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Abstract—Recently, the use of uncrewed aerial vehicles (UAVs)
in joint sensing and communication applications has received
a lot of attention. However, integrating UAVs in current cel-
lular systems presents major challenges related to trajectory
optimization and interference management among others. This
paper considers a multi-cell network including a UAV, which
senses and forwards the sensory data from different events to the
central base station. Particularly, the current manuscript covers
how to design the UAV’s (i) 3D trajectory, (ii) power allocation,
and (iii) sensing scheduling such that (a) a set of events are
sensed, (b) interference to neighboring cells is kept at bay, and
(c) the amount of energy required by the UAV is minimized. The
resulting nonconvex optimization problem is tackled through a
combination of (i) low-complexity binary optimization, (if) suc-
cessive convex approximation, and (iii) the Lagrangian method.
Simulation results over a range of various key parameters have
shown the merits of our approach, which consumes 33%-200%
less energy compared to different benchmarks.

Index Terms—UAY, sensing, communications, trajectory opti-
mization, interference management, energy-efficiency, 6G

I. INTRODUCTION

The transition towards 6G networks has started with a
potential use case of combining sensing and communications
under the same umbrella [1]-[3]. While static sensing and/or
communication networks have been greatly studied, efficient
sensing and reliable communication in dynamic networks re-
sult in new challenges not perceived by the static counterparts.
To circumvent these challenges, the uncrewed aerial vehicle
(UAV) technology presents an appealing framework. Indeed,
because of their advantages, e.g. low production cost or easy
deployment and control, the use of UAVs in wireless commu-
nication systems has attracted significant attention during the
last few years. Specifically, deploying UAVs and other nodes
under certain optimality criteria is an active field of research
[4]-[25]. For example, authors in [9], [10], [12] regard UAVs
as flying base stations with the goal of maximizing the mini-
mum rate whereas [14], [15] exploit the relaying capabilities
of the UAVs. Additionally, [23]-[25] present a variety of
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UAV-aided data-collection networks. However, jointly tackling
sensing and communications problems is novel with few works
dealing with it [26]-[29].

Compared to earlier results, this manuscript covers un-
solved fundamental challenges that naturally arise in joint
sensing and communication networks such as the 3D UAV
trajectory optimization, interference management, and sensing
scheduling. One important defining aspect of these networks
is data collection versus sensing. In data collection UAV
networks, sensing is done on the ground and a communication
link between the ground device and the UAV is needed. On
the other hand, in sensing UAV networks, UAVs sense the
events cooperatively whilst guaranteeing a successful sensing
probability. For example, UAVs can be equipped with a variety
of cameras and sensors which, after sensing an event, generate
a certain amount of data that is transmitted to the base station
(BS) [30]-[32].

In fact, the vast majority of the literature separates sensing
from communications, especially within UAV networks given
the complexity of achieving optimal deployments. Therefore,
this work aims at filling this gap by focusing on the UAV-
energy minimization problem with respect to (i) 3D UAV
trajectory, (ii) power allocation, and (iii) sensing in multi-cell
UAV-aided networks constrained to a set of sensing, commu-
nications, and mechanical technical specifications. Concretely,
each cell provides service to a set of ground users (GUs).
In addition, the central cell also contains a set of events that
must be sensed by the UAYV, that can be regarded as an aerial
user which always reports to the central BS'. After sensing
an event, usually represented through a probabilistic sensing
model [33]-[35], the UAV generates the sensory data which
is transmitted to the central BS over a certain resource block.

Unlike the existing works in the literature, we envision
a time-dependent probability of sensing, i.e., longer periods
flying close to an event result in higher sensing probabilities. In
addition, the sensory data transmission is mainly constrained
by the information causality, UAV mobility, and interference.
In fact, compared to [22], [24], and similar works, the con-
straints that preserve the causality of the information need to
be redefined. Two major differences arise: (i) the UAV uses the
same resource block at all times without any time or frequency
scheduling, and (ii) there is no link between the events and
UAV as previously mentioned. As a consequence, the spectral

'Minor modifications would apply if handovers between the UAV and the
BSs were considered.



efficiency of this system is higher although a reformulation
of the causality constraint is needed. Moreover, a significant
issue that is often ignored when designing UAV networks, as
in [14]-[16], [19]-[22] among others, relates to interference.
Particularly, it is assumed that the devices within each cell
are assigned an orthogonal resource block; therefore, intra-
cell interference is negligible, which can be easily achieved
for example by orthogonal frequency division multiple access
(OFDMA). However, frequency reuse among cells gives rise
to inter-cell interference. Specifically, interference in aerial
radio links is predominant compared to the ground counter-
parts given the Rician nature of air-to-ground channels [36]-
[38]. Consequently, interference arising from the sensory data
transmission from the UAV to the BS must be accounted for.
Otherwise, correct decoding at certain GUs or BSs may fail.
There are two main solutions to mitigate interference: (a) using
coding or beamforming at the transmitter [39]-[42] and/or (b)
perform power control at the UAV [43], [44]. In this work, to
handle inter-cell interference, power control is performed at
the UAV, to make it possible to carry a single antenna.

Finally, we broaden the model by considering a variable
flying time. This is in contrast with most of the UAV literature,
in which the flying time is fixed and predetermined. By
exploiting the path discretization technique [21], we allow
non-uniform time slots, which are shown to boost the UAV’s
energy efficiency.

The optimization problem we aim to solve is highly non-
convex; hence, it is decomposed into four subproblems and is
solved utilizing the block coordinate descend (BCD) approach
[45]. The first subproblem deals with the logic-based sensing
variables while the second jointly optimizes the UAV trajectory
and time slot length by leveraging the well-known successive
convex approximation method (SCA) [46], which is also
applied to optimize the UAV altitudes. Finally, it is shown
that the analytical expression for the UAV transmit power can
be obtained through the Lagrangian method. Therefore, the
main contributions of this paper can be summarized as:

e A novel scenario that integrates sensing and commu-
nications is presented in UAV-aided multi-cell cellular
networks based on realistic channels, sensing models,
and subject to sensing, communications, and mechanical
constraints.

e The UAV energy minimization problem is studied as a
function of the 3D UAV path, sensing, and transmit power
which results in a mixed-integer nonlinear programming
problem.

o Capitalizing on four low-complexity subproblems, sub-
optimal solutions minimizing the on-board UAV energy
are obtained. The sensing is handled through a low-
complexity binary optimization algorithm while the SCA
technique is used to optimize the UAV’s path. Finally, the
optimal UAV transmit power is analytically obtained.

o The impact and tradeoffs between a variety of parameters
is well established. Our results show that the proposed
scheme outperforms other benchmark methods and re-
duces the energy consumption between 33%-200%.

