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Many models of learning in teams assume that team members can share solutions or
learn concurrently. However, these assumptions break down inmultidisciplinary teams
where team members often complete distinct, interrelated pieces of larger tasks. Such
contextsmake it difficult for individuals to separate the performance effects of their own
actions from the actions of interacting neighbors. In this work, we show that individuals
can overcome this challenge by learning from network neighbors through mediating
artifacts (like collective performance assessments). When neighbors’ actions influence
collective outcomes, teams with different networks perform relatively similarly to one
another.However, varying a team’s network can affect performance on tasks thatweight
individuals’ contributions by network properties. Consequently, when individuals
innovate (through “exploring” searches), dense networks hurt performance slightly
by increasing uncertainty. In contrast, dense networks moderately help performance
when individuals refine their work (through “exploiting” searches) by efficiently finding
local optima. We also find that decentralization improves team performance across a
battery of 34 tasks. Our results offer design principles for multidisciplinary teams
within which other forms of learning prove more difficult.

team performance | problem-solving | social networks | collective intelligence |

multidisciplinary teams

Multidisciplinary teams play crucial roles in academia, industry, and government (1).
Scientists from different fields collaborate to solve complex problems (1). Chefs train
as sauciers or pastry chefs, then combine their products into the same meals (2, 3).
Engineering teams draw representatives from various backgrounds, each working on parts
that integrate with the others (4, 5). But these engines of innovation face an obstacle
familiar to many: Disciplinary boundaries make collaborating across fields challenging
(6–11). How, then, do members of multidisciplinary teams learn from and with one
another as they advance toward collective goals?

Prior work on learning in teams would suggest two possibilities. The first treats
individuals’ actions as “copyable” (e.g. refs. 12–21), like learning sales strategies from a
fellow salesperson or learning the steps to diagnose an illness from a senior physician.
Here, people learn through feedback from their own actions (individual learning, Fig.
1A) and by copying techniques from those around them (vicarious or social learning,
Fig. 1B) (22–26). Tasks (27), networks (15), and learning processes (16) all affect these
types of learning.

In the second perspective, teammembers work together concurrently or “transactively”
(e.g., refs. 28–38), like software engineers developing a new app together (39) or a
medical team treating patients in a busy emergency room (40). These teams learn
from performance feedback while they dynamically encode, store, retrieve, and integrate
different kinds of knowledge (team learning, Fig. 1C ) (28, 30). Such teams are often
described in terms of their collective intelligence, a validated quality describing a group’s
ability to perform a wide variety of tasks (29, 36) which likewise depends on tasks (41),
interaction patterns (17, 29, 38) and skills (36).

However, these perspectives prove limited withinmultidisciplinary teams.Disciplinary
boundaries often impede individuals from copying each other’s actions or working closely
together (6–11). Instead, they divide tasks into interdependent subtasks and work in
parallel (42–44). Of course, members of these teams still interact with one another,
affect each other’s outcomes, and the team’s collective outcomes. This gives rise to
the “performance nonseparability problem” (45, 46): A team’s collective performance
obfuscates how individuals’ actions affect shared outcomes, making it hard to figure out
the effect of each change. Learning becomes even more challenging when many changes
happen at the same time (they may not work together) or individuals have limited
visibility into each other’s actions (47, 48). So while extant forms of learning remain
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Fig. 1. Types of learning in teams. In each panel, i is some member of
a team, and j can be any other member of that team; xi and xj are their
respective decisions. Then, fi is a task that i can work on alone; h is a task
that an entire team works on, and gi is a task that team member i works
on but that is also influenced by the actions of their network neighbors j.
(A) Individuals can learn from their own actions without outside influences.
(B) Individuals can also learn by copying solutions from others they interact
with. (C) Teams can learn concurrently through their actions, interactions,
and feedback. (D) In multidisciplinary teams, individuals can learn through
mediating artifacts, like performance assessments, that provide feedback on
tasks thatmultiple individuals contribute to. This does not necessarily require
social or team learning because knowledge boundaries between disciplines
and inseparable contributions to artifacts tend to impede these forms of
learning between disciplines.

possible, multidisciplinary settings do not lend themselves to
individual learning, social learning within the team, or team
learning.

Fortunately, another learning pathway exists: mediated learn-
ing. Here, individuals learn from themselves and others through
artifacts (Fig. 1D, 26, 49). For example, members of multi-
disciplinary teams can learn about their performance and their
teammates’ performance through changes in the quality of the
collective output of the team. Consider how ants learn where
food is by following chemical trails left by other ants (50). People
learn from one another through symbolic objects they create, like
books, websites, and performance assessments (26, 46, 49). Team
members learn from one another through boundary objects, like
sketches and databases (51–53). Such mediated interactions can
significantly affect the outcomes ofmicrobes (54), ecological webs
(55), social behavior spread (56), education (57), and innovation
(58), even producing larger effects than unmediated interactions
(56). Mediated learning is not mutually exclusive of the other
learning types as individuals and teams can learn through artifacts
as well.

