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Abstract. This paper develops a unified Lyapunov framework for finite-sample analysis 
of a Markovian stochastic approximation (SA) algorithm under a contraction operator with 
respect to an arbitrary norm. The main novelty lies in the construction of a valid Lyapunov 
function called the generalized Moreau envelope. The smoothness and an approximation 
property of the generalized Moreau envelope enable us to derive a one-step Lyapunov 
drift inequality, which is the key to establishing the finite-sample bounds. Our SA result 
has wide applications, especially in the context of reinforcement learning (RL). Specifically, 
we show that a large class of value-based RL algorithms can be modeled in the exact form 
of our Markovian SA algorithm. Therefore, our SA results immediately imply finite- 
sample guarantees for popular RL algorithms such as n-step temporal difference (TD) 
learning, TD(λ), off-policy V-trace, and Q-learning. As byproducts, by analyzing the con
vergence bounds of n-step TD and TD(λ), we provide theoretical insight into the problem 
about the efficiency of bootstrapping. Moreover, our finite-sample bounds of off-policy V- 
trace explicitly capture the tradeoff between the variance of the stochastic iterates and the 
bias in the limit.
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1. Introduction
In operations research, often the problem of interest is 
reduced to a root-finding problem for a properly defined 
equation. For example, solving minx∈Rd J(x) for a differen
tiable objective function J(·) is closely related to solving the 
equation ∇J(x) � 0. In a Markov decision process (MDP) 
or its environment-agnostic variant reinforcement learning 
(RL) problem, essentially the problem is to solve a fixed- 
point equation known as the Bellman equation.

A popular approach for solving such root-finding 
problems is through iterative algorithms, with the pop
ular gradient descent/ascent algorithm being a typical 
example thereof. However, sometimes we do not have 
enough information or enough computational power to 
carry out the desired iterative algorithm and have to 
work with its noise-corrupted variant. More generally, 
an iterative algorithm in the presence of noise is called a 
stochastic approximation (SA) algorithm (Robbins and 

Monro 1951), which is the underlying workhorse for 
solving large-scale optimization and machine learning 
problems (Lan 2020).

The SA method is used at scale in the context of RL 
(Sutton and Barto 2018). Because the environmental 
model is unknown, classical iterative algorithms for 
solving MDPs, such as value iteration and policy itera
tion, are not directly implementable. Therefore, people 
develop data-driven algorithms such as Q-learning 
(Watkins and Dayan 1992) and actor-critic (Konda and 
Tsitsiklis 1999) for solving the RL problem, which are 
essentially SA algorithms. To guide practical imple
mentations, for a certain SA algorithm, we naturally 
want to have an understanding on how many iterations 
are needed to achieve a certain level of accuracy. This 
motivates us to derive performance guarantees of SA 
algorithms with a finite number of iterations, which is 
called the finite-sample analysis.
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Motivated by applications in RL, in this work, we 
focus on finite-sample analysis of an SA algorithm 
involving a contractive operator and under Markovian 
sampling. More formally, consider an SA algorithm of 
the form

xk+1 � xk + αk(F(xk, Yk) � xk + wk), (1) 

where {αk} is a sequence of step sizes, {Yk} is a Markov 
chain with a finite state space Y and a unique stationary 
distribution µY, F : Rd × Y ⊢→ Rd is a (possibly non
linear) operator, and {wk} is a random process repre
senting the additive extraneous noise. Let F(·) � EY~µY 
[F(·, Y)]. We assume that the operator F(·) is a contrac
tion mapping with respect to some arbitrary norm ‖ · ‖c, 
which implies that the fixed-point equation F(x) � x 
has a unique solution x∗ ∈ Rd. In view of Algorithm (1), 
it can be interpreted as an SA algorithm for solving the 
fixed-point equation F(x) � x. In finite-sample analysis, 
our goal is to understand how the mean-square error 
E[‖xk � x∗‖

2
c ] decays as a function of the iteration num

ber k.

1.1. Main Contributions
The main contributions of this work are summarized in 
the following.

1.1.1. Finite-Sample Analysis for Markovian SA. We 
establish finite-sample guarantees (with various choices 
of step sizes) of Algorithm (1). Specifically, we show that 
when using a constant step size, that is, αk ≡ α, the con
vergence rate is geometric, with an asymptotic accuracy 
of the order O(α log(1=α)). When using diminishing 
step sizes of the form α=(k + h)

ξ (where ξ ∈ (0, 1]), the 
convergence rate is of the order O(log(k)=kξ), provided 
that α and h are appropriately chosen. Furthermore, our 
bound also involves a (possibly dimension dependent) 
constant that is determined by the contraction norm 
‖ · ‖c. In the special case of ℓ∞-norm contraction, we 
show that such a constant scales only logarithmically in 
terms of the dimension d, which is not improvable in 
general. Our SA results rely on a novel construction of a 
Lyapunov function called the generalized Moreau enve
lope and controlling the stochastic error due to the Mar
kovian noise.

1.1.2. Finite-Sample Analysis of RL Algorithms. Our 
SA results enable us to establish finite-sample bounds 
of a variety of value-based RL algorithms (including 
various temporal difference (TD) learning algorithms 
and Q-learning) in one shot. Specifically, for TD learn
ing with on-policy sampling, we establish finite-sample 
guarantees the popular n-step TD and TD(λ). For these 
two families of algorithms, there is an important ques
tion about the efficiency of bootstrapping (Sutton 1999), 

which refers to the question of how to choose the param
eter n in n-step TD (or λ in TD(λ)) so that n-step TD (or 
TD(λ)) achieves its best performance. Our finite-sample 
analysis sheds light on this problem by explicitly captur
ing the dependence of the convergence bounds on the 
tunable parameters of interest (i.e., n in n-step TD or λ in 
TD(λ)). For example, in n-step TD, we show that the 
parameter n appears as n=(1 � γn)

2 in the sample com
plexity bound, which leads to an estimate of the optimal 
choice of n as nopt � O(1=log(1=γ)).

For TD learning with off-policy sampling, we estab
lish for the first time the finite-sample bound of the off- 
policy V-trace algorithm (Espeholt et al. 2018), which is 
used at scale in the Google’s city navigation project 
called Street Learn (Mirowski et al. 2018). The V-trace 
algorithm can be viewed as an off-policy variant of the 
n-step TD-learning algorithm, where the key is to trun
cate the importance sampling factors using two differ
ent truncation levels c and ρ to separately control the 
variance in the stochastic iterates and the bias in the 
limit. Therefore, theoretically understanding the trade- 
offs between the aforementioned variance and bias is of 
vital importance for the implementation of the V-trace 
algorithm. Our finite-sample analysis provides theoret
ical insights into such a bias-variance tradeoff.

Last, for the Q-learning algorithm, our finite-sample 
bound implies a sample complexity of Õ(ɛ�2(1 � γ)

�5 

K�3
SA, min), where ɛ is the desired accuracy, γ is the dis

count factor, and KSA, min is the minimal component 
of the stationary distribution of the Markov chain 
induced by the behavior policy. See Section 3.4 for a 
detailed discussion about our results on Q-learning.

1.2. Summary of Our Technical Approach
In this section, we first provide a high-level overview of 
our Lyapunov approach for the finite-sample analysis 
of Algorithm (1). Then, we use the popular Q-learning 
algorithm as an example to elaborate on our blueprint 
for applying the SA results to RL algorithms to obtain 
sample complexity guarantees.

1.2.1. Analysis of Markovian SA: Motivation of a 
Smooth Lyapunov Function. We begin by rewriting 
Algorithm (1) as

xk+1 � xk � αk(F(xk) � xk)
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Expected Update

+αk(F(xk, Yk) � F(xk))
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Markovian Noise

+ αkwk|ffl{zffl}
Additive Noise

: (2) 

To provide intuition, we assume for now that the norm 
‖ · ‖c with respect to which F(·) being a contraction is 
the ℓp-norm for some p ∈ [2, ∞), that is, ‖F(x) � F(y)‖p ≤

β‖x � y‖p for all x, y ∈ Rd, where β ∈ (0, 1) is the contrac
tion factor.
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Consider the ordinary differential equation (ODE) 
associated with the SA algorithm: ẋ(t) � F(x(t)) � x(t). 
Intuitively, the ODE can be viewed as a continuous 
and deterministic counterpart of SA Algorithm (2). It 
was shown in Borkar (2009), chapter 10, that the func
tion W(x) � ‖x � x∗‖p satisfies d

dt W(x(t)) ≤ �κW(x(t)) for 
some κ > 0. This implies that the solution x(t) of the 
ODE converges to its unique equilibrium point x∗ geo
metrically fast, which further implies the asymptotic 
convergence of the SA algorithm via the ODE ap
proach (Ljung 1977, Borkar 2009). The coefficient κ cor
responds to a negative drift.

