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Abstract— In an indoor space, determining a person's mobility 
patterns has research significance and applicability in real-world 
scenarios. When mobility patterns are determined, layout 
optimization can be implemented in indoor spaces to improve 
efficiency. This research aimed to determine a person's path using 
Received Signal Strength Indicator (RSSI) data collected from 
Bluetooth-enabled mobile devices. Mobile app-based mobility 
detection using Bluetooth RSSI has the advantage of low cost and 
easy implementation. The research methodology involves 
developing a Bluetooth RSSI mobility application system to 
determine the path of a moving mobile device using a vectorized 
algorithm. The paper presents challenges in creating such a 
software system, its architecture, the data collection and analysis 
process, and the results of mobility detection. This research shows 
that Bluetooth-enabled mobile devices and Bluetooth RSSI data 
can be used to determine the path in an indoor space with 
workable accuracy.  

Keywords— RSSI, Path forming, Indoor localization, Mobility 
pattern. 

I. INTRODUCTION 
Indoor localization is the process of detecting the real-time 

location using wireless devices in an indoor environment with a 
bounded error rate [1]. Determining a person's localization and 
mobility patterns has research significance and applicability in 
real-world scenarios. With recent technological advances, the 
use of mobile devices, smartphones, and the Internet of Things 
(IoT) has exploded. Such uses require the need for indoor 
localization to give users personalized services and 
contextualized information. In recent years, indoor localization 
and tracking have increased in different fields, such as 
healthcare, retail, and facility management. To determine the 
localization and mobility patterns in an indoor environment can 
be compared to the Global Positioning System (GPS) that is 
commonly used for localization in an outdoor environment. GPS 
requires line-of-sight between the satellites and the handset. 
GPS cannot be used to determine indoor environment 
localization because GPS signals are too weak for indoors, and 
there is no line-of-sight contact with the GPS satellites. 
A. Research Problem 

Localization in an indoor environment can be difficult and 
presents challenges [1] with positioning. There are things that 
could impact accurate localization in an indoor environment, 
such as signal strength, device positioning, obstacles, height, 
etc. [2]-[3]. Unlike outdoor localization, indoor localization 

must use other positioning methods and hardware. Methods 
could include using Wi-Fi or Bluetooth signal strengths. 
Hardware could include mobile devices or beacons. Compared 
to Wi-Fi, Bluetooth signal strength is intended to enable short-
range wireless communications between devices with reduced 
power requirements.  

This research uses Bluetooth-enabled mobile devices to 
collect Bluetooth RSSI data and use that to detect changes in 
position over time. The reason to use Bluetooth RSSI instead 
of Wi-Fi RSSI is due to the energy requirements of Bluetooth 
and its ability to sense an individual device's signal strength 
directly instead of sensing it through a router or using an extra 
networking layer, such as Wi-Fi Direct. The use of dedicated 
hardware, such as beacons [4], can improve accuracy. 
However, it comes with added cost and logistical challenges 
[4]. Although indoor environment positioning and localization 
are inherently difficult [5], creating real-time mobility patterns 
using position data adds another set of challenges. Challenges 
faced in this research include synchronization among 
collection devices, real-time data access, and processing, 
creating real-time visualization, and the lack of techniques for 
providing such real-time mobility detection using only 
software and no dedicated hardware. Designing such mobile 
software has added challenges because of the asynchronous 
nature of its software stack. Appropriate synchronization 
methodologies must be used to satisfy such requirements, 
adding extra complexity to the development of such software. 
The presented approach can help to solve this problem without 
any specialized hardware and with the help of a traditional 
mobile application that can gather raw Bluetooth RSSI data 
between a swarm of devices and then process it to create 
mobility paths. A stand-alone mobile app, as presented in this 
paper, makes it easier to collect raw RSSI data from a swarm 
of devices and process it on the fly to find a mobility path 
without any need for specialized hardware or knowledge of the 
indoor space with quick and easy deployment. 
B. Motivation  

Companies continuously search for ways to be profitable and 
operate at the lowest cost possible. One of the main ways to cut 
costs is to find efficiency gains. When a company improves 
efficiency, the operating costs will be lowered, improving 
profits. The healthcare industry wants to operate at a lower cost, 
improve efficiency, and create a better patient experience. 
Several healthcare facilities in an anonymous state are partnered 
with universities. The Community Care Center (CCC) facility in 
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Winston-Salem is partnered with Winston-Salem State 
University. The CCC is a pro bono facility that provides various 
medical services to patients. Being a pro bono facility, efficiency 
is important due to costs, time with patients, and patient care. 
The CCC is a part of this study to determine mobility within 
indoor spaces and use the mobility information to place furniture 
and instruments in the most well-organized way to improve 
clinicians' workability and efficiency. 