The remainder of the paper is organized as follows. Sec-

tion II presents the complete system model for the UAV-
enabled sensing and communications network. The problem
formulation and solution are studied in Sections III and IV,
respectively. Numerical results are presented and discussed in
Section V while concluding remarks are set forth in Section
VL

Notation: lowercase letters, lowercase bold letters, and
capital bold letters denote scalars, vectors, and matrices, re-
spectively. A circularly symmetric complex Gaussian random
variable (r.v.) is denoted by Ng(a,b), with mean a and
variance b, while U[a, b] denotes a uniform r.v. on the range
[a, b].

II. SYSTEM MODEL

Consider a cellular network composed of multiple cells as
shown in Fig. 1. Each cell contains one BS while the central
cell also features one UAV and M events that need to be
sensed with M = {1,..., M} denoting the set of events of
interest. Particularly, the mth event of interest is located inside
the central cell> at £,, = (I,,,0) with ,, € R*>*! whose
coordinates are known a priori via different techniques such
as Global Positioning System (GPS)?. The flying/mission time
is represented by 7' and the corresponding UAV coordinates
at time ¢ are given by £(t) = (q(t), H(t)) where q(t) € R?*!
represents the ground coordinates and H (¢) denotes the flying
altitude. The BSs are located at the center of each cell.
However, provided that the UAV reports to the BS in the
central cell, only the location of such BS is relevant, whose
coordinates are €p = (gqp, Hp) 4. For the kth GU outside
the central cell, its coordinates are £; = (wy, 0). Particularly,
{gp,wr} € R?*! and Hp is the BS altitude, common for all
of them. The optimization with respect to continuous time
variables would yield to an intractable problem since the
number of optimization variables is infinite. Therefore, the
mission time 7" is discretized into /N non-uniform time slots,
denoted by d(n), whose lengths are included in the optimiza-

N
tion problem. Consequently, 7= Y §(n) and thus the UAV’s

path is discretized, where the 367(1:00rdinates at slot n are
represented by £(n) = (g(n), H(n)). Usually, discretizing the
trajectory only specifies the locations whereas discretizing the
path involves both the locations and the time dimension [21].
To maintain the sampling accuracy, an appropriate value for
N must be chosen by imposing the following constraint

where dp,.x 1S a proper value such that the UAV is assumed
to fly at a constant velocity within each segment and the
parameter variation between two successive time slots is small.
In fact, when dpy.x — 0, then N — oo and a nearly
continuous trajectory is obtained. To obtain a scalable /N that
satisfies (1), one can first obtain an upper bound on the flying

2Qur formulation and solutions apply to the general case in which the events
are located at different cells.

3The impact of inaccurate locations is left as future work.

4Minor modifications will be needed if the central cell has to handover the
UAV to another cell. If such a handover happens, the other BS location will
be relevant as well.



= UAV Trajectory s Event of Interest [ls ¢
— DataSignal "> Interference Signal

Fig. 1: A multi-cell network with UAV-aided communications
and sensing.

distance, given by Dp,.x, and require (N 4 1)dmax >> Dmax-
Consequently, under the worst case scenario of the UAV flying
Dinax, the sampling accuracy is still preserved. For ease of ex-
position, we define dg(n) and di(n) as the Euclidean distance
from the UAV to the central BS and User k, respectively.

A. Channel Model

The channel coefficient between the UAV and any of the
network elements, denoted by g;(n) for i € {B,k}, follows
a Rician distribution, which encompasses two elements: (a)
the LoS component and (b) a Rayleigh-distributed small-scale
fading component [47, Sec. 3.4.1]

(n) = .
I =N @E () (Ka(n) + 1)

\/mejwi(n) + a;(n)

for i € {B, k},
2

where [y and k are the path loss at a reference distance
of Im and the path loss exponent, respectively. The Rician
factor is K;(n), which depends on the geometry between
transmitter and receiver and environmental parameters [37].
Finally, 1;(n) ~ U[0,27] and a;(n) ~ N¢(0,1) account for
the phase rotation and the small-scale fading, respectively.

B. Rate Calculation

The UAV can be regarded as an aerial user within the central
cell. Therefore, it is assigned an orthogonal resource block,
avoiding interference to the GUs within the central cell. Upon
sensing an event, the UAV generates and transmits the sensory
data to the BS with an instantaneous rate of

o2

where o2 denotes the noise power and p(n) is the UAV’s
transmit power, which must not exceed a certain value:

p(n) < Pmax;, 4

where ppax 1S the maximum transmit power. A common
approach to manage the randomness of the rate is to consider
the ergodic capacity, i.e., E{R(n)}. Furthermore, application
of Jensen’s inequality to E{R(n)} removes the effect of the
small-scale fading given that E{|gp(n)|?} = df Gy~ As shown
in [16], to keep the contribution of the LoS and NLoS channel
components, the channel coefficient can be well approximated
by a logistic regression. Therefore, as suggested in [16], the

rate is approximated as

R(n) = log, (1 + (ot Bop(n) )

CQ )
1+ e~ (BitBaus(n) ) d% (n)o?
(5)
where C1, Co, By, and B5 are obtained from the logistic model

and up(n) = 7(11((1’2(_”3{3)

C. Interference Management

A key enabler in wireless cellular networks is interference
management. While intra-cell interference can be avoided
through well-known techniques such as OFDMA, neighboring
cells will reuse some of the resources®. Consequently, given
the dominance of the LoS component in aerial channels, inter-
cell interference arises at both the BSs and the GUs originated
by the UAV transmissions®. Therefore, to keep interference at
a bay, a joint optimization of the UAV trajectory and power is
considered, in recognition that an isolated study of one aspect
may be misleading because of potential bottlenecks in the
other. By using the same logistic regression approximation
for the channels between the UAV and GUs (or neighboring
BSs), the amount of interference that GU k receives from the
UAV is:

Ix(n) = (C1 +

Co ) 5017(”) (6)

1 + e—(Bi+Baug(n)) df(n) )

Therefore, the following interference-related constraint must
be met for each of the GUs:

Ix(n) < L, @)

where I, is the maximum level of interference each GU can
tolerate without compromising the decoding.

