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and Einstein formalisms.
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Ionic conductivity plays an important role in the application of ionic liq-
uids as electrolytes in next-generation batteries and electrochemical applica-
tions and is often estimated using the Nernst-Einstein formalism in molecular
simulation-based studies. The Nernst-Einstein formalism is useful for dilute
systems where ions do not interact with each other, restricting its applicabil-
ity to infinitely diluted solutions. However, this approximation fails in con-
centrated solutions where ion interactions become significant, which is usually
encountered for pure ionic liquids. These ion-ion correlations can dramat-
ically affect ionic conductivity predictions in comparison to that computed
under the Nernst-Einstein formalism. This study highlights the challenges
associated with calculating ionic conductivity using Einstein formalism and
subsequently provides a workflow for such calculations. It has been found
that a minimum trajectory length of 60 ns is required to achieve converged
results for Einstein ionic conductivity. Guidance is also given to reduce the
computational resource requirements for Einstein conductivity determina-
tions. This simplification will enable researchers to estimate Einstein con-
ductivity in ionic liquids more efficiently.
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1. Introduction

Ionic liquids (ILs) are a promising solvent alternative to volatile organic
solvents in the chemical and related industries [1, 2]. They offer numerous
advantages, including low volatility [3], nonflammability, exceptional ther-
mal and chemical stability [4], high solubility, significant ionic conductivity,
and a wide electrochemical potential window. These unique properties make
them ideal for various applications, such as electrolytic materials in electro-
chemical devices [5], solvents/adsorbents for capturing greenhouse gases like
CO2 [6, 7], and catalysts or synthesis solvents for metallic oxides [5, 8]. To
explore the ILs application in electrochemical devices, it is crucial to have
knowledge of the transport properties such as self-diffusion coefficient and
ionic conductivity.

Since the beginning of the ionic liquid research, molecular simulation-
based approaches have been applied for calculating various thermodynamic,
transport, and structural properties. The popularity of this approach stems
from the fact that potentially billions of ionic liquids are possible given the
diversity of available cations, anions, and substituent groups to choose from.
It would be nearly impossible to experimentally traverse such a vast chem-
ical space to identify a candidate IL for a given application. Additionally,
molecular simulation trajectories can be analyzed to offer molecular-level in-
sight into various physical phenomena and even suggest new ionic liquids
for synthesis and physical property characterization. A common method for
calculating the transport coefficients, such as ionic conductivity, using molec-
ular simulations, relies on the application of the Nernst-Einstein (NE) and
Einstein formalism [9]. In the NE-based calculations, the movement of ions
in the system is assumed to be uninfluenced by the presence of other ions.
As this assumption does not take into account ion correlation, the ionic con-
ductivity calculated with the NE equation leads to an upper bound for the
ionic conductivity. It finds relevance in dilute solutions or systems where the
approximation of ions moving independently of each other holds reasonably
well [10]. On the other hand, the Einstein formalism is better suited for com-
plex electrolyte systems or situations where ions interact strongly with each
other or solvents. It takes into account the effects of ion-ion and ion-solvent
interactions [11], which can significantly reduce the ionic conductivity [12] in
comparison to that calculated using the NE approach.

Several studies have explored ionic conductivity using NE, which is straight-
forward to obtain when compared to estimating ionic conductivity using
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Einstein formalism as the NE conductivity can be calculated if self-diffusion
coefficients of species are known. The ease of calculating the self-diffusion
coefficient and NE conductivity lies in the nature of these properties and the
underlying calculations involved. These properties are derived from the mean
square displacement (MSD) of particles or ions in a system, which measures
the average distance particles travel over a given time period. Analyzing
the MSD, one can determine the diffusion coefficient and conductivity us-
ing relatively straightforward mathematical relations. These calculations are
based on the assumption of a linear relationship between the MSD and time
[13, 14].