II. RELATED WORK 
Recent indoor localization approaches have promising 

results in pinpointing locations using Bluetooth. However, 
some approaches use low-powered beacons and the knowledge 
(such as size) of the indoor space [6]-[7]. Similar research in 
healthcare is increasingly using similar mobile crowdsensing, 
such as in clinic and psychological trials [8]-[11], public health 
[12], and personal well-being [13]. There are currently several 
techniques [14]-[15] for indoor localization, and extensive 
research [17]-[19] has been conducted in this area. Although 
these techniques each have some strengths and weaknesses, the 
presented approach has different goals and methodologies. The 
application domain of this research requires easy application of 
the technology without sophisticated hardware, the need for 
precious accuracy, or efficient energy usage. Since mobility 
detection is the goal, the approach does not need high precision 
but rather a general mobility pattern. Additionally, the use of 
stationary devices connected to power gives this approach the 
flexibility needed to use the Bluetooth proximity detection [20] 
technique in a real-time fashion, bundled in one app, which is 
easy and quicker to deploy.    

Priwgharm et al. [21] explored a comparative study on 
indoor localization based on RSSI measurement in a wireless 
sensor network. To calculate the location of the target sensor, 
two main techniques were used, which included range-based 
and fingerprinting-based techniques. The range-based 
technique uses min-max and lateration for indoor localization, 
while the fingerprinting-based technique uses the nearest 
neighbor algorithm and average k-nearest neighbor algorithm 
as pattern-matching methods. For the range-based technique, 
the experiment results show that the lateration provides better 
location estimation accuracy than min-max. The results show 
that the nearest neighbor algorithm provides the best results for 
the fingerprinting-based technique. Between the two 
techniques, the lateration of the range-based gave the best result 
of location estimation. Although this research shares similar 
approaches, it doesn’t use dedicated sensor networks and is 
based on using only mobile devices. 

Wang et al. [3] focused on RSSI-based Bluetooth indoor 
localization. Two BLE-based localization schemes are 
presented: Low-precision Indoor Localization (LIL) and High-
precision Indoor Localization (HIL). The LIL and HIL use the 
collected RSSI measurements to generate a small region where 
Bluetooth-enabled beacons are planted at a pre-determined 
area. Although this research shares similar goals, the presented 
research only uses mobile devices and applications in them 
instead of dedicated beacons, and sensing and path forming are 
all packaged in one mobile app. This makes the presented 
approach more cost-effective and easier to use. 

III. SYSTEM OVERVIEW AND  WORKING 
 

 

 
 

 
 

 
 

Fig. 1. Device organization and change of signal strength. 
 

Fig. 1 shows the overall idea of this approach. Assume that 
there are two stationary devices (in red) in two rooms of the 
building and a mobile device (in blue) is moving between the 
rooms. Each stationary device can sense other Bluetooth-
enabled devices within a radius of signal strength or proximity. 
These are devices (like a tablet, stationary in one place) placed 
strategically (like next to high-value/high-use instruments, 
close to treatment rooms, near high-traffic areas, etc.) around 
the facility. As the mobile device moves, each stationary device 
will sense its signal strength (Pst where s = stationary device and 
t = time stamp) and record that over time. So, for the given 
situation, the collected data for each stationary device will look 
like the following: 

 