Although the ODE approach gives asymptotic con
vergence, it does not provide finite-sample guarantees. 
To obtain finite-sample bounds, in this paper we study 
the SA directly and not the ODE. Then, the Lyapunov 
function W(x) cannot be used directly to analyze the SA 
algorithm due to the discretization error and stochastic 
error (see Equation 2). Suppose that we can find a func
tion M(x) that gives negative drift, and, in addition, 
M(x) is L – smooth with respect to some norm ‖ · ‖s. 
Then, we have a handle to deal with the discretization 
error and the stochastic error to obtain:

E[M(xk+1 � x∗)]

≤ (1 � O(αk) + o(αk))E[M(xk � x∗)] + o(αk), (3) 

which implies a contraction in E[M(xk+1 � x∗)]. There
fore, a finite-sample bound can be obtained by recur
sively applying the previous inequality. The key point is 
that M(x)’s smoothness and its negative drift with respect to 
the ODE produces a contraction (1 � O(αk) + o(αk)) for {xk}. 
Based on the previous analysis, we see that the Lyapu
nov function for the SA in the case of ℓp-norm contrac
tion should be M(x) � 1

2 ‖x � x∗‖
2
p, which is known to be a 

smooth function (Beck 2017).
Now consider the case where the contraction norm 

‖ · ‖c is arbitrary. Because the function f (x) � 1
2 ‖x � x∗‖

2
c is 

not necessarily smooth, the key difficulty is to construct 
a smooth Lyapunov function that also has a negative 
drift. An important special case is when ‖ · ‖c � ‖ · ‖∞, 
which is applicable to many RL algorithms as will be 
discussed later in Section 3. Previously, the lack of a suit
able Lyapunov/potential function to study SA algo
rithms under ‖ · ‖∞-contraction operators has been a 
fundamental open problem, as pointed out in the classi
cal textbook (Bertsekas and Tsitsiklis 1996, section 4.3). 
According to Bertsekas and Tsitsiklis, “Unfortunately, it 
is unclear whether one can define a smooth potential 
function M(·) such that the update of any component 
of J(·) [referred to the objective function of RL] is along 
a descent direction with respect to M(·).” We provide 
a solution to this problem by constructing a smoothed 
convex envelope M(x) called the generalized Moreau 
envelope that is smooth with respect to some norm ‖ · ‖s, 

and is a tight approximation to f(x) in the sense that 
(1 + a)M(x) ≤ f (x) ≤ (1 + b)M(x) for some small enough 
constants a, b > 0. The approximation property ensures 
that M(·) is a valid Lyapunov function with a negative 
drift, and the smoothness property enables us to control 
the discretization error and the stochastic error in Algo
rithm (1). Together, they let us prove a convergence re
sult similar to the case when f(x) is smooth.

1.2.2. Applications to RL: Illustration via Q-Learn
ing. The Q-learning algorithm is a model-free recursive 
approach to find the optimal policy corresponding to 
an MDP (see Section 3.4 for details). At time step k, the 
algorithm updates a vector (of dimension state-space size 
× action-space size) Qk, which is an estimate of the opti
mal Q-function Q∗, using noisy samples collected along 
a single sample trajectory. After a sufficient number of 
iterations, the vector Qk is a close approximation of Q∗, 
which (after some straightforward computations) deli
vers the optimal policy for the MDP. Concretely, let 
{(Sk, Ak)} be a sample trajectory of state-action pairs col
lected by applying some behavior policy to the underly
ing MDP model. The Q-learning algorithm performs a 
scalar update of a (vector-valued) iterate Qk according to

Qk+1(s, a)

�

Qk(s, a) + αk

�
R(Sk, Ak) + γmax

a′∈A
Qk(Sk+1, a′)

� Qk(Sk, Ak)
�

, (s, a) � (Sk, Ak),

Qk(s, a), (s, a) ≠ (Sk, Ak):

8
>>><

>>>:

(4) 

At a high level, this recursion approximates the fixed- 
point of the Bellman equation through samples along a 
single trajectory. There are, however, two sources of 
noise in this approximation: (1) asynchronous update 
where only one of the components in the vector Qk is 
updated (component corresponding to the state-action 
pair (Sk, Ak) encountered at time k), and other compo
nents in the vector Qk are left unchanged, and (2) sto
chastic noise due to the expectation in the Bellman 
operator being replaced by a single sample estimate.

To apply our SA results, the first step is to reformulate 
Q-learning in the form of Algorithm (1). Let F : R |S | |A | ×

S × A × S ⊢→ R | S | | A | be an operator defined as [F(Q, 
s0, a0, s1)] (s, a) � 1{(s0, a0)�(s, a)}(R(s0, a0) + γmaxa′∈AQ(s1, 
a′) � Q(s0, a0)) + Q(s, a) for all (s,a). Then Q-Learning 
Algorithm (4) can be rewritten as

Qk+1 � Qk +αk(F(Qk, Sk, Ak, Sk+1) � Qk), (5) 

which is in the form of Algorithm (1) with xk being Qk, 
wk � 0, and Yk � (Sk, Ak, Sk+1). The key takeaway is that, 
in Equation (5), the various noise terms are encoded 
through introducing the operator F(·) and the associ
ated evolution of the Markov chain {Yk}.
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After the SA reformulation, to apply our SA results, 
we need to establish the contraction property of the 
operator F(·) :� E[F(·, Sk, Ak, Sk+1)] associated with the 
Q-learning algorithm, where the expectation is taken 
with respect to the stationary distribution of the Markov 
chain {(Sk, Ak, Sk+1)}. Under mild conditions, we show 
that F(Q) � KSAH(Q) + (I � KSA)Q. Here H(·) is the 
Bellman operator for the Q-function (Bertsekas and Tsit
siklis 1996), and the matrix KSA is a diagonal matrix 
with {p(s, a)}(s, a)∈S×A sitting on its diagonal, where p(s, a) 
is the stationary visitation probability of the state-action 
pair (s, a). An important insight about the operator F(·)

is that it can be viewed as an asynchronous variant of 
the Bellman operator H(·). To see this, consider a state- 
action pair (s, a). The value of [F(Q)](s, a) can be inter
preted as the expectation of a random variable, which 
takes [H(Q)](s, a) with probability p(s, a), and takes 
Q(s,a) with probability 1 � p(s, a). This precisely captures 
the asynchronous update in Q-Learning Algorithm (4) in 
that, in steady state, Qk(s, a) is updated with probability 
p(s, a) and remains unchanged otherwise. Moreover, 
because H(·) is known to be a contraction mapping with 
respect to ‖ · ‖∞, we also show that F(·) is a contraction 
mapping with respect to ‖ · ‖∞ (while the contraction fac
tor is different), and the optimal Q-function is its unique 
fixed point.

The SA reformulation together with the contraction 
property enables us to apply our SA results to get the 
finite-sample bounds and the sample complexity guar
antees of Q-learning. Beyond Q-learning, TD-learning 
variants such as off-policy V-trace, n-step TD, and 
TD(λ) can all be modeled as Markovian SA algorithms 
involving contraction mappings (possibly with respect 
to different norms) and Markovian noise. Therefore, 
our SA results provide a unified approach for the finite- 
sample analysis of value-based RL algorithms.

1.3. Related Literature
In this section, we discuss the literature on SA algo
rithms. We defer the discussion of the related literature 
on RL algorithms to the corresponding sections where 
we present the results.

The SA method was first introduced in Robbins and 
Monro (1951) to iteratively solve systems of equations. 
Since then, the SA method has been widely used in the 
context of optimization and machine learning. For 
example, in optimization, a special case of SA known as 
stochastic gradient descent (SGD) has been a popular 
approach for solving large-scale optimization problems 
(Bottou et al. 2018, Lan 2020). In RL, popular algorithms 
such as Q-learning and TD learning are essentially SA 
algorithms for solving variants of the Bellman equation 
(Bertsekas and Tsitsiklis 1996, Sutton and Barto 2018).

The early literature on SA focused on asymptotic con
vergence (Bertsekas and Tsitsiklis 1996, Kushner 2010, 

Benveniste et al. 2012, Kushner and Clark 2012). A popu
lar approach known as the ODE method (Ljung 1977) 
was developed to analyze the behavior of an SA algo
rithm by studying the stability of its associated ODE. See 
Borkar and Meyn (2000), Borkar (2009), Benaim (1996), 
Yaji and Bhatnagar (2019), and Karmakar and Bhatnagar 
(2021) for more details about the ODE approach. The 
asymptotic convergence of other variants of SA such as 
multiple time-scale SA was studied in Bhatnagar and 
Borkar (1998, 1997).

More recently, finite-sample analysis of SA algorithms 
has seen a lot of attention, as it provides more informa
tion than asymptotic convergence and can be used to 
guide practical implementations. For SA with a linear 
update rule, finite-sample analysis was performed in 
Bhandari et al. (2018), Srikant and Ying (2019), Dalal et al. 
(2018), and Thoppe and Borkar (2019). Other variants of 
linear SA, such as two-time-scale linear SA and decen
tralized linear SA, were studied in Kaledin et al. (2020) 
and Doan (2021) and Zeng et al. (2021), respectively. For 
SA with nonlinear update equations, finite-sample guar
antees were derived under a contractive (or cone-con
tractive) operator in Wainwright (2019) and Qu and 
Wierman (2020) and under a strongly pseudo-monotone 
operator in Chen et al. (2022). Both Wainwright (2019) 
and Qu and Wierman (2020) require the noise to be 
almost surely bounded by a constant. In addition, the 
Markovian noise presented in Qu and Wierman (2020) 
has a special structure, whereas our Markovian noise is 
more general.

