um ∈ CN×1, with N ≥ M . At that combiner’s output, the signal

corresponding to the mth UAV is

zm = u∗
m

( M∑
j=1

hjtj + n

)
, (19)

with n ∼ NC(0, σ
2I). The structure of um is discussed in the next section.

3) FDMA-SDMA: FDMA and SDMA can be combined. Let the system have 1 ≤ L ≤ M

frequency bands, with L = M being FDMA and L = 1 being pure SDMA. Over band fℓ, a

subset of UAVs, denoted byMℓ, conveys data to the C-RAN, which separates the |Mℓ| streams

through an N -dimensional fronthaul combiner, um ∈ CN×1. For L > 1, the observed signal for

m ∈Mℓ is

zm = u∗
m

( ∑
j∈Mℓ

hjtj + n

)
, (20)

whose terms respectively correspond to the signals from the |Mℓ| UAVs sharing the ℓth bands

and noise.
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IV. FDMA FRONTHAUL

Let us now proceed to analyze the performance under FDMA fronthauling. After collecting

the M fronthaul transmissions over different bands, the C-RAN receives

z = c ◦M (s) ◦ Ĝx+ n′. (21)

With the C-RAN treating the fronthaul channel estimate as the true channel, the effective

fronthaul gain for the mth UAV is cm = ĥm
√
ρm; the gains for the M UAVs are assembled into

c = (c1, . . . , cM). In turn, n′ is the effective noise, zero-mean and with covariance Σ = E{n′n′∗}.

It can be verified that Σ is diagonal, with entries

[Σ]m,m = rmρm

(∑
∀i

ri,mpi + σ2

)
− ϕmρm

∑
i∈Um

γi,mpi + σ2. (22)

Let Fk =
{
m :

[
M (s)

]
m,k

= 1 , m = 1, . . . ,M
}

be the subset of UAVs that regard what

is received from user k as signal. From the rows of z whose indices are in Fk, we obtain the

|Fk| × 1 vector

zk = ck ◦M (s)
k ◦ Ĝkx+ n′

k, (23)

where M
(s)
k = (m

(s)
k,1, . . . ,m

(s)
k,K) ∈ Z|Fk|×K

2 , ck ∈ C|Fk|×|Fk|, Ĝk ∈ C|Fk|×K and n′
k ∈ C|Fk|×1

contain the Fk rows of the original matrices and vectors. For a generic combiner, wk ∈ C|Fk|×1,

the instantaneous SINR experienced by user k is

SINRk =
|w∗

k(ck ◦ ĝk)|2pk

w∗
k

(∑
i ̸=k

(ck ◦m(s)
k,i ◦ ĝi)(ck ◦m

(s)
k,i ◦ ĝi)∗pi +Σk

)
w∗
k

, (24)

achieving a spectral efficiency of

SEk =
1

L

(
1− τ

τc

)
E{log2(1 + SINRk)}, (25)

where τ
τc

accounts for the pilot overhead and L represents the number of fronthaul frequency

bands; in this case L =M . Consequently, although an increase in M yields higher SINR values,

the pre-log factor dominates (25) and therefore the overall spectral efficiency decreases. With

the optimum MMSE combiner, the above specializes to [29]

SINRk = (ck ◦ ĝk)∗
(∑
i ̸=k

(ck ◦m(s)
k,i ◦ ĝi)(ck ◦m

(s)
k,i ◦ ĝi)

∗pi +Σk

)−1

(ck ◦ ĝk) pk. (26)
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A. Large-Dimensional Analysis

The evaluation of (25) takes place in the asymptotic regime, |Fk|, |Um| → ∞ ∀ k,m, where

convergence to nonrandom limits is assured provided that

Γk = E
{(

m(s)
k ◦ ĝk

)(
m(s)

k ◦ ĝk
)∗} (27)

= diag
{
γk,mm

(s)
k,m ∀m

}
, (28)

and

Φ = E
{
ĥĥ

∗}
(29)

= diag
{
ϕm ∀m

}
, (30)

with ĥ = (ĥ1, . . . , ĥM)T satisfying some technical conditions. Specifically, the inverse of the

resolvent matrix in (26) must exist, which is ensured by the presence of Σk, while Γk and Φ

must have uniformly bounded spectral norms. In other words, the received power should not

concentrate on a subset of dimensions as the network grows large.

Theorem 1. With an FDMA fronthaul, |Fk|, |Um| → ∞ ∀ k,m and MMSE subset combining,

SINRk − SINRk
a.s.→ 0 almost surely (a.s.) with SINRk =

∑
m∈Fk

SINRk,m and

SINRk,m =
γk,mpk∑

i∈Um
i ̸=k

γi,m
1+ei

pi +
rm
ϕm

(∑
∀i
ri,mpi + σ2

)
−
∑
i∈Um

γi,mpi +
σ2

ϕmρm

. (31)

The coefficients ej are obtained iteratively by ej = limn→∞ e
(n)
j , e(0)j = |Fj|, and

e
(n)
j = pj tr

[
ΦΓj

( K∑
i ̸=j

ΦΓi

1 + e
(n−1)
i

pi +Σj

)−1
]
. (32)

Proof. Details on how (31) emanates from [45], [46] can be found in Appendix C.

Interestingly, note that in the asymptotic regime, the value of SINRk is a linear combination

of the SINRs that the kth user experiences over the Fk UAVs weighted by the fronthaul channel.

