A Mobile App-based Indoor Mobility Detection
Approach using Bluetooth Signal Strength

Muztaba Fuad
Department of Computer Science
Winston-Salem State University
Winston-Salem, NC, USA
https://orcid.org/0000-0002-1942-1193

Abstract— In an indoor space, determining a person's mobility
patterns has research significance and applicability in real-world
scenarios. When mobility patterns are determined, layout
optimization can be implemented in indoor spaces to improve
efficiency. This research aimed to determine a person's path using
Received Signal Strength Indicator (RSSI) data collected from
Bluetooth-enabled mobile devices. Mobile app-based mobility
detection using Bluetooth RSSI has the advantage of low cost and
easy implementation. The research methodology involves
developing a Bluetooth RSSI mobility application system to
determine the path of a moving mobile device using a vectorized
algorithm. The paper presents challenges in creating such a
software system, its architecture, the data collection and analysis
process, and the results of mobility detection. This research shows
that Bluetooth-enabled mobile devices and Bluetooth RSSI data
can be used to determine the path in an indoor space with
workable accuracy.

Keywords— RSSI, Path forming, Indoor localization, Mobility
pattern.

I. INTRODUCTION

Indoor localization is the process of detecting the real-time
location using wireless devices in an indoor environment with a
bounded error rate [1]. Determining a person's localization and
mobility patterns has research significance and applicability in
real-world scenarios. With recent technological advances, the
use of mobile devices, smartphones, and the Internet of Things
(IoT) has exploded. Such uses require the need for indoor
localization to give users personalized services and
contextualized information. In recent years, indoor localization
and tracking have increased in different fields, such as
healthcare, retail, and facility management. To determine the
localization and mobility patterns in an indoor environment can
be compared to the Global Positioning System (GPS) that is
commonly used for localization in an outdoor environment. GPS
requires line-of-sight between the satellites and the handset.
GPS cannot be used to determine indoor environment
localization because GPS signals are too weak for indoors, and
there is no line-of-sight contact with the GPS satellites.

A. Research Problem

Localization in an indoor environment can be difficult and
presents challenges [1] with positioning. There are things that
could impact accurate localization in an indoor environment,
such as signal strength, device positioning, obstacles, height,
etc. [2]-[3]. Unlike outdoor localization, indoor localization
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must use other positioning methods and hardware. Methods
could include using Wi-Fi or Bluetooth signal strengths.
Hardware could include mobile devices or beacons. Compared
to Wi-Fi, Bluetooth signal strength is intended to enable short-
range wireless communications between devices with reduced
power requirements.

This research uses Bluetooth-enabled mobile devices to
collect Bluetooth RSSI data and use that to detect changes in
position over time. The reason to use Bluetooth RSSI instead
of Wi-Fi RSSI is due to the energy requirements of Bluetooth
and its ability to sense an individual device's signal strength
directly instead of sensing it through a router or using an extra
networking layer, such as Wi-Fi Direct. The use of dedicated
hardware, such as beacons [4], can improve accuracy.
However, it comes with added cost and logistical challenges
[4]. Although indoor environment positioning and localization
are inherently difficult [5], creating real-time mobility patterns
using position data adds another set of challenges. Challenges
faced in this research include synchronization among
collection devices, real-time data access, and processing,
creating real-time visualization, and the lack of techniques for
providing such real-time mobility detection using only
software and no dedicated hardware. Designing such mobile
software has added challenges because of the asynchronous
nature of its software stack. Appropriate synchronization
methodologies must be used to satisfy such requirements,
adding extra complexity to the development of such software.
The presented approach can help to solve this problem without
any specialized hardware and with the help of a traditional
mobile application that can gather raw Bluetooth RSSI data
between a swarm of devices and then process it to create
mobility paths. A stand-alone mobile app, as presented in this
paper, makes it easier to collect raw RSSI data from a swarm
of devices and process it on the fly to find a mobility path
without any need for specialized hardware or knowledge of the
indoor space with quick and easy deployment.

