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We study optimal pricing in a single server queue when the customers valuation of service depends on their
waiting time. In particular, we consider a very general model, where the customer valuations are random
and are sampled from a distribution that depends on the queue length. The goal of the service provider is to
set dynamic state dependent prices in order to maximize its revenue, while also managing congestion. We
model the problem as a Markov decision process and present structural results on the optimal policy. We
also present an algorithm to find an approximate optimal policy. We further present a myopic policy that is
easy to evaluate and present bounds on its performance. We finally illustrate the quality of our approximate
solution and the myopic solution using numerical simulations.
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1 INTRODUCTION

The problem of allocating limited resources amongst competing users is traditionally studied us-
ing queueing theory and stochastic networks, with a focus on metrics such as throughput and
delay. Users and system operators in real world respond to prices and incentives in addition to the
queueing metrics. The focus of this article is to study such interplay of queueing and pricing. A
user has certain valuation for the service, and the user enters the system only if the price is smaller
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than their valuation. However, the valuation of the user can decrease based on quality of experi-
ence, such as delay and other queueing metrics. The service provider, therefore, employs dynamic
pricing and tunes prices in order to use them as control levers for admission control and to man-
age congestion in the system. Moreover, the prices affect the service provider’s revenue, which
they want to maximize. Examples of such systems include spot pricing for the cloud services [28],
surge pricing in ridehailing systems such as Uber [8], auctions for web advertisements [15], and
highway tolls with increased peak-hour rates [18].

In this article, we abstract away the resources and model them by a single server queue. Several
pricing questions in such a simple system are still unanswered in the literature. Such a system can
be used to model the aggregate service capacity of a shared service system such as a data center.
Customers arrive into this system according to a Poisson process and see the queue length ahead.
A customer’s valuation of the service depends on the queue length. Given the queue length, the
customer samples its valuation in an independent and identically distributed (i.i.d.) manner
from a distribution. The service provider posts a price at each time that depends on the current
queue length. If the customer’s valuation is larger than the price, she pays the price, joins the queue,
and leaves only after service completion; otherwise, she does not join the queue. All customers in
the queue are served in an FCFS manner, and each customer needs an i.i.d. exponential amount
of service. The service provider is not aware of the individual valuations of the customers, but
knows the distributions of the queue length dependent valuations. We study the problem from the
perspective of the service provider, aiming to maximize long run average revenue.

The following are the main contributions of our work.

— We formulate the revenue maximization problem as a continuous time Markov decision
process (MDP) and present structural results on the optimal pricing policy and the optimal
revenue.

— Since a queue has infinite states, finding the exact solution of this MDP involves solving an
infinite system of equations. By truncating the state space appropriately, we propose a finite
system of equations to obtain an approximate solution and present its structural properties.

— We present an algorithm to find the approximate solution, and present guarantees on its
convergence. We arrive at this algorithm following intricate arguments that translate Bell-
man’s equation to a fixed point equation in single variable, namely the optimal revenue rate.
Counterintuitively, the optimal prices may be non-monotonic in queue lengths.

— We consider a special case when the valuations are a deterministic function of the queue
lengths and present explicit closed form expression for the optimal dynamic prices. Such
deterministic valuations were considered in prior work [5, 7] which focused on only spe-
cific functions. Our model is therefore, more general, since we not only consider general
deterministic valuations, but also allow randomized valuations.

— We present a myopic policy, prices of which are much simpler to obtain. We show that even
such a simple policy has good performance, and present a lower bound on the ratio of av-
erage revenue rates under the myopic policy and the optimal policy. We further present nu-
merical simulations to compare the two policies. The simulations also illustrate rich tradeoffs
that occur due to interplay of customers’ preference towards smaller delay and the provider’s
goals of maximizing revenue and managing congestion.