The key step in calculating Einstein conductivity is evaluating the sum
of dot products of positional vectors. This involves taking into account the
relative positions and movements of the charged particles in the system. By
considering these factors, one can determine the conductivity of the ILs.
However, this process introduces additional complexity and computational
challenges [15]. The computational cost increases significantly as the number
of particles in the system is typically large, requiring efficient algorithms and
computational resources. Moreover, accurately modeling the interactions
between charged particles and incorporating the dynamics of the system can
be challenging.

The recent work by France-Lanord and Grossman introduced a new ap-
proximation for ionic conductivity, specifically designed for dynamical atomic-
scale simulations and based on the NE equation. Their approach considers
ionic aggregates as elementary charge carriers, treating them as noninteract-
ing species. This strategy effectively accounts for the primary influence of
ion-ion correlations on conductivity [9]. Additionally, the work by Kubisiak
and Eilmes contributed to the understanding of ionic conductivity using Ein-
stein formalism. Their findings suggest that approximately 40 independent
MD simulations are necessary to effectively reduce errors in ionic conductiv-
ity [15]. Recently, Madrid and Delft group computed electrical conductivities
under ambient conditions of aqueous NaCl and KCl solutions by using the
Einstein-Helfand equation [16]. These approaches offer accurate estimates of
ionic conductivity, but they come with certain limitations. The method by
France-Lanord and Grossman requires knowledge of cluster information for
ILs, which can be challenging to obtain. Meanwhile, the approach by Ku-
bisiak and Eilmes demands a large number of simulation trajectories, lead-
ing to significant computational requirements. Thus, we need an alternative
approach that requires less computational requirements and predicts more

3



reliable ionic conductivity using Einstein formalism.
Recently, Maginn et al. published ”best practices” for computing self-

diffusion coefficients from equilibrium MD simulations [17]. Additionally,
analysis tools like PyLAT have been developed for self-diffusivity and ionic
conductivity [18]. However, despite the importance of the ionic conductivity
of ionic liquids, a systematic pedagogical tool highlighting issues that may
arise while calculating ionic conductivity and a protocol to efficiently com-
pute ionic conductivity using the Einstein formalism is lacking. This article
is an attempt to bridge this gap and is intended for those who are entering
the field of molecular simulation of ionic liquids. The section ”Theoretical
Framework” provides a mathematical foundation for calculating ionic con-
ductivity with the two approaches. Details of simulations are provided next,
with an extensive discussion on the effect of the length of simulation and spac-
ing of the simulation snapshots on the computed ionic conductivity. Based
on these observations, a protocol for the calculation of ionic conductivity is
recommended. The Conclusions section summarizes the work performed in
this study and key observations.

2. Theoretical Framework

2.1. Nernst-Einstein Conductivity

The Nernst-Einstein ionic conductivity (σ), for a pure electrolyte, can be
calculated from the knowledge of the self-diffusion coefficient of individual
ions (Eq. 1)

σNE =
e2

V kBT
(N+z

2
+D+ +N−z

2
−D−) (1)

The above equation can be modified for mixtures as

σNE =
e2

V kBT
(N1z1

2D1 +N2z2
2D2 + · · ·+Nnzn

2Dn) =
e2

V kBT

n∑
i=1

Nizi
2Di

(2)
where e represents the elementary charge, V the volume of the system, kB
denotes the Boltzmann constant while T signifies the temperature of the
system. The charges on the cation and anion are given by z+ and z− while
the respective self-diffusion coefficients are labeled as D+ and D−; N+ and
N− indicate the number of cations and anions. Ni, zi, and Di are the number,
charge, and self-diffusion coefficients of the ith ion, respectively.
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In an isotropic fluid, self-diffusion coefficient (D) for the ionic species of
interest is obtained from the mean-squared displacement (MSD) over indi-
vidual molecules (Eq. 3)

Di =
1

6

d(MSDi(t))

dt
(3)

The MSD, over a time interval t, is defined as

MSDi(t) =
1

Ni

〈
Ni∑
i=1

|rci (t+ t0)− rci (t)|2
〉

(4)

Here Ni denotes the number of ions, rci is the location of the center of mass
of the ions, and t0 is the different time origins. The ⟨. . .⟩ denotes that an
ensemble average taken over these time origins. We suggest that the best
practices article by Maginn et al. should be consulted for computing the
diffusion coefficient using the MSD [17].

