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Abstract. This paper develops a unified Lyapunov framework for finite-sample analysis
of a Markovian stochastic approximation (SA) algorithm under a contraction operator with
respect to an arbitrary norm. The main novelty lies in the construction of a valid Lyapunov
function called the generalized Moreau envelope. The smoothness and an approximation
property of the generalized Moreau envelope enable us to derive a one-step Lyapunov
drift inequality, which is the key to establishing the finite-sample bounds. Our SA result
has wide applications, especially in the context of reinforcement learning (RL). Specifically,
we show that a large class of value-based RL algorithms can be modeled in the exact form
of our Markovian SA algorithm. Therefore, our SA results immediately imply finite-
sample guarantees for popular RL algorithms such as n-step temporal difference (TD)
learning, TD(A), off-policy V-trace, and Q-learning. As byproducts, by analyzing the con-
vergence bounds of n-step TD and TD(A), we provide theoretical insight into the problem
about the efficiency of bootstrapping. Moreover, our finite-sample bounds of off-policy V-
trace explicitly capture the tradeoff between the variance of the stochastic iterates and the
bias in the limit.
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1. Introduction Monro 1951), which is the underlying workhorse for

In operations research, often the problem of interest is
reduced to a root-finding problem for a properly defined
equation. For example, solving min, _p:J(x) for a differen-
tiable objective function J(-) is closely related to solving the
equation V](x) = 0. In a Markov decision process (MDP)
or its environment-agnostic variant reinforcement learning
(RL) problem, essentially the problem is to solve a fixed-
point equation known as the Bellman equation.

A popular approach for solving such root-finding
problems is through iterative algorithms, with the pop-
ular gradient descent/ascent algorithm being a typical
example thereof. However, sometimes we do not have
enough information or enough computational power to
carry out the desired iterative algorithm and have to
work with its noise-corrupted variant. More generally,
an iterative algorithm in the presence of noise is called a
stochastic approximation (SA) algorithm (Robbins and

solving large-scale optimization and machine learning
problems (Lan 2020).

The SA method is used at scale in the context of RL
(Sutton and Barto 2018). Because the environmental
model is unknown, classical iterative algorithms for
solving MDPs, such as value iteration and policy itera-
tion, are not directly implementable. Therefore, people
develop data-driven algorithms such as Q-learning
(Watkins and Dayan 1992) and actor-critic (Konda and
Tsitsiklis 1999) for solving the RL problem, which are
essentially SA algorithms. To guide practical imple-
mentations, for a certain SA algorithm, we naturally
want to have an understanding on how many iterations
are needed to achieve a certain level of accuracy. This
motivates us to derive performance guarantees of SA
algorithms with a finite number of iterations, which is
called the finite-sample analysis.
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Motivated by applications in RL, in this work, we
focus on finite-sample analysis of an SA algorithm
involving a contractive operator and under Markovian
sampling. More formally, consider an SA algorithm of
the form

Xip1 = X + o (Fxg, Yi) — xp + wy), (1)

where {ay} is a sequence of step sizes, {Y} is a Markov
chain with a finite state space ) and a unique stationary
distribution py F:R?x Y+ R? is a (possibly non-
linear) operator, and {wy} is a random process repre-
senting the additive extraneous noise. Let F()=Ey. y
[E(-,Y)]. We assume that the operator F(:) is a contrac-
tion mapping with respect to some arbitrary norm || - ||,
which implies that the fixed-point equation F(x) = x
has a unique solution x* € R. In view of Algorithm (1),
it can be interpreted as an SA algorithm for solving the
fixed-point equation F(x) = x. In finite-sample analysis,
our goal is to understand how the mean-square error
E[||xx — x*llf] decays as a function of the iteration num-
ber k.

1.1. Main Contributions
The main contributions of this work are summarized in
the following.

1.1.1. Finite-Sample Analysis for Markovian SA. We
establish finite-sample guarantees (with various choices
of step sizes) of Algorithm (1). Specifically, we show that
when using a constant step size, that is, ax = a, the con-
vergence rate is geometric, with an asymptotic accuracy
of the order O(alog(l/a)). When using diminishing
step sizes of the form a/ (k+h)* (where & € (0,1]), the
convergence rate is of the order O(log(k)/k*), provided
that @ and & are appropriately chosen. Furthermore, our
bound also involves a (possibly dimension dependent)
constant that is determined by the contraction norm
[Ill.- In the special case of fw-norm contraction, we
show that such a constant scales only logarithmically in
terms of the dimension d, which is not improvable in
general. Our SA results rely on a novel construction of a
Lyapunov function called the generalized Moreau enve-
lope and controlling the stochastic error due to the Mar-
kovian noise.

1.1.2. Finite-Sample Analysis of RL Algorithms. Our
SA results enable us to establish finite-sample bounds
of a variety of value-based RL algorithms (including
various temporal difference (TD) learning algorithms
and Q-learning) in one shot. Specifically, for TD learn-
ing with on-policy sampling, we establish finite-sample
guarantees the popular n-step TD and TD(A). For these
two families of algorithms, there is an important ques-
tion about the efficiency of bootstrapping (Sutton 1999),

which refers to the question of how to choose the param-
eter 1 in n-step TD (or A in TD(A)) so that n-step TD (or
TD(A)) achieves its best performance. Our finite-sample
analysis sheds light on this problem by explicitly captur-
ing the dependence of the convergence bounds on the
tunable parameters of interest (i.e., n in n-step TD or A in
TD(A)). For example, in n-step TD, we show that the
parameter 1 appears as 1/(1 — ")* in the sample com-
plexity bound, which leads to an estimate of the optimal
choice of 1 as nqpr = O(1/log(1/y)).

For TD learning with off-policy sampling, we estab-
lish for the first time the finite-sample bound of the off-
policy V-trace algorithm (Espeholt et al. 2018), which is
used at scale in the Google’s city navigation project
called Street Learn (Mirowski et al. 2018). The V-trace
algorithm can be viewed as an off-policy variant of the
n-step TD-learning algorithm, where the key is to trun-
cate the importance sampling factors using two differ-
ent truncation levels ¢ and p to separately control the
variance in the stochastic iterates and the bias in the
limit. Therefore, theoretically understanding the trade-
offs between the aforementioned variance and bias is of
vital importance for the implementation of the V-trace
algorithm. Our finite-sample analysis provides theoret-
ical insights into such a bias-variance tradeoff.

Last, for the Q-learning algorithm, our finite-sample
bound implies a sample complexity of O(e2(1—y) >
’Cs_zi’,min)’ where € is the desired accuracy, y is the dis-
count factor, and Ksa min is the minimal component
of the stationary distribution of the Markov chain
induced by the behavior policy. See Section 3.4 for a
detailed discussion about our results on Q-learning.

1.2. Summary of Our Technical Approach

In this section, we first provide a high-level overview of
our Lyapunov approach for the finite-sample analysis
of Algorithm (1). Then, we use the popular Q-learning
algorithm as an example to elaborate on our blueprint
for applying the SA results to RL algorithms to obtain
sample complexity guarantees.

1.2.1. Analysis of Markovian SA: Motivation of a
Smooth Lyapunov Function. We begin by rewriting
Algorithm (1) as

a1 — Xk = ag(F(xx) — xe) + a(F(xx, Vi) — F(x))

Expected Update

Markovian Noise
+ AWy . (2)
——
Additive Noise

To provide intuition, we assume for now that the norm
|- |l. with respect to which F(-) being a contraction is
the £,-norm for some p € [2,0), that s, ||[F(x) — F(y)|, <
Bllx —yll, forall x,y € R?, where § € (0,1) is the contrac-
tion factor.
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Consider the ordinary differential equation (ODE)
associated with the SA algorithm: x(f) = F(x(t)) — x(t).
Intuitively, the ODE can be viewed as a continuous
and deterministic counterpart of SA Algorithm (2). It
was shown in Borkar (2009), chapter 10, that the func-
tion W(x) = ||lx — x*|, satisfies £ W(x(t)) < —xW(x(t)) for
some « > 0. This implies that the solution x(t) of the
ODE converges to its unique equilibrium point x* geo-
metrically fast, which further implies the asymptotic
convergence of the SA algorithm via the ODE ap-
proach (Ljung 1977, Borkar 2009). The coefficient « cor-
responds to a negative drift.

Although the ODE approach gives asymptotic con-
vergence, it does not provide finite-sample guarantees.
To obtain finite-sample bounds, in this paper we study
the SA directly and not the ODE. Then, the Lyapunov
function W(x) cannot be used directly to analyze the SA
algorithm due to the discretization error and stochastic
error (see Equation 2). Suppose that we can find a func-
tion M(x) that gives negative drift, and, in addition,
M(x) is L — smooth with respect to some norm ||- |l;.
Then, we have a handle to deal with the discretization
error and the stochastic error to obtain:

E[M(xg1 —x7)]
< (1= Oa) + o(a))E[M(xi — x)] +0o(e),  (3)

which implies a contraction in E[M(x;; — x*)]. There-
fore, a finite-sample bound can be obtained by recur-
sively applying the previous inequality. The key point is
that M(x)’s smoothness and its negative drift with respect to
the ODE produces a contraction (1 — O(ay) + o(a)) for {xx}.
Based on the previous analysis, we see that the Lyapu-
nov function for the SA in the case of £,-norm contrac-

tion should be M(x) = %Hx — x*||§, which is known to be a

smooth function (Beck 2017).