D. Energy Consumption Model

We consider a realistic energy consumption model for the
UAV comprised of (i) flying power pys(n,£(n),d(n)), (ii)
sensing power pg, and (iif) communication power p(n) [48]-
[50]. Following [21], for rotatory-wing UAVs, the total UAV
energy, spent over the N time slots, is

N M
E=Y d(n) (pf (m (). 6(m)) + 3 am(m)ps + p<n>),
n=1 m=1 (8)

3 A reuse factor of one is assumed while the same framework and solutions
apply if other sectorization and reuse factors are assumed. The sectorization
or reuse factor will only affect the number of interference-related constraints
not their nature.

In practice, neighboring BSs can fully cancel the UAV’s interference
through beamforming techniques. However, if there is any remaining interfer-
ence at neighboring BSs, an interference constraint, similar to those of GUs,
can be added



where «,,,(n) is a logic binary variable defined as

)

(n) 1 if event m is sensed at time n
am(n) = .
" 0 otherwise

Based on [21], [51], py(n,£(n),d(n)) is a function of the
UAV locations and the time slots as follows

Py (n ). () = PO(” o )2)+

tip
1
o)t wn)?\’
P; 1 —
( + 4ud 203 +

%dopsfh)(n)3 + mgv(n)sint.(n), (10)

where v(n) is the 3D velocity at time slot n defined as:

_ [l -+ 1) 0]
T

Tc(n) denotes the climb angle, which is a function of £(n),
and the rest of parameters are defined in the aforementioned
references. Finally, other constraints related to the UAV lo-
cations include a minimum and maximum flying altitude, the
initial and final positions and a maximum velocity constraint:

(1)

Hmin S H(n) S Hmax (12)
o1) = ¢, e(N) = ¢, (13)
H‘e(n + 1) - e(n)H < Vmax(s( ) (14)

E. Sensing

The goal of sensing is to collect data from different events.
Indeed, optimizing the UAV’s trajectory will improve the effi-
ciency and accuracy of the sensing. Particularly, we consider
M events and utilize the probabilistic sensing model [33]-[35]
where the dependency between sensing probability and UAV
trajectory is through a distance-based exponential function. In
other words, the probability of sensing event m at time n is

Pp(n) = e Hdm(m) (15)

where o determines the sensing capability of the UAV. Other
relevant sensing models can be found in [13]. However, note
that (15) avoids the dependency with respect to the time-slot
length, i.e., longer §(n) might provide better sensing accuracy.
In this work, we also study the impact of a time-dependent
sensing probability. Inspired by [29], assume that the nth time
slot is divided into X sub-slots of equal length ¢,,, i.e., d(n) =
Xt,,, and that the UAV carries out X trials to sense an event. A
failure in the sensing occurs when all X trials fail to correctly
sense the event. Hereby, the probability of successful sensing
can be obtained through its complementary:

d(n)
tn
)

Pp(n) =1— (1 — e rdn() (16)

where (i) a longer 0(n) results in a higher probability and (i)
d(n) > t, to ensure at least one trial. In addition, only one
event can be sensed at a time, modeled by

0< > am(n) <1 (17)

m=1
Moreover, the sensing of the M events follows a certain order,
discussed in Sec. IV-F, determined by S = {s1,..., sy} with
Sm € M. Therefore, the following constraints must be met
n
(18)

Z (s, (1) — g, (1)) =0 for m < j.

i=1

Furthermore, it is required to sense each event once, which
can be mathematically modeled by

N
Z am(n) =1,

where a certain amount of data, C,,, is assumed to be
generated by the UAV if a,,(n) = 1. Altogether, based on
the logic variables a,(n), the constraint that must be met in
terms of sensing probability is

F)s,th < am(n)Pm(n) + A(l - am(n)),

19)

(20)

where P, is the minimum sensing probability the UAV
requires to correctly sense an event and A is chosen to be
a constant larger than P ;. Note that a sensing variable can
be active, i.e., ay,(n) = 1, if Py, (n) > Psth. To the contrary,
if ., (n) =0, (20) is satisfied since A > P 4.

F. Causality of the information

As stated in the introduction, compared to the existing works
in the literature, the constraint that relates to the causality of
the information needs to be redefined given that (i) the UAV
uses the same resource block at all times without any time or
frequency scheduling, and (i) there is no link between the
events and UAV. In fact, upon sensing an event, the UAV
generates the sensory data, e.g. a picture or a measurement
among others. Let us assume the UAV senses the events in
a certain order, as defined by S in Section II-E, and the
amount of data generated by the s,,,th event is C . Successful
reception of the sensory data at the BS is ensured by the
following sensing constraints:

Aspp (n) Zﬁin+D 5(’)R(l) + B(l — Qspy (n)) > Cs,,

as, () N p 80 R(E) + B(1 - ay, (n)) >

e

C,
1

m

2y

M
where B is chosen to be a constant larger than > C,, . For

=1
example, before sensing any event or between two events, the
binary variables are zero but the constraints are met due to

M
B> > C;

-1
and th?refore after D samples, the amount of data that the BS

When the last event is sensed, as,, (n) =1

m*



receives has to be larger than Cj,,. Whenever the penultimate
event is sensed, as,,_,(n) =1 for n = np;—;. Hence, the BS
must be able to receive the data from the last two events in the
last N —np;—1 — D samples. A similar procedure is followed
to generate the causality constraints for the remaining events.

