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Abstract. Q-learning with function approximation is one of the most empirically successful while theoretically
mysterious reinforcement learning (RL) algorithms and was identified in [R. S. Sutton, in Furopean
Conference on Computational Learning Theory, Springer, New York, 1999, pp. 11-17] as one of the
most important theoretical open problems in the RL community. Even in the basic setting where
linear function approximation is used, there are well-known divergent examples. In this work, we
propose a stable online variant of @)-learning with linear function approximation that uses target
network and truncation and is driven by a single trajectory of Markovian samples. We present
the finite-sample guarantees of the algorithm, which imply a sample complexity of @(672) up to a
function approximation error. Importantly, we establish the results under minimal assumptions and
do not modify the problem parameters to achieve stability.
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1. Introduction. The Deep Q-Network [33], as a special instance of Q-learning with func-
tion approximation, is one of the most empirically successful algorithms to solve the reinforce-
ment learning (RL) problem. On the other hand, the behavior of @-learning with function
approximation is in general not theoretically well understood and was identified in [39] as an
open problem. In fact, the infamous deadly triad [40] is present in @Q-learning with function
approximation. Consequently, even in the basic setting where linear function approximation
is used, the algorithm can experience divergence [2, 11].

Although theoretically unclear, it was empirically evidenced from [33] that the three ingre-
dients of experience replay, target network, and truncation together overcome the divergence
of @)-learning with function approximation. In this work, we focus on @Q-learning with lin-
ear function approximation for infinite-horizon discounted Markov decision processes (MDPs)
and show theoretically that target network and truncation are sufficient to provably stabilize
@-learning. The main contributions of this work are summarized in the following.
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Stable algorithm design. We propose a stable variant of (J-learning with linear function
approximation that uses target network and truncation. Notably, our algorithm can be im-
plemented in an online fashion using a single trajectory of Markovian samples.

Finite-sample guarantees. We establish the finite-sample guarantees of our proposed algo-
rithm to the optimal @Q-function * up to a function approximation error. The result implies
a sample complexity of O(¢~2), which matches with the sample complexity of Q-learning in
the tabular setting and is known to be optimal up to a logarithmic factor. The function
approximation error in our finite-sample bound well captures the approximation power of the
chosen function class. In the special case of tabular setting, our result implies asymptotic
convergence in the mean-square sense to QQ*.

Broad applicability. In the existing literature, to stabilize ()-learning with linear function
approximation, one usually requires strong assumptions on the underlying MDP and/or the
approximating function class. These assumptions include but are not limited to the function
class being complete with respect to the Bellman operator, the MDP being linear (or approx-
imately linear), a negative drift assumption, etc. In this work, we do not require any of these
assumptions. In fact, our result holds as long as the policy used to collect samples enables
the agent to sufficiently explore the state-action space, which is, to some extent, a necessary
requirement to find an optimal policy in RL.

1.1. Related work. The @Q-learning algorithm was first proposed in [46]. Since then, the-
oretically understanding the behavior of Q)-learning has been a major topic in the RL commu-
nity. In particular, the asymptotic convergence of Q-learning was established in [42, 21, 6, 25].
Beyond the asymptotic behavior, recently there has been an increasing interest in studying
the finite-sample convergence guarantees of @Q-learning. See [10, 5, 29, 35, 28] and the ref-
erences therein. Other variants of Q-learning such as zap @-learning and double Q-learning
were proposed and studied in [12] and [20], respectively.

When using function approximation, the deadly triad (which refers to function approxi-
mation, off-policy sampling, and bootstrapping) [40] appears in @-learning, and the algorithm
can be unstable even under simple linear function approximation. This is evidenced by the
divergent MDP example constructed in [2]. There are many attempts to stabilize Q-learning
with linear function approximation, which are summarized below.

Strong negative drift assumption. The asymptotic convergence of Q-learning with linear
function approximation was established in [32] under a “negative drift assumption.” Under
similar assumptions, finite-sample analysis of ()-learning, as well as its on-policy variant Sarsa,
was performed in [11, 18, 25, 55] for using linear function approximation, and in [48, 7] for using
neural network approximation. However, such a negative drift assumption is, in general, hard
to satisfy unless the discount factor of the MDP is extremely small. See our online report
[9] for a more detailed explanation. In this work, we do not require such a negative drift
assumption or any of its variants to stabilize ()-learning with linear function approximation.

Q-learning with target network. Recently, new convergent variants of (J-learning with linear
function approximation were proposed in [8, 54, 1, 53],' all of which make use of the target
network, a heuristic developed in [33]. In [8, 54], the stability of @-learning is achieved at the

1[53] is a concurrent work. A detailed comparison between our work and [53] is presented in the supple-
mentary materials (supplement.pdf [local/web 301KB]).
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cost of implicitly changing the discount factor of the MDP. Specifically, the problem being
effectively solved is no longer the original MDP, but an MDP with a much smaller discount
factor, which is why the algorithms in [8, 54] do not converge to the optimal @-function Q*
even in the tabular setting. See our online report [9] for more details. In this work, we do not
modify the original problem parameters to achieve stability. Moreover, in the special case of
tabular RL, we have the convergence to Q*. A closely related work [1] provides finite-sample
analysis of -learning with linear function approximation using the target network under the
Bellman completeness assumption (or an approximate variant of it). In contrast, we introduce
truncation of the iterates which leads to stability by ensuring the finiteness of a variant of the
inherent Bellman error. We also illustrate the importance of the truncation step by presenting
a counterexample showing divergence in the absence of truncation. Moreover, compared with
[1], we have an improved dependence on the function approximation error and an improved
sample complexity in terms of its dependence on the effective horizon of the problem. On the
other hand, [1] develops a sampling technique called reverse experience replay to improve the
dependence on the mixing time of the underlying Markov chain. We will discuss more about
our contribution relative to [1] after presenting our main results.

The Greedy-GQ algorithm. A two-time-scale variant of QQ-learning with linear function ap-
proximation, known as Greedy-GQ, was proposed in [31]. The algorithm is designed based
on minimizing the projected Bellman error using stochastic gradient descent. Although the
Greedy-GQ algorithm is stable without needing the negative drift assumption, since the Bell-
man error is in general nonconvex, the Greedy-GQ algorithm can only guarantee convergence
to stationary points. As a result, there are no performance guarantees on how well the limit
point approximates the optimal @Q-function @Q*. Although finite-sample analysis for Greedy-
GQ was recently performed in [45, 30, 49], due to the lack of global optimality, the error
bounds were on the gradient of the Bellman error rather than the distance to QQ*. In this
work, we provide finite-sample guarantees to the optimal @Q-function @* (up to a function
approximation error).