A special case of nonlinear SA is SGD, the finite- 
sample bounds of which were established in Lan (2020), 
Moulines and Bach (2011), Duchi et al. (2012), Doan 
(2023), and Bansal and Gupta (2019) and the references 
therein. In SGD, the property of the gradient operator 
plays an important role in the analysis. For general SA 
(like the one we study in this work), the update equation 
may not involve a gradient operator of any objective 
function. Consequently, constructing valid Lyapunov 
functions in this case is more challenging.

2. Finite-Sample Analysis of Markovian 
Stochastic Approximation

In this section, we present our main results. We begin 
by formally stating our assumptions.

Assumption 1 (Contraction). The operator F(·) satisfies 
‖F(x1) � F(x2)‖c ≤ β‖x1 � x2‖c for all x1, x2 ∈ Rd, where 
β ∈ (0, 1) and ‖ · ‖c is an arbitrary norm in Rd.

Under Assumption 1, the fixed-point equation F(x) � x 
has a unique solution, which we denoted by x∗ (Banach 
1922).

Assumption 2 (Lipschitz Continuity). There exists A1 > 0 
such that ‖F(x1, y) � F(x2, y)‖c ≤ A1‖x1 � x2‖c for any x1, 
x2 ∈ Rd and y ∈ Y.
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We also denote B1 :� maxy∈Y‖F(0, y)‖c, which is well 
defined and finite, because the state space Y is finite. 
The Lipschitz continuity assumption can be viewed as 
a relaxation of the assumption that the SA algorithm 
has a linear update rule. This assumption is naturally 
satisfied for all the RL algorithms we are going to study 
in Section 3.

Let PY ∈ R | Y | × |Y | be the transition probability matrice 
of the Markov chain {Yk}, and let ‖ · ‖TV be the total vari
ation distance between probability distributions.

Assumption 3. The Markov chain {Yk} is irreducible and 
aperiodic.

Because |Y | < ∞, Assumption 3 implies that {Yk} has 
a unique stationary distribution µY (Levin and Peres 
2017). In addition, there exist C> 0 and σ ∈ (0, 1) such 
that maxy∈Y‖Pk

Y(y, ·) � µY(·)‖TV ≤ Cσk for all k ≥ 0 (Levin 
and Peres 2017). Assumption 3 is imposed to control 
the stochastic error due to the Markovian noise {Yk} in 
Algorithm (1). In RL, Assumption 3 translates into a 
requirement of exploration, which, to some extent, is a 
necessary requirement for successfully learning an 
optimal policy.

Let F k be the σ-field generated by {(xi, Yi, wi)}0≤i≤k�1 
∪ {xk}.

Assumption 4 (Martingale Difference Noise). The ran
dom process {wk} satisfies (1) E[wk |F k] � 0 for all k ≥ 0, 
and (2) ‖wk‖c ≤ A2‖xk‖c + B2 for all k ≥ 0, where A2, 
B2 > 0.

Unlike in Wainwright (2019) and Qu and Wierman 
(2020), the additive noise here wk can grow linearly 
with respect to the latest iterate xk and does not need to 
be uniformly bounded by an absolute constant.

2.1. Generalized Moreau Envelope as a Smooth 
Lyapunov Function

From now on, we will present our Lyapunov approach 
for the finite-sample analysis of Algorithm (1). Recall 
from Equation (3) that, with respect to the iterates {xk}

of Algorithm (1), an ideal Lyapunov function M(x) acts 
as a potential function that contracts. In this section, we 
construct a novel Lyapunov function through the gen
eralized Moreau envelope.

The following definitions are needed. In this paper, 
〈x, y〉 � x⊤y represents the standard dot product, whereas 
the norm ‖ · ‖ in the following definition can be any arbi
trary norm instead of just being the Euclidean norm 
‖x‖2 � 〈x, x〉

1=2.

Definition 1. Let g : Rd → R be a convex differentiable 
function. Then g(·) is said to be L smooth with respect to 
‖ · ‖ if and only if g(y) ≤ g(x) + 〈∇g(x), y � x〉 + L

2 ‖x � y‖
2 

for all x, y ∈ Rd.

Definition 2 (Generalized Moreau Envelope). Let h1 :

Rd ⊢→ R be a closed and convex function, and let h2 :

Rd ⊢→ R be a convex and L smooth function. For any 
θ > 0, the generalized Moreau envelope of h1(·) with 
respect to h2(·) is defined as Mθ, h2

h1
(x) � infu∈Rd

�
h1(u) +

1
θh2(x � u)

�
.

The standard Moreau envelope was previously 
used in Guzmán and Nemirovski (2015) and Beck and 
Teboulle (2012) to study convex optimization pro
blems. For any two functions h1, h2 : Rd ⊢→ R, the func
tion defined by (h1w h2)(x) :� infu∈Rd {h1(u) + h2(x � u)}

is called the infimal convolution of h1(·) and h2(·)

(Beck 2017). Therefore, the generalized Moreau enve
lope in Definition 2 can be equivalently written as 
Mθ, h2

h1
(x) � h1w

h2
θ

� �
(x).

2.1.1. Construction of a Valid Lyapunov Function. Let 
f (x) � 1

2 ‖x‖
2
c , where ‖ · ‖c is the contraction norm given in 

Assumption 1. Let ‖ · ‖s be an arbitrary norm in Rd such 
that g(x) :� 1

2 ‖x‖
2
s is L smooth with respect to the same 

norm ‖ · ‖s in its definition. For example, ‖ · ‖s can be 
the ℓp-norm for any p ∈ [2, ∞), where L � p � 1 (Beck 
2017, example 5.11). Because of the equivalence between 
norms in Rd (Lax 1997), there exist ℓcs ∈ (0, 1] and ucs ∈

[1, ∞) that depend only on the dimension d and univer
sal constants, such that ℓcs‖ · ‖s ≤ ‖ · ‖c ≤ ucs‖ · ‖s. We will 
use the generalized Moreau envelope of f (·) with respect 
to g(·), that is, Mθ, g

f (·), as our Lyapunov function to ana
lyze the behavior of Algorithm (1), where θ > 0 is a tun
able parameter.

The following proposition states that Mθ, g
f (·) is a 

smooth approximation of the norm-squared function f (·).

Proposition 1 (Proof in Online Appendix 1.1). The func
tion Mθ, g

f (·) has the following properties: (1) Mθ, g
f (·) is con

vex, and L
θ smooth with respect to ‖ · ‖s, (2) there exists a 

norm ‖ · ‖m such that Mθ, g
f (x) � 1

2 ‖x‖
2
m, and (3) it holds that 

ℓcm‖ · ‖m ≤ ‖ · ‖c ≤ ucm‖ · ‖m, where ℓcm � (1 +θℓ2cs)
1=2 and 

ucm � (1 +θu2
cs)

1=2.

Proposition 1(1) is restated from Beck (2017), and we 
include it here for completeness. This, together with Prop
osition 1(3), implies that Mθ, g

f (·) is a smooth approxima
tion of the norm-squared function f (·). Proposition 1(2) 
states that Mθ, g

f (·) itself is also a norm-squared function.

2.2. Establishing a One-Step Contrac
tive Inequality

Using the smooth approximation property of the gener
alized Moreau envelope Mθ, g

f (·), we next establish a 
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one-step contractive inequality (Equation 3) of Mθ, g
f 

(xk � x∗). To state the result, we first introduce neces
sary notation and specify the condition needed for 
choosing the step sizes.

Let φ1 �
1+θu2

cs
1+θℓ2cs

, φ2 � 1 � βφ1=2
1 , and φ3 �

114L(1+θu2
cs)

θℓ2cs
. 

The tunable parameter θ is chosen such that φ2 > 0, 
which is always possible because limθ→0φ1 � 1 and 
β ∈ (0, 1). For any δ > 0, let tδ � min{k ≥ 0 : maxy∈Y‖Pk

Y 
(y, ·) � µY(·)‖TV ≤ δ}, which can be interpreted as the 
mixing time of the Markov chain {Yk} with precision δ. 
We have tδ � O(log(1=δ)) under Assumption 3. For 
simplicity of presentation, we denote A � A1 + A2 + 1, 
B � B1 + B2, tk � tαk and αi, j �

Pj
k�i αk.

Condition 1. The step size sequence {αk} is nonincreasing 
and satisfies αk�tk , k�1 ≤ min φ2

φ3A2 , 1
4A

� �
for all k ≥ tk.

Condition 1 is analogous to the requirements for 
choosing step sizes imposed in Srikant and Ying (2019) 
and Chen et al. (2022), which study linear Markovian 
SA and nonlinear Markovian SA under a strongly 
pseudo-monotone operator, respectively. We will ver
ify in Online Appendix 1.8 that Condition 1 is satisfied 
when using either a small enough constant step size 
(i.e., αk ≡ α) or linearly diminishing step sizes (i.e., αk �

α=(k + h) with properly chosen α and h), or polynomi
ally diminishing step sizes (i.e., αk � α=(k + h)

ξ for all 
ξ ∈ (0, 1)), provided that α and h are properly chosen.

Now we are ready to state the Lyapunov drift inequal
ity. The proof of the following proposition follows from 
a sequence of lemmas. Please see Sections 2.4.1 and 2.4.2
for more details.

Proposition 2. The following inequality holds for all 
k ≥ tk:

E[Mθ, g
f (xk+1 � x∗)]

≤ (1 � 2φ2αk + φ3A2α̃k)E[Mθ, g
f (xk � x∗)]

+
φ3α̃k

2u2
cm

(A‖x∗‖c + B)
2, (6) 

where α̃k � αkαk�tk, k�1.