III. PROBLEM FORMULATION

With the aim of producing energy-efficient trajectories for
the sensing and communication problem, the objective func-
tion in our work is presented in Eq. (8). Constraints (4) and
(7) determine the maximum transmit power and maximum
GU interference, respectively. The set of constraints presented
in (11)-(14) relate to the UAV mechanical capabilities and
starting/ending point of the mission. In addition, introducing
the set of logic variables «,,,(n) allows us to combine the com-
munication and sensing constraints under the same umbrella.
More specifically, constraints (17)-(21) ensure all M events
are sensed and the corresponding sensory data is successfully
received at the central BS. To this end, the optimization
variables are: (i) sensing variables «,,, (n), (if) UAV trajectory
(g(n), H(n)), (iii) length of the time slots §(n), and (iv)
transmit UAV power p(n). Therefore, the problem presented
in (22) can be formulated, which falls within the class of
nonconvex mixed-integer non-linear programming problems
whose solution requires prohibitive time and computational
complexity. Accordingly, we split the problem into four sub-
problems: (i) optimizing sensing with path, length of the
time slots, and power fixed; (ii) optimizing 2D trajectory and
time slot length with fixed sensing, altitude and power; (iii)
optimizing altitude with sensing, 2D trajectory, length of the
time slots, and power fixed; and (iii) optimizing power with
sensing, path, and time slots fixed. Once the solution to each
of the four subproblems is obtained, a BCD procedure [45] is
followed until convergence is achieved.

IV. JOINT OPTIMIZATION

In this section, we conduct a thorough analysis of the
subproblems that arise from (22). More specifically, the op-
timization of the binary sensing variables is covered first.
Second, an SCA-based approach for the joint trajectory and
time slot optimization is presented. Finally, the optimal UAV
transmit power can be derived through the Lagrangian method.

A. Sensing Optimization

For fixed q(n), 6(n), H(n), and p(n), we first aim at
solving the sensing optimization subproblem. Provided that
the only contribution of the sensing variables, «,,(n), in the
cost function is through the term that depends on the sensing
power, ps, the first optimization problem reduces to:

N M
S5 dn)am(n)p,

min
m (n) n=1m=1 (23)
s.t. am(n) € {0,1},

(17 — (21).

The binary nature of c,(n) results in an NP hard problem.
Relaxing the binary assumption would result in constraint

violations, and therefore the problem should be kept in the
binary domain. To cope with the increased complexity, note
that v, (n) = 0 when P,,(n) < P,,. Hence, there is no
need to search over the entire solution space, but only in the
points satisfying P,,(n) > Ps.,. Consequently, the branch
and cut is an appealing technique to solve this problem [52].
The complexity of this approach is discussed in Sec. IV-E

B. Trajectory and Slot Length Optimization

Given any feasible a,,,(n), H(n) and p(n), optimizing the
2D trajectory and the length of the time slots reduces to the
following problem:

N

(o (s (ot 30) +
M (24)
> am(n)ps + p(ﬂ))
m=1

s.t. (D), (N, (11) — (14), (20), 21),

which is nonconvex. Therefore, we leverage the SCA tech-
nique to create an approximated version of (24). To full-fill
this goal, we first obtain an equivalent problem by adding
different slack variables such as A(n) = ||€(n + 1) — £(n)|].
Given that v(n) = ?((:)), the first term in the cost function can
be re-written as:

N N A(n)?
3 d(mpps (. ). d(m)) = 3 Py (W " 5%) "

A(n)®
d(n)?

1
Piy(n) + 56500514 +

mgA(n)sin.(n), (25)

where y(n), being a second slack variable, is defined below:

2
2 (26)

After some algebraic manipulations over the previous equa-
tion, we have

i((s)); =y(n)* + Aig)z. 27

Finally, a third slack variable is needed to deal with the rate-
related constraints:

B(n)* = d(n)R(n).

Consequently, the set of constraints in (21) can be expressed
as a function of S(n) in a compact manner for a given event

(28)

sensing order § = {s1,...,8m}:
N M
Qs (n) Z ﬂ(Z)Q + B(l - Qs,, (77,)) > Z Csz' (29)
i=n+D l=m

As a result, the problem in (24) can be re-written as presented
in (30).

Proposition 1. The optimization problems presented in (24)
and (30) are equivalent.



>0

min
am(n),q(n),H(n),é(n),p(n)

(pfneua( ) +

am(n)ps + p(ﬂ))

n=1 m=1 (22)
S.t. m( ) € {Oa 1}’
(1), @), (D), (11) — (14), (17) — (21),
min iP o(n) + M + Piy(n) + 1al SAA(n)3
a(n).6(n), An) y(n).Bn) =t Uz,0(n) ) YT P ()
M
b mgA ) sinm )+ 3 8(n (X antam + p(o)
n=1 m=1
B(n)? (30)
S.t. (5(71) S R(n)a
d(n)* 2, A(n)?
yuz =V
[€(n + 1) — £(n)|| < A(n),
(1), (7, (11), (13), (14), (20), (29).
Proof. The proof can be found in App. A. O Lemma 2. At any local point for the UAV trajectory q(n),

Still, some of the constraints in (30) are nonconvex which
makes SCA relevant in this work. More precisely, SCA (a)
locally convexifies the initial problem and (b) solves a convex
approximated version by alternating between two steps: (i)
upper (lower) bound a concave (convex) function by its first-
order Taylor expansion and (if) find the optimal solution of the
approximated convex problem. In the subsequent, we derive
the necessary approximations for the nonconvex constraints in
(30). For ease of exposition, we denote variables by = and the
value of the variable in the approximation point by Z and first
cope with the expressions that relate to R(n).

Proposition 2. R(n) is jointly convex with respect to
e~ (BitB2us() and d%(n).

Proof. The proof can be found in App. B. O

Using Prop. 2, the following lower bound for R(n) can be
derived as a function of A\(n) = By + Boug(n) and q(n).

Lemma 1. Az any local point for the UAV trajectory g(n) and
A(n), R(n) accepts the following lower bound:

R(n) > R™®(n) (31)
= R(n) — ¢(n) (e — e—X(n))_
¢(n)(lla(n) — asl* — [@(n) —gsl*). G2
Proof. The proof and the values of ¢(n) and ((n) can be
found in App. C. O

Hence, the constraint related to R(n) in (30) is locally con-
vex given R'®(n). However, provided that A(n) is nonconvex
with res i _ H(n)—-Hp) .

pect to up(n), since ug(n) = Iotm - @ lower
bound for upg(n) is required.

up(n) accepts the following lower bound:

up(n) > uf(n) (33)
=ug(n) — ¥(n)(lla(n) — gpll* — l[an) — gpl|*).
(34)

Proof. The proof and the value of ¢)(n) can be found in App.
D. O

Therefore, the constraint that A\(n) must satisfy is

A(n) < By + Baulh(n). (35)