Finally, from the continuous mapping theorem [55], SEk − 1
M

(
1− τ

τc

)
log2(1 + SINRk)

a.s.→ 0.
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B. Problem Formulation

Let us now turn to optimizing the UAV deployment and transmit powers. With the aim of

ensuring fairness in the network, this is formulated as the max-min problem

max
qm,Hm,pk,pm

min
k

1

M

(
1− τ

τc

)
E{log2(1 + SINRk)}

s.t. Hmin ≤ Hm ≤ Hmax, pk ≤ pmax, pm ≤ pmax,

(33)

which is nonconvex. Invoking Thm. 1, and with the constraints not reiterated for the sake of

compactness, the above leads to

max
qm,Hm,pk,pm

min
k

∑
m∈Fk

SINRk,m, (34)

where SINRk,m is provided in (31). The optimizations of UAV deployment and transmit powers

are tacked separately as follows.

1) Deployment Optimization: The analytical 2D-gradients w.r.t. (34) for a given altitude are

∇qj
SINRk =

∇qj
γk,j Denj − γk,j∇qj

Denj

Den2
j

pk for j ∈ Fk, (35)

where Denj is the denominator of (31). The optimization of Hm is studied separately, as it is

common to every fronthaul alternative.

2) User Transmit Power: The following result is a stepping stone to the user transmit power

optimization.

Proposition 1. The objective function mink SINRk in (33) satisfies the definition of competitive

utility function while the constraints pk ≤ pmax follow the definition of monotonic constraints.

Proof. See Appendix D.

Capitalizing on Prop. 1, the algorithm in [56, Alg. 1] can be applied with sure converge to

the optimum user transmit power in the max-min SINR sense.

3) UAV Transmit Power: From (31), it can be shown that SINRk,m is an increasing function

of pm. Consequently, SINRk increases with pm as well. Therefore, the optimal UAV transmit

power that maximizes the mink SINRk is pm = pmax.
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V. SDMA FRONTHAUL

Let us now turn to the SDMA fronthaul alternative. The C-RAN received signals still follow

(21) after applying the N -dimensional combiner um in (19) and replacing cm = u∗
mĥm

√
ρm and

the equivalent noise

n′
m =

M∑
j=1

u∗
mhj
√
ρjyj − u∗

mĥm
√
ρm

( ∑
k∈Um

ĝk,mxk

)
+ u∗

mn. (36)

The SINR and spectral efficiency expressions in (25)–(26), corresponding to an MMSE access

combiner, also hold with the aforementioned modifications. In particular, the pre-log factor only

depends on the pilot overhead when L = 1.

A zero-forcing (ZF) structure is adopted for the fronthaul, whereby U = (u1, . . . ,uM) ∈

CN×M is given by U = Ĥ(Ĥ
∗
Ĥ)−1 with Ĥ = (ĥ1, . . . , ĥM). Then, u∗

mĥj = δm,j with

δm,j = 1 if m = j and 0 otherwise. The ensuing SINR involves the equivalent noise power

E{n′
mn

′∗
j } under Rician fading, for which no expressions are available in the literature. One of

the contributions in the sequel is an asymptotic expression for this power.

A. Large-Dimensional Analysis

As in Sec. IV-A, the spectral efficiency is evaluated for |Fk|, |Um| → ∞ ∀ k,m and N →∞

with N ≥M . Convergence to deterministic limits is assured provided that Rm satisfies the same

conditions as Φ and Γm. As the equivalent noise n′
m in (36) satisfies E{n′

mn
′∗
j } ∝ E{u∗

mQuj},

we first proceed to characterize such quadratic form asymptotically with a result that might be

of independent interest.

Theorem 2. Let Q ∈ CN×N be a deterministic Hermitian matrix while U = (u1, . . . ,uM) ∈

CN×M is a ZF matrix combiner, U = limϵ→0 Ĥ(Ĥ
∗
Ĥ + ϵI)−1. For M ,N → ∞,

E{u∗
mQum} − lim

ϵ→0

1
N2 tr

(
ΦmT

′(ϵ,Q)
)(

1 + 1
N
tr(ΦmT )

)2 a.s.→ 0 (37)

for T and T ′(ϵ,Q) defined in (67) and (69), respectively.

Proof. See Appendix E.

The convergence of (37), in terms of relative error, is illustrated in Fig. 2.
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Corollary 1. Let Q ∈ CN×N be a deterministic Hermitian matrix while U = (u1, . . . ,uM) ∈

CN×M is a ZF matrix combiner, U = limϵ→0 Ĥ(Ĥ
∗
Ĥ + ϵI)−1. For M ,N → ∞, and m ̸= j

E{u∗
mQuj}

a.s.→ 0. (38)

Proof. The proof follows similar steps as the ones included in Appendix E and exploits the fact

that ĥm and ĥj are uncorrelated.

The combination of Thm. 2 and Corollary 1 results in an asymptotically diagonal noise

covariance matrix Σk.