Mediated learning has been observed in many settings, but to
our knowledge, the performance effects of this subtle mechanism
have yet to be examined systematically inmultidisciplinary teams.
In particular, network properties produce varied performance
effects depending on the type of learning (16, 56) which makes
systematic analysis of network properties crucial to understanding
how mediated learning affects team outcomes. To that end, this
work addresses the question: How do network properties affect
multidisciplinary team performance through mediated learning?

We begin by introducing neighborhood task performance,
which formalizes the networked nature of mediated learning
pathways and distinguishes them from other learning pathways.
Through this concept, we investigate how network density and
other properties affect team performance, showing three results.
First, mediated learning can either help or hurt performance
depending on the task and team network structure. Then, we
show that densely-connected teams tend to perform better when

“exploiting” (or refining) solutions, while sparsely-connected
teams perform better when “exploring” (or innovating) new
solutions—a finding that echoes other types of learning (12, 59,
60). But contrary to other types of learning (61, 62), we show
that decentralized teams see greater performance benefits than
other structures across a diverse set of tasks. This benefit likely
arises because decentralization balances the benefits of dense and
sparse teams on tasks with different qualities. We close with a
discussion of implications for designing teams and limitations.

Model Description

We constructed a model that represents mediated learning
in multidisciplinary teams. To achieve this, we simulated
performance-mediated feedback networks, team members as
computational agents, and representative tasks while minimizing
other forms of learning and variables with established effects.
In brief, each team member independently selects actions.
Individuals’ actions affect performance on their own subtask but
also affect their neighbors’ subtask performances and the team’s
overall task performance. This means individuals learn from a
“neighborhood” performance shaped by their own actions and
the actions of their network neighbors.

Performance-Mediated Feedback Framework.The perfor-
mance nonseparability problem exemplifies mediated learning in
multidisciplinary teams. Here, team members perform actions
that affect each other’s work. In other words, individuals’
performances depend on the actions of other individuals. This
yields ties in a network consisting of performance dependencies
between individuals. Then, when individuals receive feedback
from those confounded performance assessments (as in Fig. 1D),
these action–performance–feedback sequences create a network
of pathways for learning. Rather than being individual learning
(learning from feedback on one’s own actions in isolation) or
social learning (learning by observing and copying others actions,
as in ref. 12), this is mediated learning because individuals learn
through mutually constructed artifacts—collective performance
assessments that result from multiple individuals’ actions. Thus,
this scenario describes performance-mediated learning in multi-
disciplinary teams.

In our model, then, computational agents work on a shared
team-level fitness landscape representing a task (called a “task”
hereafter) over time. Each team has n agents, and each agent
i ∈ {1, . . . , n} has a value xi ∈ [0, 1] that represents its decisions
on how to contribute to the task. Like others (12, 15, 27, 63), we
assume that a group’s performance on a task can be represented as
a function h(Ex) of the agents’ decisions. The context we study in
this work means we cannot assume that individuals only receive
individual feedback via some fi(xi), as with individual learning, or
team feedback via h(Ex), as with team learning (Fig. 2A). Instead,
agent i owns and works on a subtask gi of the team’s overall task h.
The subtask is affected by the agent’s own actions xi, but not only
those actions. As in the performance nonseparability problem,
agent i does not have complete control over its outcome because
the actions Exj of some set of other agents j ∈ Ji = {1, . . . , ki} also
affect agent i’s performance on gi.

This yields what we call a neighborhood function gi(xi, Exj)
for each agent i. Neighborhood functions describe an agent’s
subtask performance as a function of the agent’s own actions and
the actions of other agents that affect it (Fig. 2B). This makes
neighborhood functions ki +1 dimensional, with one dimension
for i and one for each j ∈ Ji. Neighborhoods are not subteams,
though, as there is no coordination between agents and agents’

2 of 11 https://doi.org/10.1073/pnas.2303568120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

66
.1

81
.1

16
.7

9 
on

 Ju
ne

 2
2,

 2
02

4 
fr

om
 IP

 a
dd

re
ss

 6
6.

18
1.

11
6.

79
.



A C

B

DLearning Pathway Network Correspondence

Fig. 2. Framework of performance-mediated learning pathways describes different networks and comprehensive model construction. (A) In the framework,
individuals i can learn from team performance h or their own performance fi , but in multidisciplinary teams they often have to learn from a combined
“neighborhood” performance gi . (B) In this context, the individual’s actions xi and their neighbors’ actions Exj affect the agent’s performance on a subtask gi of
the team’s overall task h. This makes it difficult for individuals to tell “how good” their actions are. (C) These neighborhoods of dependence can describe any
performance-mediated learning pathway, from individual learning (an empty graph) to the performance feedback paths of team learning (a complete graph)
and any distribution in between. (D) Our model enables us to explore different networks by giving each individual i feedback from their neighborhood gi .
Separately, our model assesses the team’s overall performance h as a function of all agents actions Ex .

actions can affect multiple other agents. So each neighborhood
function gi(xi, Exj) describes agent i’s subtask contribution to
the team’s performance h while acknowledging agent i’s limited
control over its outcome.