2.2. Einstein Conductivity

The NE equation is useful for dilute systems but is limited in accuracy
due to its assumption of non-interacting ions, restricting its applicability to
infinitely diluted solutions. However, this approximation fails in concentrated
solutions where ion interactions become significant [19, 20, 21]. To obtain
precise estimates of ionic conductivity in such systems, we must employ linear
response theory [22] and derive an expression that accounts for ion correla-
tions. The conductivity can be expressed using linear response theory and
the Green-Kubo formalism [23]. According to this theory, it is represented
as a time integral over the current-current auto-correlation function as:

σ =
1

3V kBT

∫ ∞

0

dt ⟨J⃗(t) · J⃗(0)⟩ (5)

where J⃗(t) is the total current and given by

J⃗(t) = e
N∑
i=1

zi(t)v⃗i(t) (6)

where v⃗i(t) is the velocity of i
th ion andN is the total numbers of ions. Several

challenges might be encountered when considering the long-time behavior of
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the integral in the Green-Kubo formalism for conductivity. Molecular dy-
namics simulations are performed for a finite time, and the integral in the
Green-Kubo formalism requires averaging over time-correlation functions un-
til they have decayed significantly. Long-time correlations may require very
long simulation times to capture accurately, which can be computationally
expensive. The Green-Kubo formalism is derived under the assumption of
the microcanonical ensemble. However, MD simulations often use other en-
sembles like the canonical or isothermal-isobaric ensemble. Thus, correctly
accounting for ensemble effects is important for accurate results [24, 25].
Although not a significant challenge due to availability of abundant and rel-
atively inexpensive storage, velocities are to be stored for computing conduc-
tivity using the Green-Kubo formalism. Using Einstein formalism, one can
derive a precise expression for ionic conductivity that accounts for ion-ion
correlations. Mathematically, Einstein conductivity is given by

σ = lim
t→∞

e2

6V tkBT

∑
i,j

zizj⟨[rci (t+ t0)− rci (t)] · [rcj(t+ t0)− rcj(t)]⟩ (7)

Furthermore, the equation above can be separated into two components. The
initial term can be expressed as a summation over individual MSD, resem-
bling the Einstein equation for diffusion. The subsequent term represents the
aggregate of cross terms, enabling the consideration of collective ion behavior
within an electrolyte solution.

σ = lim
t→∞

e2

6V tkBT

∑
i

zi
2⟨[rci (t+ t0)− rci (t)]

2⟩

+ lim
t→∞

e2

3V tkBT

∑
i>j

zizj⟨[rci (t+ t0)− rci (t)] · [rcj(t+ t0)− rcj(t)]⟩
(8)

Using the expression for self-diffusion coefficients (Eq. 3), the first term in
the above equation can be recast in the form of self-diffusion coefficients of
an ion of type k

σ =
e2

V kBT

∑
k

Nkzk
2Dk

+ lim
t→∞

e2

3V tkBT

∑
i>j

zizj⟨[rci (t+ t0)− rci (t)] · [rcj(t+ t0)− rcj(t)]⟩
(9)
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The first term on the right-hand side of Eq. 9 contains only single-particle
diffusion coefficients of species k. If the cross terms can be neglected, i.e.,
in very dilute solutions, the NE equation (Eq. 1) is recovered. The equation
for computing self-diffusion coefficient (Eq. 4) and ionic conductivity (Eq. 7)
requires the use of “unwrapped coordinates”. That is, periodic boundary
conditions should not be applied to the coordinates, the self-diffusivity and
ionic conductivity will be underestimated. The below steps can be used to
compute the ionic conductivity using Einstein formalism:

1. Obtain the center of mass data of ions or particles from simulations.

2. Apply time origin shifting and calculate the displacement of each ion
by subtracting its current position rci (t+ t0) from positions rci (t).

3. Multiply the displacements with their corresponding charges.

4. Compute the dot product of the displacement vectors for ions ith and
jth during the same time interval ∆t.

5. Sum all the dot products and multiply the result by the factor e2

6V kBT
.