Theorem 3. With an SDMA fronthaul, ZF fronthaul combining, |Fk|, |Um| → ∞ ∀ k,m, N →∞

with N ≥M and MMSE subset combining, SINRk− SINRk
a.s.→ 0 with SINRk =

∑
m∈Fk

SINRk,m

and

SINRk,m =
γk,mpk∑

i∈Um
i ̸=k

γi,m
1+ei

pi +
∑
∀i
ri,mpi −

∑
i∈Um

γi,mpi + σ2 + ξSDMA
m

ρm

. (39)

The application of Thm. 2 to E{n′
mn

′∗
m} results in

ξSDMA
m = lim

ϵ→0

M∑
n=1

pn

1
N2 tr(ΦmT

′(ϵ,Cn))(
1 + 1

N
tr(ΦmT )

)2 + σ2
1
N2 tr(ΦmT

′(ϵ, I))(
1 + 1

N
tr(ΦmT )

)2 (40)

while the coefficients ej are obtained iteratively by ej = limn→∞ e
(n)
j , e(0)j = |Fj|, and

e
(n)
j =

∑
m∈Fj

γj,mpj∑
i∈Um
i ̸=k

γi,m

1+e
(n−1)
i

pi +
∑
∀i
ri,mpi −

∑
i∈Um

γi,mpi + σ2 + ξSDMA
m

ρm

. (41)

Proof. Proceed as in Appendix C.

Similarly to the FDMA case, SINRk can be decomposed as the sum of SINRs over the Fk
UAVs with two main differences: (i) the fronthaul channel is compensated by the ZF combiner

and (ii) the noise is increased after the ZF stage, as per ξSDMA
m

ρm
. Finally, from the continuous

mapping theorem, SEk −
(
1− τ

τc

)
log2(1 + SINRk)

a.s.→ 0.

B. Problem Formulation

We now turn to optimizing the UAV deployment and transmit powers by maximizing the

minimum SINR under SDMA fronthauling. Capitalizing on Thm. 3, that amounts to

max
qm,Hm,pk,pm

min
k

∑
m∈Fk

SINRk,m

s.t. Hmin ≤ Hm ≤ Hmax, pk ≤ pmax, pm ≤ pmax,

(42)
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Fig. 2: Relative error between the two terms in Thm. 2 as a function of ϵ for various M and N .

for SINRk,m in (39). The above problem is nonconvex.

1) Deployment Optimization: The presence of ξSDMA
m in the denominator of (39) makes the

gradients analytically unwieldy. However, as shown in Fig. 3a, the signal terms within ξSDMA
m

satisfy

lim
ϵ→0

1
N2 tr(ΦmT

′(ϵ,Cn))(
1 + 1

N
tr(ΦmT )

)2 ≈ cmd
κ
m, (43)

where cm is a regression parameter and dm, recall, is the distance between UAV m and the

C-RAN. Referring to Fig. 3a, cm can be obtained by fitting every data point (solid regression

curve) or only the maximum at each distance (dashed regression curve). Similarly for the noise

term within ξSDMA
m , as shown in Fig. 3b,

lim
ϵ→0

1
N2 tr(ΦmT

′(ϵ, I))(
1 + 1

N
tr(ΦmI)

)2 ≈ c(n)m dκm, (44)

with a corresponding regression parameter c(n)m . After comparing the respective performances,

the solid regression curves are chosen and the gradient satisfies

∇qm
SINRk ≈

∇qm
γk,mDenm − γk,m∇qm

Denm

Den2
m

pk for m ∈ Fk., (45)

with

Denm =
∑
i∈Um
i ̸=k

γi,m
1 + ei

pi +
∑
∀i

ri,mpi −
∑
i∈Um

γi,mpi + σ2 +
dκm
ρm

( M∑
n=1

pncm + σ2c(n)m

)
. (46)
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Fig. 3: Curve fitting with every data point (solid) or only the maximum at each distance (dashed)

for (a) E{u∗
mCnum} and (b) σ2E{u∗

mum}.

2) User Transmit Power: It can be verified that mink SINRk in (42) satisfies the definition

of competitive utility function and the constraints are monotonic. Thus, [56, Alg. 1] converges

to the optimal user transmit powers.

3) UAV Transmit Power: To tackle this subproblem, it is convenient to reformulate (42) so

as to capitalize on the fact that for any set of functions fk(x), the problem maxx mink fk(x) is

equivalent to
max
x,t

t

s.t.fk(x) ≥ t ∀k.
(47)

It follows that the optimization in (42) w.r.t. pm is equivalent to

max
pm, t, yk,m

t

s.t.
∑
m∈Fk

y2k,m ≥ t ∀k

y2k,m ≤ SINRk,m ∀k,m

(48)

where yk,m is a slack variable satisfying y2k,m = SINRk,m when the optimum solution is attained;

elsewhere, the value of y2k,m can be increased for a higher cost function.
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While equivalent to the original problem, (48) is neither convex nor concave. To tackle it,

we leverage the successive convex approximation method (SCA) [57]. First, given that y2k,m is

convex, it accepts a lower bound of the type y2k,m ≥ y
2 (lb)
k,m with

y
2 (lb)
k,m = y

2 (p)
k,m + 2y

(p)
k,m(yk,m − y

(p)
k,m) (49)

where y2 (p)
k,m is the value of y2k,m at approximation point p. Then, defining for the sake of brevity

λm,n = lim
ϵ→0

1
N2 tr(ΦmT

′(ϵ,Cn))(
1 + 1

N
tr(ΦmT )