B. Motivation

Companies continuously search for ways to be profitable and
operate at the lowest cost possible. One of the main ways to cut
costs is to find efficiency gains. When a company improves
efficiency, the operating costs will be lowered, improving
profits. The healthcare industry wants to operate at a lower cost,
improve efficiency, and create a better patient experience.
Several healthcare facilities in an anonymous state are partnered
with universities. The Community Care Center (CCC) facility in



Winston-Salem is partnered with Winston-Salem State
University. The CCC is a pro bono facility that provides various
medical services to patients. Being a pro bono facility, efficiency
is important due to costs, time with patients, and patient care.
The CCC is a part of this study to determine mobility within
indoor spaces and use the mobility information to place furniture
and instruments in the most well-organized way to improve
clinicians' workability and efficiency.

II. RELATED WORK

Recent indoor localization approaches have promising
results in pinpointing locations using Bluetooth. However,
some approaches use low-powered beacons and the knowledge
(such as size) of the indoor space [6]-[7]. Similar research in
healthcare is increasingly using similar mobile crowdsensing,
such as in clinic and psychological trials [8]-[11], public health
[12], and personal well-being [13]. There are currently several
techniques [14]-[15] for indoor localization, and extensive
research [17]-[19] has been conducted in this area. Although
these techniques each have some strengths and weaknesses, the
presented approach has different goals and methodologies. The
application domain of this research requires easy application of
the technology without sophisticated hardware, the need for
precious accuracy, or efficient energy usage. Since mobility
detection is the goal, the approach does not need high precision
but rather a general mobility pattern. Additionally, the use of
stationary devices connected to power gives this approach the
flexibility needed to use the Bluetooth proximity detection [20]
technique in a real-time fashion, bundled in one app, which is
easy and quicker to deploy.

Priwgharm et al. [21] explored a comparative study on
indoor localization based on RSSI measurement in a wireless
sensor network. To calculate the location of the target sensor,
two main techniques were used, which included range-based
and fingerprinting-based techniques. The range-based
technique uses min-max and lateration for indoor localization,
while the fingerprinting-based technique uses the nearest
neighbor algorithm and average k-nearest neighbor algorithm
as pattern-matching methods. For the range-based technique,
the experiment results show that the lateration provides better
location estimation accuracy than min-max. The results show
that the nearest neighbor algorithm provides the best results for
the fingerprinting-based technique. Between the two
techniques, the lateration of the range-based gave the best result
of location estimation. Although this research shares similar
approaches, it doesn’t use dedicated sensor networks and is
based on using only mobile devices.

Wang et al. [3] focused on RSSI-based Bluetooth indoor
localization. Two BLE-based localization schemes are
presented: Low-precision Indoor Localization (LIL) and High-
precision Indoor Localization (HIL). The LIL and HIL use the
collected RSSI measurements to generate a small region where
Bluetooth-enabled beacons are planted at a pre-determined
area. Although this research shares similar goals, the presented
research only uses mobile devices and applications in them
instead of dedicated beacons, and sensing and path forming are
all packaged in one mobile app. This makes the presented
approach more cost-effective and easier to use.

III. SYSTEM OVERVIEW AND WORKING
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Fig. 1. Device organization and change of signal strength.

Fig. 1 shows the overall idea of this approach. Assume that
there are two stationary devices (in red) in two rooms of the
building and a mobile device (in blue) is moving between the
rooms. Each stationary device can sense other Bluetooth-
enabled devices within a radius of signal strength or proximity.
These are devices (like a tablet, stationary in one place) placed
strategically (like next to high-value/high-use instruments,
close to treatment rooms, near high-traffic areas, etc.) around
the facility. As the mobile device moves, each stationary device
will sense its signal strength (P where s = stationary device and
¢t = time stamp) and record that over time. So, for the given
situation, the collected data for each stationary device will look
like the following:

Tpast P; past PZpaSt
Tcurrent PI current PZCL(FFeﬂt
Tﬁ,{ ture P Ifuture P 2future