Fitted Q)-iteration and its variants. Fitted @Q-iteration is proposed in [16] as an offline variant
of @Q-learning. The polynomial sample complexity of fitted @Q-iteration (or more generally
fitted value iteration) was established in [41, 34, 52] under bounded inherent Bellman error.
The boundedness of the inherent Bellman error was imposed as an assumption in [52], while
in [41, 34], the authors employed a truncation technique to ensure the boundedness of the
inherent Bellman error. Such a truncation technique dates back to [19], which also inspires
the truncation technique in this work. In the special case of linear function approximation,
Q-learning with target network can be viewed as an approximate way of implementing fitted
Q-iteration, where stochastic gradient descent was used as a way of performing such a fitting.
Compared to [41, 34], the main difference of this work is that our algorithm allows for online
implementation with a single trajectory of Markovian samples. Furthermore, we have an
O(e2) sample complexity instead of only polynomial sample complexity (i.e., (’j((") for
some positive integer n) [34]. More recently, [47] proposed a variant of batch RL algorithms
called BVFT, where the authors establish an @(6*4) sample complexity under the realizability
assumption. Another variant of fitted Q-iteration targeting finite-horizon MDPs was proposed
in [14] using a distribution shift checking oracle, where polynomial sample complexity was
established.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Linear MDP model. In the special case that the MDP has linear transition dynamics and
linear reward, convergent variants of (J-learning with linear function approximation were de-
signed and analyzed in [50, 23, 27] and the references therein. Such a linear model assumption
can be relaxed to the case where the MDP is approximately linear. In this work, we do not
make any structural assumptions on the underlying MDP, although at the cost of introducing
a function approximation error in the finite-sample bound.

Other work. [13] studies @Q-learning with function approximation for deterministic MDPs.
The Deep @-Network was studied in [17] under the Bellman completeness assumption.

2. Background. We model the RL problem as an infinite-horizon discounted MDP defined
by a 5-tuple (S, A,P,R,v), where S is a finite set of states, A is a finite set of actions, P =
{P, e RISXISI | ¢ € A} is a set of unknown transition probability matrices, R : S x A — [0,1]
is an unknown reward function, and « € (0,1) is the discount factor.

Given a policy 7 : S — AMI (where Al denotes the |.A|-dimensional probability simplex),
we define the state-action value function of 7 as Q7(s,a) = Ex[> peqV*R(Sk, Ax) | So =
s,Ag = a] for all (s,a), where we use E;[-] to indicate that the actions are chosen according
to the policy w. The goal in RL is to find an optimal policy 7m* so that its associated Q-
function (denoted @Q*) is uniformly maximized for all (s,a). A well-known relation between
the optimal Q-function and any optimal policy 7* states that 7*(-|s) is supported on the set
argmax,c 4Q*(s,a) for all s [3]. Therefore, to find an optimal policy, it is enough to find the
optimal @Q-function.

The Q-learning algorithm is designed to find Q* by solving the Bellman equation Q* =
H(Q*) using stochastic approximation [36], where H : RISIMI — RISIMI is the Bellman operator
defined as [H(Q)](s,a) = R(s,a) +vE[maxyc4 Q(Sk11,a") | Sk = s, Ax, = a] for all Q and (s,a).
While @-learning provably converges, the algorithm becomes computationally intractable for
MDPs with large state-action spaces. This motivates the use of function approximation, where
the idea is to approximate the optimal (-function from a prespecified function class.

Linear function approximation framework. In this work, we focus on using linear function
approximation. Let ¢; € RISIMI i =12 ... d, be the basis vectors, and denote o(s,a) =
(b1(s,a),...,04(s,a)) € R? for all (s,a). We assume without loss of generality that the basis
vectors {¢;}1<i<q are linearly independent and normalized so that ||¢(s,a)||2 <1 for all (s,a)
[3]. Let ® € RISIMIXd 16 the feature matrix defined as ® = [p1,02,...,04]. Using the feature
matrix @, the linear subspace spanned by {¢;}1<i<q4 can be compactly written as W = {Qy |
Qo =0, 0 € RY}. With W defined, the goal of Q-learning with linear function approximation
is to design a stable algorithm that provably finds an approximation of the optimal Q-function
Q* from the linear subspace W.

3. Algorithm design and finite-sample analysis. In this section, we first present the algo-
rithm of Q-learning with linear function approximation using target network and truncation.
Then we present the finite-sample guarantees.

3.1. Stable algorithm design. To present our algorithm, we first introduce the truncation
operator. Given a positive truncation radius r > 0, let 7 : RISIMI — RISIMI be defined as
T(Q)(s,a) =sgn(Q(s,a))r when |Q(s,a)| >r, and T(Q)(s,a) =Q(s,a) when |Q(s,a)| <r for
all Q € RISII and (s,a). Since ||Q*|loo <1/(1—7), we choose r =1/(1— ) to ensure that our
proposed algorithm (presented in Algorithm 3.1) does not exclude the optimal Q-function.
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Algorithm 3.1. Q-learning with linear function approximation: target network and trunca-
tion.

1: Input: Integers 7T', K, initializations 0o = 0, 0;,0 =0 for all ¢, behavior policy .
2: fort=0,1,...,7—1do
3: fork=0,1,..., K —1do

4 Sample Ay ~ m(+|Sg) and observe Sky1 ~ Pa, (Sk,*)

5 Or.k+1 =011+ d(Sk, Ax) (R(Sk, Ag) +ymaxgea T(¢(Si,a’) T0:) — d(Sk, Ar) T 0px)
6: end for

7 ét—H = 0757]{ and S() = SK

8: end for

9: OQutput: éT

In view of Algorithm 3.1, it is simple and easy to implement. In addition to {6}, we
introduce {ét} as the target network parameter, which is fixed in the inner loop where we
update 6; ;. The target network was previously used in [33] as a heuristic for the design
of the celebrated Deep @Q-Network. Finally, before using the @-function estimate associated
with the target network in the inner loop, we first truncate it with radius » = 1/(1 — =) (cf.
Algorithm 3.1, line 5). Note that the location where we impose the truncation operator is
different from that in the Deep @-Network [33], where the truncation is performed for the
entire temporal difference R(Sk, Ax) + vy maxy eq ¢(Sk+1,a’)Tét — gb(Sk,Ak)TGt’k instead of
only for ¢(Ski1,d )Tét. Similar truncation techniques have been employed in [34, 22]. The
reason that target network and truncation together ensure the stability of @-learning with
linear function approximation will be illustrated in detail in section 4.

On the practical side, Algorithm 3.1 uses a single trajectory of Markovian samples gener-
ated by the behavior policy 7, (see Algorithm 3.1, lines 4 and 7). Therefore, the agent does
not have to constantly reset the system. Our result can be easily generalized to the case where
one uses a time-varying behavior policy (i.e., the behavior policy is updated across the itera-
tions of the target network) as long as it ensures sufficient exploration. For example, one can
use the e-greedy policy or the Boltzmann exploration policy with respect to the Q-function
estimate associated with the target network 6 (i.e., @ét) as the behavior policy.