6. Plot the obtained values against t and determine the slope of the linear
regions. The slope represents Einstein conductivity.

It is possible to further decompose Eq. 8 into contributions arising from
different ion-ion correlations, i.e. for i = j and i ̸= j. For example, in a pure
IL, the number of the cations and anions are equal. Therefore, the total ionic
conductivity of the IL can be written as

σ = σs
c + σs

a + σc
c−c + σc

c−a + σc
a−a (10)

The self terms σs
c and σs

a arise from setting i = j and can be shown to lead
to the Nernst-Einstein conductivity. On the other hand, three cross terms
appears due to i ̸= j: cation-cation (σc

c−c), cation-anion (σc
c−a), and anion-

anion (σc
a−a). We can calculate these components in a fashion analgous to

that for overall ionic conductivity. We will show that a physically meaningful
value of ionic conductivity depends on the behavior of the cross terms.

3. Computational Methods

3.1. Force Fields

We employed the virtual site OPLS force field, as proposed by Doherty
et al. [26], to simulate imidazolium-based ILs. Nonbonded interactions
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were modeled using the Lennard-Jones (LJ) 12-6 and electrostatic poten-
tial. Mathematically, the nonbonded potential can be expressed as follows:

Unonbonded =
Natoms∑
i=1

i−1∑
j=1

[
c

(
qiqj
rij

)
+ 4ϵij

((
σij

rij

)12

−
(
σij

rij

)6
)]

(11)

where Natoms denotes the number of atoms in the system, c is coulomb con-
stant qi and qj are charges of ith and jth atoms, repsectively, σij and ϵij
denote the LJ parameters for the cross interactions involving atoms i and
j, and rij is the distance between these atoms. For unlike pair interactions,
geometric combining rule was used for both the collision diameter and energy
well depth, i.e., σij = (σiiσjj)

1/2 and ϵij = (ϵiiϵjj)
1/2. Nonbonded interactions

were computed between molecules and intra-molecular atom pairs separated
by three or more bonds while the 1-4 intramolecular nonbonded interactions
were scaled by a factor of 0.5. For the calculation of the Lennard-Jone inter-
actions, a cutoff of 13 Å was employed. Long-range corrections were applied
to both energy and pressure. The electrostatic interactions were decomposed
into short-range and long-range interactions, and a short-range electrostatics
cutoff was set to 13 Å. The short-range electrostatic interactions were com-
puted by summing pair-wise interaction while Particle-Mesh Ewald summa-
tion was employed to account for long-range electrostatic interactions [27].
The equations of motion were integrated using the leap-frog algorithm with
a time step of 1 fs. The LINCS algorithm was used to constrain the bonds
involving hydrogen atoms [28].

3.2. Details of the MD Simulations Procedure

We considered widely used imidazolium-based ionic liquids: 1-ethyl-3-
methylimidazolium tetrafluoroborate ([C2mim][BF4]), [C2mim] dicyanamide
([C2mim][DCA]), [C2mim] bis(trifluoromethylsulfonyl)imide ([C2mim][NTF2]),
and [C2mim] trifluoromethanesulfonate ([C2mim][TFO]). MD simulations were
conducted using GROMACS 4.5.5 software package [29]. Cubic boxes con-
taining 500 ion pairs were generated using Packmol [30] with periodicity
enforced along the three Cartesian axes. A simulation box of 500 ion pairs
is shown in Figure 1(a). A series of steps was implemented to properly
equilibrate each of the ionic liquid systems. First, we performed an energy
minimization using the steepest descent algorithm for 5000 steps followed by
a 1.5 ns annealing procedure. Starting at 0 K, the temperature was grad-
ually raised to 313 K over 300 ps. It was then held at 313 K for 200 ps.
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Figure 1: (a) A cubic simulation containing 500 ion pairs, (b) 1-ethyl-3-methylimidazolium
[C2mim]+ as the cation, and (c) [BF4]

− as an anion. The colors white, blue, cyan, orange,
and violet represent hydrogen, nitrogen, carbon, boron, and fluorine atoms, respectively.