Now consider the case where the contraction norm
|| ]I, is arbitrary. Because the function f(x) = 3 [|x — x"||f is
not necessarily smooth, the key difficulty is to construct
a smooth Lyapunov function that also has a negative
drift. An important special case is when |||, = |lco,
which is applicable to many RL algorithms as will be
discussed later in Section 3. Previously, the lack of a suit-
able Lyapunov/potential function to study SA algo-
rithms under ||-||,-contraction operators has been a
fundamental open problem, as pointed out in the classi-
cal textbook (Bertsekas and Tsitsiklis 1996, section 4.3).
According to Bertsekas and Tsitsiklis, “Unfortunately, it
is unclear whether one can define a smooth potential
function M(-) such that the update of any component
of J() [referred to the objective function of RL] is along
a descent direction with respect to M(-).” We provide
a solution to this problem by constructing a smoothed
convex envelope M(x) called the generalized Moreau
envelope that is smooth with respect to some norm || - ||,

and is a tight approximation to f(x) in the sense that
(1+a)M(x) <f(x) < (1+b)M(x) for some small enough
constants 4,b > 0. The approximation property ensures
that M(:) is a valid Lyapunov function with a negative
drift, and the smoothness property enables us to control
the discretization error and the stochastic error in Algo-
rithm (1). Together, they let us prove a convergence re-
sult similar to the case when f(x) is smooth.

1.2.2. Applications to RL: lllustration via Q-Learn-
ing. The Q-learning algorithm is a model-free recursive
approach to find the optimal policy corresponding to
an MDP (see Section 3.4 for details). At time step k, the
algorithm updates a vector (of dimension state-space size
X action-space size) Qk, which is an estimate of the opti-
mal Q-function Q*, using noisy samples collected along
a single sample trajectory. After a sufficient number of
iterations, the vector Qy is a close approximation of Q,
which (after some straightforward computations) deli-
vers the optimal policy for the MDP. Concretely, let
{(Sk, Ax)} be a sample trajectory of state-action pairs col-
lected by applying some behavior policy to the underly-
ing MDP model. The Q-learning algorithm performs a
scalar update of a (vector-valued) iterate Qi according to

Qk+1(sra)
Qx(s,a) + oy (R(Sk/Ak) +ymax Qx(Sk41,a")

T —QSeA), (5,2) = (St, A0,
Qk(s/ 61), (S/ a) * (Sk/ Ak)
@

At a high level, this recursion approximates the fixed-
point of the Bellman equation through samples along a
single trajectory. There are, however, two sources of
noise in this approximation: (1) asynchronous update
where only one of the components in the vector Qy is
updated (component corresponding to the state-action
pair (Sk, Ax) encountered at time k), and other compo-
nents in the vector Qy are left unchanged, and (2) sto-
chastic noise due to the expectation in the Bellman
operator being replaced by a single sample estimate.

To apply our SA results, the first step is to reformulate
Q-learning in the form of Algorithm (1). Let F : RISHAT x
S X Ax S+ RISl be an operator defined as [F(Q,
80,40,51)](5,4) = L(s,a0)=(s,0) (R(S0,0) +y maxye4Q(s1,
a’) — Q(so,a0)) + Q(s,a) for all (s,a). Then Q-Learning
Algorithm (4) can be rewritten as

Qks1 = Qk + i (F(Qx, Sk, Ak, Sk1) — Qi), (@)

which is in the form of Algorithm (1) with x; being Q,
w=0, and Y} = (S, Ak, Sk+1)- The key takeaway is that,
in Equation (5), the various noise terms are encoded
through introducing the operator F(:) and the associ-
ated evolution of the Markov chain {Y}}.



Chen et al.: A Lyapunov Theory for Markovian Stochastic Approximation
Operations Research, Articles in Advance, pp. 1-16, © 2023 INFORMS

After the SA reformulation, to apply our SA results,
we need to establish the contraction property of the
operator F(-) := E[F(-, Sk, Ak, Sks1)] associated with the
Q-learning algorithm, where the expectation is taken
with respect to the stationary distribution of the Markov
chain {(Si, Ak, Sk+1)}. Under mild conditions, we show
that F(Q) = KsaH(Q) + (I — Ks4)Q. Here H(-) is the
Bellman operator for the Q-function (Bertsekas and Tsit-
siklis 1996), and the matrix Kgs4 is a diagonal matrix
with {p(s,a)} (s sesxa sitting on its diagonal, where p(s, a)
is the stationary visitation probability of the state-action
pair (s, ). An important insight about the operator F(-)
is that it can be viewed as an asynchronous variant of
the Bellman operator H(-). To see this, consider a state-
action pair (s, a). The value of [F(Q)](s,a) can be inter-
preted as the expectation of a random variable, which
takes [H(Q)](s,a) with probability p(s, a), and takes
Q(s,a) with probability 1 — p(s,a). This precisely captures
the asynchronous update in Q-Learning Algorithm (4) in
that, in steady state, Qx(s,a) is updated with probability
p(s, a) and remains unchanged otherwise. Moreover,
because H(:) is known to be a contraction mapping with
respect to || ||, we also show that F(-) is a contraction
mapping with respect to || - ||, (while the contraction fac-
tor is different), and the optimal Q-function is its unique
fixed point.

The SA reformulation together with the contraction
property enables us to apply our SA results to get the
finite-sample bounds and the sample complexity guar-
antees of Q-learning. Beyond Q-learning, TD-learning
variants such as off-policy V-trace, n-step TD, and
TD(A) can all be modeled as Markovian SA algorithms
involving contraction mappings (possibly with respect
to different norms) and Markovian noise. Therefore,
our SA results provide a unified approach for the finite-
sample analysis of value-based RL algorithms.

1.3. Related Literature

In this section, we discuss the literature on SA algo-
rithms. We defer the discussion of the related literature
on RL algorithms to the corresponding sections where
we present the results.

The SA method was first introduced in Robbins and
Monro (1951) to iteratively solve systems of equations.
Since then, the SA method has been widely used in the
context of optimization and machine learning. For
example, in optimization, a special case of SA known as
stochastic gradient descent (SGD) has been a popular
approach for solving large-scale optimization problems
(Bottou et al. 2018, Lan 2020). In RL, popular algorithms
such as Q-learning and TD learning are essentially SA
algorithms for solving variants of the Bellman equation
(Bertsekas and Tsitsiklis 1996, Sutton and Barto 2018).

The early literature on SA focused on asymptotic con-
vergence (Bertsekas and Tsitsiklis 1996, Kushner 2010,

Benveniste et al. 2012, Kushner and Clark 2012). A popu-
lar approach known as the ODE method (Ljung 1977)
was developed to analyze the behavior of an SA algo-
rithm by studying the stability of its associated ODE. See
Borkar and Meyn (2000), Borkar (2009), Benaim (1996),
Yaji and Bhatnagar (2019), and Karmakar and Bhatnagar
(2021) for more details about the ODE approach. The
asymptotic convergence of other variants of SA such as
multiple time-scale SA was studied in Bhatnagar and
Borkar (1998, 1997).

More recently, finite-sample analysis of SA algorithms
has seen a lot of attention, as it provides more informa-
tion than asymptotic convergence and can be used to
guide practical implementations. For SA with a linear
update rule, finite-sample analysis was performed in
Bhandari et al. (2018), Srikant and Ying (2019), Dalal et al.
(2018), and Thoppe and Borkar (2019). Other variants of
linear SA, such as two-time-scale linear SA and decen-
tralized linear SA, were studied in Kaledin et al. (2020)
and Doan (2021) and Zeng et al. (2021), respectively. For
SA with nonlinear update equations, finite-sample guar-
antees were derived under a contractive (or cone-con-
tractive) operator in Wainwright (2019) and Qu and
Wierman (2020) and under a strongly pseudo-monotone
operator in Chen et al. (2022). Both Wainwright (2019)
and Qu and Wierman (2020) require the noise to be
almost surely bounded by a constant. In addition, the
Markovian noise presented in Qu and Wierman (2020)
has a special structure, whereas our Markovian noise is
more general.

A special case of nonlinear SA is SGD, the finite-
sample bounds of which were established in Lan (2020),
Moulines and Bach (2011), Duchi et al. (2012), Doan
(2023), and Bansal and Gupta (2019) and the references
therein. In SGD, the property of the gradient operator
plays an important role in the analysis. For general SA
(like the one we study in this work), the update equation
may not involve a gradient operator of any objective
function. Consequently, constructing valid Lyapunov
functions in this case is more challenging.

2. Finite-Sample Analysis of Markovian

Stochastic Approximation
In this section, we present our main results. We begin
by formally stating our assumptions.

Assumption 1 (Contraction). The operator F(-) satisfies
IF(x1) = F(x)llo < Bllx1 — xall. for all x1,x, € R?, where
B€(0,1)and || -||. is an arbitrary norm in RY.

Under Assumption 1, the fixed-point equation F(x) = x
has a unique solution, which we denoted by x* (Banach
1922).

Assumption 2 (Lipschitz Continuity). There exists A1 >0
such that ||F(x1,y) — F(2, y)ll. < Aillxy — x2ll, for any x1,
xeR andye .
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We also denote B; := max,cyl|F(0,y)||,, which is well
defined and finite, because the state space ) is finite.
The Lipschitz continuity assumption can be viewed as
a relaxation of the assumption that the SA algorithm
has a linear update rule. This assumption is naturally
satisfied for all the RL algorithms we are going to study
in Section 3.

Let Py € RIYIXIYI be the transition probability matrice
of the Markov chain {Y}}, and let || - ||y be the total vari-
ation distance between probability distributions.

Assumption 3. The Markov chain {Y} is irreducible and
aperiodic.

Because | Y| < oo, Assumption 3 implies that {Y}} has
a unique stationary distribution uyy (Levin and Peres
2017). In addition, there exist C>0 and ¢ € (0,1) such
that maxyey||P% (v, -) — iy ()llpy < Co* for all k > 0 (Levin
and Peres 2017). Assumption 3 is imposed to control
the stochastic error due to the Markovian noise {Y} in
Algorithm (1). In RL, Assumption 3 translates into a
requirement of exploration, which, to some extent, is a
necessary requirement for successfully learning an
optimal policy.

Let Fy be the o-field generated by {(x;, Yi, w;)}o<i<k_1
U {xx}.

Assumption 4 (Martingale Difference Noise). The ran-
dom process {wy} satisfies (1) E[wy|Fi] =0 for all k=0,
and (2) |lwll. < Azllxill, + B2 for all k>0, where Aj,
B, > 0.