3.2. Finite-sample guarantees. To present the finite-sample bound, we first formally
state our assumption and introduce the necessary notation.

Assumption 3.1. The behavior policy 7, satisfies m(als) > 0 for all (s,a) and induces an
irreducible and aperiodic Markov chain {S}.

This assumption ensures that the behavior policy adequately explores the state-action
space and is commonly imposed for value-based RL algorithms in the literature [43]. Since
we work with finite MDPs; Assumption 3.1 implies that the Markov chain {Sj} induced by
m, has a unique stationary distribution, denoted by p € AlSl, which satisfies w(s) >0 for all
s € §. In addition, the induced Markov chain {S;} mixes at a geometric rate [26], that is,
there exist C' > 0 and p € (0,1) such that maxsesdrv(PF (s,-), pu(-)) < Cp* for all k > 0,
where P, stands for the transition probability matrix of the Markov chain induced by m,
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and dpv(-,-) represents the total variation distance between probability distributions. For
MDPs with continuous but compact state-action spaces, the geometric mixing is also needed
in general; see, for example, [1, Assumption 3]. As a result of geometric mixing, letting
75 = min{k > 0 : max,esdrv(P (s,-),u(-)) < 6} be the mixing time of the induced Markov
chain {Sj} with precision ¢ > 0, under Assumption 3.1, we have 75 = O(log(1/6)).

Notation. Let D € RISIMIXISIAI he a diagonal matrix with diagonal components being
{u(s)mo(als)}(s,a)esx.4; and let ||-|| p be a weighted fo-norm defined as ||Q||p = (QTDQ)'/? for
all Q € RISIMI_ Since D has positive diagonal components and ® is full column rank, the matrix
®T D® is positive definite, the smallest eigenvalue of which is denoted by Amin. Let Projwy(-)
be the projection operator onto the linear subspace W with respect to the weighted fo-norm
|- lp, which is a linear operator and is explicitly given as Projy(Q) = ®(®"D®)~'® " DQ for
all Q e RISIMI. We define the function approximation error as

(3.1) Eapprox 1= sup | T (ProjwH(Q)) — H(Q)||oos
Q=T (®0), bR

which captures the approximation power of the chosen function class. Our function approxi-
mation error Eypprox is closely related to the inherent Bellman error introduced in the existing
literature [34, 52, 1, 44, 15]. A detailed discussion of the connection between E,pprox and the in-
herent Bellman error is presented in the supplementary materials (supplement.pdf [local /web
301KB])).

For simplicity, denote Qt = T(q)ét) as the truncated Q-function associated with the target
network 6;. We next present the finite-sample bounds of Algorithm 3.1, where the explicit
requirement for choosing the stepsizes is presented in Appendix 5.2.

Theorem 3.2. Under Assumption 3.1, we have the following results.
(1) When using properly chosen constant stepsize (i.e., ax = a), the following inequality
holds for all K > 1, and T > 0:

a 12\/ﬁ>

_ gappmx - 2 <(1 B a)\min) K_2 VAmin
(32) EllQr - @'l < 722 47 HQ;Q oo+~

=& ::"83

(2) When using diminishing stepsizes oy, = «/(k + h) (where o and h are appropriately
chosen), the following inequality holds for all K > ko:=min{k |k > 74, } and T > 0:

4704\/T
(\/k0+ o A ) K+h
(1- ’Y) vV Amin

=&

(3.3) E[|Qr — Q*||oc] <& + & +

Remark 3.3. Recall that 7,, is the mixing time of the Markov chain {Si} (induced by )
with precision aj. Since Assumption 3.1 implies geometric mixing and «y is polynomial in k,
we have 7,, = O(log(k)). Therefore, the threshold k¢ in Theorem 3.2(2) is well defined.

In our finite-sample bound, the term &; captures the error due to using function ap-
proximation. Compared with [1], where the corresponding term that captures the function
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approximation error is of O(Expprox(1—7) "' AL ) (see [1, Remark 2]), we have an improvement
by a factor of A_! . As an aside, note that the 1/(1 —~) factor in & also appears in temporal
difference learnlng with linear function approximation [43].

The term & goes to zero geometrically fast as T goes to infinity. In fact, the term &
captures the error due to fixed-point iteration. That is, if we had a complete basis (hence no
function approximation error) and were able to perform value iteration to solve the Bellman
equation Q* =H(Q™*) (hence no stochastic error), & is the only error term.

The term & (or &%) represents the error bound for the inner loop of Algorithm 3.1 when
using constant (or diminishing) stepsizes. The update equation in Algorithm 3.1, line 5, is
a stochastic approximation algorithm [36] under Markovian noise. When using a constant
stepsize, the error bound consists of a geometrically decaying term (which is usually called
bias, or optimization error) and a constant term (which is usually called variance, or statistical
error) that is proportional to \/a7,. Since geometric mixing implies 7, = O(log(1/«)), the
variance term /a7, can be arbitrarily small using a sufficiently small constant stepsize. When
using diminishing stepsizes with a suitable decay rate, since 7,,, = O(log(K)), both the bias
term and the variance term go to zero at a rate of O(log(K)/K). This agrees with the existing
literature studying stochastic approximation [38, 11]. Since the additional factor of 7, (or 74, )
arises due to using a single trajectory of Markovian samples, it can be removed by using other
advanced sampling techniques, one of which is the reverse experience replay developed in [1].

Based on Theorem 3.2, we next derive the sample complexity of Algorithm 3.1 in the
following. Note that the sample complexity is orderwise the same for using either a constant
stepsize or diminishing stepsizes.

Corollary 3.4. Given € > 0, to achieve E[|Qr — Q*lloo] < € + Eapproz/(1 —7), the sample
complezity is O (e 2(1—~)™%).

Remark 3.5. While commonly used in the existing literature studying RL with function
approximation, it was argued in [24] that the sample complexity is rigorously speaking not
well defined when the asymptotic error is nonzero. Here, we present the “sample complexity”
in the same sense as in the existing literature to enable a fair comparison.

Corollary 3.4 states that Algorithm 3.1 achieves an O(¢~2) sample complexity for find-
ing the optimal @Q-function up to a function approximation error. Notably, the effective
horizon appears as (1 — )~ in the sample complexity, which has an improvement over [1,
Theorem 1] by a factor of (1 — v)~L. Up to a function approximation error, our result also
implies an O(e2) sample complexity measured by the suboptimality gap of the output policy,
ie., Es a)mp, [Q7 (S, A) — Q7 (S, A)], where p, is an arbitrary distribution on the state-action
space and 7 is the policy greedily induced from QT. This follows from

E (5,729, [Q"(S, A) = Q7 (S, A)] SE[|Q"" — Q"] oc] < fE[HQT ~ Qo)
where the second inequality is from [37].