Tpast P1past P2past 
Tcurrent P1current P2current 

 Tfuture P1future P2future 
 

Once such data is collected over time, it can be used to 
determine the direction of gradual change of signal strength, 
and the mobility path can be determined from such directional 
vectors. The app, developed as part of this research, runs on all 
stationary and mobile devices and has three different roles: 
broadcaster, collector, and aggregator. The broadcaster role is 
assigned to mobile devices, and in that role, it keeps the device's 
Bluetooth activated so that other devices can sense it. The 
stationary devices can have the other two roles. As a collector, 
the app collects RSSI data about mobile devices. As an 
aggregator, it collects data from other collector nodes and 
aggregates them for further processing and producing the 
mobility path. The aggregator app utilizes the devices' 
computational power to perform data formatting, duplicate 
detection, data aggregation,  and other pre and post-processing 
before creating the mobility path following the developed 
algorithm [22]-[23]. The first stationary device, which is added 
to the swarm of stationary devices, acts as the aggregator. While 
placing the stationary devices, a name and location information 
has to be provided to set up the app in that device to act as a 
collector and/or an aggregator. Similarly, a mobile device needs 
to give permission to broadcast Bluetooth signal and, during the 
first run, also needs to provide a name and the Bluetooth MAC 
address of that device. The user is made aware of the data 
collection and privacy policy before use of the app. The 
stationary devices use device-to-device (D2D) communication 
(Wi-Fi direct) to transfer data between them for aggregation 



purposes. The device, which becomes a collector node first in 
the list of stationary devices, also acts as the aggregator node 
for those stationary devices. Two stationary devices can overlap 
their proximity radius and measure the RSSI level of the same 
mobile device simultaneously. Fig. 2 shows the flowchart for 
the working of the mobile app system. During the first run of 
the app on a device, the user has to choose the role of that device 
as either mobile or stationary. After the selection is made in all 
devices (mobile and stationary), the app has to be closed and 
run again to allow the stationary devices to synchronize 
themselves with the information of identifying the mobile 
devices and determine which stationary device will act as the 
aggregator. The aggregator allows the user to send start and 
stop signals to all the other stationary devices so that they can 
start scanning for mobile devices. The user needs to run the app 
on the mobile device and start moving around the space. Once 
the mobile device receives the start signal from the aggregator, 
it will make the device discoverable so that the stationary 
devices can sense its presence. Since the app runs on regular 
Android devices instead of rooted devices, such a discoverable 
state has a system timeout. Therefore, the app will vibrate and 
remind users that they again need to turn on the discoverable 
mode to be still able to be sensed by the stationary device. 

A. Data Collection and Processing 
Each stationary device collects the following data when a data 
collection phase starts:  

1. Date and Time when the RSSI is sensed. 
2. MAC address of the mobile device. 
3. RSSI Value of the mobile device. 
An example of the data gathered by a stationary device can 

be seen in Fig. 3, where it sensed two mobile devices (identified 
by their unique MAC address) in two slightly different 
timestamps. Once all data is aggregated in the aggregator node, 
the following path-forming algorithm is used to create the path 

of mobility using that data. The RSSI mobility algorithm that 
was created is split into four different steps as follows:  
§ Step 1: Aggregate 
This step cleans the data for further processing. The following 
are its sub-steps: 
a) Separate the data per mobile device basis. 
b) If the option to round up the milli second in the time stamp 

to the nearest second is selected, perform the 
corresponding rounding up of the timestamp. 

c) For each mobile device, if there are duplicate readings 
(happens due to how a device's Bluetooth scanner works or 
because of rounding up milli seconds), convert them into 
one using either of the following user choices: 
i. Use the mean of the RSSI values to convert duplicate 

entries to one. 
ii. Use the median of the RSSI values to convert duplicate 

entries to one. 
 

§ Step 2: Normalize 
This is an optional step to put data into equally spaced 
timestamps. This step work on data per mobile device basis. 
This step is required if a stationary device did not sense a 
mobile device at a particular timestamp; however, others did. 
With this step, the data is placed into equally time-spaced 
buckets. Users can normalize data after Step 1 or during Step 3. 
The user can select the bucket size by selecting a time span. The 
following are its sub-steps: 

Fig. 3. Example of data gathered by the stationary device. 
 

Fig. 2. System operation. 
 



a) The user selects a time span on which to normalize all 
data. 

b) Find all unique timestamps in the data. 

c) While there are unique timestamps: 
i. If the current timestamp is within    timestamp + 

time span, then,  
1. Create a new data entry where the timestamp 

is equal to the current timestamp, and the RSSI 
value would be the average of all the RSSI 
values between this timestamp and timestamp 
+ time span. 

ii. Otherwise, the next time stamp would be the one 
that is greater than timestamp + time span. 
 