Unlike in Wainwright (2019) and Qu and Wierman
(2020), the additive noise here wy can grow linearly
with respect to the latest iterate x; and does not need to
be uniformly bounded by an absolute constant.

2.1. Generalized Moreau Envelope as a Smooth
Lyapunov Function
From now on, we will present our Lyapunov approach
for the finite-sample analysis of Algorithm (1). Recall
from Equation (3) that, with respect to the iterates {xy}
of Algorithm (1), an ideal Lyapunov function M(x) acts
as a potential function that contracts. In this section, we
construct a novel Lyapunov function through the gen-
eralized Moreau envelope.

The following definitions are needed. In this paper,
(x,y) = xTy represents the standard dot product, whereas
the norm || - || in the following definition can be any arbi-
trary norm instead of just being the Euclidean norm

el = (e 2)"2.
Definition 1. Let g: R? — R be a convex differentiable
function. Then g() is said to be L smooth with respect to
111 i and only if g(y) < g(x) + (Vg(x),y — )+ lx — yif
for all x,y € RY.

Definition 2 (Generalized Moreau Envelope). Let i :
R+ R be a closed and convex function, and let ki, :
R? — R be a convex and L smooth function. For any
6 >0, the generalized Moreau envelope of h;(-) with
respect to hy(+) is defined as M}i’hZ (x) = inf, cga {h1 (1) +
Lhy(x —u)}.

The standard Moreau envelope was previously
used in Guzman and Nemirovski (2015) and Beck and
Teboulle (2012) to study convex optimization pro-
blems. For any two functions k1, h; : RY — R, the func-
tion defined by (h10ho)(x) = inf, pa{h1 (1) + ho(x — u)}
is called the infimal convolution of K (-) and hy(-)
(Beck 2017). Therefore, the generalized Moreau enve-
lope in Definition 2 can be equivalently written as

MO (x) = (hlm%z) (x).

h]

2.1.1. Construction of a Valid Lyapunov Function. Let
flx)= %||x||f, where || - ||, is the contraction norm given in
Assumption 1. Let || - ||, be an arbitrary norm in R? such
that g(x) := %||x||§ is L smooth with respect to the same
norm ||-||; in its definition. For example, ||- ||, can be
the £,-norm for any p € [2,00), where L=p —1 (Beck
2017, example 5.11). Because of the equivalence between

norms in R? (Lax 1997), there exist €. € (0,1] and u. €
[1, c0) that depend only on the dimension 4 and univer-
sal constants, such that €. ||; < || - |l < uesl| - ls- We will
use the generalized Moreau envelope of f(-) with respect

to g(-), that s, M;)’g (+), as our Lyapunov function to ana-

lyze the behavior of Algorithm (1), where 0 > 0 is a tun-
able parameter.

The following proposition states that Mj?’g () is a
smooth approximation of the norm-squared function f(-).

Proposition 1 (Proof in Online Appendix 1.1). The func-
tion Mfe’g () has the following properties: (1) Mf’g () is con-
vex, and & smooth with respect to ||-|l;, (2) there exists a
norm || - |, such that M]?’g(x) = %||x||§1, and (3) it holds that

Comll e <11+ Mle < tiemll - |l where €= (1 + 6535)1/2 and
tem = (14 Ou2)'2.

Proposition 1(1) is restated from Beck (2017), and we
include it here for completeness. This, together with Prop-
osition 1(3), implies that Mfe’g (-) is a smooth approxima-
tion of the norm-squared function f(-). Proposition 1(2)
states that M]?’g () itself is also a norm-squared function.

2.2. Establishing a One-Step Contrac-
tive Inequality
Using the smooth approximation property of the gener-

alized Moreau envelope Mfe’g (-), we next establish a
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one-step contractive inequality (Equation 3) of Mfe’g
(xx — x*). To state the result, we first introduce neces-

sary notation and specify the condition needed for

choosing the step sizes.

1+0u%, _ 114L(1+6u?)
1+9[2 r Pr = 1- ﬁgol 4 and P3= 00, .

The tunable parameter 0 is chosen such that ¢, >0,
which is always possible because limg_op, =1 and
p€(0,1). For any 6 >0, let t; = min{k > 0 : maxyey||P}
(,-) — ty()llry <6}, which can be interpreted as the
mixing time of the Markov chain {Y}} with precision 6.
We have t5 = O(log(1/6)) under Assumption 3. For
simplicity of presentation, we denote A =A; + A +1,
B=B1+By, ty = tak and Qi = Z;(:,' .

Let ¢, =

Condition 1. The step size sequence {ay} is nonincreasing

and satisfies a_y, x—1 < min ( AT 4A> forall k= t.

Condition 1 is analogous to the requirements for
choosing step sizes imposed in Srikant and Ying (2019)
and Chen et al. (2022), which study linear Markovian
SA and nonlinear Markovian SA under a strongly
pseudo-monotone operator, respectively. We will ver-
ify in Online Appendix 1.8 that Condition 1 is satisfied
when using either a small enough constant step size
(i.e., & = a) or linearly diminishing step sizes (i.e., a; =
a/(k + h) with properly chosen a and h), or polynomi-
ally diminishing step sizes (i.e., ay = a/(k + h)* for all
£ €(0,1)), provided that @ and h are properly chosen.

Now we are ready to state the Lyapunov drift inequal-
ity. The proof of the following proposition follows from
a sequence of lemmas. Please see Sections 2.4.1 and 2.4.2
for more details.

Proposition 2. The following inequality holds for all
k>t

E[M[® (1 — x)]
< (1 -2, + (p3A207k)IE[Mf6’g(xk —x7)]

(532"<A|| <l + B, ©)

where &y = apQ_g, k-1

Equation (6) is in the form of the desired one-step
contractive inequality presented in Equation (3). To see
this, suppose that we use a constant step size a; = a.
Then we have &; = a’t,, which is of order o(a) because
lim,—,oat, = 0 under Assumption 3. Similarly, we show
in Online Appendix 1.8 that @ =o(ax) when using
either linearly diminishing step sizes or polynomially
diminishing step sizes.

2.3. Finite-Sample Analysis
In view of Proposition 2, to establish finite-sample
bounds of Algorithm (1), we repeatedly use Equation (6)

and evaluate the final expression using the explicit
choice of the step sizes. To present the results, let c; =
(Ilxo = °lle + [lxolle + B/A)* and ¢ = (Aljx*[|, + B)*. Define
K =min{k >0:k > #}, which is well defined because f;
scales polynomially with k under Assumption 3.

Theorem 1. Suppose that Assumptions 1-4 are satisfied
and {ay} satisfies Condition 1. Then, for any k € [0,K —1],
we have ||x; — x*||f < ¢y almost surely. For any k> K, we
have the following finite-sample bounds.

(1) When ay = a, we have
oy

ty.

Elllxe — 1] < @ye1(1 — gpa) ‘P(;Z

2

(2) Consider using diminishing stepsizes
(@) When oy = oo/ (k + h) with a < 1/¢,, we have

820 K
1—g,ak+ b7

. K+nm\ %"
Bl 1E < o (3

(b) When ay = a/(k + h) with « = 1/¢,, we have

. +h telog(k + h)
Elllve ~x'2] < 9y i+ 8y S8 T),

(c) When ay = a/(k + h) with a > 1/¢,, we have

X K+h Bea’pycr t
E[[lxe — x*|[7] < (P1C1(k+h> mm
(B) When oy =ar/(k + h)* with & € (0,1), we have

e ¢ -5\ 4p.coax ¢
IE[lIXk—x*Ilf]S<P1cle’1%<("+h)1 ) t) L 2Ps0 K

Py (k+h)°
Remark 1. Because f5 < bg(%@% under Assump-
tion 3, we have f;, < W which introduces

an additional logarithmic factor in the bound.

In all cases of Theorem 1, we state the results as a
combination of two terms. The first term is usually
viewed as the “bias,” and it involves the error in the
initial estimate x, through the constant ¢;. The second
term is usually understood as the “variance” and
hence involves the constant c,, which represents the
noise variance at x*. In view of Theorem 1, we see that
constant step size is very efficient in driving the bias
to zero but cannot eliminate the variance even asymp-
totically. This suggests using diminishing step sizes to
eliminate the variance. When using linearly diminish-
ing step sizes oy = a/(k +h), the convergence bounds
crucially depend on the value of @, and the best con-
vergence rate of O(1/k) is achieved with a>1/¢,.
When using a < 1/¢, in Algorithm (1), in view of The-
orem 1(2a), the convergence rate can be arbitrarily



Chen et al.: A Lyapunov Theory for Markovian Stochastic Approximation
Operations Research, Articles in Advance, pp. 1-16, © 2023 INFORMS

7

slow. When using polynomially diminishing step sizes,
although the convergence rate is the suboptimal
O(log(k)/k%), it is more robust in the sense that it does
not depend on a. Note that « in this case appears only
as a multiplicative constant in the dominant term (The-
orem 1(3)).

2.3.1. Connection to SGD. Although Theorem 1 is
derived for SA algorithms that involve a contractive
operator, they also recover finite-sample bounds for
SGD with a smooth and strongly convex objective. To
see this, let [(x) be a differentiable objective function
that is smooth and strongly convex with parameters C;,
and C,, respectively. Consider the following SGD algo-
rithm for minimizing J(-): xx41 = X% + (= V] (xx) + wy),
where 1 > 0 is a constant (Nemirovski et al. 2009, Bot-
tou et al. 2018, Lan 2020). The SGD algorithm can be
written in the form of our SA Algorithm (1) with
F(x) = F(x,y) := —V](x) + x. Furthermore, it is known
that F() is a Lipschitz operator with respect to the
Euclidean norm ||-||,, with Lipschitz constant Lsgp =
max(|1—nCs|, |1 —nCL|) Ryu and Boyd 2016). There-
fore, when 1 €(0,2/CL), we have Lsgp<1, and hence
the operator F(-) is a contraction with respect to || - [|,.