Collectively, a team’s neighborhood functions correspond to
the team’s mediated learning network with nodes i and network
neighbors j ∈ Ji.* This multilevel framework can describe
any performance-mediated learning pathway (Fig. 2C ). At one
extreme, agents only affect themselves (representing individual
learning, or an empty graph). As we add interactions, we
can construct any undirected network distribution by adding
interactions to neighborhood functions Eg up to and including
team learning (a complete graph) in which every agent affects
every other agent. In this work, we vary the neighborhood
functions to study the effects of mediated learning networks on
team performance (Fig. 2D).
Individuals often have different goals from the team (64). We

could choose any task gi for each agent to work on, regardless
of the task h on which the team is evaluated. In this work, we
assume agents work toward the same goal as the team.We do this
by using tasks that are commutative, normalized, and scalable to
any number of dimensions. This lets us use the same task type
for both neighborhood subtasks gi and the team task h because
the operand corresponding to each agent i retains the same form
and function in every subtask in which it exists and in the team
task (see SI Appendix, S1for details).
Put another way, gi captures “how well” agent i thinks their

action contributes to the team’s overall task h. In many cases,
agent i cannot tell how their own decision xi led to their own
outcome gi (let alone the team’s outcome h) because the Exj
decisions of the other agents j ∈ Ji obscure how agent i’s actions
affected collective outcomes. For example, while one agent could
make a decision that would perform well in isolation, adjacent

*More completely, gi(xi , Exj) describes the directed edges of a network of mediated
interactions, where xi indicates the existence of a self-edge and each xj indicates the
existence of a directed edge from j to i. For simplicity, we assume that all edges in this
network are reciprocated, making a network of undirected edges sufficient for this work.

agents may be negatively affected by the decision. This can occur
because agents work on different subtasks from one another
(again, neighborhoods are not subteams) and a decision that
improves one agent’s subtask performancemight degrade another
agent’s subtask performance. On the other hand, the decision
could also improve the performance of adjacent agents j either
by increasing gj or by opening new possibilities.

Agents Description.Given this framework, we give agents four
qualities. First, agents act independently and cannot coordinate
future actions by sharing their intended states. We chose this
because multidisciplinary teams may not be able to discern
how each other’s actions will affect their own outcomes. Also,
sharing information with one another is part of both social
and team learning which we sought to minimize. So, agents’
only interactions are mediated through how their choices affect
each other’s outcomes as described through their neighborhood
performance functions gi(xi, Exj).
Second, agents are naive. Individual skill significantly affects

team and task performance (34, 36). To minimize the effects
of individual skills on team performance, agents randomly
search for better values of xi once per time step. Agents do
this by drawing a single random value, evaluating that value
against their prior best value, and keeping the better value
of the two. This random individual experimentation cannot
remove all skill as it grants agents the ability to predict how
one potential value change might affect their outcome at each
time step. However, this naive approach minimizes skill for
our examination of mediated learning because alternative search
approaches either increase individual skill (i.e., employing search
strategies, multiple sampling, error checking) or necessitate
adding some unmediated form of learning (i.e., coordinating
team experiments) which prove challenging in multidisciplinary
settings.

Third, agents are search-limited. In the tradition ofMarch (65)
and others (12, 15, 66, 67), this represents the extent to which
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individuals try to innovate by exploring new solutions and refine
solutions by exploiting the current solution (whether by choice
or constraints). When agents sample new values x′

i , they explore
within a specified search radius r—so they look for a new value
x′
i ∈ [xi − r, xi + r], but lower-bounded by 0 if xi − r < 0 and
upper-bounded by 1 if xi + r > 1. We can then examine how
one’s choice of search conditions affects performance, varying
from local refining searches to global exploring searches.

Finally, agents are also greedy. This means that agents seek to
maximize performance by accepting any new value that they ex-
pect to improve their neighborhood’s performance.We chose this
decision-making process for two reasons. For one, it is consistent
with the incentive structures of prior lab studies and the explicit
rules in simulation studies of learning in teams (12, 15, 16, 59).
Second, it is a uniformperformance-maximizing rule for assessing
how individuals learn through mediated artifacts. Other rules
are certainly possible (e.g., accepting every third value, or only
improving values until they are “good enough”) (68), but such
rules add a variable better explored after establishing a baseline.

Simulation Description.To summarize, every turn of the model,
each agent performs a naive search for a better value of xi by
selecting a random value x′

i within a given search radius ±r. If
the new value x′

i produces a better outcome given what they
know from the team’s past choices—if gi(x′

i , Exj) > gi(xi, Exj)—
they accept the new value by setting xi = x′

i . They do not
confirm that their decision produces the intended effect (a higher-
skill verification technique) but simply continue searching.
Otherwise, they keep their old xi and continue searching (see
Materials & Methods for pseudocode).
Altogether, this construction allows us to systematically explore

network properties while controlling for variables of known
significance, including team size (69–72), tasks (34, 41), and the
balance between innovating (exploring) and refining (exploiting)
their solutions (12, 15, 65, 67).We constructed teams of different
sizes—4, 9, 16, and 25 agents—that span those represented in
other studies (e.g., refs. 12, 15 and 29).