Equation (6) is in the form of the desired one-step 
contractive inequality presented in Equation (3). To see 
this, suppose that we use a constant step size αk ≡ α. 
Then we have α̃k � α2tα, which is of order o(α) because 
limα→0αtα � 0 under Assumption 3. Similarly, we show 
in Online Appendix 1.8 that α̃k � o(αk) when using 
either linearly diminishing step sizes or polynomially 
diminishing step sizes.

2.3. Finite-Sample Analysis
In view of Proposition 2, to establish finite-sample 
bounds of Algorithm (1), we repeatedly use Equation (6) 

and evaluate the final expression using the explicit 
choice of the step sizes. To present the results, let c1 �

(‖x0 � x∗‖c + ‖x0‖c + B=A)
2 and c2 � (A‖x∗‖c + B)

2. Define 
K � min{k ≥ 0 : k ≥ tk}, which is well defined because tk 
scales polynomially with k under Assumption 3.

Theorem 1. Suppose that Assumptions 1–4 are satisfied 
and {αk} satisfies Condition 1. Then, for any k ∈ [0, K � 1], 
we have ‖xk � x∗‖

2
c ≤ c1 almost surely. For any k ≥ K, we 

have the following finite-sample bounds. 
(1) When αk ≡ α, we have

E[‖xk � x∗‖
2
c ] ≤ φ1c1(1 � φ2α)

k�tα +
φ3c2

φ2
αtα:

(2) Consider using diminishing stepsizes 
(a) When αk � α=(k + h) with α < 1=φ2, we have

E[‖xk � x∗‖
2
c ] ≤ φ1c1

K + h
k + h

� �φ2α

+
8α2φ3c2

1 � φ2α

tk

(k + h)
φ2α

:

(b) When αk � α=(k + h) with α � 1=φ2, we have

E[‖xk � x∗‖
2
c ] ≤ φ1c1

K + h
k + h + 8α2φ3c2

tk log(k + h)

k + h :

(c) When αk � α=(k + h) with α > 1=φ2, we have

E[‖xk � x∗‖
2
c ] ≤ φ1c1

K + h
k + h

� �φ2α

+
8eα2φ3c2

φ2α� 1
tk

k + h :

(3) When αk � α=(k + h)
ξ with ξ ∈ (0, 1), we have

E[‖xk � x∗‖
2
c ] ≤ φ1c1e�

φ2α
1�ξ

�
(k+h)

1�ξ
�(K+h)

1�ξ
�

+
4φ3c2α

φ2

tk

(k + h)
ξ

:

Remark 1. Because tδ ≤
log(C=σ)+log(1=α)

log(1=σ) under Assump

tion 3, we have tk ≤
ξ log(k+h)+log(C=(ασ))

log(1=σ) , which introduces 
an additional logarithmic factor in the bound.

In all cases of Theorem 1, we state the results as a 
combination of two terms. The first term is usually 
viewed as the “bias,” and it involves the error in the 
initial estimate x0 through the constant c1. The second 
term is usually understood as the “variance” and 
hence involves the constant c2, which represents the 
noise variance at x∗. In view of Theorem 1, we see that 
constant step size is very efficient in driving the bias 
to zero but cannot eliminate the variance even asymp
totically. This suggests using diminishing step sizes to 
eliminate the variance. When using linearly diminish
ing step sizes αk � α=(k + h), the convergence bounds 
crucially depend on the value of α, and the best con
vergence rate of Õ(1=k) is achieved with α > 1=φ2. 
When using α ≤ 1=φ2 in Algorithm (1), in view of The
orem 1(2a), the convergence rate can be arbitrarily 
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slow. When using polynomially diminishing step sizes, 
although the convergence rate is the suboptimal 
O(log(k)=kξ), it is more robust in the sense that it does 
not depend on α. Note that α in this case appears only 
as a multiplicative constant in the dominant term (The
orem 1(3)).

2.3.1. Connection to SGD. Although Theorem 1 is 
derived for SA algorithms that involve a contractive 
operator, they also recover finite-sample bounds for 
SGD with a smooth and strongly convex objective. To 
see this, let J(x) be a differentiable objective function 
that is smooth and strongly convex with parameters CL 
and Cσ, respectively. Consider the following SGD algo
rithm for minimizing J(·): xk+1 � xk + αk(�η∇J(xk) + wk), 
where η > 0 is a constant (Nemirovski et al. 2009, Bot
tou et al. 2018, Lan 2020). The SGD algorithm can be 
written in the form of our SA Algorithm (1) with 
F(x) � F(x, y) :� �∇J(x) + x. Furthermore, it is known 
that F(·) is a Lipschitz operator with respect to the 
Euclidean norm ‖ · ‖2, with Lipschitz constant LSGD �

max( |1 � ηCσ | , |1 � ηCL | ) (Ryu and Boyd 2016). There
fore, when η ∈ (0, 2=CL), we have LSGD < 1, and hence 
the operator F(·) is a contraction with respect to ‖ · ‖2.

2.3.2. Logarithmic Dependence on Dimension. Switching 
focus, we now revisit the constants {φi}1≤i≤3 in Theorem 1. 
Note that {φi}1≤i≤3 are determined by the choice of the 
smoothing norm ‖ · ‖s (through the constants ucs and ℓcs) 
and the parameter θ. Depending on the contraction norm 
‖ · ‖c, the smoothing norm should be chosen accordingly 
to optimize the constants {φi}1≤i≤3. In the following 
lemma, we consider two cases where ‖ · ‖c � ‖ · ‖2 and 
‖ · ‖c � ‖ · ‖∞, both of which will be useful when we study 
convergence bounds of RL algorithms.

Lemma 1 (Proof in Online Appendix 1.3). (1) When ‖ · ‖c 
� ‖ · ‖2, by choosing ‖ · ‖s � ‖ · ‖2 and θ� 1, we have φ1 ≤ 1, 
φ2 ≥ 1 � β, and φ3 ≤ 228. (2) When ‖ · ‖c � ‖ · ‖∞, by choos

ing ‖ · ‖s � ‖ · ‖p with p � 2 log(d) and θ �
1+β
2β

� �2 
� 1, we 

have φ1 ≤ 3, φ2 ≥
1�β

2 , and φ3 ≤
456e log(d)

1�β .

2.3.3. Order-Wise Tightness. Compared with ℓ2-norm 
contraction, where the constant φ3 is bounded by a 
numerical constant, the upper bound for φ3 has an addi
tional factor of log(d)

1�β when we have ℓ∞-norm contraction. 
In general, we cannot hope to improve the convergence 
rate beyond Õ(1=k) or the dimension dependence 
beyond log(d) in the case of ℓ∞-norm contraction. To see 
this, consider the trivial case where F(x) ≡ 0 and {wk} is 
an independent and identically distributed sequence of 
standard normal random vectors. In this case, Algo
rithm (1) becomes xk+1 � xk +αk(�xk + wk), which can 

be viewed as an SA algorithm for solving the trivial 
equation x � 0, or an SGD algorithm for minimizing a 
quadratic objective J(x) � 1

2 ‖x‖
2
2. When αk � 1

k+1, the 
iterates xk are simply the running averages of {wk}, that 
is, xk � 1

k
Pk�1

i�0 wi for all k ≥ 1, which implies xk ~ 1ffiffi
k

√

N (0, Id). It follows that E[‖xk‖
2
∞] � O

log(d)

k

� �
(Vershynin 

2018). Therefore, in this setting, our finite-sample 
bounds under ℓ∞-norm contraction are order-wise tight 
both in terms of the convergence rate and the dimen
sional dependence.

2.4. Proof of Theorem 1
The proof consists of three major steps. The first step is 
to show that the generalized Moreau envelope we con
structed as a Lyapunov function produces a negative 
drift with respect to the stochastic iterates of the SA 
algorithm. The second step is to show that, all the error 
terms (i.e., discretization error and the stochastic error) 
in the SA algorithm are dominated by the negative 
drift, hence we have an overall one-step contractive 
inequality of the SA algorithm with respect to the Lya
punov function (Proposition 2). The smoothness prop
erty of the Lyapunov function and the geometric 
mixing property of the Markov chain {Yk} play impor
tant roles in this step. The last step is to repeatedly use 
the one-step contractive inequality to obtain the finite- 
sample bounds and to evaluate the final expression 
when using different step sizes. The proofs of all the 
technical lemmas used in this section are presented in 
Online Appendix 1.

2.4.1. Establishing the Negative Drift. Using the smooth
ness property of Mθ, g

f (·) (Proposition 1(1)) and the up
date equation in Equation (1), we have for all k ≥ 0 that

E[Mθ, g
f (xk+1 � x∗)]

≤ E[Mθ, g
f (xk � x∗)] + αkE[〈∇Mθ, g

f (xk � x∗), F(xk) � xk〉]
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T1: Expected update

+αkE[〈∇Mθ, g
f (xk � x∗), F(xk, Yk) � F(xk)〉]

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T2: Error due to Yk

+αkE[〈∇Mθ, g
f (xk � x∗), wk〉]

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T3: Error due to wk

+
Lα2

k
2θ E[‖F(xk , Yk) � xk + wk‖

2
s ]

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T4: Error due to discretization and noises

: (7) 

The term T1 represents the expected update and pro
duces a negative drift.
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Lemma 2. It holds for all k ≥ 0 that 〈∇Mθ, g
f (xk � x∗), F(xk)

� xk〉 ≤ �2 1 � β ucm
ℓcm

� �
Mθ, g

f (xk � x∗).