In the existing literature studying lower bounds of RL [44, 51], it was shown that, even
if @* belongs to the approximation subspace, unless certain assumptions (such as Bellman
completeness) are imposed, it is in general not possible to develop a polynomial algorithm
that is capable of approximating * with an arbitrary precision. That is, given an arbitrary
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e > 0, an exponential sample complexity is needed in general to achieve an e-approximation
error to @Q*. In this work, we take a different goal since we allow for some fized error (i.e., our
function approximation error) in approximating Q*. In this case, Corollary 3.4 states that,
given an arbitrary e > 0, an O(e~2) sample complexity is enough to achieve an (e-+Eapprox/(1—
v))-approximation error to Q*. However, suppose we want to find an approximation to Q*
with an error less than Epprox/(1 — v) (provided that Q* is in the approximating linear
subspace); then our algorithm in general is not guaranteed to deliver an output that satisfies
this requirement. Therefore, our approach can be viewed as a way of obtaining an improved
sample complexity at the cost of introducing an approximation error.

4. The reason that target network and truncation stabilize Q-learning. In the previous
section, we presented the stable algorithm and the finite-sample bound. In this section, we
elaborate in detail on why target network and truncation are enough to stabilize @Q-learning.

Summary. We start with the classical semigradient Q-learning with linear function ap-
proximation in section 4.1, which unfortunately is not necessarily stable, as evidenced by the
divergent counterexample constructed in [2]. In section 4.2, we show that by adding the tar-
get network to (Q-learning, the resulting algorithm successfully overcomes the divergence issue
in the MDP example in [2]. However, beyond the example in [2], the target network alone
is not sufficient to stabilize @Q-learning. In fact, we show in section 4.3 that @-learning with
target network diverges for another MDP example constructed in [11]. In section 4.4, we show
that by further adding truncation, the resulting algorithm (i.e., Algorithm 3.1) is provably
stable. The reason that truncation successfully stabilizes @-learning is due to an insightful
observation regarding the relation between truncation and a particular projection.

4.1. Classical semigradient Q-learning. We begin by presenting the classical semigra-
dient @-learning with linear function approximation [3, 40]. With a trajectory of samples
{(Sk, Ax)} collected under the behavior policy 7, and an initialization g € R, the semigra-
dient @-learning algorithm updates the parameter 6 according to the following formula:

(4.1) Ort1 = Ok + d(Sk, A) (R(Sk, Ax) + ¥ Imax G(Skr1,a") "0k — G(Sk, Ax) T O).

The reason that (4.1) is called semigradient ()-learning is that it can be interpreted as a
one-step stochastic semigradient descent for minimizing the Bellman error. See [3] for more
details. Unfortunately, algorithm (4.1) does not necessarily converge, as evidenced by the
divergent example provided in [2]. The MDP example constructed in [2] has seven states and
two actions. To perform linear function approximation, 14 linearly independent basis vectors
are chosen. See [2] for a complete description of this MDP. The important thing to note about
this example is that the number of basis vectors is equal to the size of the state-action space,
i.e., d=|S]||A|. Therefore, rather than doing function approximation, we are essentially doing
a change of basis. Even in this setting, algorithm (4.1) surprisingly diverges. To achieve
stability for algorithm (4.1), the negative drift assumption was imposed in [32, 11, 25].

By viewing algorithm (4.1) as a stochastic approximation algorithm (which is a frame-
work for solving root-finding problems with incomplete information [36]), the target equation
algorithm (4.1) is trying to solve is

Es, ~al@(Sk: Ak)(R(Sk, Ar) + 7 max ¢(Sp1,0) 10 — $(Sk, Ax) T0)] = 0.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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The previous equation can be written compactly using the Bellman operator H(-) and the
diagonal matrix D as

(4.2) ®"D(H(P) — h) =0
and is further equivalent to the fixed-point equation
(4.3) 0="Ha(0),

where the operator Hg : R? +— R? is defined by He (0) = (&7 D®)~1® T DH(®0). Equation (4.3)
is closely related to the so-called projected Bellman equation. To see this, since ® has linearly
independent columns, (4.3) is equivalent to

(4.4) P9 =3(® DP)"1d T DH (D) = ProjyyH(P0).

We next show that in the complete basis setting, i.e., d = |S||.A|, which covers the coun-
terexample in [2] as a special case, the operator Hg(+) is, in fact, a contraction mapping
with 6* = ®~1Q* being its unique fixed-point. This implies that the design of the classical
semigradient Q-learning algorithm (4.1) is flawed because if it were designed as a stochastic
approximation algorithm effectively performing fixed-point iteration to solve (4.3), it would
converge. Instead, it was designed as a stochastic approximation algorithm based on (4.2).
While (4.2) is equivalent to (4.3), their corresponding stochastic approximation algorithms
have different behavior in terms of their convergence or divergence.

To show the contraction property of Hg(+), first observe that in the complete basis setting
we have He(0) = (&7 D®) 10T DH (D) = @~ 1H(P0). Let || - ||o.00 be a norm on R? defined
as ||0]|o,00 = || PO for all . Since ® has linearly independent columns, | - ||, is indeed a
norm. Then we have

[Ha(01) — Ha(02)[|lo,00 = [H(PO1) — H(P2) (oo <[|P(01 — O2)lco =7[|01 — O2|@,00

for all 61,0, € RY where the inequality follows from the Bellman operator #(-) being a
contraction mapping with respect to the ¢o-norm. It follows that the operator He(:) is a
contraction mapping with respect to || - ||¢,00. Moreover, since

Ha(07) = BT H(R67) = 071 H(QT) =8 7'Q" =0

the point 6* is the unique fixed-point of the operator Hq(-). The previous analysis suggests
that we should aim at designing )-learning with linear function approximation as a fixed-
point iteration (implemented in a stochastic manner due to sampling in RL) to solve (4.3).
The resulting algorithm would at least converge for the counterexample in [2].

4.2. Introducing target network. We begin with the following fixed-point iteration for
solving the fixed-point equation (4.3):

(4.5) Or11= (DT DD)"'d T DH(DH,),

where we write Heg () explicitly in terms of ®, D, and H(-). The update in (4.5) is what we
would like to perform if we had complete information on the dynamics of the underlying MDP.
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Algorithm 4.1. Q-learning with linear function approximation: target network and no trun-
cation.