We controlled for four realistic qualities of tasks as pop-
ularized by McGrath (73) and recommended for studies on
collective intelligence (29, 36) and transactive memory systems
(30, 74). These task qualities—generate, choose, negotiate,
and execute—map to four quantities that we can measure—

respectively: exploration difficulty, exploitation difficulty, neigh-
borhood alignment, and neighborhood interdependence (see SI
Appendix, S2for details). We designed a battery of 34 tasks that
vary in difficulty for each of these four measures to understand
team performance across a diverse set of tasks, much like how
studies of collective intelligence select tasks from each group (e.g.,
refs. 29 and 34; see Fig. 3A–E for sample tasks; see SI Appendix,
S1for all task specifications).

We also controlled for the search radius of agents from much
smaller than the smallest feature size of the tasks (r = 0.001),
through local “exploitation” searches just smaller than the width
of the smallest valley in the task landscape (r = 0.01), to
intermediate searches that mix exploration and exploitation
(r = 0.1), and global “exploration” searches in which agents
can always explore the entire domain (r = 1).

For our systematic analysis of network structures, we selected
12 measures that describe different structural properties of
networks related to individual connectedness, neighbors’ con-
nectedness, network efficiency, and shared connections (cf. ref.
75, see SI Appendix, S3for definitions). Then, we selected 18 team
network configurations that vary these qualities to understand
how each quality affects team performance (see Fig. 3 F–J for
sample networks; see SI Appendix, S4for network specifications).
Some of the networks are common empirically like the small
world (76) and preferential attachment (77); others are random
graphs to explore the effects of network density; and several
are idealized or idiosyncratic graphs because they allow us to
explore particular qualities. Combined, the task and network
types produced varied difficulties for the teams (see Fig. 3K for
two of the four task measures).

Finally, we ran each combination of these choices 250 times
to examine statistical differences between population means. All
agents began from a random starting point during each run of
the model and conducted a search at each of 25 time steps. The
following section presents our results.

Results

Mediated Learning can Help or Hurt Performance.To answer
our research question, we begin by considering how well teams
perform on different tasks when we vary their interaction
network’s density. Intuitively, one might expect agents to affect
the quality of solutions that neighboring agents find. For example,

A

F G H I J

B C D E
K

Fig. 3. Example tasks, networks, and their difficulties. We put teams through different fitness landscapes representing 34 tasks while in each of 18 network
configurations, including (A–E) the example tasks and (F–J) networks shown here. (K ) Together, the task functions and networks varied task difficulty across four
measures, including for exploration and exploitation as shown here.
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one agent might randomly start with a low-scoring value, making
it likely that most values that their neighbors find improve
their neighborhood performances and team performance. This
implies that greater density (more interactions) might give agents
the flexibility to find better solutions to their portions of the
problem—even when they did poorly themselves—or conversely
to constrain them when their neighbors do poorly. We examined
this intuition by calculating the average team performance for
each combination of team size, task, search radius, network, and
point in time over the 250 runs.

The results show that density affects task performance, but only
in specific cases. Fig. 4 demonstrates how density can have varied
effects on team performance. For some tasks, teams perform the
same as one another regardless of their density (e.g., in Figs. 4 A
and B). Consider an intermediate search radius of r = 0.1, for
example. On 10 of the 34 tasks (29%), the average performance
of teams with any interactions (all 17 nonempty graphs) is the
same as for teams with no interaction (an empty graph, only
individual learning) with a 95% CI.

However, this is not always the case. Fig. 4C shows a task in
which teams with any interactions between agents outperform
teams with no interaction. This effect is exaggerated further in
Fig. 4D, depicting a task where teams with more interaction
between agents (and higher network density) find better solutions
faster than those with less interaction (and lower density). Teams
with interactions outperform teams with no interactions on 8 of
34 tasks (24%), again true for all 17 nonempty graphs (95% c.i.).
In contrast, Fig. 4E shows one of the 8 tasks (24%) in which
havingmore interactions decreases the likelihood of finding better
solutions (all 17 graphs, 95% c.i.). Of the remaining tasks, 3 yield
an advantage and 5 yield a disadvantage for varied combinations
of interacting teams (see SI Appendix, S5for average performances
for all tasks, search radii, and networks for teams of n = 9).

The formulas of the tasks (SI Appendix, S1) shed light on
why teams with certain networks perform differently from one
another. Of the 16 tasks on which interacting teams have a
distinct advantage or disadvantage, 15 of them multiply and/or
exponentiate each agent’s decision variable xi by the number
of other agents ki that the agent interacts with. The remaining
task, the minimum function, strongly depends on the number of
values in its operating set which is also a function of the number
of interacting neighbors. Put another way, teams with different
networks tended to perform differently from one another when
tasks weighted agents’ contributions by a network property.