2.4.2. Handling the Error Terms. What remains to 
do is to bound the error terms T2, T3, and T4. Using 
the assumption that {wk} is a martingale difference 
sequence and the tower property of conditional expec
tations, we see that T3 � 0. As for the term T4, using the 
triangle inequality and the Lipschitz property of the 
operator F(·, ·) (Assumption 2), we have the follow
ing result.

Lemma 3. It holds for any k ≥ 0 that T4 ≤
2LA2u2

cmα
2
k

θℓ2cs
Mθ, g

f 

(xk � x∗) +
Lα2

k
θℓ2cs

(A‖x∗‖c + B)
2.

To control the term T2, we need to carefully use a 
conditioning argument along with the geometric mix
ing of {Yk}. The following lemma is useful for us to con
trol T2.

Lemma 4. Given nonnegative integers k1 ≤ k2 satisfying 
αk1, k2�1 ≤ 1

4A, we have for all k ∈ [k1, k2]:

‖xk � xk1 ‖c ≤ 2αk1, k2�1(A‖xk1 ‖c + B), and

‖xk � xk1 ‖c ≤ 4αk1, k2�1(A‖xk2 ‖c + B):

Because αk1, k2�1 ≤ 1
4A (Condition 1), Lemma 4 has the 

following corollary, which will also be frequently used 
in the derivation.

Corollary 1. Under the same conditions as in Lemma 4, we 
have for all k ∈ [k1, k2] that

‖xk � xk1 ‖c ≤ min(‖xk1 ‖c, ‖xk2 ‖c) + B=A:

To proceed and bound the term T2 in Equation (7), we 
first show that the induced error is small (o(αk) to be 
precise) if we replace xk by xk�tk in the term T2, where 
we recall that tk is the mixing time of the Markov chain 
{Yk} with precision αk. This is where we use Lemma 4. 
After such replacement, the term T2 becomes T̃2 � αkE 
[〈∇Mθ, g

f (xk�tk � x∗), F(xk�tk , Yk) � F(xk�tk )〉]. By the tower 
property of conditional expectations, we have

T̃2 � αkE[〈∇Mθ, g
f (xk�tk � x∗),

E[F(xk�tk , Yk) |xk�tk , Yk�tk ] � F(xk�tk )|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�o(1) by geometric mixing

〉]:

Using the geometric mixing of {Yk}, we see that the dif
ference between E[F(xk�tk , Yk) |xk�tk , Yk�tk ] and F(xk�tk )

(which can be written as EY~µY
[F(x, Y)] evaluated at 

x � xk�tk ) is of o(1), which implies T̃2 � o(αk). Formally, 
we have the following lemma.

Lemma 5. It holds for all k ≥ tk that

T2 ≤
112LA2u2

cmαkαk�tk, k�1

θℓ2cs
E[Mθ, g

f (xk � x∗)]

+
56Lαkαk�tk , k�1

θℓ2cs
(A‖x∗‖c + B)

2
:

Combining the upper bounds we obtained for the 
terms T1 to T4 in Equation (7), we arrive at the desired 
one-step contractive inequality presented in Proposi
tion 2.

2.5. Solving the Recursion
The rest of the proof follows by repeatedly using Propo
sition 2 and evaluating the final expression when using 
different step size sequences. Specifically, because 
αk�tk, k�1 ≤ φ2=(φ3A2) for all k ≥ K (Condition 1), we 
have by Proposition 2 that

E[M(xk+1 � x∗)] ≤ (1 � φ2αk)E[M(xk � x∗)]

+
φ3αkαk�tk, k�1

2u2
cm

(A‖x∗‖c + B)
2 

for all k ≥ K. Recursively using the previous inequality, 
we have for any k ≥ K that

E[‖xk � x∗‖
2
c ]

≤ 2u2
cmE[M(xk � x∗)]) (Proposition 1 (3))

≤ 2u2
cmE[M(xK � x∗)]

Yk�1

j�K
(1 � φ2αj)

+ φ3(A‖x∗‖c + B)
2X

k�1

i�K
αiαi�ti , i�1

Yk�1

j�i+1
(1 � φ2αj)

≤
u2

cm

ℓ2cm
E[‖xK � x∗‖

2
c ]
Yk�1

j�K
(1 � φ2αj)

+ φ3(A‖x∗‖c + B)
2X

k�1

i�K
αiαi�ti , i�1

Yk�1

j�i+1
(1 � φ2αj)

� φ1E[‖xK � x∗‖
2
c ]
Yk�1

j�K
(1 � φ2αj)

+ φ3c2
Xk�1

i�K
αiαi�ti, i�1

Yk�1

j�i+1
(1 � φ2αj), 

where we recall that c2 � (A‖x∗‖c + B)
2. According to 

Condition 1, we also have α0, k�1 ≤ 1
4A for any k ∈ [0, K]. 

Therefore, we have for any k ∈ [0, K] that

E[‖xk � x∗‖
2
c ] ≤ E[(‖xk � x0‖c + ‖x0 � x∗‖c)

2
]

≤ (‖x0 � x∗‖c + ‖x0‖c + B=A)
2

� c1, 
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where the second inequality follows from Corollary 1. 
Because the previous inequality implies E[‖xK � x∗‖

2
c ]

≤ c1, we obtain for all k ≥ K that

E[‖xk � x∗‖
2
c ] ≤ φ1c1

Yk�1

j�K
(1 � φ2αj)

+ φ3c2
Xk�1

i�K
αiαi�ti, i�1

Yk�1

j�i+1
(1 � φ2αj): (8) 

Evaluating the right-hand side (RHS) of the previous 
inequality for different choices of the step sizes, we 
obtain all the cases presented in Theorem 1. See Online 
Appendix 1.8 for more details.

Remark 2. We handled Markovian noise in Section 
2.4.2 by using a conditioning argument that exploits 
the geometric mixing (Assumption 3) of the underly
ing Markov chain, which in turn is a consequence of 
irreducibility and aperiodicity. An alternate approach 
to handle the Markovian noise is based on the Poisson 
equation (Benveniste et al. 2012, part II, chapter 1) and 
may need a different set of assumptions.

3. Applications in RL
We begin by introducing the underlying model for RL. 
The RL problem is usually modeled as an MDP where 
the transition probabilities and the reward function 
are unknown. In this work, we consider an MDP con
sisting of a finite set of states S, a finite set of actions A, 
a set of unknown transition probability matrices that 
are indexed by actions {Pa ∈ R | S | × |S | |a ∈ A}, a reward 
function R : S × A ⊢→ [0, 1], and a discount factor γ ∈

(0, 1). Because we work with finite MDPs, assuming 
bounded reward is indeed without loss of generality.

The goal in RL is to find an optimal policy π∗ so that 
the cumulative reward received by using π∗ is maxi
mized. More formally, given a policy π, define its state- 
value function Vπ : S ⊢→ R as Vπ(s) � Eπ[

P∞
k�0 γ

kR(Sk, 
Ak) |S0 � s] for all s, where Eπ[·] means that the actions 
are selected according to the policy π. Then, a policy π∗

is said to be optimal if and only if Vπ∗

(s) ≥ Vπ(s) for any 
state s and policy π. It was shown that such an optimal 
policy always exists (Bertsekas and Tsitsiklis 1996).

In RL, the problem of finding an optimal policy is 
called the control problem. The most popular algorithm 
for solving the control problem is Q-learning (Watkins 
and Dayan 1992). Although the ultimate goal is to find 
an optimal policy, in RL, there is usually a smaller goal 
of finding the value function of a given policy, which is 
called the prediction problem and is usually solved with 
TD-learning and its variants (Sutton 1988). Both Q- 
learning and TD learning are by nature SA algorithms 
for solving variants of the Bellman equation. Therefore, 
our results on SA unify the finite-sample analysis of 
value-based RL algorithms.

We next present three case studies: the off-policy V- 
trace algorithm, the on-policy n-step TD algorithm, and 
the Q-learning algorithm. We also establish finite-sample 
guarantees of the TD(λ) algorithm, which is presented in 
Section 5.

3.1. Off-Policy Prediction: V-Trace
TD learning for solving the prediction problem can be 
divided into two categories: on-policy TD and off- 
policy TD. In off-policy TD, one uses samples gener
ated by a behavior policy πb to learn the value function 
of the target policy π≠ πb. Off-policy sampling is used 
for three important reasons. (1) It is typically necessary 
to have an exploration component in the behavior pol
icy πb which makes it different from the target policy 
π. (2) It is used in multiagent training where various 
agents collect rewards using a behavior policy that is 
lagging with respect to the target policy in an actor- 
critic framework (Espeholt et al. 2018). (3) It enables 
learning using historical data, which improves sample 
efficiency.

Off-policy TD learning is usually implemented through 
importance sampling to obtain an unbiased estimate of 
the desired value function. However, the variance in the 
estimate can explode because the importance sampling 
factor can be very large (Glynn and Iglehart 1989). There
fore, a well-known and fundamental difficulty in off- 
policy TD learning with importance sampling is to bal
ance the bias-variance tradeoff.