Subsequently, the temperature was further increased to 523 K over 200 ps
and maintained at 523 K for 300 ps. Finally, it was lowered back to 313
K over 200 ps. Each system was then equilibrated in a canonical ensemble
at 313 K for 5 ns. The temperature, in this phase, was controlled with a
Berendsen thermostat with a time constant of 1 ps. [31] A 20 ns isothermal-
isobaric (NPT ) simulation was then performed at 313 K and 1 bar. The
temperature and pressure were maintained at the desired values using the
v-scale thermostat [32] with a time constant of 1 ps and Berendsen barostat
with a time constant of 1 ps. Subsequently, another 10 ns NPT equilibration
run was performed using the Nosé–Hoover thermostat [33] (time constant of
2 ps) and Parrinello-Rahmanbarostat [34] (time constant of 10 ps). Finally,
NPT production runs were carried out for 40 ns and 100 ns using the Nosé–
Hoover thermostat (time constant of 2 ps) and Parrinello-Rahman barostat
(time constant of 10 ps), and trajectory data were collected at every 1 ps and
5 ps for 40 ns and 100 ns, respectively. Three distinct initial configurations
were generated using Packmol by varying the random seed. The reported
averages and standard deviations of the simulated conductivity were calcu-
lated using these independent simulations. The entire simulation protocol is
depicted in Figure 2.
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Figure 2: A simulation protocol showing key steps of Einstein conductivity using molecular
simulation.

4. Results and Discussion

4.1. Nernst-Einstein and Einstein Conductivity

Figure 3 displays the NE and Einstein terms as a function of time for
[C2mim][BF4] at 333 K for a time window up to 10 ns. Figure 3(a) was
obtained by processing only the first 20 ns of the trajectory while the entire
trajectory (100 ns) was used to calculate the NE and Einstein conductivity
terms plotted in Figure 3(b). It can be clearly seen from both figures that
the NE term remains linear over the entire 10 ns time window for both the
trajectory lengths. On the other hand, considerable deviation from linearity
is observed for the Einstein term. In fact, the linear behavior is maintained
only over a short time window spanning 2 ns. It is this behavior that makes
calculation of the ionic conductivity challenging requiring long simulation
times for sluggish systems such as ionic liquids. The origin of the behavior
stems from the number of samples available for averaging for the calculation
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of NE and Einstein terms. For the former, as many samples as the number
of ions in the system are available per snapshot while the collective nature of
the Einstein term implies that only one sample can be obtained for averaging
per simulation frame.

Figure 3: Nernst-Einstein and Einstein term for [C2mim][BF4] at 333 K as a function of
time. The length of the simulation trajectory is 20 ns (a) and 100 ns (b).

To glean additional insight into the behavior of the Einstein term over
a short time window, we plotted both the NE and Einstein terms for time
window up to 2 ns as shown in Figure 4, which demonstrates that the Ein-
stein conductivity curve can exceed the NE conductivity curve for a shorter
trajectory length. On the other hand, the Einstein conductivity curve re-
mains below the NE conductivity curve for the entire 2 ns when a longer
trajectory is employed as can be inferred from Figure 4(b). The effect of the
contrasting behavior is reflected in the ionic conductivity calculated from
the Einstein approach. For example, the ionic conductivity, based on the NE
equation, yields a value of 3.24 S/m while an estimate of 3.47 S/m is obtained
from the Einstein approach, which is unphysical. As the length of simulated
trajectories is increased to 100 ns, the time window for computing Einstein
conductivity also increases, resulting in a computed Einstein conductivity of
2.76 S/m, lower than the NE conductivity of 3.27 S/m. Our results indicate
that it is important to calculate both the NE and the Einstein conductiv-
ity to ensure the physically expected behavior. In addition, it is imperative
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to carry out long simulations of ionic liquids. In a later section, we revisit
this issue and provide guidance on how long such simulations need to be to
reliably compute the Einstein conductivity.