The set of constraints that takes into account the maximum
interference tolerated by out-of-central cell GUs is also non-
convex with respect to g(n). However, an upper bound on
the interference can be derived by considering the worst-case
scenario of the UAV flying on top of User k:

Co ) Bop(n)

(BitBau(n)) ) df(n)

I;:b _ (Cl " Cy ) Bop(n) )

1+ e Bi—B: djy

Following the previous equation and rearranging terms, we
obtain

llg(n) — wy||? > (

(a + <IM, (36)

1+e™

where

(37

(C1+ Hef()ﬁ)ﬁop(”) G _ 2
Iin ’

(38)

which is still non-convex. Further application of the SCA
results in:

llg(n) — (n)) =

— H?

w|* +2(g(n) — wi)" (a(n) —

((01 + Hecri%)ﬁop(n)>
Iin

7 g

(39)




A similar procedure applies to (29), which results in the
following convex set of constraints:

N

as,, (n) Z

1=n+D

(302 + 2300 (300 - ) ) +

M
n ) > Z Cs,.
l=m

Armed with the respective upper or lower bounds and after
applying the same technique to the expressions that involve
y(n)?, A(n)?, and, if needed (16), the local approximation of
the problem in (30) is introduced in (41), where, compared
to (30), we add ¢, < 1 given that sin7.(n) < 1 and the sin-
function is neither convex nor concave. It can be verified that
both the cost function and the constraints in (41) are convex.
Therefore, (41) can be solved using standard optimization

solvers such as CVX [53].

B(1- (40)

Qs (

C. Altitude Optimization

A similar methodology is followed to optimize the altitudes,
H(n). Given the space limitations, we skip some derivations
since the process is very similar to the 2D optimization.
Consequently, the approximated optimization problem for the
altitude is presented in (42), where R'’(n), (35), and (39)
are slightly modified to account for the gradients w.r.t. to the
altitude. Finally, (42) is a convex optimization problem and
therefore can be efficiently solved [53].

D. Power Allocation

The last subproblem aims at finding the optimal power
allocation for given feasible «,,(n), q(n), é(n), and H(n).
The terms that include p(n) in the cost function and constraints

result in
N
> d(n)p(n)

n=1

s.t. (4),(7D), (21,

min
p(n)

(43)

which is convex and can be analytically solved applying the
Lagrangian method.

Proposition 3. The optimal power allocation for the UAV is
given by

0 n=1,...,D
p*(n) = +
{a(n)—#(n)} n=D+1,...,N,

(44
where a(n) depends on the Lagrangian multipliers and is de-
. c
fined in Eq. (62), Kp(n) = (C1+ 1+€_(Bl+232“,3(n))) o’zdﬁg(n)’
and the operator [x]" = max(z,0).

Proof. The proof can be found in App. E. O

E. Algorithm Analysis

Based on the solutions to the previous subproblems, we
propose an iterative method for the initial nonconvex problem
in which we optimize four sets of variables: sensing variables,
3D UAV trajectories, time slot length, and power allocation.

The convergence of the proposed BCD approach in Alg. 1 is
guaranteed by the following proposition.

Proposition 4. The sequence of objective values generated by
Alg. 1 is monotonically non-increasing with a lower bound,
and therefore converges.

Proof. The proof can be found in App. F. O

Algorithm 1 BCD updates for the optimization variables

Require: Initial sensing, trajectory, time slots and power
variables at the first iteration, 7 = 0, given by
{aun (n). g (), 6 (n), HO(n), p(n)} and define by
1(0) the res;))ectlve cost function.

‘n(1+ (J)|

while > e do

Fix {q(J)( ),00)(n), H9)(n),p) (n)} and solve (23)
to obtain {a}™ (n)}.

Fix {a(]+1)( ) D
obtain {q(j“)( ? G+ (n)}.

Fix {ai " (n),qu*)(n), 604D (n),p) (n)}
solve (42) to obtain {HUTY (n)}.

Fix {a")(m),qu+b(n), &
solve (43) to obtain {pU*+)(n)}.

Compute the cost function 7+,
end while

H (n),pU)(n)} and solve (30) to

and

7D (n), HU*)(n)} and

The complexity of the previous algorithm is given by the
combination of individual complexities for solving each of the
subproblems. Particularly, it can be shown via induction that,
given a sensing order, the maximum number of combinations

N+M-1
for a;, (n) in (23) is upper bounded by Y. (N —M+2)i,

corresponding to the case in which the M égénts can be sensed
during the N time slots, i.e., a very conservative bound. Addi-
tionally, given that (41) involves logarithmic forms, the interior
point method presents a complexity of O((7N)3log(1/e1))
where ¢; relates to the convergence accuracy [54]. Similarly,
solving (42) has a complexity of O((5N)%5log(1/e2)). Fi-
nally, solving (43) has a complexity of O((N+N?)log(1/e3))
where the term in N? arises after applying the ellipsoid to the
dual problem [53]. Consequently, the overall complexity is
dominated by the SCA-based subproblems.

FE. Algorithm Initialization

Given initial and final trajectory points, the first step is
to determine the sensing order S. Different criteria may
apply, e.g. based on priority, distance or random. In our case,
we set the ordering based on distance. Consequently, s; =
argmin,, |[€(1) — £,,|| while s;11 = argmin,, ||€s, — £n]|
for m # s;, j < i. Next, the value of Dy, is obtained,
serving as an upper bound on the maximum distance the UAV
has to cover, i.e., Dpyax > ||€(1) — £s, || + ZM Yle,, —
Lo, ||+ [€s,, —£(N)]||. As a consequence, for a fixed diax.
the number of slots can be set as (N + 1)dmax >> Dmax-
Next, we turn to generating the UAV trajectory. Initially, the
UAV path coordinates will lie on the lines joining the departure
point, events locations, and the destination point. Therefore,
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we ensure the initial trajectory is capable of sensing all events.
Particularly, until the first event is sensed, i.e., Ps,(n) > Psth
and therefore a, (n) = 1, the UAV coordinates lie on the line
between the departure point and the first event as:

g1(n+1) = qi1(n) + asin b cos ¢, (45)
q2(n + 1) = q2(n) + « sin 0 sin ¢, (46)
H(n+1)=H(n)+ acosb, 47

where 6 and ¢ are the inclination and azimuth angles between
£; and £, respectively. The trajectory between two events lies
on the line connecting the location where the former is sensed
and the subsequent, with the corresponding recalculation of 6
and ¢ while satisfying the altitude constraints. Finally, after
sensing sy, the same formulation applies with the angles cor-
responding to the points associated to £,, and £;. To maintain
the accuracy in the sampling while satisfying the maximum
velocity constraint, we have & < min{dmax, Vimaxd(n)}. Once
the trajectory and sensing variables are initialized, the powers
are set to the minimum value between py,.x and the value
that satisfies the interference constraint (7). To verify that the
causality constraints are met, a search is performed. Otherwise,
either more slots can be added or the problem can be declared
infeasible.