2.3.2. Logarithmic Dependence on Dimension. Switching
focus, we now revisit the constants {¢, }; ;<3 in Theorem 1.
Note that {¢,},<;<3 are determined by the choice of the
smoothing norm || - ||, (through the constants u. and €)
and the parameter 0. Depending on the contraction norm
|| Ilo, the smoothing norm should be chosen accordingly
to optimize the constants {@;};;3. In the following
lemma, we consider two cases where ||-||.=]-|l, and
Il Ile =l lloo, oth of which will be useful when we study
convergence bounds of RL algorithms.

Lemma 1 (Proof in Online Appendix 1.3). (1) When || - ||,
=|-|l,, by choosing || -|l; = || - I, and 6 =1, we have ¢, <1,
Py >1—p, and @y <228. (2) When || - ||, = || - ||eo, by choos-

ing ||l = Il -ll, with p =2 log(d) and 0 = (“ﬁ) 1, we
456e log(d
have ¢, <3, ¢y > 15, and ¢y < O;;g()

2.3.3. Order-Wise Tightness. Compared with £,-norm
contraction, where the constant ¢, is bounded by a
numerical constant, the upper bound for ¢, has an addi-

log(d)
1-p
In general, we cannot hope to improve the convergence

tional factor of when we have {,-norm contraction.

rate beyond O(1/k) or the dimension dependence
beyond log(d) in the case of {s-norm contraction. To see
this, consider the trivial case where F(x) = 0 and {wy} is
an independent and identically distributed sequence of
standard normal random vectors. In this case, Algo-
rithm (1) becomes x;,1 = x; + ax(—xx +wy), which can

be viewed as an SA algorithm for solving the trivial
equation x =0, or an SGD algorithm for minimizing a
quadratic objective J(x) =1|lx|5. When aj= L, the
iterates x; are simply the running averages of {wy}, that
is, X = kz, o w; for all k>1, which implies x; ~%

N(0,I,). It follows that E[||x|[%,] = O (@) (Vershynin

2018). Therefore, in this setting, our finite-sample
bounds under {.,-norm contraction are order-wise tight
both in terms of the convergence rate and the dimen-
sional dependence.

2.4. Proof of Theorem 1

The proof consists of three major steps. The first step is
to show that the generalized Moreau envelope we con-
structed as a Lyapunov function produces a negative
drift with respect to the stochastic iterates of the SA
algorithm. The second step is to show that, all the error
terms (i.e., discretization error and the stochastic error)
in the SA algorithm are dominated by the negative
drift, hence we have an overall one-step contractive
inequality of the SA algorithm with respect to the Lya-
punov function (Proposition 2). The smoothness prop-
erty of the Lyapunov function and the geometric
mixing property of the Markov chain {Y} play impor-
tant roles in this step. The last step is to repeatedly use
the one-step contractive inequality to obtain the finite-
sample bounds and to evaluate the final expression
when using different step sizes. The proofs of all the
technical lemmas used in this section are presented in
Online Appendix 1.

2.4.1. Establishing the Negative Drift. Using the smooth-
ness property of M *(-) (Proposition 1(1)) and the up-
date equation in Equatlon (1), we have for all k > 0 that

E[MY (i — )]

< E[M{"S (x — x)] + aB[(VM{S (i — x°), F(xi) — x0)]

T1: Expected update

+ A E[(VM{S (i — ), F(xi, Yi) = F(xi)]

T,: Error due to Y

+ oy E[(VMS (¢ — x°), )]

Ts: Error due to wy

Lag 2
+ Ok B|F(x, i) — v+ il ”)

Ty: Error due to discretization and noises

The term T, represents the expected update and pro-
duces a negative drift.
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Lemma 2. It holds for all k > O that <V1v1]?'g (xe — x°), E(xp)
—x) < —2(1 - ﬁ[—)Mj?g (xp — x°).

24.2. Handling the Error Terms. What remains to
do is to bound the error terms T,, T3, and T4. Using
the assumption that {w;} is a martingale difference
sequence and the tower property of conditional expec-
tations, we see that T3 = 0. As for the term T}, using the
triangle inequality and the Lipschitz property of the
operator F(-,-) (Assumption 2), we have the follow-
ing result.

2LA%2, 02 5 10,g
Lemma 3. It holds for any k >0 that Ty < o2 M
* Lag *
(i =)+ it (Allell + BY.

To control the term T,, we need to carefully use a
conditioning argument along with the geometric mix-
ing of {Yy}. The following lemma is useful for us to con-
trol T.

Lemma 4. Given nonnegative integers ki <k, satisfying
ke -1 < 14, we have for all k € [ky, ko ]:

[l — x5 lle < 2, 1, —1(Allxg |l + B), and

IIxe — xx, Il < 4ag,, k,—1(Allx, |l + B).

Because ay, i,—1 <75 (Condition 1), Lemma 4 has the
following corollary, which will also be frequently used
in the derivation.

Corollary 1. Under the same conditions as in Lemma 4, we
have for all k € [kq,k;] that

lle = 2, |l < oin{l, [le, [, [|c) + B/ A-

To proceed and bound the term T, in Equation (7), we
first show that the induced error is small (o) to be
precise) if we replace x, by xx_;, in the term T,, where
we recall that f; is the mixing time of the Markov chain
{Y} with precision ay. This is where we use Lemma 4.

After such replacement, the term T, becomes Tr=aE
[(VM (i, — ), F(x1,, Yi) — F(x¢4,))]. By the tower
property of conditional expectations, we have

Ta = E[(VM] ¥ (i, — x),
BF(xk—t, Yie) Xkt Yiet, ] — F () )].

=0(1) by geometric mixing

Using the geometric mixing of {Y}, we see that the dif-
ference between E[F(xy_;, Yi)|xc_+,, Vit ] and F(xy_,)
(which can be written as Ey., [F(x,Y)] evaluated at
X = X_y,) is of o(1), which implies Ta = o(ay). Formally,
we have the following lemma.

Lemma 5. It holds for all k > t; that

2,2
112LA U, X—ty, k—1

G,g *
T, < E[M,®(x, —x
2 o MO (3 — )
56Lakak—tk,k—1 (A”x*” + B)2
0r% ‘

Combining the upper bounds we obtained for the
terms T to T4 in Equation (7), we arrive at the desired
one-step contractive inequality presented in Proposi-
tion 2.

2.5. Solving the Recursion

The rest of the proof follows by repeatedly using Propo-
sition 2 and evaluating the final expression when using
different step size sequences. Specifically, because
Aty k-1 < P,/ (p3A%) for all k>K (Condition 1), we
have by Proposition 2 that

E[M(x¢1 = x)] < (1 = @) E[M(xg — x7)]

P30k Xkt k-1

Allx*l. + B)?
22 (Allx*[l. + B)

for all k > K. Recursively using the previous inequality,
we have for any k > K that

Efll; — 2717
< 2u3, B[M(x¢ — x)])

k-1

< 2u? E[M(xg — x*)]H(l — o)
=K

(Proposition 1 (3))

k—1 k—1
+ @3 (AlCl + B i, [[ (1= )
i=K

j=i+l
ugm *12 T
< " Elllve v [0 - o)
cm j=K

k—1 k—1
+ @3 (AIX Nl + B iy i1 [ (1= o)

i=K j=itl
=
= ¢, Bllex — X IF1] [(1 - o)
j=K
k=1 k-1
+ @3C2Zaiai—ti,i—l H (1= pya)),
i=K j=i+l

where we recall that c; = (A||x"]. + B)*. According to
Condition 1, we also have a1 < ﬁ for any k € [0,K].
Therefore, we have for any k € [0, K] that

E[|lx — x°[7] < Bl (e — xoll. + llxo — °[10)°]

* 2
< (o = X7llc + [lxollc +B/A)™ = c1,
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where the second inequality follows from Corollary 1.
Because the previous inequality implies E[||xx — x*||f]
< c1, we obtain for all k > K that

k-1
Efllx — x|7] < <p161H(1 = Qo)
=K
k-1 k-1
+ <P3C22 Qi i1 H (1- §020¢j)~ )
i=K j=i+l

Evaluating the right-hand side (RHS) of the previous
inequality for different choices of the step sizes, we
obtain all the cases presented in Theorem 1. See Online
Appendix 1.8 for more details.

Remark 2. We handled Markovian noise in Section
2.4.2 by using a conditioning argument that exploits
the geometric mixing (Assumption 3) of the underly-
ing Markov chain, which in turn is a consequence of
irreducibility and aperiodicity. An alternate approach
to handle the Markovian noise is based on the Poisson
equation (Benveniste et al. 2012, part II, chapter 1) and
may need a different set of assumptions.

3. Applications in RL

We begin by introducing the underlying model for RL.
The RL problem is usually modeled as an MDP where
the transition probabilities and the reward function
are unknown. In this work, we consider an MDP con-
sisting of a finite set of states S, a finite set of actions 4,
a set of unknown transition probability matrices that
are indexed by actions {P, € RISXISH g € A}, a reward
function R: S X A+— [0,1], and a discount factor y €
(0,1). Because we work with finite MDPs, assuming
bounded reward is indeed without loss of generality.

The goal in RL is to find an optimal policy 7* so that
the cumulative reward received by using n* is maxi-
mized. More formally, given a policy 7, define its state-
value function V™ : S+ R as V7(s) = Ex[> 12, Y*R(Sk,
Ay)|Sp = s] for all s, where E[] means that the actions
are selected according to the policy 7. Then, a policy 7*
is said to be optimal if and only if V™ (s) > V™(s) for any
state s and policy 7. It was shown that such an optimal
policy always exists (Bertsekas and Tsitsiklis 1996).

In RL, the problem of finding an optimal policy is
called the control problem. The most popular algorithm
for solving the control problem is Q-learning (Watkins
and Dayan 1992). Although the ultimate goal is to find
an optimal policy, in RL, there is usually a smaller goal
of finding the value function of a given policy, which is
called the prediction problem and is usually solved with
TD-learning and its variants (Sutton 1988). Both Q-
learning and TD learning are by nature SA algorithms
for solving variants of the Bellman equation. Therefore,
our results on SA unify the finite-sample analysis of
value-based RL algorithms.