Figure 4: Nernst-Einstein and Einstein terms for [C2mim][BF4] at 333 K as a function of
time up to 2 ns time window. The length of the simulation trajectory is 20 ns (a) and 100
ns (b).

To trace the origin of the non-linear behavior of the Einstein term when a
short simulation trajectory length is used, we decomposed the Einstein term
into the self and cross terms (Eq. 9). We first analyzed the overall cross term
comprising of the cation-cation, anion-anion, and cation-anion correlations.
When plotted against the time for the first 10 ns as displayed in Figure 5,
the self term that is related to the single particle diffusion shows a linear
behavior as expected from Figures 5(a), irrespective of the length of the
trajectory. In contrast, a highly non-linear, non-monotonic and oscillatory
behavior with values taking both positive and negative values can be noted
for the cross term for a trajectory length of 20 ns; extending the trajectory
length to 100 ns results in a linear behavior up to 10 ns. Moreover, the cross-
term was found to be a monotonically decreasing function with time, which
is responsible for reducing the ionic conductivity from that computed using
NE conductivity. The takeaway from this analysis is that it is necessary to
examine the self and cross terms separately and ensure that both the terms
are linearly correlated with time prior to computing the ionic conductivity
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using the Einstein relation.
We also parsed the overall cross term into its individual components to

Figure 5: Conductivity terms obtained for a short (orange) and long (blue) trajectory for
a time window of 10 ns, showing for (a) self terms and (b) cross terms.

determine correlation(s) responsible for the nonlinear behavior as depicted
in Figure 6. An examination of the terms displayed in Figure 6(a), for a
trajectory length of 20 ns, reveals that a pronounced curvature is present in
the anion-anion correlation term, which contributes to the greatest extent
in causing the non-linearity in the overall cross term, this is followed by the
cation-anion correlation. The cation-cation correlation remains fairly linear
over the first 10 ns time window. As opposed to these observations, all the
components maintain linearity up to at least 10 ns for data extracted from
a 100ns-long trajectory (Figure 6(b)).

4.2. Effect of Simulation Trajectory Length on the Ionic Conductivity

The above analysis suggests that the simulation should be conducted for
greater than 20 ns and 100 ns long simulations appear to be adequate; how-
ever, it is not immediately apparent if any simulation less than 100 ns can be
reliably employed for the ionic conductivity calculation. To answer this ques-
tion, we examined Einstein conductivity of various systems ([C2mim][BF4],
[C2mim][DCA], [C2mim][NTF2], and [C2mim][TFO]) at 313 K as shown in
Figure 7. As we can see that the behavior of the Einstein curve varies among
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Figure 6: Self and cross correlation terms for the ionic liquid [C2mim][BF4] from a simu-
lation conducted at 333 K. A trajectory length of 20 ns (a) and 100 ns (b) was used.

different systems and also changes with the trajectory’s length. Initially,
these curves for different trajectory lengths showed linear trends, but they
started to diverge as time progressed, with noticeable differences after 5 ns.
As expected, the longer the simulation trajectory, the longer the time window
over which the linearity persists. Thus, the conductivity curve exhibits the
most linearity trends within the first 1-2 ns, as seen in Figure 7. Therefore,
a time window of at least 1-2 ns is recommended for Einstein conductiv-
ity calculations. Figure 8 depicts the ionic conductivity of [C2mim][BF4],
[C2mim][DCA], [C2mim][NTF2], and [C2mim][TFO] at 313 K with varying
trajectory lengths. For the ionic liquids [C2mim][BF4] and [C2mim][DCA]
(Figures 8(a) and 8(b)), with an increase in the length of trajectories, the
Einstein conductivity begins to rise, and it converges for [C2mim][BF4] at
trajectory lengths of 60 ns or more and for [C2mim][DCA] at 80 ns or more.
For the ionic liquid [C2mim][NTF2] (Figure 8(c)), the Einstein conductiv-
ity appears to remain constant except for a slight drop at 40 ns. Finally,
the Einstein ionic conductivity decreases with an increase in the length of
the trajectory before leveling off for trajectories that are 60 ns and longer
([C2mim][TFO], Figure 8(d)). These findings emphasize the variability in be-
havior and dynamics, highlighting the need for longer simulation trajectories
to ensure accurate conductivity predictions. Therefore, it is essential to con-
sider extended simulation trajectories (60 ns or more) when studying ionic
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Figure 7: Showing Einstein terms obtained at 313 K with different trajectory lengths (a)
[C2mim][BF4], (b) [C2mim][DCA], (c) [C2mim][NTF2] and (d) [C2mim][TFO].