Recently, Espeholt et al. (2018) proposed an off-policy 
TD learning algorithm called the V-trace, where they 
introduced two truncation levels in the importance sam
pling weights. Their construction (through two separate 
clippers) crucially allows the algorithm to control the 
bias in the limit (through one clipper), whereas the other 
clipper mainly controls the variance in the estimate. The 
V-trace algorithm has had a huge practical impact: It has 
been implemented in distributed RL architectures and 
platforms like IMPALA (Espeholt et al. 2018), a Tensor
flow implementation, and TorchBeast (Küttler et al. 
2019), a PyTorch implementation, for multiagent train
ing besides being used at scale in a recent Deepmind 
City Navigation Project “Street Learn” (Mirowski et al. 
2018). Given its impact, a theoretical understanding of 
the effects of the truncation levels on the convergence 
rate is important for us to determine how to tune them 
to get the best performance of V-trace.

3.2. Algorithm
We next present the V-trace algorithm for off-policy 
TD learning. Recall that we denote πb as the behavior 
policy and π as the target policy. Let n be a positive in
teger. Define c(s, a) � min c, π(a | s)

πb(a | s)

� �
and ρ(s, a) � min

�
ρ, 

π(a | s)

πb(a | s)

�
as the two truncated importance sampling factors 
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at state-action pair (s, a), where c and ρ are the two differ
ent truncation levels satisfying ρ ≥ c > 0.

Let {(Sk, Ak)} be a sequence of samples collected 
under the behavior policy πb. Then, with initialization 
V0 ∈ R |S | , for each k ≥ 0, the V-trace algorithm updates 
the estimate Vk of the target value function Vπ accord
ing to

Vk+1(s)

�

Vk(s) +αk
Xk+n�1

i�k
γi�k

Yi�1

j�k
c(Sj, Aj)

0

@

1

A

ρ(Si, Ai)Γ1(Vk, Si, Ai, Si+1), Sk � s,
Vk(s), Sk ≠ s,

8
>>>>><

>>>>>:

(9) 

where Γ1(Vk, Si, Ai, Si+1) � R(Si, Ai) + γVk(Si+1) � Vk(Si)

is the temporal difference. The V-trace algorithm pre
sented above can be viewed as an extension of the well- 
known n-step on-policy TD learning to the setting 
where we use off-policy sampling. Specifically, the 
truncated importance sampling factors are introduced 
due to the discrepancy between the behavior policy πb 
and the target policy π. Consider the special case where 
π � πb. By choosing ρ � c � 1, which implies c(s, a) �

ρ(s, a) � 1, Algorithm (9) reduces to the standard n-step 
TD learning.

To establish finite-sample bounds of Algorithm (9), 
we make the following assumption.

Assumption 5. The behavior policy πb satisfies {a ∈ A |π 
(a |s) > 0} ⊆ {a ∈ A |πb(a |s) > 0} for all s ∈ S, and the Mar
kov chain {Sk} induced by πb is irreducible and aperiodic.

The first part of Assumption 5 is call the coverage 
assumption, which states that, for any state, if it is pos
sible to explore a specific action under the target policy 
π, then it is also possible to explore such an action 
under the behavior policy πb. This requirement is nec
essary for off-policy RL. The second part of Assump
tion 5 is imposed to ensure the exploration of πb and 
implies that {Sk} has a unique stationary distribution, 
denoted by κS ∈ ∆ |S | , the minimum component of 
which is denoted as KS, min. Moreover, the Markov 
chain {Sk} induced by πb mixes at a geometric rate 
(Levin and Peres 2017).

3.2.1. Properties of the V-Trace Algorithm. We next 
follow the blueprint presented in Section 1.2.2 to estab
lish the finite-sample bounds of the V-trace algorithm 
using our SA results. We begin with the reformulation. 
For any k ≥ 0, let Yk � (Sk, Ak, : : : , Sk+n�1, Ak+n�1, Sk+n). 
It is clear that {Yk} is also a Markov chain, the state 
space of which is denoted by Y and is finite. Define an 

operator F : R |S | × Y ⊢→ R |S | as

[F(V, y)](s) � [F(V, s0, a0, : : : , sn�1, an�1, sn)](s)

� 1{s0�s}

Xn�1

i�0
γi

Yi�1

j�0
c(sj, aj)

0

@

1

Aρ(si, ai)

Γ1(V, si, ai, si+1) + V(s)

for all V ∈ R |S | , y � (s0, a0, : : : , sn) ∈ Y, and s ∈ S. Then, 
Equation (9) can be equivalently written as

Vk+1 � Vk + αk(F(Vk, Yk) � Vk), (10) 

which is the same form of Algorithm (1) with xk � Vk 
and wk � 0. Under Assumption 5, we next establish the 
properties of the operator F(·, ·) and the Markov chain 
{Yk}, which will enable us to apply Theorem 1. The fol
lowing notation is needed to state the result.

For any policy π, let Pπ ∈ R |S | × |S | be the transition 
probability matrix of the Markov chain {Sk} induced by 
π and let Rπ ∈ R |S | be such that Rπ(s) �

P
a∈Aπ(a |s)

R(s, a) for all s. Let Dc, Dρ ∈ R | S | × |S | be diagonal matri
ces with diagonal components {Eπb [c(S, A) |S � s]}s∈S 

and {Eπb [ρ(S, A) |S � s]}s∈S , respectively. Let Dc, min (res
pectively, Dρ, min) be the minimum diagonal component 
of Dc (respectively, Dρ). Let KS � diag(κS) ∈ R |S | × |S |

and KS, min � mins∈SκS(s). Define two policies πc and 
πρ as πc(a |s) �

c(s,a)πb(a | s)

Eπb [c(S,A) | S�s]
and πρ(a |s) �

ρ(s,a)πb(a | s)

Eπb [ρ(S,A) | S�s]

for all state-action pairs (s, a). Let ηn(x) �
Pn�1

i�0 xi for 
any x> 0 and positive integer n.

Proposition 3 (Proof in Online Appendix 2.1). Under 
Assumptions 5, we have the following. 

(1) The operator F(·) satisfies (a) ‖F(V1, y) � F(V2, y)‖∞

≤ (2ρ + 1)ηn(γc)‖V1 � V2‖∞ for all V1, V2 ∈ R |S | and y ∈

Y, and (b) ‖F(0, y)‖∞ ≤ ρηn(γc) for all y ∈ Y.
(2) The Markov chain {Yk} has a unique stationary distri

bution µY. Moreover, there exist C1 > 0 and σ1 ∈ (0, 1) such 
that maxy∈Y‖Pk+n

Y (y, ·) � µY(·)‖TV ≤ C1σk
1 for all k ≥ 0.

(3) Define the expected operator F : R |S | ⊢→ R | S | of F(·, ·)

as F(V) � EY~µY
[F(V, Y)] for all V ∈ R | S | . Then, (a) F(·) is 

explicitly given as F(V) � [I � KS
Pn�1

i�0 (γDcPπc
)
iDρ(I � γ 

Pπρ )]V + KS
Pn�1

i�0 (γDcPπc
)
iDρRπρ , (b) F(·) is a contrac

tion mapping with respect to ‖ · ‖∞, with contraction factor 
β1 :� 1 � KS, min

(1�γ)(1�(γDc,min)
n
)Dρ,min

1�γDc,min
, and (c) F(·) has a 

unique fixed point Vπρ , which is the value function of the pol
icy πρ .

3.2.2. Finite-Sample Bounds of V-Trace. Proposition 3
enables us to apply Theorem 1 to establish the finite- 
sample bounds of V-trace. For ease of presentation, we 

Chen et al.: A Lyapunov Theory for Markovian Stochastic Approximation 
10 Operations Research, Articles in Advance, pp. 1–16, © 2023 INFORMS 



here only state the result for using a constant step size 
(i.e., αk ≡ α), the proof of which is presented in Online 
Appendix 2.2. The convergence rate for using diminish
ing step sizes is presented in Online Appendix 2.4.

Theorem 2. Suppose that Assumption 5 is satisfied, and 
the constant step size α is chosen such that α(tα + n) ≤

cV, 0
(1�β1)

2

(ρ+1)
2η2

n(γc)log( |S | )
, where tα is the mixing time of the 

Markov chain {Sk} (induced by πb) with precision α. Then 
we have for all k ≥ tα + n that

E[‖Vk � Vπρ ‖2
∞] ≤ cV, 1 1 �

1 � β1
2 α

� �k�tα�n

+ cV, 2
log( |S | )(ρ + 1)

2ηn(γc)
2

(1 � β1)
2 α(tα + n), 

where cV, 1 � 3(‖V0 � Vπρ ‖∞ + ‖V0‖∞ + 1)
2 and cV, 2 � 3648 

e(‖Vπρ ‖∞ + 1)
2. Moreover, we have

‖Vπρ � Vπ‖∞ ≤
γ maxs∈S ‖π(· |s) �πρ(· |s)‖1

(1 � γ)
2 :

The convergence bound here is qualitatively similar to 
Theorem 1. The truncation level ρ determines the limit 
point Vπρ . In addition, ρ plays a role in the second term 
(which captures the variance in the algorithm) on the 
right-hand side of the finite-sample bound. In practice, 
ρ should be tuned to balance the tradeoff between the 
bias at the limit point and the convergence variance. 
The truncation level c mainly controls the variance 
term in the convergence bound through the factor 
ηn(γc). To formally characterize how the parameters of 
V-trace impact the convergence rate, we next derive the 
sample complexity bound.