)2 (50)

and

λ
′

m = lim
ϵ→0

1
N2 tr(ΦmT

′(ϵ, I))(
1 + 1

N
tr(ΦmI)

)2 , (51)

a similar procedure is followed to derive a lower bound for SINRk,m, which is convex w.r.t.
1
pm

(∑M
n ̸=m λm,nrnpn + σ2λ

′
m

)
and therefore satisfies SINRk,m ≥ SINR

(lb)
k,m with

SINR
(lb)
k,m = SINR

(p)
k,m − ζSD

k,m

[
1

pm

(
M∑
n=1

λm,nrnpn + σ2λ
′

m

)
− 1

p
(p)
m

(
M∑
n=1

λm,nrnp
(p)
n + σ2λ

′

m

)]
(52)

and with

ζSD
k,m = − ∂SINRk,m

∂ 1
pm

(∑M
n=1 λm,nrnpn + σ2λ′

m

)∣∣∣∣∣
pi=p

(p)
i i=1,...,M

. (53)

Still, y2k,m ≤ SINR
(lb)
k,m is not convex because of the quotients pn

pm
in (52). Division of both sides

of the inequality by
∑M

n=1 λm,nrnpn + σ2λ
′
m gives

y2k,m∑M
n=1 λm,nrnpn + σ2λ′

m

≤ −
ζSD
k,m

pm
+

SINR
(p)
k,m +

ζSD
k,m

p
(p)
m

(∑M
n=1 λm,nrnp

(p)
n + σ2λ

′
m

)
∑M

n=1 λm,nrnpn + σ2λ′
m

, (54)

where the only nonconvex term is the second in the right-hand side, which itself accepts a lower

bound w.r.t.
∑M

n=1 λm,nrnpn + σ2. As a consequence, further application of the SCA technique

results in the convex set of constraints

y2k,m∑M
n=1 λm,nrnpn + σ2λ′

m

≤ −
ζSD
k,m

pm
+

[
SINRk,m +

ζSD
k,m

p
(p)
m

(
M∑
n=1

λm,nrnp
(p)
n + σ2λ

′

m

)]
× 1∑M

n=1 λm,nrnp
(p)
n + σ2λ′

m

− 1(∑M
n=1 λm,nrnp

(p)
n + σ2λ′

m

)2
(

M∑
n=1

λm,nrnpn −
M∑
n=1

λm,nrnp
(p)
n

) .
(55)
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Altogether then, an approximate convex reformulation of (48) is

max
pm, t, yk,m

t

s.t.
∑
m∈Fk

y
2 (lb)
k,m ≥ t ∀k

(56)

and further subject to (55). This problem can be efficiently solved with standard optimization

tools [58]. In addition, it can be shown that, given the tightness of the local approximations,

the sequence of objective values generated by the SCA applied to (56) is monotonically non-

decreasing with an upper bound, and therefore converges.

VI. FDMA-SDMA

Finally, under a combined FDMA and SDMA fronthaul, the application of the N -dimensional

fronthaul combiner um in (20) yields the same model of (21) with cm = u∗
mĥm

√
ρm and an

equivalent noise n′ = (n′
1, . . . , n

′
M) ∈ CM×1 with

n′
m =

M∑
j∈Mℓ

u∗
mhj
√
ρjyj − u∗

mĥm
√
ρm

( ∑
k∈Um

ĝk,mxk

)
+ u∗

mnc. (57)

The SDMA component requires N ≥ max{|Mℓ| , ℓ = 1, . . . , L} and, with the fronthaul

combiner um set to be ZF, u∗
mĥj = δm,j for m, j ∈Mℓ.

A. Large-Dimensional Analysis

Under the same assumptions as for pure FDMA or SDMA and given the ZF nature of um,

Thm. 2 is applied to characterize the asymptotic equivalent noise terms.

Theorem 4. With a combined FDMA and ZF-SDMA fronthaul, |Fk|, |Um| → ∞ ∀ k,m, N →∞

with N ≥ max{|Mℓ| , ℓ = 1, . . . , L}, and MMSE subset combining, SINRk − SINRk
a.s.→ 0 with

SINRk =
∑

m∈Fk

SINRk,m and

SINRk,m =
γk,mpk∑

i∈Um
i ̸=k

γi,m
1+ei,k

pi +
∑
∀i
ri,mpi −

∑
i∈Um

γi,mpi + σ2 + ξFS
m

ρm

. (58)

The application of Thm. 2 to E{n′
mn

′∗
m} results in

ξFS
m = lim

ϵ→0

∑
j∈Mℓ

pj

1
N2 tr(ΦmT

′(ϵ,Cj))(
1 + 1

N
tr(ΦmT )

)2 + σ2
1
N2 tr(ΦmT

′(ϵ, I))(
1 + 1

N
tr(ΦmI)

)2 . (59)
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The coefficients ej are obtained iteratively by ej = limn→∞ e
(n)
j , e(0)j = |Fj|, and

e
(n)
j =

∑
m∈Fj

γj,mpj∑
i∈Um
i ̸=j

γi,m

1+e
(n−1)
i

pi +
∑
∀i
ri,mpi −

∑
i∈Um

γi,mpi + σ2 + ξFS
m

ρm

. (60)

Proof. Proceed as in Appendix C.

From the continuous mapping theorem, SEk − 1
L

(
1− τ

τc

)
log2(1 + SINRk)

a.s.→ 0.