liquid conductivity using the Einstein formalism. Figures 8 compare the cal-
culated ionic conductivity from our simulations with experimental data from
the literature [35, 36, 37, 38, 39, 40]. However, due to the inherent sensitiv-
ity of molecular simulations to force field parameters, absolute values of ionic
conductivity may not perfectly match experimental results. Consequently,
evaluating the accuracy of our methodology should not solely rely on this
comparison.
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Figure 8: Ionic conductivity values for various trajectory lengths computed for a time
windows of 1 ns at 313 K (a) [C2mim][BF4], (b) [C2mim][DCA], (c) [C2mim][NTF2], and
(d) [C2mim][TFO]. Dashed lines only act as visual guides.

4.3. Computational Resources Requirement

Calculating ionic conductivity using Einstein formalism can be challeng-
ing and computationally intensive, particularly when incorporating time ori-
gin shifting [18]. The process involves monitoring ion positions and their dis-
placements in MD simulations. To increase the number of data points that
can be used for averaging, time-origin shifting is recommended. However, im-
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plementing time origin shifting requires multiple displacement calculations
with different starting points, increasing computational resource demands.
In this section, we explore an approach to reduce computational resource re-
quirements by analyzing how frequently trajectories are to be stored without
losing accuracy in calculating ionic conductivity.
Figure 9(a) depicts the ionic conductivity of [C2mim][BF4] for a 40 ns

Figure 9: Showing (a) Conductivity values computed for a time windows of 1 ns and (b)
post-processing time for a simulation trajectory printed at various time steps. A trajectory
length of 40 ns was used. The dashed lines are only to act as a visual guide.

long simulation trajectory stored at an interval of 1 ps, 5 ps, 10 ps, and 20
ps. It can be readily observed that the value of ionic conductivity remains
unaffected by the frequency at which snapshots are stored. This observation
suggested that the storage requirements can be significantly reduced. Al-
though the cost of storage has dramatically reduced over the years, it is still
a consideration if a high-throughput screening of ionic liquids is to be carried
out. Furthermore, reducing the number of time origin leads to proportionate
reduction in the computational requirements as demonstrated in Figure 9(b).

5. Conclusions

The article focused on issues that emerge while calculating the ionic con-
ductivity for ionic liquids using the Einstein formalism and presented several
recommendations that can be followed to ensure reliable results from molecu-
lar simulations. Specifically, we demonstrated that a shorter simulation time
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can lead to the Einstein conductivity greater than that predicted by the
Nernst-Einstein formalism, which is physically unrealistic given that the ion-
ion correlations in ionic liquids contribute rather significantly. To understand
the origin of this behavior, an analysis of the terms that correspond to the
ion diffusion and ion correlation was carried out which indicated that short
simulations (20 ns in length) result in nonlinearities in the ion-ion correla-
tion terms. Extending the simulation length to 100 ns resulted in correlation
terms maintaining a linear behavior up to 10 ns. Therefore, we recommend
that the averaging be carried out over the first 2 ns. While the evolution
of these inter-ionic terms differs for every system, it is recommended that
trajectories spanning 60-100 ns or longer be used to obtain a sufficiently
long window over which the correlation term can be considered linear. Esti-
mating Einstein conductivity using long trajectories can pose computational
challenges pertaining to memory and storage. This issue can be resolved by
recording the trajectory less frequently, such as every 20 ps. We also recom-
mend to use the form of Einstein conductivity based on the overall dipole of
the system to further increase computational efficiency. Avenues for future
work include investigating the spatial decomposition of ion-ion correlations
in ionic liquids that could help researcher to understand the effect of the
neighboring and distant ions on correlations. Such insight could assist in the
design of high conductivity ionic liquids where either there is a cancellation
in the correlated motion or correlations are small. The approach outlined
here should also provide a framework to ensure converged ionic conductivity
in ionic liquid-salt mixtures where salt concentrations are low. In such cases,
it would be important to ensure that cross-correlation terms involving dilute
species (salts) are linear.
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Appendix A. Appendix