1: Input: Integers 7T', K, initializations 0o = 0, 0;,0 =0 for all ¢, behavior policy .
2: fort=0,1,...,7—1do
3: fork=0,1,..., K —1do

4 Sample Ay ~ m(+|Sg) and observe Sky1 ~ Pa, (Sk,*)

5 Or 1 = Or s, + akd(Sk, Ap) (R(Sk, Ak) + ymaxaea (Sir1,a’) "0y — d(Sk, Ax) "4 1)
6: end for

7 ét—H = 0757]{ and S() = SK

8: end for

9: OQutput: éT

The question is whether there is a stochastic variant of such fixed-point iteration that can be
implemented in the RL setting (where the environment is unknown). The answer is Q-learning
with target network, which is presented in Algorithm 4.1.

We next elaborate intuitively on why Algorithm 4.1 can be viewed as a stochastic variant
of the fixed-point iteration (4.5). For a fixed outer-loop iteration index ¢, let us focus on the
update equation (cf. Algorithm 4.1, line 5) of the inner loop. Conditioning on the past, the
target network parameter ét is a constant. Therefore, the update equation in terms of 6 j is
in fact a linear stochastic approximation algorithm for solving the linear system of equations:

(4.6) —® " D®O+ O DH(PH,) = 0.

Since the matrix —® " D® is negative definite, the asymptotic convergence of the inner-loop up-
date follows from standard results in the literature [3]. Therefore, when the stepsize sequence
{ax} is appropriately chosen and K is large enough, we expect the last iterate of the inner
loop, i.e., 6; i, to approximate the solution of (4.6), that is, 6, x =~ (<I>TD<I>)*1<I>TDH(<I>9}).
Now in view of Algorithm 4.1, line 7, since the target network ét+1 is synchronized to 0 f,
the overall update in terms of the target network parameter is

Ori1~ (O DD)1®T DH(DH,).

Therefore, Q-learning with target network is in effect performing an approximate version (due
to the stochastic error in sampling) of the fixed-point iteration (4.5).

Revisiting the counterexample in [2] (where d = |S||.A]), recall that the fixed-point iteration
(4.5) reduces to O = & VH(®6,) = He(6;). Since the operator He(-) is a contraction
mapping as shown in section 4.1, the fixed-point iteration (4.5) provably converges. As a
result, @Q-learning with target network as a stochastic variant of the fixed-point iteration (4.5)
also converges, which is stated in the following proposition.

Proposition 4.1. Consider Algorithm 4.1. Suppose that Assumption 3.1 is satisfied and
the feature matriz ® is a square matriz (i.e., d = |S||A|) with full rank. Then the sample
complezity to achieve E[||®07 — Q*||oo] < € is O(e72).
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Figure 1. Semigradient Q-learning.
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Figure 2. Target network Q-learning.

The proof of Proposition 4.1 is identical to that of Theorem 3.2 and hence is omitted.
To further verify the stability, we conduct numerical simulations for the MDP example con-
structed in [2]. As we see, while classical semigradient ()-learning diverges in Figure 1 (which
agrees with [2]), Q-learning with target network converges as shown in Figure 2.

4.3. Insufficiency of target network. The reason that @-learning with target network
overcomes the divergence for the MDP example in [2] is essentially that the projected Bellman
operator reduces to the regular Bellman operator (which is a contraction mapping) when we
have a complete basis. However, this is in general not the case. In the projected Bellman
equation (4.4), the Bellman operator H(-) is a contraction mapping with respect to the foo-
norm || - [|eo, while the projection operator Projyy is a nonexpansive mapping with respect to
the projection norm, in this case the weighted ¢9-norm || - ||p. Due to the norm mismatch,
the composition ProjyyH(:) is not necessarily a contraction mapping with respect to any
norm. This is the fundamental reason for the divergence of QQ-learning with linear function
approximation, and introducing the target network alone does not overcome this issue, as
evidenced by the following MDP example constructed in [11].

Ezample 4.2. Consider an MDP with state space S = {s1,s2} and action space A =
{a1,a2}. Regardless of the present state, taking action a; results in state s; with probability
1, and taking action ao results in state so with probability 1. The reward function is defined
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Figure 3. Semigradient Q-learning.
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Figure 4. Target network Q-learning.

as R(s1,a1) = 1, R(s1,a2) = R(s2,a1) = 2, and R(s2,a2) = 4. The approximation linear
subspace is chosen to be a span of a single basis vector ® = [1,2,2,4]". The behavior policy
is to take each action with equal probability.

In Example 4.2, after straightforward calculation, we have the following result.
Lemma 4.3 (Appendix C of [11]). Equation (4.3) is explicitly given as

9y 340
0=1+ 1,0+ 75 L0 — Lio<o})-

When the discount factor  is in the interval (5/6, 1), for any positive initialization 6y > 0, it
is clear that performing fixed-point iteration to solve (4.3) in this example leads to divergence.
Since Q-learning with target network is a stochastic variant of such fixed-point iteration, it also
diverges. Numerical simulations demonstrate that performing either classical semigradient Q-
learning or @-learning with the target network leads to divergence for the MDP in Example 4.2
(cf. Figures 3 and 4). This example shows that it is in general not possible to achieve the
stability of @-learning with linear function approximation with only the target network, which
motivates our truncation technique in the next subsection.

4.4. Truncation to the rescue. Recall from the previous section that )-learning with
target network is trying to perform a stochastic variant of the fixed-point iteration (4.5),
which can be equivalently written as
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(4.7) Qi1 =ProjwH(Qy),

where we use Q; to denote the Q-function estimate associated with the target network 6,
ie., Qt = ®0;. To motivate the truncation technique, we next analyze the update (4.7), the
behavior of which in terms of stability aligns with the behavior of @)-learning with target
network, as explained in the previous section. First note that (4.7) is equivalent to

Qup1 — Q" =H(Qr) — H(Q") + ProjwH(Qr) — H(Qs)-

A simple calculation using the triangle inequality, the contraction property of #(-), and tele-
scoping yields the following error bound of the iterative algorithm (4.7):

T
1Q7 = Qoo <7 11Q0 = Q*lloc + Y 7"~ | ProjwH(Qs) = H(Q1) oo -

t=0 E,

The problem with the previous analysis is that the term FE; (which captures the error due
to using linear function approximation) is not necessarily bounded unless using a complete
basis or knowing beforehand that {Qt} is always contained in a bounded set. The possibility
of such a function approximation error being unbounded is an alternative explanation to
the divergence of @-learning with linear function approximation. This is true for arbitrary
function approximation (including neural networks) as well, since it is in general not possible
to uniformly approximate unbounded functions.

Suppose that we are able to somehow control the size of the estimate Q; so that it is
always contained in a bounded set. Then the term E; is guaranteed to be finite and effectively
captures the approximation power of the chosen function class. To achieve the boundedness of
the associated Q-function estimate Q; of the target network, tracing back to Algorithm 4.1, a
natural approach is to first project Q; = ®0; onto the £so-norm ball B, := {Q € RISIMI | Q|| <
r} before using it as the target @-function in the inner loop, resulting in Algorithm 4.2.