Corollary 2 (Proof in Online Appendix 2.3). When ρ �

1=mins, aπb(a |s), to make E[‖Vk � Vπ‖∞] ≤ ɛ, the sample 
complexity is

O
log2

(1=ɛ)

ɛ2

 !

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Accuracy

Õ
1

(1 �γ)
5

 !

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Effective horizon

Õ
nρ2ηn(γc)

2

D3
ρ, minηn(γDc, min)

3

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Off-policy n-step TD

Õ(K�3
S, min)

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Qualityof exploration

:

Remark 3. When there is a nonvanishing bias in the 
bound, which in our case corresponds to Vπ ≠ Vπρ , 
the sample complexity is not well defined. Khodada
dian et al. (2021, appendix C.1) provide a detailed dis
cussion. Therefore, we choose ρ � 1=mins, aπb(a |s) ≥

maxs, aπ(a |s)=πb(a |s) to eliminate the bias due to intro
ducing the truncation level ρ. In this case, because 

ρ(s, a) �
π(a | s)

πb(a | s)
, we have Vπρ � Vπ. This is merely for 

mathematical rigor.
From Corollary 2, we see that the dependence on 

the required accuracy level is Õ(ɛ2), which is known 
to be optimal up to a logarithmic factor. In addition, 
we have an Õ(1=(1 � γ)

5
) dependence on the effective 

horizon, and at least a cubic dependence on the size of 
the state-space |S | . To see this, observe that KS, min ≤

1= |S | implies K�3
S, min ≥ |S |3.

The feature of the V-trace algorithm is captured by 

the term Õ nρ2ηn(γc)
2

D3
ρ,minηn(γDc,min)

3

� �

, which is a consequence 

of performing n-step off-policy TD learning with trun
cated importance sampling factors. The impact of the 
parameter n will be analyzed in detail in Section 3.3, 
where we study on-policy n-step TD and the effi
ciency of bootstrapping. We here focus on the two 
truncation levels c and ρ. First, we choose ρ � 1=

mins, aπb(a |s) ≥ 1= |A | to ensure that Vπρ � Vπ, which 
introduces a factor of at least |A |�2 in the sample 
complexity. The dependence of the sample complexity 
on the truncation level c is through the term ηn(γc). 
To avoid an exponential factor of n, we need to 
aggressively truncate the importance sampling factors 
by choosing c < 1=γ.

3.2.3. Related Literature on V-Trace. The V-trace algo
rithm was first proposed in Espeholt et al. (2018) as an 
off-policy variant of the n-step TD learning. The key 
novelty in V-trace is that the two truncation levels c 
and ρ are introduced in the importance sampling fac
tors to separately control the asymptotic bias and the 
variance. The asymptotic convergence of V-trace in the 
case where n � ∞ was established in Espeholt et al. 
(2018). This is the first finite-sample analysis of V-trace 
with asynchronous update. Other algorithms that are 
closely related to V-trace are the off-policy Qπ(λ) (Har
utyunyan et al. 2016), tree-backup TB(λ) (Precup et al. 
2000), and retrace(λ) (Munos et al. 2016). A recent 
work (Chen et al. 2020) presents a unified analysis of 
these algorithms.

3.3. On-Policy Prediction: n-Step TD
In this section, we consider on-policy n-step TD learn
ing algorithm, which can be viewed as a special case of 
the V-trace algorithm with πb � π and c � ρ � 1. There
fore, one can directly apply Theorem 2 to this setting 
and obtain finite-sample bounds for n-step TD. How
ever, we will show that due to on-policy sampling, 
there are other properties (i.e., ℓ2-norm contraction) of 
the n-step TD learning we can exploit to obtain tighter 
bounds.

Similarly as in the previous section, we make the 
following assumption to ensure the exploration of the 
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behavior policy π, which is also the target policy in 
on-policy TD.

Assumption 6. The Markov chain {Sk} induced by π is 
irreducible and aperiodic.

Assumption 6 implies that {Sk} has a unique station
ary distribution κS ∈ ∆ | S | (the smallest component of 
which is denoted as KS, min). In addition, the Markov 
chain {Sk} mixes at a geometric rate (Levin and Peres 
2017).

3.3.1. Finite-Sample Analysis of n-Step TD. To refor
mulate Equation (9) (with πb � π and c � ρ � 1) in the 
form of Algorithm (1), the operator F(·, ·) and the Mar
kov chain {Yk} are defined in the same way as in Sec
tion 3.2.1. We next present the ℓp-norm contraction 
property of the operator F(·) � EY~µY

[F(·, Y)] associated 
with on-policy n-step TD. Other properties regarding 
the operator F(·, ·) and the Markov chain {Yk} (e.g., 
Lipschitz continuity, geometric mixing) are presented 
in Online Appendix 3.

Proposition 4. The operator F(·) is a contraction mapping 
with respect to the ℓp-norm ‖ · ‖p for any p ∈ [1, ∞], with a 
common contraction factor β2 � 1 � KS, min(1 � γn).

Unlike in the off-policy V-trace setting, where the 
operator F(·) is only shown to be a contraction mapping 
with respect to the ℓ∞-norm, the operator F(·) associ
ated with on-policy n-step TD is a contraction mapping 
with respect to ‖ · ‖p for any p ∈ [1, ∞], in particular, 
the ℓ2-norm. The ℓ2-norm contraction is the property 
we are going to exploit to establish the finite-sample 
bounds of n-step TD. For ease of presentation, we next 
state the guarantees when using a constant step size 
αk ≡ α. The results for using diminishing step sizes are 
presented in Online Appendix 3.2.

Theorem 3 (Proof in Online Appendix 3.1). Suppose that 
Assumption 6 is satisfied and α is chosen such that α(tα +

n) ≤ ĉ0(1 � β2) (where ĉ0 is a numerical constant and tα is 
the mixing time of the Markov chain {Sk} induced by π 
with precision α). Then we have for all k ≥ tα + n:

E[‖Vk � Vπ‖
2
2] ≤ ĉ1(1 � (1 � β2)α)

k�tα�n

+ ĉ2
α(tα + n)

(1 � γ)
2
(1 � β2)

, 

where ĉ1 � (‖V0 � Vπ‖2 + ‖V0‖2 + 4)
2 and ĉ2 � 228(4(1 �

γ)‖Vπ‖2 + |S | 1=2)
2.

An important idea in n-step TD is to use the parame
ter n to adjust the bootstrapping effect. Specifically, 
n � 0 corresponds to extreme bootstrapping, whereas 
n � ∞ corresponds to using the Monte Carlo method 
for estimating Vπ and hence no bootstrapping. A long- 

standing question in RL is about the efficiency of boot
strapping, that is, the choice of n that leads to the opti
mal performance of the algorithm (Sutton and Barto 
2018).

By evaluating the convergence bounds in Theorem 3
with only n-dependent terms, we see that the bias term 
is of (1 �Θ(1 � γn))

k. Because the mixing time tα of the 
Markov chain {Sk} does not depend on n, the variance 
term is of O(n=(1 � γn)). Now we can clearly see that as 
n increases, the bias goes down while the variance goes 
up, thereby demonstrating a bias-variance tradeoff in 
the n-step TD learning algorithm. To provide an esti
mate of the optimal value of n, we next derive the sam
ple complexity of n-step TD based on Theorem 3.

Corollary 3. To achieve E][‖Vk � Vπ‖2] ≤ ɛ, the sample 
complexity is

Õ
1
ɛ2

� �

Õ
1

(1 � γ)
4
K2

S, min

 !

Õ
n

(1 � γn)
2

 !

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
The impact of n

:

In light of the dependence on the parameter n, we can 
optimize the choice of n to minimize the function n

(1�γn)
2 

over all positive integers. By doing that, we have 
nopt ~ min(1, ⌊1=log(1=γ)⌉), where ⌊x⌉ stands for the 
integer closest to x. We point out that this choice of n 
was derived based on minimizing our upper bound. To 
ensure that it is indeed the optimal choice, we need to 
derive a matching lower bound on the sample com
plexity, which is a future research direction.

Compared with the off-policy V-trace, it is clear that 
the on-policy n-step TD has a better sample complexity. 
Specifically, it has a better dependency on the effective 
horizon, which is Õ((1 � γ)

�4
), and a better depen

dency on the minimum component KS, min of the sta
tionary distribution of {Sk}. The main reason for such 
an improvement in the sample complexity is that we 
are able to exploit the ℓ2-norm contraction of the opera
tor F(·) in n-step TD.