V. NUMERICAL RESULTS

For the purpose of performance evaluation, we consider a
cellular network composed by one central and six neighboring
cells, each following a hexagonal shape of radius R = 200m,

although our work is independent of the cell shape. Unless
otherwise specified, Table I lists the parameters used in the
simulations, selected from the UAV and sensing literature [12],
[15], [26]. Observe that the parameters related to Eq. (8) are
not included since they are the same as the ones in [21]. To
maintain the accuracy in the path discretization process, we
consider dy,,x = 2 and an upper bound on the flying distance
Dynax = 400m. Therefore, (N + 1)dmax > Dmax is satisfied
with N > 300. In this case, we use N = 400 where the
initial length of the slots is §(n) = 0.25s with a resulting
initial flying time of 7" = 100s. The typical scenario that we
use in our simulations and the corresponding events and GU
locations are presented in Fig. 2a, with M = 8 events and
K =6 GUgs, i.e., one per each neighboring cell. The starting
and final points are £; = [130, —30, 50] and £; = [65, 100, 50],
respectively. The UAV trajectory for two cases of y = 1073
and ;1 = 2- 1073 using the above typical scenario is included
in Figs. 2a and 2b, with the former showing the 2D projection
and the latter plotting the 3D trajectories to gain intuition on
the altitude variations. Though more insight will be provided
about the influence of y, it is shown that higher values, i.e.,
worse sensing capability, require the UAV to fly closer to the
events. In fact, from Fig. 2b it can be shown that the UAV
tends to fly at lower altitudes for u = 2 - 1073 to satisfy the
sensing requirements compared to = 1073,

We first verify Prop. 4 in Fig. 3 for different initializations
and BCD orderings. Particularly, in O1, the optimization order
in Alg. 1 is: {a,(n),g(n),d6(n), H(n),p(n)} whereas in 02,
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Fig. 2: Typical scenario with M = 8 events, K = 6 GUs, and the UAV trajectory for u = 1072 and u = 2-1073; (a) 2D, (b)

3D.

TABLE I: Simulation Parameters

Description Parameter Value
Path loss at 1 m Bo -30 dB
Path loss exponent K 2
Logistic regression parameters Cq, Cq 0,1
Logistic regression parameters Bi1, Bs -4.3221, 6.0750
BS altitude Hp 25 m
Noise power o? -96 dBm
Minimum sensing probability P tn 0.9
Maximum UAV transmit power Pmax 100 mW
Maximum GU interference Iin -73 dBm
Maximum UAV velocity Vinax 30 m/s
Sensing capability at the UAV o 10-3
Processing delay D 1
Sensing power Ps 0.1 mW

the optimization order is {H(n),q(n),d(n),p(n), am(n)}.
In addition, 2D initializes the altitude at a constant value
H(n) = 50m while 3D uses the method described in Sec.
IV-F. Finally, different values of c, are tested as well to see
its effect in the final solution. First, note that no matter what
ordering and initialization setup we utilize, convergence in
Alg. 1 is achieved only after a few iterations. Additionally,
the difference in terms of cost function is minimal. However,
the solutions differ. This can be seen in Fig. 4, where for a
variety of initializations, the UAV altitudes may be different
though requiring a similar energy budget. Such a tendency is
mainly because all methods converge to a solution where the
UAV flies at the velocity that minimizes the required energy, as
described in [21, Sec. II-B]. More details on this phenomena
are provided in subsequent paragraphs where the UAV velocity
is also a matter of study.

Next, in Figs. 5a and 5b we compare the energy and flying
time, respectively, for different benchmarks parametrized by
M. Particularly, “Proposed” stands for the algorithm pre-
sented in this work while “Min-Time” solves the flying time

minimization problem. Additionally, “Equal-§(n)” utilizes a
similar algorithm as ours, but with fixed d(n) = 0.25s for all
n. Finally, the “Max-Vel” benchmark is an heuristic algorithm
based on the one described in Sec. IV-F, where the UAV flies
at maximum velocity between each pair of points ensuring
the rest of constraints are met. As expected, the more events,
i.e., increasing M, the higher the energy and flying times are.
Clearly, in terms of required on-board energy, our method
outperforms the rest of benchmarks by saving at least 25%
of the energy, whereas the minimum flying time is attained
by the “min-Time” benchmark, with our method being close.
Note that given the correlation between the “Proposed” and
“min-Time” algorithms, their performance is similar, where
shorter flying time results in less energy. In addition, the gap
between the “Proposed” and “Equal-d(n)” curves arises by
adding 6(n) into the optimization problem. Therefore, it is
clear that non-uniform slots make a big difference in terms
of energy-efficiency and flying time given the added degrees
of freedom and the enlarged feasibility region compared to a
fixed time slot.

Fig. 6 studies the impact of IV in the simulation environment
for the proposed algorithm and a variety of benchmarks. While
Figs. 6a and 6b plot the energy and flying time, respectively,
parametrized by N, Fig. 6¢ presents the UAV velocity for
N = 400 under three algorithms. It can be concluded from
Figs. 6a and 6b that the methods that include d(n) in the
optimization, i.e., “Proposed” and “Min-Time”, converge to
the same cost function independent of the value of N. This
is in conjunction with the flying velocities presented in Fig.
6¢c, where the “Proposed” method adjusts the UAV path to
fly at the velocity that minimizes the energy, as explained in
[21, Sec. II-B], achieved if v(n) = 17.7 m/s. In addition,
to minimize the flying time, the UAV flies at its maximum
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velocity, in this case v(n) = 30 m/s. To the contrary, if §(n)
is not included in the optimization: (i) the energy and flying
time tend to be higher than the other methods and (ii) after a
certain value of IV, both energy and time stabilize given that
adding more slots is no longer helpful. In this case, it can
be concluded from the three pictures that N > 260 does not
provide any change given that the UAV can finalize its mission
in less slots and therefore will hover at the destination point
spending unnecessary energy.