B. Problem Formulation

The max-min SINR optimization problem in this case boils down to

max
qm,Hm,pk,pm

min
k

∑
m∈Fk

SINRk,m

s.t. Hmin ≤ Hm ≤ Hmax, pk ≤ pmax, pm ≤ pmax,

(61)

for SINRk,m given in (58).

1) Deployment Optimization: As in pure SDMA, the terms in ξFS
m can be approximated by

a linear combination of polynomials whose variable is the distance between the UAV and the

C-RAN. Therefore,

∇qm
SINRk ≈

∇qm
γk,mDenm − γk,m∇qm

Denm

Den2
m

pk for m ∈ Fk, (62)

where

Denm =
∑
i∈Um
i ̸=k

γi,m
1 + ei,k

pi +
∑
∀i

ri,mpi −
∑
i∈Um

γi,mpi + σ2 +
dκm
ρm

( ∑
j∈Mℓ

pjcm + σ2c(n)m

)
. (63)

2) User Power Allocation: Again, [56, Alg. 1] converges to the user transmit power that

maximizes mink SINRk in (61).

3) UAV Power Allocation: Because of space limitations, the derivation of the UAV transmit

power optimization is not included. Similar steps as in Sec. IV-B3 should be followed.

VII. GB-GS DEPLOYMENT ALGORITHM

Equipped with the 2D gradients derived in the previous section, the UAV locations could be

updated iteratively as

q(t)
m ←− q(t)

m + ρ(t)∇qm
SINR

(t)

k |qm=q
(t)
m
, (64)

where t is the iteration counter and ρ(t) a decreasing function of t for convergence reasons.

However, the nonconvex nature of the problem may result in low-quality solutions. Moreover,
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the altitudes should be part of the optimization as well. For such a complex optimization, an

attractive approach is that of stochastic optimization. This work leverages the well-known GS

technique in conjunction with (64). Concretely, for a set of possible states Θ, GS aims at solving

max
{ℓm ∀m} ∈Θ

min
k

SINRk, (65)

where ℓm =
(
qm, Hm

)
corresponds to the 3D locations that are iteratively updated according to

a certain probability distribution [48].

Let η(t) = min
k

SINR
(t)

k ≡ SINR
(t)

k
(t)
min

be the cost function at Iteration t whereas k(t)min represents

the index of the user with lowest SINR
(t)

. In SDMA, such η(t) is a function of all UAVs since

those within subset Fk provide service while the rest create fronthaul interference. For the other

two fronthaul strategies, only a subset of UAVs are relevant. To maintain a generic formulation,

we derive the algorithm under SDMA fronthauling; minor changes apply for FDMA and FDMA-

SDMA. The cost function can be expressed as η(t)(ℓ(t)m , ∀m) and the 3D locations of the M

UAVs are updated sequentially, starting with the lowest index.

Denote by L(t)
−m = {ℓ(t+1)

1 , . . . , ℓ
(t+1)
m−1 , ℓ

(t)
m+1, . . . , ℓ

(t)
M } the set of UAVs satisfying:

a) UAVs 1, . . . ,m− 1 have already updated their locations to t+ 1;

b) the locations of UAVs m+ 1, . . . ,M still need to be updated; and

c) UAV m is excluded.

The cost function allows an alternative expression as a function of L(t)
−m, namely η(t)(ℓ(t)m ,L

(t)
−m).

From [48], the probability of the mth UAV updating its 3D location to ℓ(t+1)
m is

Pr
{
ℓ(t+1)
m |ℓ(t)m ,L(t)

−m

}
=

exp
{
γ η(t)

(
ℓ(t+1)
m ,L(t)

−m
)}

∑
ℓ̂
(t+1)
m ∈Θt+1

exp
{
γ η(t)

(
ℓ̂
(t+1)

m ,L(t)
−m
)} , (66)

where γ is a fixed parameter and Θt+1 represents the possible locations that UAV m can explore at

Iteration t+1. To reduce the search space, the number of such locations is limited to |Θt+1| = 18

(see Fig. 4). The options are to stay, move north, move south, move east, move west, and move

in the direction of the gradient in (64), as well as the corresponding twelve locations at a higher

and lower altitude. The search space is the set of 3D positions confined between some minimum

and maximum altitudes, respectively Hmin and Hmax. And, after each iteration, matrix M (s) is

updated. A summary of the process is included in Algorithm 1 where ϵ is a stopping parameter.

It is proved in [59] that, for large enough γ and t → ∞, the solution for (66) converges to

the optimal solution with probability 1.
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Fig. 4: 3D search space for UAV m with the dots representing Θt+1.