In hindsight, it may seem obvious that a team’s network will
affect performance when tasks depend on network properties.

Nevertheless, this is realistic. For example, in a group brainstorm-
ing task (a generate task), individuals have different information
depending on whether they generate ideas alone (an empty
graph), with every member of a group (a complete graph),
or with some subset (a distribution), with well-established
repercussions for the team’s performance (34, 69, 78–80). The
same is true on many choose tasks (16, 35, 59, 81). Next,
we explore how each network performs across our full set of
tasks.

Networks Can Help or Hurt Performance across Diverse Tasks.
Recent work on collective intelligence has raised the importance
of understanding how well teams perform, not just on single
tasks, but across sets of diverse tasks (like in refs. 29, 34, and
36). In light of this and our research question, our next analysis
explores how teamperformance varies with network density when
averaged across our 34 tasks. We calculated the average team
performance for the 18 network types, four search radii, and four
team sizes across all 34 tasks. As a point of comparison, we then
calculated the percent difference of these values relative to a set
of baseline values—the average performance of teams that only
learned individually (the empty graph).

The first result of this analysis is that network density can
modestly help or hurt a team’s performance depending on how
much the team explores new solutions and exploits old ones.
Sparse teams tend to outperform dense teams when innovating
because of reduced uncertainty, while dense teams outperform
sparse teams when refining due to faster optimization (see Fig. 5
for teams of n = 9 and three search radii; see SI Appendix, S6for
all team sizes and radii). The performance benefits are modest—
up to 3.4% for sparse graphs when exploring and 6.1% for dense
graphs when exploiting.

To build intuition for this finding, recall that agents in teams
with dense networks (like the complete graph) have many more
connections than in teams with sparse networks. Each agent
controls its one variable in their neighborhood’s performance,
and their neighbors’ variables can change randomly each turn.
So if an agent has fewer neighbors, it ismore likely that any change
the agentmakes will produce the expected outcome. But themore
neighbors an agent has, the more likely it becomes that multiple
agents make changes at the same time, landing both agents in a
different location on the task landscape than they expected.While
these changes could be compatible (as they are when agents do
not change each other’s probabilities), their combined outcome
is less certain on tasks tied to network properties.When exploring
globally (radius = 1.0), agents in dense teams have even more

B C D EA

Fig. 4. Examples of team performances averaged over 250 runs for search radius r = 0.1. (A and B) Network structure does not affect team performance
on some tasks (10 of 34). However, network structure does affect performance on others (24 of 34 tasks), typically when the tasks are a function of network
properties. (C) For example, on some tasks, teams with only individual learning (an empty graph) perform worse than teams with any interactions (any other
graph). (D) On others, increasing network density corresponds to increased performance, (E) while others still exhibit decreased performance with greater
density.
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A B

Fig. 5. Average performances for each network and search radius. Values shown are percent differences from the averages of teams that only learn individually
(empty graphs) for teams of n = 9 agents with the specified search radius. Error bars show 95%CIs of the differences betweenmeans. (A) Average performances
are shown by network type, sorted Top-to-Bottom first by density, then by eigenvector centrality, a measure of how important each individual is to each other
individual. (B) The same performance averages plotted by network density. Trend lines represent simple least squares regressions between density and
performance, illustrating how the search radius influences the relationship between network density and performance. SI Appendix, S6shows similar outcomes
for teams of 4, 16, and 25.

uncertain environments and experience more random changes
than agents in teams with fewer connections. As a result, sparse
teams outperform dense teams when innovating.

Next, consider when teams exploit locally (radius = 0.01).
This radius makes agents’ changes incremental: Changes they
make either stay on the same peak in the task landscape or move
to an adjacent peak. As agents adjust toward the summit of
their local peak, the probability of jumping to adjacent peaks (if
they exist in the task) goes down because fewer points within
their search radius perform better than their current solution.
This is not explicit coordination between agents; much like the
optimizationmethod of gradient descent, agents passively “teach”
each other where good solutions are through small shifts that
guide neighbors toward better outcomes for the team. At the
same time, this guidance also performs a passive form of error-
checking by preventing other agents from finding solutions with
a lower fitness than solutions that are within the current search
radius. So like before, agents in dense teams are exposed to more
simultaneous changes than those in sparse teams. But this time,
those changes guide agents with many connections toward local
peaks faster than those with few. Sparsely-connected teams, on
the other hand, have to wait for information about the task land-
scape to pass from agent to agent through their random searches
over many turns, leaving them to navigate more slowly toward
optimal solutions. Sparse teams are more likely to refine one
dimension at a time, like coordinate descent optimization, while
dense teams often refine multidimensionally. Consequently,
dense teams outperform sparse teams when exploiting. Between
these extremes, intermediate searches (radius = 0.1) exhibit
mixed results as the shape of each task determines whether density
or sparsity yields better outcomes (SI Appendix, S6).
Thus, having fewer connections, sparser layouts, or both

makes it easier for multidisciplinary teams to explore novel
solutions. Large changes are more likely to improve individuals’
contributions in such teams while small changes slow the process

of reaching optimal team outcomes. On the other hand, teams
with more connections, denser layouts, or both exploit existing
solutions more effectively. In this case, small changes help the
team optimize performance quickly while large changes create
uncertainty throughout the team. This finding is comparable
to studies of other types of learning that find the same effect
(12, 59, 60). In those contexts, dense networks are “efficient”
because they spread information and converge to local solutions
quickly. The “inefficiency” of sparse networks gives individuals
greater opportunity to find diverse solutions making them more
likely to find better ones (12).