We next present three case studies: the off-policy V-
trace algorithm, the on-policy n-step TD algorithm, and
the Q-learning algorithm. We also establish finite-sample
guarantees of the TD(A) algorithm, which is presented in
Section 5.

3.1. Off-Policy Prediction: V-Trace

TD learning for solving the prediction problem can be
divided into two categories: on-policy TD and off-
policy TD. In off-policy TD, one uses samples gener-
ated by a behavior policy 7, to learn the value function
of the target policy 1t # m,. Off-policy sampling is used
for three important reasons. (1) It is typically necessary
to have an exploration component in the behavior pol-
icy m, which makes it different from the target policy
7. (2) It is used in multiagent training where various
agents collect rewards using a behavior policy that is
lagging with respect to the target policy in an actor-
critic framework (Espeholt et al. 2018). (3) It enables
learning using historical data, which improves sample
efficiency.

Off-policy TD learning is usually implemented through
importance sampling to obtain an unbiased estimate of
the desired value function. However, the variance in the
estimate can explode because the importance sampling
factor can be very large (Glynn and Iglehart 1989). There-
fore, a well-known and fundamental difficulty in off-
policy TD learning with importance sampling is to bal-
ance the bias-variance tradeoff.

Recently, Espeholt et al. (2018) proposed an off-policy
TD learning algorithm called the V-trace, where they
introduced two truncation levels in the importance sam-
pling weights. Their construction (through two separate
clippers) crucially allows the algorithm to control the
bias in the limit (through one clipper), whereas the other
clipper mainly controls the variance in the estimate. The
V-trace algorithm has had a huge practical impact: It has
been implemented in distributed RL architectures and
platforms like IMPALA (Espeholt et al. 2018), a Tensor-
flow implementation, and TorchBeast (Kiittler et al.
2019), a PyTorch implementation, for multiagent train-
ing besides being used at scale in a recent Deepmind
City Navigation Project “Street Learn” (Mirowski et al.
2018). Given its impact, a theoretical understanding of
the effects of the truncation levels on the convergence
rate is important for us to determine how to tune them
to get the best performance of V-trace.

3.2. Algorithm

We next present the V-trace algorithm for off-policy
TD learning. Recall that we denote 71, as the behavior
policy and 7 as the target policy. Let n be a positive in-

ni(a|s)

, m,(a|s)) and p(s,a) = ml'n(ﬁ,

teger. Define c(s,a) = min (E

ni(als)

il S)) as the two truncated importance sampling factors
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at state-action pair (s, ), where ¢ and p are the two differ-
ent truncation levels satisfying p > ¢ > 0.

Let {(Sx,Ar)} be a sequence of samples collected
under the behavior policy 7t,. Then, with initialization

Vo € R!S! for each k > 0, the V-trace algorithm updates
the estimate V of the target value function V™ accord-
ing to

Vk+1 (S)

k+n—1 i—1
Vils) +a Yy * (Hc(sj,Aj))
— i=k j=k

P(Si/ Ai)rl (Vk/ Sil Ai/ SH—l)/
Vk(s)/

Sk =S5,
Sk#s,
)

where I’l(Vk, Si,A;, Si+1) = R(S,-,Ai) + )/Vk(SH.l) — Vk(Si)
is the temporal difference. The V-trace algorithm pre-
sented above can be viewed as an extension of the well-
known n-step on-policy TD learning to the setting
where we use off-policy sampling. Specifically, the
truncated importance sampling factors are introduced
due to the discrepancy between the behavior policy 7
and the target policy . Consider the special case where
1 =T1. By choosing p =¢ =1, which implies c(s,a) =
p(s,a) =1, Algorithm (9) reduces to the standard n-step
TD learning.

To establish finite-sample bounds of Algorithm (9),
we make the following assumption.

Assumption 5. The behavior policy v, satisfies {a € Al
(als) >0} C {a e A|lmy(als) > 0} for all s € S, and the Mar-
kov chain {Sy} induced by T, is irreducible and aperiodic.

The first part of Assumption 5 is call the coverage
assumption, which states that, for any state, if it is pos-
sible to explore a specific action under the target policy
1, then it is also possible to explore such an action
under the behavior policy ;. This requirement is nec-
essary for off-policy RL. The second part of Assump-
tion 5 is imposed to ensure the exploration of m;, and
implies that {S;} has a unique stationary distribution,
denoted by g€ AlS!, the minimum component of
which is denoted as Kgs min. Moreover, the Markov
chain {Sx} induced by m, mixes at a geometric rate
(Levin and Peres 2017).

3.2.1. Properties of the V-Trace Algorithm. We next
follow the blueprint presented in Section 1.2.2 to estab-
lish the finite-sample bounds of the V-trace algorithm
using our SA results. We begin with the reformulation.
For any k>0, let Yy = (S, Ak, .., Sken1,Aken_1,Skin)-
It is clear that {Y;} is also a Markov chain, the state
space of which is denoted by ) and is finite. Define an

operatorF:R|3| XY RIS as

[E(V,9)I(s) = [F(V, 0,0, - -, Sn-1,8n-1,51)](5)

n—1 i—1
= Ligyms) ' (HC(sj,a,-)) p(si, a;)
=0\ j=0
I'1(V,si,ai,5141) + V(s)

for all V eR!®I, y =(So0,a0,...,5,) €)Y, and s € S. Then,
Equation (9) can be equivalently written as

Vi = Vie+ ar(F(Vi, Yi) — Vo), (10)

which is the same form of Algorithm (1) with x,=V;
and w,=0. Under Assumption 5, we next establish the
properties of the operator F(-,-) and the Markov chain
{Y}, which will enable us to apply Theorem 1. The fol-
lowing notation is needed to state the result.

For any policy 7, let P, € RIS/*IS! be the transition
probability matrix of the Markov chain {S;} induced by
7 and let R, € RS be such that Ry(s) = > aeam(als)
R(s,a) for all s. Let D, D, € RISIXISI pe diagonal matri-
ces with diagonal components {Er,[c(S,A)|S =s]}cs
and {E,[p(S,A)|S = s]}ses, respectively. Let D¢ min (res-
pectively, Dy, min) be the minimum diagonal component
of D, (respectively, D,). Let Ks = diag(«s) € RISIXIS]
and s, min = Mingesks(s). Define two policies m; and

e (a]c) = _C,0mals) (ale) — _PSamals)
i as 1:(als) = g Ayrs=y and 75(als) = g pis Ayrs=s)

for all state-action pairs (s, ). Let 17, (x) = Z;’;Ol x' for
any x>0 and positive integer .

Proposition 3 (Proof in Online Appendix 2.1). Under
Assumptions 5, we have the following.

(1) The operator F(-) satisfies (a) [IF(V1,y) — F(V2, )|l
< (20 + 1), (0)IV1 — Vallo for all Vi, V, € RIS and y e

Y, and (b) [IF(0,y)ll., < pn,,(yC) forally € Y.
(2) The Markov chain {Y} has a unique stationary distri-
bution y. Moreover, there exist C1 > 0 and o1 € (0,1) such

that maxyey||P5™(y,-) — iy (llry < C10% for all k > 0.

(3) Define the expected operator F : R!S! — RIS of F(., )
as F(V) = Ey-, [F(V,Y)] for all V € RIS\ Then, (a) F() is
explicitly given as F(V) = [ — KsY_ 1o (yDcPr)' Dp(I —y
Pnﬁ)]V+ICsZ:‘;01 (yDCPnE)iDpRnF, (b) F(-) is a contrac-
tion mapping with respect to || ||, with contraction factor
By:=1— /Cs,nﬁn(liy)(lzg;%;m;ﬂ )Dp’mi", and (c) F(-) has a
unique fixed point V™', which is the value function of the pol-
icy 5.

3.2.2. Finite-Sample Bounds of V-Trace. Proposition 3
enables us to apply Theorem 1 to establish the finite-
sample bounds of V-trace. For ease of presentation, we
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here only state the result for using a constant step size
(i.e., ax = a), the proof of which is presented in Online
Appendix 2.2. The convergence rate for using diminish-
ing step sizes is presented in Online Appendix 2.4.

Theorem 2. Suppose that Assumption 5 is satisfied, and
the constant step size a is chosen such that a(t, +n) <
tv,0 _2(1,—13_1)2,

7 (pH1) i (ye)log(| S1)
Markov chain {Si} (induced by m,) with precision «. Then
we have for all k > t, +n that

where t, is the mixing time of the

1 o k*ta*n
E[uvk—v"ﬂlli]SCv,l(l‘ 2[31“)
_ 2 =)2
e 2log(|3 D(p + 1)2’7n(VC) alty +n),
1-8,)

where cy,1 = 3([Vo — V| + [ Volleo + 1)* and cy, » = 3648
e(||V™7 || + 1) Moreover, we have

Y maxses [|(-[s) — mi5([9)lly

1%
1-y)

-Vl <

The convergence bound here is qualitatively similar to
Theorem 1. The truncation level p determines the limit
point V™. In addition, p plays a role in the second term
(which captures the variance in the algorithm) on the
right-hand side of the finite-sample bound. In practice,
p should be tuned to balance the tradeoff between the
bias at the limit point and the convergence variance.
The truncation level ¢ mainly controls the variance
term in the convergence bound through the factor
1, (yc). To formally characterize how the parameters of
V-trace impact the convergence rate, we next derive the
sample complexity bound.