Algorithm 4.2. Impractical ()-learning with linear function approximation: target network
and projection.

1: Input: Integers T, K, initializations éo =0, 0;0=0 for all ¢, behavior policy .

2: fort=0,1,...,7—1do

3: fork=0,1,..., K —1do

4: Sample Ay ~ m,(+|Sk) and observe Ski1 ~ Pa, (Sk,-)

5: Ot k1 = Or o + Sk, Ai) (R(Sk, A) + ymaxa e 4 Qe (Sks1,a’) — ¢(Sk, Ax) 64 )
6: end for

7: @1 =0,k and Sy = Sk

8 Qi1 =1Ip PO

9: end for

10: Output: Or
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In Algorithm 4.2, line 8, the operator Ilp represents the projection onto the f.,-norm
ball B, with respect to some suitable norm || -||. The specific norm || - || chosen to perform the
projection turns out to be irrelevant as a result of a key observation between truncation and
projection, which will be revealed soon.

Although Algorithm 4.2 stabilizes the Q-function estimate @y, it is not implementable in
practice. To see this, recall that the point of using linear function approximation is to avoid
directly working with |S||.A|-dimensional variables. However, to implement Algorithm 4.2, line
8, one has to first compute @étH € RISIMI and then project it onto B,.. Therefore, the last
difficulty we need to overcome is to find a way to implement Algorithm 4.2 without working
with |S||.A|-dimensional variables. The solution relies on the following lemma.

Lemma 4.4. For any Q € RISIA and any weighted €,-norm ||-|| (the weights can be arbitrary
and p € [1,00]), we have T(Q) € argmingep, [|Q — Q'|.

Remark 4.5. Note that argmingep, |Q — Q'|| is, in general, a set because the projection
onto B, may not be unique. As an example, observe that any point in the set {(x,1) |z €
[—1,1]} is a projection of the point (0,2) onto the {s-norm unit ball {(x,y) | z,y € [-1,1]}
with respect to the f.-norm.

Proof of Lemma 4.4. Let {w(s,a)}(sq)esx.4 be arbitrary positive weights. We denote the
weighted £)-norm with weights {w(s,a)} (s q)esx4 by || - lwp- For any Q € RISIMI | we have

1/p
nin [1Q = Q'llup = min (Zw 5,0)|Q(s,a) — Q'(s, a>|p)

1/p
- <Zw(s,a) min <T|@<s,a>—Q’<s,a>|p)

=1Q=T(Q)llwp-

Therefore, we have 7(Q) € arg ming [ ]

D

Lemma 4.4 states that, for any Q € RISIMI if we simply truncate the vector @, the resulting
vector must belong to the projection set of ) onto the £,,-norm ball with radius r, for a wide
class of projection norms. This seemingly simple but important result enables us to replace
the projection Qt+1 Ip, (I>9t+1 with the truncation Qt+1 ’T(<I>«9t+1) in Algomthm 4.2, line
8. Unlike projection, truncation is a componentwise operation. Therefore, Qt+1 = ’7'(<I>9t+1)
is equivalent to Q4 1(s,a) = T (H(s,a) T 0p41) for all (s,a).

The last issue is that we need to perform truncation for all state-action pairs (s,a), which,
as illustrated earlier, violates the purpose of doing function approximation. However, observe
that the target network is used only in line 5 of Algorithm 4.2, where only the component of
Q; visited by the sample trajectory is needed to perform the update. In light of this observa-
tion, instead of truncating ¢(s,a)Tét for all (s,a), we only need to truncate (b(SkH,a’)Tét in
Algorithm 4.2, line 5, which leads to our stable version of @)-learning with linear function ap-
proximation presented in Algorithm 3.1. The following proposition shows that target network
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Figure 5. Algorithm 3.1 for [2, Example 1].

and truncation together stabilize Q-learning with linear function approximation and serve as
a middle step to proving Theorem 3.2.

For simplicity of notation, we denote 0, := (&' D®)~1® T DH(Q,) for all ¢, where we recall
that Q, = T(®6,) = T(®6:—1,K). Note that we have from the explicit expression of the
projection operator Projyy that ®, = Projw (H(Q;)).

Proposition 4.6. The following inequality holds:

T-1
A * A * g(l 70T —t— Y
(4.8) ENQr — Q*lloc] €77 1Q0 — Q* [l + % + 3 ARG,k — Bella).
t=0

Due to truncation, the error arising from using function approximation is bounded and is
captured by Epprox. This is crucial to prevent the divergence of @-learning with linear function
approximation. The last term on the right-hand side (RHS) of (4.8) captures the error in the
inner loop of Algorithm 3.1 and eventually leads to the terms £ and &4 in Theorem 3.2.

Revisiting Example 4.2, where either semigradient @)-learning or (J-learning with target
network diverges, Algorithm 3.1 converges as demonstrated in Figure 5. Moreover, observe
that Algorithm 3.1 seems to converge to a positive scalar, which we denote by 6*. As a result,
the policy 7 induced greedily by ®0* is to always take action ao. It can be easily verified that
7 is indeed the optimal policy. This is an interesting observation since the optimal Q-function
Q™" in this case does not belong to the linear subspace W (which is spanned by a single basis
vector (1,2,2,4)T). However, performing Algorithm 3.1 converges and the induced policy is
optimal. Figure 6 shows that Algorithm 3.1 also converges for the MDP example in [2].

Discussion about the truncation technique. The truncation technique we use here can be
viewed as a means to regularize the (Q-function associated with the weight vector, i.e., ®. The
reason that it works is due to Lemma 4.4, which enables us to regularize |S||.A|-dimensional
variables by working with d-dimensional variables (which is the point of performing linear
function approximation). In the existing literature, another popular regularization technique
(perhaps a seemingly more natural one) is to directly project the weight vector 6 onto a
prespecified bounded set after each iteration of Q)-learning [4, 48, 55]. Compared to directly
projecting 0, truncating ®6 has three main advantages.
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Figure 6. Algorithm 3.1 for Ezample 4.2.

(1) Since the goal of Q-learning is to estimate Q*, it is more desirable to bound Q* — ®0
instead of 6 — 6*, where 6* is usually the solution (the existence and uniqueness of
which need to be assumed) of a properly defined projected Bellman equation [32].

(2) Since the set onto which 6 is projected must contain the solution 6* of the projected
Bellman equation, and the estimate of the size of 8* involves unknown parameters such
as the stationary distribution of the Markov chain {(Sk, Ax)} under m, [32, 55, 43],
it is not clear how to perform such projection in practice. On the contrary, we use
truncation and aim to control the Q-function associated with € (and not 6 itself).
Since ||Q*|lcc < 1/(1 —7), we simply choose a truncation radius of r = 1/(1 — =) for
®0 as a form of regularization, and this does not involve any unknown parameters.