Algorithm 1 GS-GB Algorithm

Require: at t = 0, initialize UAV locations, ℓ(0)m , and cost function, η(0)

while |η(t+1)−η(t)|
η(t)

> ε do

find the user with lowest cost function, k(t)min

for all m = 1, . . . ,M do

obtain L(t)

−m,k(t)min

.

create the reduced search space with eighteen possible locations, Θt+1.

compute the cost function at the possible new locations, η(t)
(
q̂(t+1)
m ,L(t)

−m,k(t)min

)
for ℓ̂

(t+1)

m ∈ Θt+1.

calculate (66) and choose one movement accordingly, obtaining ℓ(t+1)
m .

end for

end while

VIII. NUMERICAL RESULTS

To evaluate the performance, we consider a 1 km2 universe, wrapped around to avoid boundary

effects. The simulation parameters are listed in Table I, selected based on the cell-free and UAV

literature [27], [60]–[63]. Consistent with the neglect of pilot contamination, we consider τ = 200

for a 3.2% pilot overhead. To ensure connectivity to multiple UAVs, the [m, k] entry of M (s)

is 1 if dk,m ≤ Rmax for Rmax = 400 m. The fading is IID, such that Ωm = I . Moreover,

the noise arising in the fronthaul is scaled by a factor of M and L in SDMA and FDMA-
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TABLE I: Simulation parameters

Description Parameter Value

Maximum transmit power pmax, pmax 100 mW

Pathloss at 1 m β0 -30 dB

Pathloss exponent κ 2.2

Dense urban parameters A1, A2 0, 6.4 dB

Noise power for access and FDMA fronthaul σ2 -96 dBm

Antenna beamwidth αm 4

Operating frequency fc 2.4 GHz

Maximum UAV velocity vmax 10 m/s

Coherence bandwidth Bc 1 MHz

Number of UAVs M 64

Number of users K 45

Maximum and minimum altitude Hmax, Hmin 25, 100 m

SDMA, respectively, to account for the bandwidth difference among the schemes. As for the

GB-GS algorithm, and noting that other choices may be as effective, ρ(t) = TGS · 1.005−t where

TGS depends on the fronthaul scheme and is set to TGS = 80 for FDMA and to TGS = 40

for SDMA and FDMA-SDMA. In addition, DGS = 1 m (see Fig. 4) while γ = 10 and ϵ =

0.01. The entries of M (s) are updated at every iteration of the GS-GB algorithm following

the aforementioned distance-based rule with the frequency band allocations drawn at random.

Finally, the user locations abide by a Poisson Point Process and the optimization algorithm that

combines deployment and power optimization is tested over 100 deployments. When presenting

results, the optimized deployment is denoted by A-O (after optimization) while a square grid

UAV deployment, denoted by B-O (before optimization), serves as a benchmark.

We first evaluate the performance with FDMA fronthauling under a variety of parameters

while validating the asymptotic derivations. Concretely, Fig. 5a plots the average per user spectral

efficiency for different M and K. Additionally, Fig. 5b verifies Thm. 1 for different K/M . From

Fig. 5b, a smaller K/M , i.e., more UAVs per ground user, provides better SINRs while allowing

more UAVs to participate in the decoding of each user. Conversely, by looking at Fig. 5a, for

fixed K, increasing M is not helpful in terms of spectral efficiency given the 1/M pre-log factor

in (25). Finally, Fig. 5b shows that the derived results are indeed tight for finite-dimensional

systems given the small gap between the E{SINR} and SINR curves, with the advantage of only

depending on large-scale parameters. A similar assessment is conducted for SDMA fronthauling
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Fig. 5: (a) FDMA performance for different K,M ; (b) validation of Thm. 1.

in Fig. 6. The number of antennas is set to N = 1.2N . Interestingly, although SDMA provides

lower SINRs compared to FDMA, an increase in M results in an improved spectral efficiency

provided that the pre-log factor in Eq. (25) is one. This is because of the multiplexing gain

in SDMA. Finally, Fig. 7 presents the results for FDMA-SDMA. We consider L = M
5

and

N = 1.2L, and the observations are consistent with those of FDMA and SDMA both in terms

of (a) the tendency when varying the network load, and (b) the match between real and asymptotic

SINR derivations.

As one would expect, the SINRs achieved with FDMA are decidedly higher because of the

orthogonal nature of the transmisions and reduced noise bandwidth. In contrast (see Fig. 8),

when measuring the sum spectral efficiency, SDMA vastly outperforms FDMA thanks to its

spatial multiplexing gain. The hybrid FDMA-SDMA scheme balances the two.

Turning now to the deployment optimization, Fig. 9 presents results under FDMA fronthauling

with different κ and αm. Particularly, with the aim of keeping a small legend, the values shown

in such figures are (κ, αm) where B-O and A-O, recall, stand for before and after optimization,

respectively. Specifically, Fig. 9a plots the B-O and A-O distributions; the optimization is highly

effective, with at least 45% of users improving their SINR as a result. Then, Fig. 9b presents

the CDF of the minimum SINR, where the optimization yields a 8-18 dB gain.

Fig. 10 presents results for the SDMA fronthaul parameterized by (κ, αm). For κ = 2.2, 40-
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Fig. 6: (a) SDMA under different K,M ; (b) validation of Thm. 3.
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Fig. 7: (a) FDMA-SDMA for different K,M , L = M
5

; (b) validation of Thm. 4.

60% of users enjoy an improved SINR after the optimization. For a higher pathloss exponent,

κ = 3, it is 20-40%. The minimum SINR improves by 5-17 dBs for a variety of κ and αm.

Results for the third fronthaul option, which combines FDMA and SDMA, are included in

Fig. 11 for different (αm, L, N ). Again, the combination of deployment and power optimization

highly increases the SINR experienced by those users with unfavorable initial conditions. Con-
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Fig. 8: Sum spectral efficiency under different network loads K/M for (a) FDMA; (b) SDMA;

(c) FDMA-SDMA.
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Fig. 9: CDFs B-O and A-O for different κ and αm under an FDMA fronthaul (a) E{SINRk};

(b) min-E{SINRk}.

cretely, at least 50% of the SINRs are increased depending on the network parameters while the

gains in terms of minimum SINR are 12-27 dB.