Once such data is collected over time, it can be used to
determine the direction of gradual change of signal strength,
and the mobility path can be determined from such directional
vectors. The app, developed as part of this research, runs on all
stationary and mobile devices and has three different roles:
broadcaster, collector, and aggregator. The broadcaster role is
assigned to mobile devices, and in that role, it keeps the device's
Bluetooth activated so that other devices can sense it. The
stationary devices can have the other two roles. As a collector,
the app collects RSSI data about mobile devices. As an
aggregator, it collects data from other collector nodes and
aggregates them for further processing and producing the
mobility path. The aggregator app utilizes the devices'
computational power to perform data formatting, duplicate
detection, data aggregation, and other pre and post-processing
before creating the mobility path following the developed
algorithm [22]-[23]. The first stationary device, which is added
to the swarm of stationary devices, acts as the aggregator. While
placing the stationary devices, a name and location information
has to be provided to set up the app in that device to act as a
collector and/or an aggregator. Similarly, a mobile device needs
to give permission to broadcast Bluetooth signal and, during the
first run, also needs to provide a name and the Bluetooth MAC
address of that device. The user is made aware of the data
collection and privacy policy before use of the app. The
stationary devices use device-to-device (D2D) communication
(Wi-Fi direct) to transfer data between them for aggregation
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Fig. 2. System operation.

purposes. The device, which becomes a collector node first in
the list of stationary devices, also acts as the aggregator node
for those stationary devices. Two stationary devices can overlap
their proximity radius and measure the RSSI level of the same
mobile device simultaneously. Fig. 2 shows the flowchart for
the working of the mobile app system. During the first run of
the app on a device, the user has to choose the role of that device
as either mobile or stationary. After the selection is made in all
devices (mobile and stationary), the app has to be closed and
run again to allow the stationary devices to synchronize
themselves with the information of identifying the mobile
devices and determine which stationary device will act as the
aggregator. The aggregator allows the user to send start and
stop signals to all the other stationary devices so that they can
start scanning for mobile devices. The user needs to run the app
on the mobile device and start moving around the space. Once
the mobile device receives the start signal from the aggregator,
it will make the device discoverable so that the stationary
devices can sense its presence. Since the app runs on regular
Android devices instead of rooted devices, such a discoverable
state has a system timeout. Therefore, the app will vibrate and
remind users that they again need to turn on the discoverable
mode to be still able to be sensed by the stationary device.

A. Data Collection and Processing

Each stationary device collects the following data when a data
collection phase starts:

1. Date and Time when the RSSI is sensed.
2. MAC address of the mobile device.
3. RSSI Value of the mobile device.

An example of the data gathered by a stationary device can
be seen in Fig. 3, where it sensed two mobile devices (identified
by their unique MAC address) in two slightly different
timestamps. Once all data is aggregated in the aggregator node,
the following path-forming algorithm is used to create the path

2023-92-09 10:17:03.292,B4:CE:40:7B:97:44,-64
2023-902-09 10:17:03.767,80:9F:F5:9D:11:A9,-78

Fig. 3. Example of data gathered by the stationary device.

of mobility using that data. The RSSI mobility algorithm that
was created is split into four different steps as follows:

= Step 1: Aggregate

This step cleans the data for further processing. The following
are its sub-steps:

a) Separate the data per mobile device basis.

b) If the option to round up the milli second in the time stamp
to the nearest second is selected, perform the
corresponding rounding up of the timestamp.

c¢) For each mobile device, if there are duplicate readings
(happens due to how a device's Bluetooth scanner works or
because of rounding up milli seconds), convert them into
one using either of the following user choices:

i.  Use the mean of the RSSI values to convert duplicate
entries to one.

ii. Use the median of the RSSI values to convert duplicate
entries to one.

= Step 2: Normalize

This is an optional step to put data into equally spaced
timestamps. This step work on data per mobile device basis.
This step is required if a stationary device did not sense a
mobile device at a particular timestamp; however, others did.
With this step, the data is placed into equally time-spaced
buckets. Users can normalize data after Step 1 or during Step 3.
The user can select the bucket size by selecting a time span. The
following are its sub-steps:



a) The user selects a time span on which to normalize all
data.

b) Find all unique timestamps in the data.
¢) While there are unique timestamps:

i. If the current timestamp is within
time span, then,

1. Create a new data entry where the timestamp
is equal to the current timestamp, and the RSSI
value would be the average of all the RSSI
values between this timestamp and timestamp
+ time span.