§ Step 3: Combine 
This step combines data for the same mobile device sensed at 
different stationary devices into one. This helps the next step to 
create per mobile device-based mobility path. This step gives 
users two different options: 

o Option 1: Per row basis 
i. Find the data for the same mobile device in the 

same row of the table in all stationary device's data 
table and put them into one row of the new table. 
• If there is no data for that mobile device for a 

row, put 0 for the RSSI value in the combined 
data for that stationary device. 

o Option 2: All-row basis 
i. Find the data for the same mobile device for each 

timestamp and put them into one row of the new 
table.  
• If there is no data for that mobile device for a 

timestamp, put 0 for RSSI value in the 
combined data for that stationary device. 
 

§ Step 4: Vectorize 
The vectorizing step creates directional vectors by checking for 
changes in signal strengths over time. To complete the 
vectorizing of the data, the data must be sorted by timestamp. 
The user can ignore zero RSSI values or not ignore zero RSSI 
values in the data. A neighborhood radius can be selected if the 
user selects not to ignore zeros, and a RSSI value will be 
calculated from that radius of values. The vectors are 
represented with a tail and a head that indicate the movement 
of the mobile device. The vectorization step is comprised of two 
sub-steps: Vectoring and Merging. 
Vectorizing: 
a) Sort the data ascendingly by time. 
b) Determine the start and end of the path: 

i. The stationary device with the strongest RSSI value 
in the first row of the data is the starting point of the 
path. 

ii. The stationary device with the strongest RSSI value 
in the last row of the data is the ending point of the 
path. 

c) Between any two rows, for each stationary device: 
i. If the RSSI value is reducing, create a vector towards 

the end. 

ii. If the RSSI value is increasing, create a vector 
towards the start. 

Merging: 
a) For each vector: 

i. If the tail is equal to the start and the head is equal to 
the end, ignore that vector. 

ii. If the tail is equal to the start, but the head is not equal 
to the end, append the head to the path. 

iii. If the tail is not equal to the start, but the head is equal 
to the end, append the tail to the path. 

iv. Otherwise, append both the tail and the head in order 
to the path. 

b) Append the start to the beginning of the path and the end 
to the last of the generated path. 

More details about the vectorizing process are presented in 
[22]-[23]. 

IV. EXPERIMENTS AND RESULTS 
This section presents the results from different experiments 

using different parameters for each experiment. 

A. Experimental Setup 
A controlled indoor space, which is 60 feet long and 45 feet 

wide, was chosen to collect data. The indoor space had no walls 
and average furniture density. A total of twelve stationary 
devices were placed in the indoor space, as shown in Fig. 4. The 
stationary devices were placed by visually estimating the 
placement equally throughout the room. Each stationary device 
was placed at an equal height and equally spaced apart when 
determining the placement. Two paths were simulated for 
experiments. Since the paths are known, the algorithm's 
accuracy could be tested and verified. The participants for each 
experiment carried a mobile device while walking on the 
predetermined paths.  

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Stationary device layout and experimental path  
of the mobile device. 

 
 The first path used four stationary devices in a straight line. 
The devices included S7, S12, S11 and S2. One person started 
at stationary device S7 and walked past S12 and S11. Once the 
person arrived at stationary device S2, the person paused and 
then continued walking back toward S7. While walking back to 
S7, the person passed S11 and S12, which are in the center of 
the experiment area. Similarly, the second path used four 
stationary devices, however, in a curved way. The devices 



included S6, S9, S4 and S1. One person started at stationary 
device S6 and walked to S9, turned right, walked to S4, turned 
left, and continued to walk to S1. Once the person arrived at 
stationary device S1, the person paused and then turned around 
to walk back using the same path and returning to S6. While 
walking back to S6, the person passed S4 and S9. When arriving 
at S4, the person took a right turn to walk toward S9. Once the 
person arrived at S9, they turned left and headed to S6. Each data 
collection phase uses a similar pace for walking and a similar 
pause time at each stationary device. 

B. Results 
The experiments were conducted to determine the mobility 

patterns using different parameters and combinations. Various 
parameters were used to determine how different parameters 
affect the accuracy of the mobility pattern. These experiments 
involve gathering RSSI data of stationary devices while a 
volunteer takes the mobile device and walks the two paths 
presented in Section V.A. Parameters were defined using the 
user interface application. 