In Figs. 12a and 12b, respectively for FDMA and SDMA fronthauls, we provide insight

on the contributions to the optimization gain. Precisely, we present the CDFs B-O, A-O, only

optimizing the deployment (DEPLOY-O) and only optimizing the transmit powers (POWER-O)

(POWER-O) for (a) FDMA ; (b) SDMA. Power optimization helps to increase the lowest SINRs

for 20-30% of users. However, the main source of gain is from the deployment optimization,
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Fig. 10: CDF B-O and A-O parameterized by (κ, αm) under SDMA fronthaul with N = 80 (a)

E{SINRk}; (b) min−E{SINRk}.
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Fig. 11: CDF B-O and A-O parameterized by (αm, L) and N under FDMA-SDMA fronthaul

(a) E{SINRk}; (b) min−E{SINRk}.

improving 90-100% of the user SINRs.

IX. CONCLUSION

This paper has considered a cell-free network with wireless access and fronthaul links. For

the latter, a variety of schemes have been considered, namely FDMA, SDMA, and FDMA-
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Fig. 12: E{SINRk} CDF B-O, A-O, DEPLOY-O and POWER-O for κ = 2.2 and αm = 4 for

(a) FDMA fronthaul; (b) SDMA fronthaul.

SDMA. Under Rician fading for the access and fronthaul links, deterministic equivalents for

the SINR with MMSE reception have been provided for the three fronthaul schemes. Based

on these deterministic expressions, the minimum SINR has been maximized with respect to (a)

the 3D UAV locations, (b) user transmit power, and (c) UAV transmit power. A combination of

gradient-based and Gibbs sampling algorithms has been employed for the former, and classic

optimization techniques for the latter two.

Extensive results have shown how the optimization of the minimum SINR provides superior

and fairer conditions in the network. Gains of 5-27 dB are achieved depending on the fronthaul

techniques and network parameters. Further results have uncovered that the lion’s share of the

improvements can be attributed to the deployment optimization, with marginal additional gains

associated with the optimization to the transmit powers.

APPENDIX A

Theorem 5. ( [45, Thm. 1]) Let D ∈ CM×M and S ∈ CM×M be Hermitian nonnegative-definite

while H ∈ CM×M is a random matrix with zero-mean independent column vectors, hk, each

with covariance matrix 1
M
Rk. In turn, D and Rk have uniformly bounded spectral norm w.r.t.

M . For z > 0 and M,K →∞,

1

M
tr
[
D
(
HH∗ + S + zIM)−1

]
− 1

M
tr[DT ]

a.s.→ 0,
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where

T =

(
1

M

K∑
j=1

Rj

1 + ej
+ S + zIM

)−1

, (67)

with coefficients ek = limn−→∞e
(n)
k for

e
(n)
k =

1

M
tr

[
Rk

(
1

M

K∑
j=1

Rj

1 + e
(n−1)
j

+ S + zIM

)−1
]
, (68)

with initial values e(0)k =M .

APPENDIX B

Theorem 6. ( [45, Thm. 2]) Let Φ ∈ CM×M be Hermitian nonnegative-definite. Under the same

conditions as Thm. 5, for M,K →∞,

1

M
tr
[
D
(
HH∗ + S + zIM)−1Φ

(
HH∗ + S + zIM)−1

]
− 1

M
tr[DT ′(z,Φ)]

a.s.→ 0,

where T ′(z,Φ) is defined as

T ′(z,Φ) = TΦT + T
1

M

K∑
k=1

Rke
′
k(z,Φ)

(1 + ek)2
T , (69)

with T and ek given in Thm. 5 for given z and e′(z,Φ) =
(
e′1(z), . . . , e

′
K(z)

)
computed as

e′(z,Φ) =
(
I − J(z)

)−1
v(z,Φ), (70)

with J(z) ∈ CK×K and v(z) ∈ CK×1 defined as(
J(z)

)
k,l

=
1
M
tr
[
RkTRlT

]
M(1 + el)2

, (71)

and (
v(z,Φ)

)
k
=

1

M
tr
[
RkTΦT

]
. (72)

APPENDIX C

Define the matrix

Ωk =
((

ck ◦M (s) ◦ Ĝk

)
P
(
ck ◦M (s) ◦ Ĝk

)∗ − (ck ◦ ĝk)(ck ◦ ĝk)∗pk +Σk

)−1

, (73)

where P = diag{pk ∀ k} and Ω′
k = |Fk|Ωk. Then, (26) can be written as

SINRk =
(
ck ◦ ĝk

)∗
Ωk

(
ck ◦ ĝk

)
pk (74)

=
pk
|Fk|

tr
[(
ck ◦ ĝk

)(
ck ◦ ĝk

)∗
Ω′
k

]
. (75)
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For |Fk|,|Um| −→ ∞ ∀ k,m, using [45, Lemma 4] and Thm. 5,

pk
|Fk|

tr
[(
ck ◦ ĝk

)(
ck ◦ ĝk

)∗
Ω′
k

]
− pk
|Fk|

tr[ΦΓkT k]
a.s.→ 0. (76)