Corollary 2 (Proof in Online Appendix 2.3). When p =
1/ming .7 (als), to make E[||Vy — V™| <€, the sample
complexity is

O(logz(zl/e)> (9( 1 5) 0( npn, ()’ 3)
€ (1 — 7/) Dg,mmfln(VDc/min)

Off-policy n=step TD

Accuracy
7 -3
O(ICS, min)
——

Qualityof exploration

Effective horizon

Remark 3. When there is a nonvanishing bias in the
bound, which in our case corresponds to V™ # V7,
the sample complexity is not well defined. Khodada-
dian et al. (2021, appendix C.1) provide a detailed dis-
cussion. Therefore, we choose p =1/min;,m;(als) >
max; ,7t(als)/m,(als) to eliminate the bias due to intro-
ducing the truncation level p. In this case, because

p(s,a) = %, we have V™ = V™. This is merely for

mathematical rigor.
From Corollary 2, we see that the dependence on

the required accuracy level is O(e?), which is known
to be optimal up to a logarithmic factor. In addition,

we have an O(1/(1 — )/)5) dependence on the effective
horizon, and at least a cubic dependence on the size of
the state-space |S|. To see this, observe that Kg min <
1/|S| implies K55 > |SI°.

The feature of the V-trace algorithm is captured by

~ —2 il 2
the term O( np_n,(r€) 3>, which is a consequence

Di,minr’n(yDC,min)
of performing n-step off-policy TD learning with trun-
cated importance sampling factors. The impact of the
parameter n will be analyzed in detail in Section 3.3,
where we study on-policy n-step TD and the effi-
ciency of bootstrapping. We here focus on the two
truncation levels ¢ and p. First, we choose p=1/
ming ,7,(als) > 1/|A| to ensure that V% = V™, which
introduces a factor of at least |.A| 2 in the sample
complexity. The dependence of the sample complexity
on the truncation level ¢ is through the term 7,(y¢).
To avoid an exponential factor of n, we need to
aggressively truncate the importance sampling factors
by choosing ¢ <1/y.

3.2.3. Related Literature on V-Trace. The V-trace algo-
rithm was first proposed in Espeholt et al. (2018) as an
off-policy variant of the n-step TD learning. The key
novelty in V-trace is that the two truncation levels ¢
and p are introduced in the importance sampling fac-
tors to separately control the asymptotic bias and the
variance. The asymptotic convergence of V-trace in the
case where n =co was established in Espeholt et al.
(2018). This is the first finite-sample analysis of V-trace
with asynchronous update. Other algorithms that are
closely related to V-trace are the off-policy Q™(A) (Har-
utyunyan et al. 2016), tree-backup TB(A) (Precup et al.
2000), and retrace(d) (Munos et al. 2016). A recent
work (Chen et al. 2020) presents a unified analysis of
these algorithms.

3.3. On-Policy Prediction: n-Step TD
In this section, we consider on-policy n-step TD learn-
ing algorithm, which can be viewed as a special case of
the V-trace algorithm with 1, = mand ¢ = p = 1. There-
fore, one can directly apply Theorem 2 to this setting
and obtain finite-sample bounds for n-step TD. How-
ever, we will show that due to on-policy sampling,
there are other properties (i.e., {,-norm contraction) of
the n-step TD learning we can exploit to obtain tighter
bounds.

Similarly as in the previous section, we make the
following assumption to ensure the exploration of the
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behavior policy 7, which is also the target policy in
on-policy TD.

Assumption 6. The Markov chain {Si} induced by m is
irreducible and aperiodic.

Assumption 6 implies that {S;} has a unique station-
ary distribution kg € A'S! (the smallest component of
which is denoted as Ks min). In addition, the Markov
chain {Sx} mixes at a geometric rate (Levin and Peres
2017).

3.3.1. Finite-Sample Analysis of n-Step TD. To refor-
mulate Equation (9) (with 7, =7 and ¢ =p =1) in the
form of Algorithm (1), the operator F(:,-) and the Mar-
kov chain {Yj} are defined in the same way as in Sec-
tion 3.2.1. We next present the {,-norm contraction
property of the operator F(-) = Ey. u, [F(, Y)] associated
with on-policy n-step TD. Other properties regarding
the operator F(-,-) and the Markov chain {Yi} (e.g.,
Lipschitz continuity, geometric mixing) are presented
in Online Appendix 3.

Proposition 4. The operator F(-) is a contraction mapping
with respect to the {y-norm || -||, for any p € [1,00], with a

common contraction factor f, =1 — Ks min(1 —y").

Unlike in the off-policy V-trace setting, where the
operator F(-)is only shown to be a contraction mapping
with respect to the w-norm, the operator F(-) associ-
ated with on-policy n-step TD is a contraction mapping
with respect to ||-||, for any p €[1,00], in particular,
the £,-norm. The {,-norm contraction is the property
we are going to exploit to establish the finite-sample
bounds of n-step TD. For ease of presentation, we next
state the guarantees when using a constant step size
ax = a. The results for using diminishing step sizes are
presented in Online Appendix 3.2.

Theorem 3 (Proof in Online Appendix 3.1). Suppose that
Assumption 6 is satisfied and « is chosen such that a(t, +
n) < Co(1 —pB,) (where ¢q is a numerical constant and t, is
the mixing time of the Markov chain {Si} induced by ©
with precision o). Then we have for all k > t, + n:

E[||[Vi — VT3] <11 — (1 — By)a) "
+62M
=71 -p)’

where ¢, = (Vo — V|l +[Voll, +4)* and é; = 228(4(1 —
MV + |S[V2)%

An important idea in n-step TD is to use the parame-
ter n to adjust the bootstrapping effect. Specifically,
n=0 corresponds to extreme bootstrapping, whereas
n = oo corresponds to using the Monte Carlo method
for estimating V™ and hence no bootstrapping. A long-

standing question in RL is about the efficiency of boot-
strapping, that is, the choice of # that leads to the opti-
mal performance of the algorithm (Sutton and Barto
2018).

By evaluating the convergence bounds in Theorem 3
with only n-dependent terms, we see that the bias term
isof (1-0(1 - )/”))k . Because the mixing time f, of the
Markov chain {Sx} does not depend on n, the variance
term is of O(n1/(1 —y")). Now we can clearly see that as
n increases, the bias goes down while the variance goes
up, thereby demonstrating a bias-variance tradeoff in
the n-step TD learning algorithm. To provide an esti-
mate of the optimal value of 11, we next derive the sam-
ple complexity of n-step TD based on Theorem 3.

Corollary 3. To achieve E][||Vi — V™||,] <€, the sample
complexity is

~ 1)\ =~ 1 ~ n
© <§> © ((1 — y)“’Cé,mm) ° ((1 — V")Z) '
—_————

The impact of n

In light of the dependence on the parameter 7, we can
optimize the choice of 7 to minimize the function W
over all positive integers. By doing that, we have
1opt ~ min(1,11/log(1/y)1), where |x] stands for the
integer closest to x. We point out that this choice of n
was derived based on minimizing our upper bound. To
ensure that it is indeed the optimal choice, we need to
derive a matching lower bound on the sample com-
plexity, which is a future research direction.

Compared with the off-policy V-trace, it is clear that
the on-policy n-step TD has a better sample complexity.
Specifically, it has a better dependency on the effective
horizon, which is O((1 — )/)74), and a better depen-
dency on the minimum component Cs min of the sta-
tionary distribution of {S¢}. The main reason for such
an improvement in the sample complexity is that we
are able to exploit the £,-norm contraction of the opera-
tor F(-) in n-step TD.

3.3.2. Related Literature on n-Step TD. The notion of
using multistep returns instead of only one-step return
was introduced in Watkins (1989). Sutton and Barto
(2018, chapter 7) provide more details about n-step TD.
The asymptotic convergence of n-step TD was estab-
lished using standard SA results under contraction
assumption (Bertsekas and Tsitsiklis 1996). Regarding
the choice of n, it was observed in empirical experi-
ments that n-step TD (with a suitable choice of 1) usu-
ally outperforms the one-step TD and Monte Carlo
methods (Singh and Sutton 1996, Sutton and Barto
2018). However, a theoretical understanding of this
phenomenon is not well established in the literature.
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3.4. Off-Policy Control: Q-Learning
Thus far, we considered TD learning algorithms for
solving the prediction problem. In this section, we con-
sider the Q-learning algorithm (Watkins and Dayan
1992) for solving the control problem (i.e., finding an
optimal policy). Define the Q-function associated with
a policy 7 as Qn(s,a) =E-[> 120 V*R(Sk, Ax)|So = s, Ao
=a] for all (s, a). Denote Q" as the Q-function associated
with an optimal policy 7*. All optimal policies share
the same optimal Q-function. The motivation of the Q-
learning algorithm is based on the following result
(Bertsekas and Tsitsiklis 1996, Sutton and Barto 2018):
7" is an optimal policy if and only if 7t (- |s) is supported
on the set arg max,_ ,Q’(s,a) for any (s, a). The previous
result implies that knowing the optimal Q-function is
sufficient to compute an optimal policy.

To find the optimal Q-function, we next introduce
the Bellman equation. Let  : RISTI — RISTHI be the
Bellman operator defined as

[H(Q)I(s,a)

Sy =8,Ar=a

7

= R(S,ﬂ) + VE lm%i( Q(Sk+l/a,)
a'e

vQ e RISHAL (5,0).

Then it has been shown that Q" is the unique solution to
the fixed-point equation H(Q) = Q (Bertsekas and Tsit-
siklis 1996). The Q-learning algorithm can be viewed as
an SA algorithm to solve the Bellman equation.

In Q-learning, we first collect a sample trajectory
{(Sk, Ax)} using a suitable behavior policy 7. Then, with
initialization Qg € RISHAl the iterate Qris updated as

Qx+1(s,a)
Quls,) + e (R(Si, Av)

+ymax QS a) = QS A)), - (5,0) = (S, 40,

Qk(sr Ll), (Sr 61) * (Sk/ Ak)
(11)

To establish the finite-sample bounds of Q-learning, we
make the following assumption.

Assumption 7. The behavior policy T, satisfies 1t,(als) > 0
for all (s, a), and the Markov chain {Sy} induced by T, is irre-
ducible and aperiodic.

The requirement that m;(a|s) > 0 for all (s, a) is neces-
sary even for the asymptotic convergence of Q-learning
(Tsitsiklis 1994). The irreducibility and aperiodicity
assumption is also standard in the existing work (Tsit-
siklis and Van Roy 1997, 1999). Because we work with
finite-state MDPs, Assumption 7 implies that {Sx} has a
unique stationary distribution, denoted by s € Al¥l,
and {Sx} mixes at a geometric rate (Levin and Peres
2017). Similarly, we let g min = mingesks(s).