Fig. 7 examines the dependency of the amount of needed
energy and time to complete the sensing mission with respect
to the sensing probability, P ¢1,. The blue curves correspond
to the required energy while the red curves relate to the flying
time. Figs. 7a and 7b utilize the model in (15), with Fig. 7b
considering a fixed flying altitude of H(n) = 50m. Finally,
Fig. 7c considers the model in (16). In addition, different
values for the sensing capability, x, are also presented. Clearly,
a smaller p allows the UAV to sense the events at larger

distances compared to a higher p, as shown in Figs. 2a and 2b.
Therefore, the use of smaller p results in trajectories whose
energy and time serve as a lower bound for higher values of .
Additionally, increasing the value of Py, requires the UAV
to fly closer to the events. As a consequence, both energy and
flying time tend to increase with the threshold probability. By
comparing Figs. 7a and 7b, it is shown that for higher values
of Py, optimizing the altitude, as in Fig. 7a, reduces the
required energy and time given that the distance between the
UAV and the event can be smaller if the UAV has freedom
to adapt its altitude. Finally, the difference between the values
in Figs. 7a and 7c is minimal. Although the latter considers
a sensing model that depends on the length of the time-slot,
i.e., higher §(n) results in a higher sensing probability, the
energy and flying time mainly depend on the velocity. In fact,
as shown in Fig. 7d, which plots the velocity for the models in
(15) (solid-blue) and (16) (dashed-red), in both cases the UAV
velocity converges to the value that minimizes the required

Fig. 4: Final UAV flying altitude for a variety of initializations
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energy, i.e., v(n) = 17.7 m/s. As a consequence, the energy
and time obtained using (15) and (16) are similar.

Next, we study the effects of the maximum interference
tolerated by the GUs, given by I;,. In Figs. 8a and 8b, we
present the variation of energy and time parametrized by
Iy, respectively. We present a variety of algorithms, as in
previous figures. While the “Proposed” and “min-Time” refer
to the same systems as in other figures, the “max-Vel” also
adjusts the power as in (43) provided that the initialization
algorithm might use more power than what is needed for
the communication part. As in previous figures, the proposed
method outperforms the rest in terms of required energy by at
least 25% though needs more time to complete the mission.
Additionally, given that the cost function is dominated by
the flying energy, variations in the transmit power are not
distinguishable in Fig. 8a. Second, in general, the amount of
needed energy and time tend to increase as Iy;, decreases given
that the feasible regions shrink for decreasing Ii;,. Note that
for Iy, — 0, the problem might be infeasible.

To gain more insight on the effects of interference, we
include Fig. 9. Particularly, Fig. 9a plots the gap in the

interference constraint, defined as:
A =/llg(n) — wi[]> + H2-
\/( (C1 + 1A=z ) Bop(n)

%
Iin >
for the GU at [302.8,—50.7]. The definition of A arises from
calculating the difference between the square root of the left
and right hand sides of the constraint presented in (38). Note
that in fact, (48) provides a notion on how (38) is met. Higher
values of A mean the UAV easily meets the constraint while
smaller values of A mean the UAV finds it harder to meet the
interference constraint. More particularly, by looking at Fig.
9a, it can be verified that smaller Iy}, yields a smaller A since
the regions where the UAV can fly, meeting the interference
constraints, become smaller. In addition, note that in fact, the
“min-Time” algorithm provides smaller A given that higher
transmit powers can still meet the constraints since its goal
is to minimize the flying time, not the flying energy/power.
Additionally, Figs. 9b and 9c plot the transmit power, p(n),
for different values of Iy using the “Proposed” and “min-
Time” algorithms, respectively. Note that these curves compare

(48)
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an easy-to-meet interference constraint, i.e., Iy, = 108,
versus limiting values of Ii;,. More importantly, the orders
of magnitude for the transmit power are very different in
Figs. 9b and 9c. While the former adjusts its power to satisfy
the communication requirements with minimum power, the
latter does not perform power minimization, which yields to a
much higher power consumption for communication purposes.
Finally, the water-filling nature of the solution obtained in
(43) can be verified from Fig. 9b. Between the slots 200 and
300, the UAV flies close to the BS. Therefore, it experiences
favorable channel conditions which result in the increase of
the transmit power.

VI. CONCLUSIONS

This paper has considered energy-efficient communications
and sensing where an aerial vehicle senses multiple events of
interest. After generating the sensory data, the UAV ensures
its reception by the BS while managing the interference
effect to GUs located at neighboring cells. We have consid-
ered a generic cellular network with Rician channel models

and presented mechanical-related, communication-related, and
sensing-related constraints that must be satisfied to complete
the mission. We presented a novel logic-based approach to
formulate (a) the 3D path planning, (b) sensing, and (c)
transmit power subproblems. This formulation has allowed
us to use classic optimization techniques. Most remarkably,
we have studied the dependency of the UAV trajectory with
respect to different parameters and benchmarks, namely: (i)
maximum velocity, (if) minimum flying time, and (iii) fixed-
slot duration. Comparative studies across various number of
events have demonstrated that our proposed approach results
in a reduction of energy consumption between 33%-50%.
Moreover, the proposed scheme outperformed the minimum
flying time and maximum velocity benchmarks by consuming
33%-41% less energy, depending on the maximum level of
interference the GUs can tolerate. Finally, the number of
time slots and time slot duration have a significant impact on
overall performance. Our solution consumes 33% and 200%
less energy compared to the minimum flying time and fixed-



;‘

=

s —E©—Proposed

5 —&— Min-Time

uﬁ 3.5(* —F— Max-Vel |1

2.5 ' '
10712 1070 108
Ith

(a)

251 —6—Proposed |
—<&—Min-Time
¢ —— Max-Vel
—20 "
(7] o o
';' © A4 A= ©
=
l—
15+
ﬁ?:\j = =) |
2l 2l
N N N
) )
1072 10710 108
Ith
(b)

Fig. 8: Energy (solid/blue) and flying time (dot/red) for different I;;, and for (a) H = 50m and (b) H = 30m.