In our case, the role of
(
HH∗+S+zIM)−1 in Thm. 5 is played by Ω′

k. There is a direct mapping

between the terms in the aforementioned theorem and our problem, namely (i) D = ΦΓk pk,

(ii) Rj = ΦΓj pj , and (iii) S + zIM = 1
|Fk|

Σk with matrix T k following the structure of T in

Thm. 5, namely

T k =

(
1

|Fk|

K∑
j ̸=k

ΦΓj
1 + ej

pj +
1

|Fk|
Σk

)−1

. (77)

The necessary coefficients can be calculated as ej = limn→∞ e
(n)
j with

e
(n)
j = pj tr

[
ΦΓj

( K∑
i ̸=j

ΦΓi

1 + e
(n−1)
i

pi +Σj

)−1
]
. (78)

The fixed-point algorithm can be used to compute e(n)j and has been proved to converge [45].

Finally, since matrices Γk and T k are diagonal, (76) can be written as

pk
|Fk|

tr[ΦΓkT k] = pk tr

[
ΦΓk

( K∑
i ̸=k

ΦΓi
1 + ei

pi +Σk

)−1
]
, (79)

and, with some straightforward algebra, the expression in Prop. 1 is obtained.

APPENDIX D

The definition of competitive utility functions and monotonic constraints are available at [56,

Assumptions 1 and 2]. In our case, the utility function of user k is given in Thm. 1. It satisfies

positivity because each SINRk,m in (31) is positive. Then, to verify competitiveness, it is enough

to show that a function of the type
∑

m∈Fk

ak,mpk
ck,m+dk,mpk

is always increasing for ak,m, ck,m, dk,m > 0.

Indeed,
d

d pk

∑
m∈Fk

ak,mpk
ck,m + dk,mpk

=
∑
m∈Fk

ak,mck,m
(ck,m + dk,mpk)2

> 0. (80)

Similarly, it can be shown that SINRk is decreasing with respect to pi for i ̸= k. Finally, to

show directional monotonicity, we substitute pi by µpi ∀ i and define the new SINR by SINR
µ

k .

After some straightforward algebraic manipulations,

SINR
µ

k =
∑
m∈Fk

γk,mpk∑
i∈Um
i ̸=k

γi,m
1+ei,k

pi +
rm
ϕm

(∑
∀i
ri,mpi +

σ2

µ

)
−
∑
i∈Um

γi,mpi +

K∑
i=1

ripi+
σ2

µ

ϕmpm
σ2

. (81)



29

All the terms in SINR
µ

k are as in SINRk except for the ones that depend on σ2, which are

divided by µ. Provided that µ > 1, each of the denominators is smaller in SINR
µ

k and thus

SINR
µ

k ≥ SINRk for µ > 1. Finally, it is easy to show that pk ≤ pmax are monotonic constraints.

APPENDIX E

Given a ZF fronthaul combiner U , we can make construct U (ϵ) = Ĥ(Ĥ
∗
Ĥ+ϵI)−1 satisfying

U = limϵ→0 U
(ϵ). For ease of exposition, we define Ω = ( 1

N
ĤĤ

∗
+ ϵ

N
I)−1 while Ωm equals

Ω without the contribution of the mth channel. Note that U (ϵ) = 1
N
ĤΩ. In addition,

U (ϵ) = Ĥ(Ĥ
∗
Ĥ + ϵI)−1 = (ĤĤ

∗
+ ϵI)−1Ĥ =

1

N
ΩĤ . (82)

As a consequence, E{u(ϵ)∗
m Qu

(ϵ)
m } can be written as

E{u(ϵ)∗
m Qu(ϵ)

m } = E

{
1

N2
ĥ

∗
mΩQΩĥm

}
. (83)

The term inside the expectation satisfies

1

N2
ĥ

∗
mΩQΩĥm =

1
N2 ĥ

∗
mΩmQΩmĥm

(1 + 1
N
ĥ

∗
mΩmĥm)2

(84)

=
Nm

(1 + Dm)2
. (85)

Note that Nm converges a.s. to

Nm
a.s.→ 1

N2
tr
(
ΦmΩmQΩm

)
(86)

a.s.→ 1

N2
tr
(
ΦmT

′(ϵ,Q)
)
, (87)

where T ′(ϵ,Q) is provided in Thm. 6 for D = Φm, Φ = Q, S = 0, z = ϵ, Rk = Φk and by

substituting M = N . For the term in the denominator, applying Thm. 5,

Dm
a.s.→ 1

N
tr
(
ΦmΩm

)
(88)

a.s.→ 1

N
tr
(
ΦmT

)
, (89)

where the same substitutions used to obtain T ′(ϵ,Q) are made in Thm. 5 to acquire T . Applying

the continuous mapping theorem,

E{u(ϵ)∗
m Qu(ϵ)

m } −
1
N2 tr

(
ΦmT

′(ϵ,Q)
)(

1 + 1
N
tr
(
ΦmT

))2

a.s.→ 0. (90)

Taking the limit when ϵ→ 0 in both terms results in the convergence stated in Thm. 2.
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[35] Ö. T. Demir and E. Björnson, “Joint power control and LSFD for wireless-powered cell-free massive MIMO,” IEEE Trans.

on Wireless Commun., vol. 20, pp. 1756–1769, Mar. 2020.
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