However, density does not account for all—or even most—of
the performance variation with mediated learning. In Fig. 5A, we
sorted the networks from Top to Bottom first by density. Then,
we broke any ties by sorting according to the greatest mean
eigenvector centrality, a measure of how central the neighbors of
each node are on average (75). While these sorts mostly placed
the networks in performance order for the global search results,
they are not perfectly ordered, let alone the orders of the other
search radii. This raises the question of what network qualities
best correspond to greater team performance across tasks and
search conditions. The next section addresses this question by
systematically examining howdifferent task and network qualities
relate to performance.

Decentralization Improves Performance across Tasks.While
our analyses have focused on network density so far, we saw that
density does not account for most of the performance variation
with mediated learning. Therefore, our next two analyses utilized
our full dataset (all 18 network types, 34 tasks, four search radii,
four team sizes, and 26 time steps for each) to identify the
relative contributions of a variety of network qualities to team
performance. The first analysis found the relative importances
of 12 network measures through random forest regressions (82).
However, random forests cannot measure whether effects are
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Fig. 6. Task measure importances, likelihoods, and effect directions. Each
point shows how important the indicatedmeasure is (x-axis), and plots those
importances against how likely thatmeasure is to either have a positive effect
(positive y-axis) or negative effect (negative y-axis) on team performance.
Each point summarizes the fraction of valid regression cumulative effects
(combining main and search radii interactions) with a positive effect. For
example, exploration difficulty was negative in all 18 cumulative effects, while
neighborhood interdependence was positive in 10 of 18 cumulative effects,
and negative in 8 of 18.

positive or negative. So, our second analysis predicted how likely
each measure is to have a positive or negative performance effect
by aggregating the results of six regressionswith different controls.
Figs. 6 and 7 show our results.

We identified the most important network measures through
two random forest regressions (SI Appendix, S7). Each forest
included task fixed effects and controls for the four task measures,
time step, team size, and search radius. The first forest included
the 12 network measures that apply to fully connected networks.
This comprehensive list of network measures came at the cost
of excluding data from teams with networks that are not fully
connected (e.g., the empty graph, some random graphs) and
cannot be evaluated by three of the measures (shortest path
length, diameter, and degree assortativity). The second forest
excluded network measures that cannot evaluate disconnected
graphs, allowing us to include the comprehensive set of all
networks regardless of their connectedness. We calculated
the average and SD of the importances for each measure
across the two random forests to find their impacts on team
performance.

Our second analysis extends Mason and Watts’ (15) ap-
plication of regressions to assess how well network measures
predict performance. However, network measures are often
highly correlated and contain similar information to one another
(83). To overcome this, we performed six multivariate ordinary
least squares regressions, each containing one of six combinations
of measures (see SI Appendix, S8for details). We then combined
the results of these regressions by calculating how often each
measure produced either a positive or negative effect across
the regressions. The six combinations consisted of a) one of
three groups of task measures and b) one of two groups of
network measures. For tasks, each regression could include the
task measures, task fixed effects, or both task measures and fixed
effects. For networks, half of the regressions used completely-
connected networks with all network measures, while the other
half included all networks but only network measures that are
valid on disconnected graphs. All six regressions included controls
for time step, team size, the square of team size, and search radius.
Each regression also included search radius interaction effects for
task and network measures as other studies have found that task
and search objectives can moderate desirable qualities (34, 59).

A

B

C

D

Fig. 7. Network measure importances, likelihoods, and effect directions.
Subfigures show measures of (A) neighbors’ connectedness, (B) network
efficiency, (C) shared connections, and (D) individual connectedness. Again,
each point shows how important the indicated measure is (x-axis), and
plots those importances against how likely that measure is to either have
a positive effect (positive y-axis) or negative effect (negative y-axis) on team
performance. Decentralization and having many intermediaries are tied for
most important (within one SD of each other’s means). NND stands for
nearest neighbor degree.

The regressions gave us main effects and search radius interaction
effects for task and network measures. Finally, we counted how
often each measure yielded a positive cumulative effect. Each
cumulative effect was built by adding the main and interaction
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effects for the exploration, exploitation, and mixed search radii
(radius = 0.01, 0.1, and 1.0) whenever they were statistically
significant. This gave estimates of how likely eachmeasure’s effect
is to be positive or negative.