Since the paths are known in advance, we compare them 
with the path generated by the application. Table 1 shows each 
generated path with corresponding parameters. Creating a 
quantitative accuracy number is out of this research's scope, 
which requires adapting graph-matching algorithms [23]. 
However, it is evident from Table 1 that the app is very close to 
estimating the path. It is noticeable that although the algorithm 
identifies correct starting and/or ending points, it is indifferent 
in determining the in-between points of the path. Factors that 
might have affected that are how close the two stationary 
devices were, how fast the mobile device was moving, how 
long the mobile device remained in the vicinity, how the path 
was traversed, etc. All of these factors need further 
investigation.  

TABLE I.  PATHS GENERATED BY THE APP FROM THE COLLECTED DATA. 

Path Parameters Actual Path Path Generated 

1 Aggregate: Mean 
Normalize: None 
Combine: Per row basis 
Vectorize: Ignore zero 

S7àS12àS11à 
S2 

S7àS12àS2àS12
àS11àS2 

2 
S6àS9à 
S4àS1 

S6àS9àS4àS9à 
S4àS1 

 
Normalization was not used for the results shown in Table 

1. To see its effect and the effect of the corresponding time span 
during normalization, we ran with the same parameters (as in 
Table 1) with different time spans for path 2, as it was generated 
most accurately. Fig. 5. shows the effect of the time span during 
normalization on the length of the generated path. for 
normalization.  The results reflected that the lower time spans 
had more stationary devices in the path. As the time span 
increased, the number of stationary devices decreased in the 
path. However, after a certain value (6 seconds for this 
instance), the generated path was missing actual path nodes 
(indicated by the black line). This indicates that aggregating 
data improves accuracy; however, doing too much might 
reduce the effectiveness of this step. 

Additional experimentation with different parameters was 
performed to see their effects (or none) on the accuracy, and is 
summarized below: 

§ No effect noticed: 
o Whether we use mean or median to aggregate. 
o Whether we round milli seconds to aggregate when 

normalize is used. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Effect of time span on path length. 
 

§ Effect noticed: 
o When normalize was selected as a parameter, the 

results show that the paths were more accurate than 
when normalize was not selected.  

o The size of the time span affects the accuracy of the 
path. Larger time spans improve accuracy. 

o With the increase of the number of stationary devices, 
the accuracy of the results decreased when all other 
parameters remained the same. 

o When the combining step considers all rows, the 
generated path misses some of the stationary devices in 
the path.   

o When zero RSSI values are not ignored, the generated 
path only has the correct source and destination and 
misses some or all of the intermediate nodes. The 
neighborhood radius chosen has a direct impact on how 
many intermediate nodes get missing in the resultant 
path. 

V. CONCLUSIONS AND FUTURE WORK 
Indoor localization is an important research area, and 

creating mobility paths in such an environment is challenging. 
This paper presents a mobile app-based mobility detection 
technique that uses Bluetooth RSSI data to create a mobile 
device's path among strategically placed stationary devices in 
an indoor space. A mobile application was created to automate 
device management, data collection, and mobility detection. 
Experiments were conducted using mobile and stationary 
devices to gather data from indoor spaces, and a mobility 
algorithm was developed that works with Bluetooth RSSI data. 
A list of parameters was identified that could be used in the 
algorithm to check its effectiveness. Overall, this research 
concludes that there is a capability to detect mobility patterns 
in indoor space using Bluetooth data using the presented 
technique without the need for any specialized hardware like 
similar approaches. 

In the future, experiments that include increasing the area 
of the pre-determined path while using the same number of 



stationary devices could create a larger distance between the 
stationary devices. An additional experiment could be to use the 
same pre-determined path with fewer stationary devices. The 
experiments could determine if the distance between stationary 
devices, the number of stationary devices, and/or the time it 
takes for a stationary device to collect RSSI values after 
movement is detected impacts the accuracy of the data collected 
and results. Further research and development are required to 
test this approach in a real-life scenario, such as in the 
Anonymous Clinic, as mentioned in Section I.B. Real-world 
data will be collected in the clinic shortly to validate the 
effectiveness of this approach. Additionally, further 
investigation will be conducted to create a quantitative accuracy 
benchmark of this approach using graph-matching [23] or 
sequence-matching [24] algorithms. 
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