500

20

—@—Proposed-Iy, = 10 ——min-Time-I, = 105 ——1;, =10 ° —g=1,;, =10 * /0'—9—’—0—0—.-_._0_0_
—©— Proposed-Tj;, = 10"!? == min-Time-I, = 1012
0 0r
g E | armerta e
S.-20 B..20%
G G
o o
-40 40
[—0—Ln=10° —m— T, = 10 7]
-60 -60
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Slot index Slot index Slot index
(@) (©

Fig. 9: For different values of Iy, and algorithms, (a) A; (b) p(n) for the “Proposed” algorithm; and (c) p(n) for the “Min-

Time” algorithm.

slot duration benchmarks, respectively.

APPENDIX A

Given that we have added three slack variables, we analyze
their behavior individually. First, |[€(n 4+ 1) — £(n)|| < A(n)
will be met with equality at the optimal, otherwise the value of
A(n) can be reduced to achieve a better cost function. A simi-

S(m)t + S

lar argument is used to show that y(n)? = 1

2
AQ(:;,) , otherwise the value of y(n) can be decreased to reduce

the Ocost function. Finally, at the optimal, Eq. (28) is met, or
else the value of 3(n) can be increased.

APPENDIX B

We first define © = 1 + e~ (Bi+B2us(n) and y = d%(n).
Also, let us define C3 = Clﬁ‘%”) and Cy = 02'6”575"), both
strictly positive for p(n) > 0. Substituting the previous terms
into R(n) and dropping the time index n, we obtain R =
f(z.y)logy(e) where f(z,y) = log |1+ (Cg + %)yi%
The Hessian matrix of f(z,y) is included in Eq. (49). For any
vector s = (s1, 82)7T, it can be shown that s*V2f(z,y)s > 0
as included in Eq. (50). Therefore, f(x,y) is convex with

respect to x, y, which ultimately implies the convexity of R(n)
as well.

APPENDIX C

By exploiting the convexity of R(n) as shown in Prop. 2,
such a term accepts a lower bound of the type:

R(n) > R"(n) (50)
= R(n) — ¢(n) (eﬂ(n) _ efi(m)_
¢(n)(|la(n) — apll* = l@a(n) — apl*), (D

where coefficients ¢(n) and ((n) are provided in Egs. (52)
and (53), respectively.

APPENDIX D

A similar procedure as the one followed in App. B is
considered to show the convexity of ug(n) = % with
respect to ||q(n) — qp||?. As a consequence, ug(n) accepts

the following lower bound:
ug(n) > ulh(n) (54)

=g (n) — (n)(|la(n) — azll* - [@(n) - gzl*),
(55)
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2 04(21‘?;% + 20358 + 04)

Ty 2 +CgI+C4)2

%(Cgﬂ? + 04) ((1 +

y?(zy 2 +C32+Cy)?

—1

g)myf + Cyz + C’4) 2slsng4y%

T2 2
s Vif(x,y)s =s = +s
f(@,y) U 22(zyt 4 Cyz + Cy)2 2

y2(zy® + Csz + Cy)?

2y5 + Csz + Ca)2

Cysiy?(zy? + 205z + Cy) + 5322 ((2C32 4+ Cy)zy? + (Csx + Cy)?) + Caay? (51y + saz)?

22y2(zys + Csx + Cy)?

n) — aR(n) . U2p( n)Cy
P = B+ e ) log2)(1 1 M) (p(m)[Ca (1 + e £ o] 1 (11 e X)) °
Cn) = 2B _ Bp(RIC1(1+ e M) + ] (53)
0d%(n) — 21og(2)d% (n) (2 p(n)[Ch(1 + e M) + Cy) + (1 + e=2)d5, (n))

where the value of ¥(n) is

") — Jup(n)
Y = Bllam) — aglP (30
H(n) — HB ; (57)
2(|[g(n) — gpll* + (H(n) — Hp)?)?
APPENDIX E

To solve the power allocation problem, we first for-
mulate the Lagrangian as in (58). Defining w,,(n) =
n—D
> Aim@s,, (i), the Lagrangian can be rewritten as presented

i=1

in (59) where K.; is a constant term that does not depend on
p(n). Taking the derivative with respect to the optimization
variables, p(n), for fixed values of the multipliers, we obtain

dL(p(n),\) é(n)  Kgp(n)
dp(n) )+ Z ln 1+p(n)Kp(n)
Z)‘n kKk >‘n ,m = 0.

(60)
Solving the previous equation for p(n), we obtain:
M
)é(n
2 1n(2)( ) 1 +

32 A eKk(n) + X = 0(n)
k=1

foralln =D +1,...,
therefore:

N. The value of a(n) in Eq. (44) is

M
wWm(n)d(n

a(n) = (62)

K
> A e () + X7
k=1

—d(n)

To obtain the Lagrangian multipliers, we aim to solve the
dual problem after obtaining the solution to p(n):

max  L(p(n),A)
s.t. A>0,

(63)

which can be efficiently solved by gradient methods and
therefore obtain the optimal multipliers A* for fixed p*(n).
Particularly, the ellipsoid method is an enticing solution [53]
where obtaining the subgradient of L£(p*(n), A) with respect
to A for fixed p*(n) is a straightforward calculation given
(59). Consequently, we use an iterative process between the
solutions obtained in (61) and (63).

APPENDIX F

Define the iteration number and the corresponding
cost function by j and 75U, respectively. Note that
) s a function of the optimization variables,
ie., n(a%),q(j),§(j),H(j)7p(j)), where, for ease of
exposition, we get rid of the time index mn. The
BCD approach followed in Alg 1 provides the
following inequalities: (i) 77( q(J 5@, g p(J)) >
n(at), W), 80 HG) pU)) by solving  (23); (i)
applying the SCA technique to the 2D-UAV path and
UAV altitude subproblems presented in (30) and (42),

respectively, results in n(a"jﬁl g, 80) HD p)) >

n(a%+l)7q(j+1),5(j+1)’H(J+1)’ (j)), and (iii)
optimizing the transmit power in (43) results

in n(a(]ﬂ) guth §U+D U ) >

n(agﬂ),q(”l),é(”l),H(J“),p( D). As a result, Alg 1
provides a non-increasing sequence: n(® > (1) > ... > 5
where for simplicity n(*) is the objective function after
convergence. Since the cost function is lower-bounded by a
value of zero, the BCD approach followed by Alg. 1 will
converge.
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