The combined results of these analyses show several items of
note. First, task qualities likely affect performance more than
network measures, by one to two orders of magnitude (Fig. 6).
Exploration difficulty was both the most likely measure to affect
performance and the most important, followed by alignment
between individuals’ task neighborhoods (their objectives) which
is tied as the second-most likely effect. Together, task qualities
accounted for about 50.0% of team performance effects. Even if
saying “hard tasks are hard” is not surprising, it reaffirms prior
findings on task complexity’s moderating effect (16, 35).

Network measures accounted for about 2.4% of team perfor-
mance effects, which is 4.8% the size of the task effects. The most
important group of network measures was neighbors’ connect-
edness (Fig. 7A). Decentralization is measured through the mean
of eigenvector centrality which has a normalized euclidean norm,
meaning its average ismaximal in all cases where nodes are equally
central (true from empty to complete graphs; see SI Appendix, S9).
That measure is tied for the most important network measure
(within one SD of mean betweenness centrality, a measure of
intermediarity). It also is the most likely network effect, the most
likely positive effect, and is tied with alignment as the second
most likely measure overall. The other measures of neighbors’
connectedness (including varied centralization) fill four of the
top seven network measures revealing a consistent importance
and likelihood not seen in the other groups. While it may seem
contradictory for variation measures to score highly alongside
decentralization, it need not be. Varied centralization is measured
through the SD of eigenvector centrality. Networks like the ring
of cliques, the wheel, and the windmill simultaneously exhibit
moderate decentralization and high variance in centralization
(SI Appendix, S9). These networks performed modestly across
most tasks demonstrating how teams can possess both qualities
simultaneously.

Results for the other measures proved mixed. Network
efficiency—having short paths between individuals—often
proves important for other types of learning (12, 15, 16, 84).
For mediated learning, we find that efficient networks have
mixed effects (Fig. 7B). Having many intermediaries was tied for
the most important network measure, and varied intermediarity
throughout a team came in third. However, these measures
did not consistently produce positive or negative effects. Given
their importances, this suggests that efficiency still affects per-
formance, but likely through higher-order interactions. Longer
paths resulted in more consistent positive gains but with less
importance, while measures of shared connections (Fig. 7C ) were
somewhat important but with inconclusive directionality. Last,
high levels of individual connectedness and variation therein
produced moderately consistent negative effects but with less
import (Fig. 7D).
In sum, with mediated learning, decentralization is the

most important and most likely network quality to improve
multidisciplinary team performance across the data from all
34 tasks, followed by other qualities of network efficiency and
neighbors’ connectedness in line with previous studies.

Discussion

Many teams divide tasks into separate, interrelated subtasks
by discipline, much like how cooks collaborate in a high-
volume restaurant kitchen (2, 3). In this study, we explored
how members of such teams learn from one another mediated by

their neighborhood performances evenwhen they cannot see each
other’s actions or outcomes. We found that a team’s interaction
network can significantly affect team performance, but only on
tasks that explicitly rely on network properties. The effects of
network qualities are relatively small at about 5% the effect size
of task qualities. Still, this proved sufficient to give sparsely-
connected teams an advantage (up to 3.4%) when innovating
and densely-connected teams an advantage (up to 6.1%) when
refining their solutions across our set of 34 tasks. Such advantages
could prove consequential in contexts wheremodest performance
gains provide an edge over competitors, for example, but may
be too costly to implement in contexts that necessitate sizeable
improvements.

Furthermore, we found that decentralizing a team’s network by
evenly distributing coordination responsibilities among a team’s
members tends to improve performance across our battery of 34
tasks. As with other types of learning (12, 15, 16, 19, 67), the
efficiency with which a network distributes information appears
likely to affect performance, but our analyses yieldedmixed results
on the importance of network efficiency and other qualities of
networks.

Our results provide insights into better ways for multidisci-
plinary teams to coordinate. Given mediated learning, teams
would benefit from carefully shaping their search objectives,
interaction networks, and tasks—depending on what they can
control at the time—as each holds repercussions for their
performance. For example, when teams can control their search
conditions, teams may be more effective at refining already-
complex products through incremental changes than by letting
individuals run wild (Fig. 5). Likewise, it may be easier for one
or two individuals to explore new solutions on their own than
for the whole team to equivocate together.

When teams can control their network, moving away from
centralized formal structures and toward decentralized ones
(Fig. 8) may improve team outcomes across a variety of tasks,
similar to other findings on social networks (85–87). This may be
especially important early in team formation because interaction
networks are often rigid, tending toward fixed formal structures
due to lower coordination costs along those pathways (88).
But this may not mean that teams should self-organize their
structures, as even weakly enforced formal structures tend to
outcompete such teams (88).Whilemuch remains unknown, our
findings indicate that teams are likely to benefit from formally

Fig. 8. Examples of decentralized networks. The most-decentralized net-
works tend to evenly assign the same number of connections k to each node,
as onemight evenly distribute coordination responsibilities amongmembers
of a team.
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coordinating decentralized patterns of interaction to improve
their performance.