ii. Otherwise, the next time stamp would be the one
that is greater than timestamp + time span.

timestamp +

= Step 3: Combine

This step combines data for the same mobile device sensed at
different stationary devices into one. This helps the next step to
create per mobile device-based mobility path. This step gives
users two different options:

o Option 1: Per row basis
i. Find the data for the same mobile device in the
same row of the table in all stationary device's data
table and put them into one row of the new table.

e If there is no data for that mobile device for a
row, put 0 for the RSSI value in the combined
data for that stationary device.

o Option 2: All-row basis
i.  Find the data for the same mobile device for each
timestamp and put them into one row of the new
table.

e If there is no data for that mobile device for a
timestamp, put O for RSSI value in the
combined data for that stationary device.

= Step 4: Vectorize

The vectorizing step creates directional vectors by checking for
changes in signal strengths over time. To complete the
vectorizing of the data, the data must be sorted by timestamp.
The user can ignore zero RSSI values or not ignore zero RSSI
values in the data. A neighborhood radius can be selected if the
user selects not to ignore zeros, and a RSSI value will be
calculated from that radius of values. The vectors are
represented with a tail and a head that indicate the movement
of the mobile device. The vectorization step is comprised of two
sub-steps: Vectoring and Merging.

Vectorizing:

a) Sort the data ascendingly by time.
b) Determine the start and end of the path:

1. The stationary device with the strongest RSSI value
in the first row of the data is the starting point of the
path.

il. The stationary device with the strongest RSSI value
in the last row of the data is the ending point of the

path.
c) Between any two rows, for each stationary device:
i If the RSSI value is reducing, create a vector towards
the end.

il. If the RSSI value is increasing, create a vector
towards the start.

Merging:

a) For each vector:
1. If the tail is equal to the start and the head is equal to
the end, ignore that vector.
il. If the tail is equal to the start, but the head is not equal
to the end, append the head to the path.
iil. If the tail is not equal to the start, but the head is equal
to the end, append the tail to the path.
iv. Otherwise, append both the tail and the head in order
to the path.
b) Append the start to the beginning of the path and the end
to the last of the generated path.

More details about the vectorizing process are presented in
[22]-[23].

IV. EXPERIMENTS AND RESULTS

This section presents the results from different experiments
using different parameters for each experiment.

A. Experimental Setup

A controlled indoor space, which is 60 feet long and 45 feet
wide, was chosen to collect data. The indoor space had no walls
and average furniture density. A total of twelve stationary
devices were placed in the indoor space, as shown in Fig. 4. The
stationary devices were placed by visually estimating the
placement equally throughout the room. Each stationary device
was placed at an equal height and equally spaced apart when
determining the placement. Two paths were simulated for
experiments. Since the paths are known, the algorithm's
accuracy could be tested and verified. The participants for each
experiment carried a mobile device while walking on the
predetermined paths.

i ] N ]
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Fig. 4. Stationary device layout and experimental path
of the mobile device.

The first path used four stationary devices in a straight line.
The devices included S7, S12, S11 and S2. One person started
at stationary device S7 and walked past S12 and S11. Once the
person arrived at stationary device S2, the person paused and
then continued walking back toward S7. While walking back to
S7, the person passed S11 and S12, which are in the center of
the experiment area. Similarly, the second path used four
stationary devices, however, in a curved way. The devices



included S6, S9, S4 and S1. One person started at stationary
device S6 and walked to S9, turned right, walked to S4, turned
left, and continued to walk to S1. Once the person arrived at
stationary device S1, the person paused and then turned around
to walk back using the same path and returning to S6. While
walking back to S6, the person passed S4 and S9. When arriving
at S4, the person took a right turn to walk toward S9. Once the
person arrived at S9, they turned left and headed to S6. Each data
collection phase uses a similar pace for walking and a similar
pause time at each stationary device.

B. Results

The experiments were conducted to determine the mobility
patterns using different parameters and combinations. Various
parameters were used to determine how different parameters
affect the accuracy of the mobility pattern. These experiments
involve gathering RSSI data of stationary devices while a
volunteer takes the mobile device and walks the two paths
presented in Section V.A. Parameters were defined using the
user interface application.