3.3.2. Related Literature on n-Step TD. The notion of 
using multistep returns instead of only one-step return 
was introduced in Watkins (1989). Sutton and Barto 
(2018, chapter 7) provide more details about n-step TD. 
The asymptotic convergence of n-step TD was estab
lished using standard SA results under contraction 
assumption (Bertsekas and Tsitsiklis 1996). Regarding 
the choice of n, it was observed in empirical experi
ments that n-step TD (with a suitable choice of n) usu
ally outperforms the one-step TD and Monte Carlo 
methods (Singh and Sutton 1996, Sutton and Barto 
2018). However, a theoretical understanding of this 
phenomenon is not well established in the literature.
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3.4. Off-Policy Control: Q-Learning
Thus far, we considered TD learning algorithms for 
solving the prediction problem. In this section, we con
sider the Q-learning algorithm (Watkins and Dayan 
1992) for solving the control problem (i.e., finding an 
optimal policy). Define the Q-function associated with 
a policy π as Qπ(s, a) � Eπ[

P∞
k�0 γ

kR(Sk, Ak) |S0 � s, A0 
� a] for all (s, a). Denote Q∗ as the Q-function associated 
with an optimal policy π∗. All optimal policies share 
the same optimal Q-function. The motivation of the Q- 
learning algorithm is based on the following result 
(Bertsekas and Tsitsiklis 1996, Sutton and Barto 2018): 
π∗ is an optimal policy if and only if π∗(· |s) is supported 
on the set arg maxa∈A

Q∗(s, a) for any (s, a). The previous 
result implies that knowing the optimal Q-function is 
sufficient to compute an optimal policy.

To find the optimal Q-function, we next introduce 
the Bellman equation. Let H : R |S | |A | ⊢→ R |S | |A | be the 
Bellman operator defined as

[H(Q)](s, a)

� R(s, a) + γE max
a′∈A

Q(Sk+1, a′)

�
�
�
�
�
Sk � s, Ak � a

" #

,

∀Q ∈ R | S | | A | , (s, a):

Then it has been shown that Q∗ is the unique solution to 
the fixed-point equation H(Q) � Q (Bertsekas and Tsit
siklis 1996). The Q-learning algorithm can be viewed as 
an SA algorithm to solve the Bellman equation.

In Q-learning, we first collect a sample trajectory 
{(Sk, Ak)} using a suitable behavior policy πb. Then, with 
initialization Q0 ∈ R |S | | A | , the iterate Qk is updated as

Qk+1(s, a)

�

Qk(s, a) + αk

�
R(Sk, Ak)

+γmax
a′∈A

Qk(Sk+1, a′) � Qk(Sk, Ak)
�

, (s, a) � (Sk, Ak),

Qk(s, a), (s, a) ≠ (Sk, Ak):

8
>>><

>>>:

(11) 

To establish the finite-sample bounds of Q-learning, we 
make the following assumption.

Assumption 7. The behavior policy πb satisfies πb(a |s) > 0 
for all (s, a), and the Markov chain {Sk} induced by πb is irre
ducible and aperiodic.

The requirement that πb(a |s) > 0 for all (s, a) is neces
sary even for the asymptotic convergence of Q-learning 
(Tsitsiklis 1994). The irreducibility and aperiodicity 
assumption is also standard in the existing work (Tsit
siklis and Van Roy 1997, 1999). Because we work with 
finite-state MDPs, Assumption 7 implies that {Sk} has a 
unique stationary distribution, denoted by κS ∈ ∆ | S | , 
and {Sk} mixes at a geometric rate (Levin and Peres 
2017). Similarly, we let KS, min � mins∈SκS(s).

3.4.1. Properties of the Q-Learning Algorithm. Recall 
the definition of the operator F(·, ·) and the Markov chain 
{Yk} in Section 1.2.2. We next establish their properties 
in the following proposition, which guarantees that the 
assumptions needed to apply Theorem 1 are satisfied 
in the context of Q-learning. Let KSA ∈ R |S | |A | × |S | |A |

be the diagonal matrix with {κS(s)πb(a |s)}(s, a)∈S×A on 
its diagonal. Let KSA, min � min(s, a)κS(s)πb(a |s), which is 
strictly positive under Assumption 7.

Proposition 5 (Proof of Online Appendix 4.1). Suppose 
that Assumption 7 is satisfied, Then, we have the following 
results. 

(1) The operator F(·, ·) satisfies (a) ‖F(Q1, y) � F(Q2, 

y)‖∞ ≤ 2‖Q1 � Q2‖∞ for any Q1, Q2 ∈ R |S | |A | , and y ∈ Y, 
and (b) ‖F(0, y)‖∞ ≤ 1 for all y ∈ Y.

(2) The Markov chain {Yk} has a unique stationary distri
bution µY, and there exist C3 > 0 and σ3 ∈ (0, 1) such that 
maxy∈Y‖Pk+1(y, ·) � µY(·)‖TV ≤ C3σk

3 for any k ≥ 0.

(3) Define the expected operator F : R |S | |A | ⊢→ R |S | |A |

of F(·, ·) as F(Q) � EY~µY
[F(Q, Y)]. Then, (a) F(·) is explic

itly given by F(Q) � KSAH(Q) + (I � KSA)Q, (b) F(·) is a 
contraction mapping with respect to ‖ · ‖∞, with contraction 
factor β3 :� 1 � KSA, min(1 � γ), and (c) F(·) has a unique 
fixed-point Q∗.

Observe that the (s, a)th entry of F(Q) is given by κS(s)

πb(a |s)[H(Q)](s, a) + (1 � κS(s)πb(a |s))Q(s, a), which can 
be viewed as a convex combination of “performing up
date” and “not performing update,” hence captures the 
nature of asynchronism as illustrated in Section 1.2.2.

3.4.2. Finite-Sample Bounds of Q-Learning. Proposition 
5 enables us to apply Theorem 1 and Corollary 1(2) to 
Q-learning. For ease of presentation, we only state the 
result for using a constant step size αk ≡ α. See Online 
Appendix 4.3 for the results when using diminishing 
step sizes.

Theorem 4. Suppose that Assumption 7 is satisfied and α 
is chosen such that α(tα + 1) ≤ cQ, 0

(1�β3)
2

log( | S | | A | )
(where cQ, 0 is 

a numerical constant and tα is the mixing time of the Mar
kov chain {Sk} induced by πb with precision α). Then we 
have for all k ≥ tα + 1 that

E[‖Qk � Q∗‖
2
∞] ≤ cQ, 1 1 �

(1 � β3)α

2

� �k�tα�1

+ cQ, 2
log( |S | |A | )

(1 � β3)
2 α(tα + 1), 

where cQ, 1 � 3(‖Q0 � Q∗‖∞ + ‖Q0‖∞ + 1)
2 and cQ, 2 � 912e 

(3‖Q∗‖∞ + 1)
2.
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Based on Theorem 4, we next derive the sample com
plexity of Q-learning.

Corollary 4. Given ɛ > 0, to achieve E[‖Qk � Q∗‖∞] ≤ ɛ, 
the sample complexity is

O
log2

(1=ɛ)

ɛ2

 !

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Accuracy

Õ
1

(1 � γ)
5

 !

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Effective horizon

Õ(K�3
SA, min)

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Quality of exploration

:

From Corollary 4, we see that the dependence on the 
accuracy ɛ is O(ɛ�2log2

(1=ɛ)), and the dependence on 
the effective horizon is Õ((1 � γ)

�5
). These two results 

match with known results in the literature (Beck and 
Srikant 2013, Li et al. 2020). The parameter KSA, min cap
tures the quality of exploration of the behavior policy 
πb. Because KSA, min ≥ 1= |S | |A | , we see that there is at 
least a cubic dependence on the size of the state-action 
space.

3.4.3. Related Literature on Q-Learning. The Q-learn
ing algorithm (Watkins and Dayan 1992) is perhaps 
one of the most well-known algorithms in the RL litera
ture. The asymptotic convergence of Q-learning was 
established in Tsitsiklis (1994), Jaakkola et al. (1993), 
and Borkar and Meyn (2000) and the asymptotic con
vergence rate in Szepesvári et al. (1997) and Devraj 
and Meyn (2017). Beyond asymptotic behavior, finite- 
sample analysis of Q-learning was also thoroughly 
studied in the literature (Even-Dar and Mansour 2003, 
Beck and Srikant 2013, Jin et al. 2018, Li et al. 2020, Qu 
and Wierman 2020). The state-of-the-art sample com
plexity for asynchronous Q-learning goes to Li et al. 
(2020), which has a better dependence on the size of the 
state-action space compared with this work. In addition 
to being a contractive SA, Q-learning has many other 
properties, such as the update equation being asyn
chronous, the iterates being uniformly bounded by a 
constant (Gosavi 2006), which are used in Li et al. 
(2020) for their analysis. Although our SA framework 
did not exploit these properties of Q-learning (which 
results in a suboptimal sample complexity), it is a more 
general framework that enables us to study a wide vari
ety of algorithms beyond Q-learning. A typical exam
ple is the V-trace algorithm studied earlier. Because of 
off-policy sampling, the iterates of V-trace do not admit 
a uniform upper bound.

4. Conclusion
In this paper, we perform finite-sample analysis of a 
Markovian SA algorithm under a contractive operator 
with respect to an arbitrary norm, and derive the conver
gence rates under different schedules of the step sizes. 
We develop a Lyapunov approach, and the key technical 

novelty is the construction of a valid Lyapunov function 
called the generalized Moreau envelope, which is capa
ble of handling arbitrary norm (especially the ℓ∞-norm) 
contraction. Our SA results unify the finite-sample analy
sis of value-based RL algorithms. Specifically, we estab
lish finite-sample convergence guarantees of various 
TD-learning algorithms (e.g., off-policy V-trace, n-step 
TD, and TD(λ)) for solving the prediction problem and 
Q-learning for solving the control problem. In addition, 
we provide theoretical insights about the efficiency of 
bootstrapping in on-policy bootstrapped TD and dem
onstrate a bias-variance tradeoff in off-policy TD.
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