When networks are difficult to control or already in place,
restructuring tasks could improve performance. Task qualities,
like difficulty and interdependence, may affect team performance
by one to two orders of magnitude more than network qualities
(Fig. 6). This presents opportunities to explore methods of
improving performance and reducing uncertainty through task
redesign—by making task landscapes less difficult for search
conditions (e.g., innovation, refinement), reshaping subtasks at
strategic locations throughout the network, at particular times in
an iterative search process, etc. Altogether, our findings support
the growing consensus around the necessity of adaptive team
learning for optimal performance (21, 35, 89–92).

Our findings also suggest ways that organizations may improve
their performance. Scholars have long applied themethods we use
here to study questions of organization design (12, 27, 65, 67, 88)
as well as teams. Limiting a department’s connections to outside
departments may aid innovation, supported by famous design
shop successes like the Lockheed “Skunk Works” (93). Like-
wise, gradual changes may help organizations improve complex
products more readily than making large changes (94). And
importantly, decentralizing coordination activities may improve
performance more than centralizing coordination (95, 96).

Our evidence also supports that tasks can limit a team’s
collective intelligence (41). Mediated learning could underlie
parts of team learning wherever knowledge boundaries exist
within groups. For example, some teams in studies of collective
intelligence divide up tasks and specialize (e.g., ref. 34) making
our findings relevant to those tasks at least. We do not mean
to suggest that testing teams with tasks that limit collective
intelligence makes those tasks invalid; to the contrary, those
tasks provide teams with opportunities to demonstrate their
collective intelligence by adapting to the tasks at hand (97).
Communication patterns that arise within teams—whether as the
product of social perceptiveness (29, 36), virtuality (31, 98), or
homophily (99)—may influence a team’s collective intelligence
through current task and network constructions. Thus, our
findings support Graf-Drasch et al.’s (41) recommendation that
we reconceive of collective intelligence as a multidimensional
concept likewe dowith individual intelligence, including a team’s
ability to adjust their interaction pattern to the task.

Finally, our results may extend to performance-related net-
works with nonadditive effects in adjacent fields such as popu-
lation genetics. For example, in some contexts, our finding that
dense networks exploit better may offer an alternative search
dynamic to shifting balance theory, which highlights the way in
which adaptive search can be more efficient on sparser epistatic
networks (100).

Just as this work conceptually benefits from simplifying
qualities like individual skill and social learning, its impli-
cations are also limited by these assumptions. Our findings
do not suggest how introducing varied skills or individual
intelligence may moderate these results, nor how any copying
or coordination that takes place in multidisciplinary teams may
influence them. For example, we performed an experiment with
slightly increased coordination between agents, an alternative
approach to minimizing skills by granting a small amount of
coordination (a form of team learning) while removing the
small individual experimentation skill. In this case, we do not
see strong positive effects of mediated learning, though we do
see significant negative effects (SI Appendix, S10 and Fig. S17).
The relative importances of network properties also shifted in
this case. While decentralization was still an important positive

performer, intermediaries and clustering provedmore important,
albeit with less confidence in their positive effects (SI Appendix,
Fig. S20). Hence, more research on team process variables of all
kinds—including different search strategies—remains crucial for
understanding team performance.

Our work is also limited by our selection of tasks, networks,
and network measures. We sought to select tasks, networks,
and measures that covered qualities of broad interest and
rapport. Still, more nuanced structures and measures would aid
identification of network qualities that perform well, both on
specific tasks and across many tasks. Our regression analyses
raised as many questions as they answered about the qualities
that shape performance in the context of mediated learning.
Network features interact and cannot be fully independent of
one another. The result is a complex system whose output is
never fully governed by one feature or mechanism alone, leaving
the subject ripe for future examination.

Materials and Methods
Model Pseudocode.

1: Input Graph with vertices i ∈ I, neighbors j ∈ Ji ∀ i ∈ I,
neighborhood objective functions gi(xi,Exj) ∀ i ∈ I where
Exj = (xj=1, . . . , xj=ki), graph objective function h(Ex) where
Ex = (xi=1, . . . , xi=n), and initial positions xi ∀ i ∈ I.

2: Output Performance values gi ∀ i ∈ I and h.
3: for each timestep do
4: for each i ∈ I do
5: DrawΔx fromU(−�, �)
6: x′i := xi + Δx
7: gi := gi(xi,Exj)
8: g′

i := gi(x′i ,Exj)
9: end for
10: for each i ∈ I do
11: if g′

i > gi then
12: xi := x′i
13: end if
14: end for
15: h = h(Ex)
16: end for

Data, Materials, and Software Availability. The model and analysis code
for this work were developed with Python 3.9.5, Numpy 1.21.6, Scipy 1.9.0,
Pandas 1.4.2, NetworkX 2.8.3, Dask 2022.4.1, Statsmodels 0.13.2, Scikit-
learn 1.0.2, Matplotlib 3.5.2, and Seaborn 0.11.2. Complete code is available
athttps://github.com/meluso/multi-disciplinary-learning. Simulation raw data
and statistics data have been deposited in OSF (101).
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