Here we show how to recast the original Einstein conductivity relationship
so that the Eq. 7 in terms of time correlations of the simulation dipole.
Starting with the expression of the ionic conductivity (Eq. 7)

σ = lim
t→∞

e2

6V tkBT

∑
i,j

zizj⟨[rci (t)− rci (0)] · [rcj(t)− rcj(0)]⟩

Let’s focus on the dot product inside the summation∑
i,j

zizj⟨[rci (t)− rci (0)] · [rcj(t)− rcj(0)]⟩

=
∑
i,j

⟨[zirci (t)− zir
c
i (0)] · [zjrcj(t)− zjr

c
j(0)]⟩

(A.1)

Defining Xc
i = zir

c
i (t) − zir

c
i (0), and Xc

j = zjr
c
j(t) − zjr

c
j(0), Eq. A.1 can be

written as

∑
i,j

⟨[zirci (t)− zir
c
i (0)] · [zjrcj(t)− zjr

c
j(0)]⟩ =

∑
i,j

⟨[Xc
i ] · [Xc

j ]⟩ (A.2)

Expansion of the above equation leads to∑
i,j

⟨[Xc
i ] · [Xc

j ]⟩ = Xc
1·Xc

1 +Xc
1·Xc

2 + · · · · ·+Xc
1·Xc

N

+ Xc
2·Xc

1 +Xc
2·Xc

2 + · · · · ·+Xc
2·Xc

N

+ ·
+ ·
+ ·
+ Xc

N ·Xc
1 +Xc

N ·Xc
2 + · · · · ·+Xc

N ·Xc
N

To simplify the above expression, we consider a system consisting of only
two ions, ∑

i,j

⟨[Xc
i ] · [Xc

j ]⟩ = Xc
1·Xc

1 +Xc
1·Xc

2 +Xc
2·Xc

1 +Xc
2·Xc

2 (A.3)

20



The right hand side of the above equation can be simplified to a dot
product of sum of Xc

1 and Xc
2

Xc
1·Xc

1 +Xc
1·Xc

2 +Xc
2·Xc

1 +Xc
2·Xc

2 = (Xc
1 +Xc

2) ∗ (Xc
1 +Xc

2) (A.4)

Xc
1 +Xc

2 = (z1r
c
1(t)− z1r

c
1(0)) + (z2r

c
2(t)− z2r

c
2(0)) (A.5)

Collecting terms with time t and 0,

Xc
1 +Xc

2 = (z1r
c
1(t) + z2r

c
2(t))− (z1r

c
1(0) + z2r

c
2(0)) (A.6)

Therefore,

Xc
1 +Xc

2 =
∑
i

zir
c
i (t)−

∑
i

zir
c
i (0) (A.7)

In an analogous fashion, it can be shown that Eq. A.2 can be written∑
i,j

⟨[zirci (t)− zir
c
i (0)] · [zjrcj(t)− zjr

c
j(0)]⟩

=

[∑
i

zir
c
i (t)−

∑
i

zir
c
i (0)

]
·

[∑
i

zir
c
i (t)−

∑
i

zir
c
i (0)

] (A.8)

Note that
∑

i zir
c
i is the dipole moment of the simulation box. Therefore,

the Einstein ionic conductivity expression, in terms of the dipole moment of
the box, is

σ = lim
t→∞

e2

6V tkBT

〈[∑
i

zir
c
i (t)−

∑
i

zir
c
i (0)

]
·

[∑
i

zir
c
i (t)−

∑
i

zir
c
i (0)

]〉
(A.9)
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