3.4.1. Properties of the Q-Learning Algorithm. Recall
the definition of the operator F(-, -) and the Markov chain
{Yy} in Section 1.2.2. We next establish their properties
in the following proposition, which guarantees that the
assumptions needed to apply Theorem 1 are satisfied
in the context of Q-learning. Let Ksa e RISIAXISIA|
be the diagonal matrix with {xs(s)m;(a]s)}(s gesxa ON
its diagonal. Let Ksa, min = min q)ks(s)7,(als), which is
strictly positive under Assumption 7.

Proposition 5 (Proof of Online Appendix 4.1). Suppose
that Assumption 7 is satisfied, Then, we have the following
results.

(1) The operator F(:,-) satisfies (a) ||F(Q1,y)— F(Q2,
Pl <2001 — Qalle, for any Q1,Q, € RISUAL and y e Y,
and (b) [[F(O,y)lle < 1 forally €Y.

(2) The Markov chain {Y}} has a unique stationary distri-
bution py and there exist C3 >0 and o3 € (0,1) such that
maxyeyHPk“(y,-) — 1y Ollry < C305 for any k > 0.

(3) Define the expected operator F : RIS!Al — RISIAI
of F(-,-) as F(Q) = By~ [F(Q, Y)]. Then, (a) F(-) is explic-
itly given by F(Q) = KsaH(Q) + (I — Ks4)Q, (b) F(-) is a
contraction mapping with respect to || - ||, with contraction
factor By :=1— Ksa,min(1 — ), and (c) F(:) has a unique
fixed-point Q*.

Observe that the (s, a)th entry of F(Q) is given by xs(s)
(@] s)[H(Q)I(s,a) + (1 — xs(s)rp(als))Q(s,a), which can
be viewed as a convex combination of “performing up-

date” and “not performing update,” hence captures the
nature of asynchronism as illustrated in Section 1.2.2.

3.4.2. Finite-Sample Bounds of Q-Learning. Proposition
5 enables us to apply Theorem 1 and Corollary 1(2) to
Q-learning. For ease of presentation, we only state the
result for using a constant step size ay = a. See Online
Appendix 4.3 for the results when using diminishing
step sizes.

Theorem 4. Suppose that Assumption 7 is satisfied and o

2
is chosen such that a(t, +1) < CQ/Olog((lﬂs% (where cq, is

a numerical constant and t, is the mixing time of the Mar-
kov chain {Sy} induced by m, with precision ). Then we
have for all k > t, +1 that

k—ta—1
HW@—Q%KQMO_Q%@%

log(|S]|Al)
11—,

where ¢g,1 = 3(1Q0 = Q'llos +1Qollee + 1) and 5 = 912e
(BlIQ' | + 1.

alt, +1),
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Based on Theorem 4, we next derive the sample com-
plexity of Q-learning.

Corollary 4. Given € > 0, to achieve E[||Qr — Q*|lo] <€,
the sample complexity is

log’(1/e)\ » 1 o
O( > >O<(1—y)5> O(K5A min)

Quality of exploration

Accuracy Effective horizon

From Corollary 4, we see that the dependence on the
accuracy € is O(eleogz(l /€)), and the dependence on
the effective horizon is O((1 — )/)75). These two results
match with known results in the literature (Beck and
Srikant 2013, Li et al. 2020). The parameter Ksa,min cap-
tures the quality of exploration of the behavior policy
715 Because Ksa min = 1/|S]]A|, we see that there is at
least a cubic dependence on the size of the state-action
space.

3.4.3. Related Literature on Q-Learning. The Q-learn-
ing algorithm (Watkins and Dayan 1992) is perhaps
one of the most well-known algorithms in the RL litera-
ture. The asymptotic convergence of Q-learning was
established in Tsitsiklis (1994), Jaakkola et al. (1993),
and Borkar and Meyn (2000) and the asymptotic con-
vergence rate in Szepesvari et al. (1997) and Devraj
and Meyn (2017). Beyond asymptotic behavior, finite-
sample analysis of Q-learning was also thoroughly
studied in the literature (Even-Dar and Mansour 2003,
Beck and Srikant 2013, Jin et al. 2018, Li et al. 2020, Qu
and Wierman 2020). The state-of-the-art sample com-
plexity for asynchronous Q-learning goes to Li et al.
(2020), which has a better dependence on the size of the
state-action space compared with this work. In addition
to being a contractive SA, Q-learning has many other
properties, such as the update equation being asyn-
chronous, the iterates being uniformly bounded by a
constant (Gosavi 2006), which are used in Li et al
(2020) for their analysis. Although our SA framework
did not exploit these properties of Q-learning (which
results in a suboptimal sample complexity), it is a more
general framework that enables us to study a wide vari-
ety of algorithms beyond Q-learning. A typical exam-
ple is the V-trace algorithm studied earlier. Because of
off-policy sampling, the iterates of V-trace do not admit
a uniform upper bound.

4. Conclusion

In this paper, we perform finite-sample analysis of a
Markovian SA algorithm under a contractive operator
with respect to an arbitrary norm, and derive the conver-
gence rates under different schedules of the step sizes.
We develop a Lyapunov approach, and the key technical

novelty is the construction of a valid Lyapunov function
called the generalized Moreau envelope, which is capa-
ble of handling arbitrary norm (especially the £,,-norm)
contraction. Our SA results unify the finite-sample analy-
sis of value-based RL algorithms. Specifically, we estab-
lish finite-sample convergence guarantees of various
TD-learning algorithms (e.g., off-policy V-trace, n-step
TD, and TD(A)) for solving the prediction problem and
Q-learning for solving the control problem. In addition,
we provide theoretical insights about the efficiency of
bootstrapping in on-policy bootstrapped TD and dem-
onstrate a bias-variance tradeoff in off-policy TD.

Acknowledgments

Z. Chen recently moved to Caltech as a postdoctoral fellow in
August 2022. This work was done when Z. Chen was affiliated
with Georgia Tech. K. Shanmugam recently moved to Google
Research India (Bengaluru) in April 2022. This work was done
when K. Shanmugam was affiliated with IBM.

References

Banach S (1922) Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales. Fundamentals Math.
3(1):133-181.

Bansal N, Gupta A (2019) Potential-function proofs for gradient
methods. Theory Comput. 15(1):1-32.

Beck A (2017) First-Order Methods in Optimization (SIAM, Philadelphia).

Beck A, Teboulle M (2012) Smoothing and first order methods: A
unified framework. SIAM |. Optim. 22(2):557-580.

Beck CL, Srikant R (2013) Improved upper bounds on the expected
error in constant step-size Q-learning. Proc. Amer. Control Conf.
(IEEE, Piscataway, NJ), 1926-1931.

Benaim M (1996) A dynamical system approach to stochastic approxi-
mations. SIAM J. Control Optim. 34(2):437-472.

Benveniste A, Métivier M, Priouret P (2012) Adaptive Algorithms and
Stochastic Approximations, vol. 22 (Springer Science & Business
Media, Boston).

Bertsekas DP, Tsitsiklis JN (1996) Neuro-Dynamic Programming (Athena
Scientific, Belmont, MA).

Bhandari J, Russo D, Singal R (2018) A finite time analysis of tempo-
ral difference learning with linear function approximation. Proc.
Conf. on Learning Theory, 1691-1692.

Bhatnagar S, Borkar VS (1997) Multiscale stochastic approximation
for parametric optimization of hidden Markov models. Probabil-
ity Engrg. Inform. Sci. 11(4):509-522.

Bhatnagar S, Borkar VS (1998) A two timescale stochastic approximation
scheme for simulation-based parametric optimization. Probability
Engrg. Inform. Sci. 12(4):519-531.

Borkar VS (2009) Stochastic Approximation: A Dynamical Systems View-
point, vol. 48 (Springer, Berlin).

Borkar VS, Meyn SP (2000) The ODE method for convergence of
stochastic approximation and reinforcement learning. SIAM J.
Control Optim. 38(2):447-469.

Bottou L, Curtis FE, Nocedal ] (2018) Optimization methods for
large-scale machine learning. SIAM Rev. 60(2):223-311.

Chen Z, Maguluri ST, Shakkottai S, Shanmugam K (2020) Finite-
sample analysis of contractive stochastic approximation using
smooth convex envelopes. Larochelle H, Ranzato M, Hadsell R,
Balcan MF, Lin H, eds. Advances in Neural Information Processing
Systems (Curran Associates, Inc., Red Hook, NY), 8223-8234.

Chen Z, Zhang S, Doan TT, Clarke JP, Maguluri ST (2022) Finite-
sample analysis of nonlinear stochastic approximation with



Chen et al.: A Lyapunov Theory for Markovian Stochastic Approximation
Operations Research, Articles in Advance, pp. 1-16, © 2023 INFORMS

15

applications in reinforcement learning. Automatica ]. IFAC
146:110623.

Dalal G, Szérényi B, Thoppe G, Mannor S (2018) Finite sample anal-
ysis for TD(0) with function approximation. Proc. 32nd AAAI
Conf. on Artificial Intelligence (AAAI, Washington, DC).

Devraj AM, Meyn S (2017) Zap Q-learning. Guyon I, Von Luxburg
U, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R,
eds. Adv. Neural Inform. Processing Systems (Curran Associates,
Inc., Red Hook, NY), 2235-2244.

Doan TT (2021) Finite-time analysis and restarting scheme for linear
two-time-scale stochastic approximation. SIAM ]. Control Optim.
59(4):2798-2819.

Doan TT (2023) Finite-time analysis of Markov gradient descent.
IEEE Trans. Automated Controls. 68(4):2140-2153.

Duchi JC, Agarwal A, Johansson M, Jordan MI (2012) Ergodic mir-
ror descent. SIAM ]. Optim. 22(4):1549-1578.

Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward T,
Doron Y, et al. (2018) IMPALA: Scalable distributed deep-RL
with importance weighted actor-learner architectures. Proc.
Internat. Conf. on Machine Learn. (PMLR, New York), 1407-1416.

Even-Dar E, Mansour Y (2003) Learning rates for Q-learning. J.
Machine Learn. Res. 5(Dec):1-25.

Glynn PW, Iglehart DL (1989) Importance sampling for stochastic
simulations. Management Sci. 35(11):1367-1392.

Gosavi A (2006) Boundedness of iterates in Q-learning. Systems Con-
trol Lett. 55(4):347-349.

Guzmén C, Nemirovski A (2015) On lower complexity bounds for
large-scale smooth convex optimization. J. Complexity 31(1):1-14.

Harutyunyan A, Bellemare MG, Stepleton T, Munos R (2016) Q(A)
with off-policy corrections. Proc. Internat. Conf. on Algorithmic
Learn. Theory (Springer, Berlin), 305-320.

Jaakkola T, Jordan MI, Singh SP (1993) Convergence of stochastic
iterative dynamic programming algorithms. Cowan J, Tesauro G,
Alspector ], eds. Adv. Neural Inform. Processing Systems (Morgan-
Kaufmann, Burlington, MA), 703-710.

Jin C, Allen-Zhu Z, Bubeck S, Jordan MI (2018) Is Q-learning prov-
ably efficient? Proc. 32nd Internat. Conf. on Neural Inform. Proces-
sing Systems (ACM, New York), 4868-4878.

Kaledin M, Moulines E, Naumov A, Tadic V, Wai HT (2020) Finite
time analysis of linear two-timescale stochastic approximation
with Markovian noise. Proc. Conf. on Learn. Theory (PMLR, New
York), 2144-2203.

Karmakar P, Bhatnagar S (2021) Stochastic approximation with
iterate-dependent Markov noise under verifiable conditions in
compact state space with the stability of iterates not ensured.
IEEE Trans. Automated Control. 66(12):5941-5954.

Khodadadian S, Chen Z, Maguluri ST (2021) Finite-sample analysis
of off-policy natural actor-critic algorithm. Proc. Internat. Conf.
on Machine Learn. (PMLR, New York), 5420-5431.

Konda V, Tsitsiklis J (1999) Actor-critic algorithms. Solla S, Leen T,
Miiller K, eds. Adv. Neural Inform. Processing Systems (MIT
Press, Cambridge, MA), 1008-1014.

Kushner H (2010) Stochastic approximation: A survey. Wiley Inter-
disciplinary Rev. Comput. Statist. 2(1):87-96.

Kushner HJ, Clark DS (2012) Stochastic Approximation Methods for
Constrained and Unconstrained Systems, vol. 26 (Springer Science
& Business Media, Boston).

Kiittler H, Nardelli N, Lavril T, Selvatici M, Sivakumar V, Rock-
taschel T, Grefenstette E (2019) Torchbeast: A PyTorch platform
for distributed RL. Preprint, submitted October 8, https://arxiv.
org/abs/1910.03552.

Lan G (2020) First-Order and Stochastic Optimization Methods for
Machine Learning (Springer, Berlin).

Lax P (1997) Linear Algebra. Pure and Applied Mathematics: A Wiley
Series of Texts, Monographs and Tracts (Wiley, New York).

Levin DA, Peres Y (2017) Markov Chains and Mixing Times, vol. 107
(American Mathematical Society, Providence, RI).

Li G, Wei Y, Chi Y, Gu Y, Chen Y (2020) Sample complexity of
asynchronous Q-learning: Sharper analysis and variance reduc-
tion. Adv. Neural Inform. Processing Systems 33:7031-7043.

Ljung L (1977) Analysis of recursive stochastic algorithms. IEEE
Trans. Automated Control 22(4):551-575.

Mirowski P, Grimes M, Malinowski M, Hermann KM, Anderson K,
Teplyashin D, Simonyan K, et al. (2018) Learning to navigate in cit-
ies without a map. Proc. 32nd Internat. Conf. Neural Inform. Proces-
sing Systems (Curran Associates, Inc., Red Hook, NY), 2424-2435.

Moulines E, Bach F (2011) Non-asymptotic analysis of stochastic
approximation algorithms for machine learning. Adv. Neural
Inform. Processing Systems 24:451-459.

Munos R, Stepleton T, Harutyunyan A, Bellemare MG (2016) Safe
and efficient off-policy reinforcement learning. Proc. 30th Inter-
nat. Conf. on Neural Inform. Processing Systems, 1054-1062.

Nemirovski A, Juditsky A, Lan G, Shapiro A (2009) Robust stochas-
tic approximation approach to stochastic programming. SIAM
J. Optim. 19(4):1574-1609.

Precup D, Sutton RS, Singh SP (2000) Eligibility traces for off-policy pol-
icy evaluation. Proc. 17th Internat. Conf. on Machine Learn., 759-766.

Qu G, Wierman A (2020) Finite-time analysis of asynchronous sto-
chastic approximation and Q-learning. Proc. Conf. on Learn. The-
ory (PMLR, New York), 3185-3205.

Robbins H, Monro S (1951) A stochastic approximation method.
Ann. Math. Statist. 22(3):400-407.

Ryu EK, Boyd S (2016) Primer on monotone operator methods.
Appl. Comput. Math. 15(1):3-43.

Singh SP, Sutton RS (1996) Reinforcement learning with replacing
eligibility traces. Machine Learn. 22(1):123-158.

Srikant R, Ying L (2019) Finite-time error bounds for linear stochas-
tic approximation and TD learning. Proc. Conf. on Learn. Theory
(PMLR, New York), 2803-2830.

Sutton RS (1988) Learning to predict by the methods of temporal
differences. Machine Learn. 3(1):9—44.

Sutton RS (1999) Open theoretical questions in reinforcement learning.
Proc. Eur. Conf. on Comput. Learn. Theory (Springer, Berlin), 11-17.

Sutton RS, Barto AG (2018) Reinforcement Learning: An Introduction
(MIT Press, Cambridge, MA).

Szepesvari C, et al. (1997) The asymptotic convergence-rate of Q-
learning. Jordan M, Kearns M, Solla S, eds. Adv. Neural Inform.
Processing Systems (MIT Press, Cambridge, MA), 1064-1070.

Thoppe G, Borkar V (2019) A concentration bound for stochastic
approximation via Alekseev’s formula. Stochastic Systems 9(1):1-26.

Tsitsiklis JN (1994) Asynchronous stochastic approximation and Q-
learning. Machine Learn. 16(3):185-202.

Tsitsiklis JN, Van Roy B (1997) Analysis of temporal-difference
learning with function approximation. IEEE Trans. Automatic
Control 42(5):674-690.

Tsitsiklis JN, Van Roy B (1999) Average cost temporal-difference
learning. Automatica J. IFAC 35(11):1799-1808.

Vershynin R (2018) High-Dimensional Probability: An Introduction with
Applications in Data Science, vol. 47 (Cambridge University Press,
Cambridge, UK).

Wainwright MJ (2019) Stochastic approximation with cone-contractive
operators: Sharp (u-bounds for Q-learning. Preprint, submitted
May 15, https: //arxiv.org/abs/1905.06265.

Watkins C (1989) Learning from delayed rewards. PhD thesis,
King’s College, University of Cambridge, Cambridge, UK.

Watkins CJ, Dayan P (1992) Q-learning. Machine Learn. 8(3—4):279-292.

Yaji VG, Bhatnagar S (2019) Analysis of stochastic approximation
schemes with set-valued maps in the absence of a stability
guarantee and their stabilization. IEEE Trans. Automated Control
65(3):1100-1115.


https://arxiv.org/abs/1910.03552
https://arxiv.org/abs/1910.03552
https://arxiv.org/abs/1905.06265

16

Chen et al.: A Lyapunov Theory for Markovian Stochastic Approximation
Operations Research, Articles in Advance, pp. 1-16, © 2023 INFORMS

Zeng S, Doan TT, Romberg J (2021) Finite-time analysis of decentra-
lized stochastic approximation with applications in multi-agent
and multi-task learning. Proc. 60th IEEE Conf. Decision and Con-
trol (IEEE, Piscataway, NJ).

Zaiwei Chen is a postdoctoral researcher in the Computing +
Mathematical Sciences Department at Caltech. He is mainly inter-
ested in addressing sequential decision-making challenges
through reinforcement learning. His Ph.D. thesis received the
Georgia Tech Sigma Xi Best Ph.D. Thesis Award and was selected
as a runner-up for the 2022 SIGMETRICS Doctoral Dissertation
Award.

Siva Theja Maguluri is Fouts Family Early Career Professor and
Associate Professor in the H. Milton Stewart School of Industrial
and Systems Engineering at Georgia Tech. His research interests
span the areas of Networks, Control, Optimization, Algorithms,
Applied Probability, and Reinforcement Learning. He is a recipient

of the biennial “Best Publication in Applied Probability” award and
the NSF CAREER award.

Sanjay Shakkottai is with The University of Texas at Austin,
where he is a Professor in the Chandra Family Department of Elec-
trical and Computer Engineering and holds the Cockrell Family
Chair in Engineering \# 15. His research interests lie at the intersec-
tion of algorithms for resource allocation, statistical learning, and
networks, with applications to wireless communication networks
and online platforms. He received the NSF CAREER award in 2004
and was elected as an IEEE Fellow in 2014.

Karthikeyan Shanmugam is currently a senior research scientist
at Google Research India in the machine learning and optimization
team. His current research focus is on causal inference, online learn-
ing, representation learning, and interpretability in machine learn-
ing. He is also interested in information theory and coding theory.
He is a recipient of the IBM Corporate Technical Award in 2021 for
his work on Trustworthy AL



	A Lyapunov Theory for Finite-Sample Guarantees of Markovian Stochastic Approximation
	Introduction
	Finite-Sample Analysis of Markovian Stochastic Approximation
	Applications in RL
	Conclusion