(3) For existing results using the approach of projecting 6, all of them require the “negative
drift assumption,” such as [48, Assumption 5.3] and [7, Assumption 6.1]. One of our
main contributions is to remove the negative drift assumption.

5. Proof of Theorem 3.2. In this section, we present the full proof of Theorem 3.2. The
high-level idea of the proof is essentially presented in the previous section. Specifically, we
view the inner loop of Algorithm 3.1 as a stochastic approximation algorithm for estimating
ProjWH(T(Qt)), which is then used in the outer loop for the fixed-point iteration Q1 =

ProjwH (T (Q1))-
5.1. Analysis of the outer loop (proof of Proposition 4.6). Using our notation Q) =
T(®0,) =T (®;—1,k) and the fact that Q* =H(Q*), we have for any t =1,2,...,T that
Q- @l
= Q1) = H(Q") + @ — T(ProjwH(Qu1)) + T(ProjwH(Qu-1)) — H(Qi-1)
< IH(Qu1) = HQ e + Qe — T(ProjwH(@e-1))l
+ | T (ProjwH(Qe-1)) — H(Q1-1)llso
(51) < [H(@r-1) = H@Q oo + I T(201,10) — T(ProjwH(Qe-1))lloe + Enpprox:
where the last line follows from the definition of the function approximation error in (3.1).
We next bound the first two terms on the RHS of the previous inequality. Since the

Bellman operator H(-) is a contraction mapping with respect to || - |0, with contraction factor
v [3], we have for all t=1,2,...,T that
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52) M@0 1)~ H@)oe S71Q1 1~ @l
As for the second term on the RHS of (5.1), first observe that
IT(@1) = T(Q2)le = max | T(@1)(s,0) ~ T(@a)(s,0)
e [Q1 (5,0) — Qa(s.)|
= Q1 — Qalle ¥V Q1,Q2 € REM

IN

which can also be viewed as a nonexpansive property of the truncation operator with re-
spect to || - ||oo (cf. Lemma 4.4). Then we have from the previous inequality and 6;—1 =
(@"D®)"'® " DH(Q;_1) that

IT(@61-1,6) = T(ProjwH(Qe-1))loe < [[®6;-1,5 = ProjwH(Qs-1)loo
= 1201, — b1-1)lloo
(Definition of || - [|c0) = max |p(s,a) " (01 — Or_1)|

(Cauchy—Schwarz inequality) < max||¢(s,a)||2)|0—1.x — Or—1]|2
s,a
< |61, — Or1ll2,

where the last line follows from ||¢(s,a)||2 <1 for all (s,a). Substituting the previous bound
and the bound in (5.2) into (5.1), we have

||Qt - Q*Hoo S ’YHQtfl - Q*Hoo + ||9t—1,K - §t71||2 + gapprox

for all t=1,2,...,T. Recursively using the previous inequality and then taking expectation,
we obtain

T-1

~ * A * R n Sa Trox

53 ElIQr = Q el €910 = @l + 3Bk — Bl + 2.
t=0

This proves Proposition 4.6.

5.2. Analysis of the inner loop. We first present the inner loop of Algorithm 3.1 in the
following, where we omit the outer-loop iteration index t. The result from this section can
be combined with (5.3) in a straightforward fashion by using the conditional expectation and
the Markov property.

We next reformulate Algorithm 5.1 as a Markovian stochastic approximation algorithm for
solving some suitable equation. Let {X} be a Markov chain defined as Xy = (Sk, Ak, Sk+1)
for all k > 0. Note that the state space of {Xy} is given by X = {(s,a,5') | s € S,m(a|s) >
0,P,(s,s') > 0}. Let Px be the transition probability matrix of the Markov chain {Xj}.
Under Assumption 3.1, the Markov chain {X}} also has a unique stationary distribution,
denoted by v, which satisfies v(s,a,s") = u(s)m(als)Py(s,s’) for all (s,a,s’) € X, where we
recall that () is the stationary distribution of the Markov chain {S;} induced by 7. See
the paragraph after Assumption 3.1.
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Algorithm 5.1. Inner loop of Algorithm 3.1.

1: Input: Integer K, initialization 6y = 0, target network é, behavior policy .

2: for k=0,1,...,K —1do

3:  Sample Ay ~ m(:|S;) and observe Sii1 ~ Pa, (Sk,-)

4 Opgr =0k + ud(Sk, A) (R(Sk, A) + ymaxaea T($(Sks1,a')T0) — &(Sk, Ar) T 0)
5: end for

6: Output: 0x

Let F:R% x X +— R? be an operator defined as
F(0,5,a,5") = ¢(s,a)(R(s,a) +ymax T (4(s', a')"6) — ¢(s,a)"0)
a'e

for all § € R? and (s,a,s’) € X. Let F': R%+— R be defined as F(6) =Ex.,()[F(6,X)]. Then
the update equation in Algorithm 5.1, line 4, can be compactly written as

(5.4) Or41 =0, + apF (0, Xi),

which is a Markovian stochastic approximation algorithm for solving the equation F(6) = 0.
Due to the wide applicability of stochastic approximation, there are many existing works
that perform finite-sample analysis [38, 4, 11]. Specifically, we will apply [11, Theorem 1]
(which is presented in Theorem A.2 for completeness) to establish the finite-sample bound of
Algorithm 5.1 (or equivalently, Algorithm 5.4). To achieve that, we next formally state the
requirement for choosing the stepsizes, and we verify [11, Assumptions 1, 2, and 3| (stated in
Assumption A.1) in the following sequence of lemmas. For simplicity of notation, we denote
Tk := Ta, as the mixing time of the Markov chain {Sj} induced by m, with precision ay.

Condition 5.1. The stepsize sequence {ay} is nonincreasing and satisfies Zf:_kl#k o; < )igon
for all k> 1,. When using o, = o/ (k + h), we additionally require o> 1/ Amin.

Lemma 5.2. It holds that max,ecx dTV(P)l?H(a:, Y, v(-)) < CpF for all k> 0.
Proof of Lemma 5.2. For any k>0 and x = (s¢,ag,s1) € X, we have

Arv (P () 0() = 5 3 PE o))
z'eX

1
<3 > IPE (s, 50) — n(so)Imu(ash) Pay (5, 51)
(86,ah,51)€X
1
= LS 1Pk (s sh) — lsh)
SHES
< maXdTV(Pj:b (Sa )aﬂ())
SES
<cph,

where the last line is a consequence of Assumption 3.1. Since the RHS of the previous
inequality does not depend on x, we in fact have max,cy dTv(P)k{H(:r, I, v(-) < Cp*. [ |
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Lemma 5.3. It holds for any 01,02 € R? and x € X that (1) |[F(61,2) — F(f2,2)|2 <
161 = 0212, and (2) [|F(0,)[]2<1/(1—~).