Since the paths are known in advance, we compare them
with the path generated by the application. Table 1 shows each
generated path with corresponding parameters. Creating a
quantitative accuracy number is out of this research's scope,
which requires adapting graph-matching algorithms [23].
However, it is evident from Table 1 that the app is very close to
estimating the path. It is noticeable that although the algorithm
identifies correct starting and/or ending points, it is indifferent
in determining the in-between points of the path. Factors that
might have affected that are how close the two stationary
devices were, how fast the mobile device was moving, how
long the mobile device remained in the vicinity, how the path
was traversed, etc. All of these factors need further
investigation.

TABLE I. PATHS GENERATED BY THE APP FROM THE COLLECTED DATA.

Path Parameters Actual Path Path Generated
| |Asggregate: Mean S7>S12>S11-> | S7T>S12->82->S12
Normalize: None S2 >S11>S2
5 Combine: Per row basis S6>S9-> S6>S9>S4->S9>
Vectorize: Ignore zero S4->S1 S4->S1

Normalization was not used for the results shown in Table
1. To see its effect and the effect of the corresponding time span
during normalization, we ran with the same parameters (as in
Table 1) with different time spans for path 2, as it was generated
most accurately. Fig. 5. shows the effect of the time span during
normalization on the length of the generated path. for
normalization. The results reflected that the lower time spans
had more stationary devices in the path. As the time span
increased, the number of stationary devices decreased in the
path. However, after a certain value (6 seconds for this
instance), the generated path was missing actual path nodes
(indicated by the black line). This indicates that aggregating
data improves accuracy; however, doing too much might
reduce the effectiveness of this step.

Additional experimentation with different parameters was
performed to see their effects (or none) on the accuracy, and is
summarized below:

=  No effect noticed:
o  Whether we use mean or median to aggregate.
o  Whether we round milli seconds to aggregate when
normalize is used.
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Fig. 5. Effect of time span on path length.

=  Effect noticed:

o When normalize was selected as a parameter, the
results show that the paths were more accurate than
when normalize was not selected.

o The size of the time span affects the accuracy of the
path. Larger time spans improve accuracy.

o With the increase of the number of stationary devices,
the accuracy of the results decreased when all other
parameters remained the same.

o When the combining step considers all rows, the
generated path misses some of the stationary devices in
the path.

o  When zero RSSI values are not ignored, the generated
path only has the correct source and destination and
misses some or all of the intermediate nodes. The
neighborhood radius chosen has a direct impact on how
many intermediate nodes get missing in the resultant
path.

V. CONCLUSIONS AND FUTURE WORK

Indoor localization is an important research area, and
creating mobility paths in such an environment is challenging.
This paper presents a mobile app-based mobility detection
technique that uses Bluetooth RSSI data to create a mobile
device's path among strategically placed stationary devices in
an indoor space. A mobile application was created to automate
device management, data collection, and mobility detection.
Experiments were conducted using mobile and stationary
devices to gather data from indoor spaces, and a mobility
algorithm was developed that works with Bluetooth RSSI data.
A list of parameters was identified that could be used in the
algorithm to check its effectiveness. Overall, this research
concludes that there is a capability to detect mobility patterns
in indoor space using Bluetooth data using the presented
technique without the need for any specialized hardware like
similar approaches.

In the future, experiments that include increasing the area
of the pre-determined path while using the same number of



stationary devices could create a larger distance between the
stationary devices. An additional experiment could be to use the
same pre-determined path with fewer stationary devices. The
experiments could determine if the distance between stationary
devices, the number of stationary devices, and/or the time it
takes for a stationary device to collect RSSI values after
movement is detected impacts the accuracy of the data collected
and results. Further research and development are required to
test this approach in a real-life scenario, such as in the
Anonymous Clinic, as mentioned in Section 1.B. Real-world
data will be collected in the clinic shortly to validate the
effectiveness of this approach. Additionally, further
investigation will be conducted to create a quantitative accuracy
benchmark of this approach using graph-matching [23] or
sequence-matching [24] algorithms.
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