Proof of Lemma 5.3.
(1) For any 61,02 € R and x = (s,a,s') € X, we have by definition of F(-) that
1F (61, 2) — F (62, 2)l]2 = | 6(s,a)p(s,a) (61 — 62) 2
= [|6(s,a)ll2l¢(s,a) " (61 — b2)]

< ll¢(s,a)ll5]161 — 2|2
<161 — 022,

where the last line follows from ||¢(s,a)||2 <1 for all (s,a).
(2) For any = = (s,a,s’) € X, we have

1£(0,2)[l2 = [[(s, @) (R(s, a) + ’y(rlr,lgﬁTW(S',a’)Té)Hz
< llg(s, @)l2(|R (s, )| +~|T(é(s',a') T 9)))
1

1—7v u

IN

Lemma 5.4. The operator F(-) has the following properties:
(1) F(0) =0 has a unique solution = (@TD®)~1dT DH(T(®0)),
(2) (F(61) — F(62),01 — 02) < —Aminl|61 — 02||3 for any 61,6, € RY.

Proof of Lemma 5.4.
(1) Using the definition of F'(-), we have

F(0)=3"D(H(T (D)) —®0) VOeR?
Since ® " D® is positive definite, the equation F(6) =0 has a unique solution
§= (0" DD) ' DH(T(0F)).
(2) For any 6,6, € R, we have
(F(61) — F(0y),01 — 62) = (—® " D®(01 — 03),601 — 02) < —Auin|01 — 623,

where we recall that Anpi, is the minimum eigenvalue of dTDP. [ |
7] -1
Lemma 5.5. It holds that ||6]|2 < oW

Proof of Lemma 5.5. Using the explicit expression of §, we have

126]|p = ||©(® " DP) '@ " DH(T(®6))|p
= |[ProjwH(T(20))||p
< |IH(T(26))]p.
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where the last line follows from Projyy being a nonexpansive operator with respect to | - || p.
To proceed, observe that for any @ satistying ||Q]|ec <1/(1 — ), we have

[H(T(20))][p < [|H(T(26))]loo

s,a

= max |R(s,a) —i—’yZPa(s,s’)m:/ixQ(s’,a’)

IN

max R (5,0) |+ 7Ql
1
< —-.
=15
Therefore, we have ||®0|p <1/(1 —~). To connect ||®0| p with ||0]|2, note that
120]5, =07 @ " DPO > A 0]]3,

which implies ||0]|2 < [|®0||p /v min < 1/[VAmin (1 —7)]. [ ]
Now we are ready to apply Theorem A.2. We start with constant stepsize. When oy, = «,

and « is chosen such that a1, < )i%—“o“, we have for all £ > 7, that

1307, )

)\min

2
Bl ~ 0181 < (=g 1) (1= A0l +

4((1 = Apina)b=m= 4+ 1300
B Amin(1 —7)? ’

where the last inequality follows from

(5.5)

Amin= min 0'®'DPI< mi La)||2]10]12 < 1.
min = 1D _9:|T§1H12r1:1ZM(S)%(GIS)IW(S a)|z][0]|z <

s,a
When using diminishing stepsizes of the form aj = «/(k + h), where o > 1/Apin and h is
chosen such that Condition 5.1 is satisfied, similarly we have for all k£ > kg that
4 ( (ko + 1) + {eetn)
Amin(1—7)2(k + h)

5.3. Putting together. Observe that the RHS of either (5.5) or (5.6) does not depend
on  (due to Lemma 5.5). Therefore, the same bound holds for E[||0; x — 0;||3] for all t =
0,1,...,7 — 1. As a result, when using constant stepsize, we have by Jensen’s inequality and
(5.5) that

(5.6) E[[|6x - 0]3] <

Amin

(1 =)V Amin 7

where the last line follows from va+b < \/a + Vb for all a,b > 0. Using the previous
inequality in (5.3), we have Theorem 3.2(1). Theorem 3.2(2) follows from a similar approach
of combining (5.6) and (5.3).

) o 2 ((1 — i) 2+ IQV‘””)
E[[|0s,rc — Ocll2] SEV=[][0r,1c — 04]]3] <
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6. Conclusion. This work makes contributions toward the understanding of @-learning
with function approximation. In particular, we show that by adding target network and
truncation, the resulting Q-learning algorithm under linear function approximation is provably
stable and achieves a sample complexity of (7)(6*2) up to a function approximation error.
Furthermore, the establishment of our results does not require strong assumptions (e.g., linear
MDP, strong negative drift assumption, sufficiently small discount factor 7) as in related
literature. Potential future directions of this work include (1) extension to (-learning with
nonlinear function approximation, and (2) extension to MDPs with continuous state-action
space and unbounded reward, such as linear quadratic regulator. See the supplementary
materials (supplement.pdf [local/web 301KB]) for a more detailed discussion about future
directions.

Appendix A. A stochastic approximation result. Consider a stochastic approximation
algorithm of the form

(A.l) wy=0, Wiy =wg+ akG(wk, Yk),

where {Y}} is a finite-state Markov chain with state-space YV, G : R" x Y — R™ is a (possibly)
nonlinear operator, and {«y} is a positive sequence of stepsizes.

Assumption A.1.

(1) The Markov chain {Yj} has a unique stationary distribution vy, and it holds for
any k > 0 that max,cy dTv(P{}(y,-),l/y(-)) < Cyp’{, for some constant Cy > 0 and
py € (0,1).

(2) There exists Ly > 1 such that the operator G(-,-) satisfies |G(w1,y) — G(wa,y)|l2 <
Lifjwy — w22 and [[G(0,y)[[2 < Ly for any wq,ws, and y.

(3) The equation G(w) =Ey .., [G(w,Y)] =0 has a unique solution w*, and the following
inequality holds for all w € R™: (G(w),w — w*) < —k|lw — w*||3, where k > 0 is a
positive constant.

(4) The sequence {ay} is nonincreasing and satisfies Zf:klf;k a; < min(i, =077)
71, denotes the mixing time of the Markov chain {Y}} with precision ay. 1

Theorem A.2 (Theorem 1 of [11]). Consider {wy} generated by algorithm (A.1). Under

Assumption A.1, we have the following results.

(1) When using constant stepsize, i.e., o = c, we have for all k > 7, that

, Where

A2 El||lwy — w* 2 <ci(l—ak K %‘*—1—13002—a,
2
K

where ¢ = (||w*||2 +1)? and co = Lic;.
(2) When using diminishing stepsizes of the form ay =a/(k+h), where a >1/k, we have
for all k> ko :=min{k>0|k>7;} that

c1(ko + h) 780ecy 0%,

(A.3) Ellws —wlls] £ == Tlan— Dt h)
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