1.1 Related Work

Since the queue pricing problem arises naturally in a number of situations, it has been studied
extensively. The earliest work on pricing in a queue is the seminal paper by Naor [22], in which the
entry of customers to a queue was regulated using tolls. After observing the queue size, customers
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Optimal Pricing in a Single Server System 12:3

decide to join (or not join) the queue. Such systems are called observable. Customers join if the
difference between their valuation of the job and the cost of waiting exceeds the admission price
to the queue. This is equivalent to a threshold type policy—if the queue length is smaller than
the threshold, the customers join; otherwise they leave. The optimal threshold varies, depending
on whether we are maximizing the social utility or the revenue. In [22], it was demonstrated that
the socially optimal threshold was higher than the revenue maximization threshold. A number
of subsequent works have looked at the queue pricing problem under different constraints and
assumptions, and study the effects of different system parameters. An exhaustive survey of this
literature is available in [13, 14].

We are interested specifically in the question of maximization of revenue. In [20], the author
studies optimal pricing for an M/M/s queue with finite waiting room. The author shows that the
optimal prices are monotonically increasing in the number of customers waiting in the system.
Such structural results for the optimal prices are a common result in a number of works. For
example, [23] shows that optimal price is monotonically increasing in the number of customers, for
a multi server system with no waiting room. Proceeding further along these lines, [7] is interested
in maximizing the expected discounted revenue, while keeping the queueing model of [22]. They
obtain a revenue optimizing threshold queue length beyond which entries are not allowed into
the queue. This threshold can be computed numerically. All customers who see a waiting queue
length smaller than this threshold pay a price equal to the difference between their valuation and
waiting cost. In [5], an explicit form is derived for the threshold obtained in the previous work, and
they characterize the earning rate asymptotically. However, both aforementioned works provide
explicit solutions in the case of fixed service valuation (or simple valuation distributions, such as
a valuation which takes two values). They do not provide explicit solutions for valuations with
continuous support and general distributions.

In [30], the authors look at optimal pricing in finite server queueing systems, but restrict them-
selves to the sub-optimal class of static prices. These prices are not dependent on the system state
(queue length). They study the variation of optimal price with number of servers. While static
prices are sub-optimal, they can be close to optimal in some systems. For example, in [4], the au-
thors prove the existence of a static pricing policy that obtains 78.9% of the optimal profit in a
system with multiple reusable resources. This result holds under the assumption that the revenue
rate is a concave function of the arrival rate. In [21], the authors obtain the revenue maximizing
policy for a queueing system under the assumption that the generalized hazard rate of the valua-
tion distribution, which is the ratio of price times the density of valuation, to the complementary
cumulative distribution of valuation is strictly increasing in price. This assumption, however, does
not hold in general. There are a number of similar works that provide existential results and struc-
tural results for optimal policies, after modelling the revenue maximization problem as a Markov
decision problem (MDP) [10, 27, 29]. There are also many works that study the pricing problem
in queues in different asymptotic regimes. In [1], an asymptotically optimal price is obtained for
customers with fixed valuations. In [16], the authors show that the revenue loss due to random-
ness is lower for dynamic pricing than static pricing. An approximately optimal price is obtained
by solving a diffusion equation in [6].

In our earlier works [17, 25], we study optimal service pricing in multi-server systems in which
the service provider charges a time varying service fee aiming at maximizing its revenue rate. The
customers that find free servers and service fees lesser than their valuation join for the service else
they leave without waiting. We solve the optimal pricing problems using the framework of MDPs
and show that the optimal prices depend on the number of free servers. We propose algorithms
to compute the optimal prices. We also establish several properties of the optimal prices and the
corresponding revenue rates in the case of Poisson customer arrivals.
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exp(4)
— o=
Poisson A
Vi ~ G; i customers

Fig. 1. A single server queueing system where customers arrive as a Poisson process of rate A with i.i.d.
exponential service times of rate . An arriving customer that sees i existing customers in service has a
random valuation V; with distribution G; independent of everything else.

In this article, we proceed to model the control problem as an MDP and proceed to solve it. We
are interested in the optimal prices themselves, rather than structural properties, as in [10, 27, 29].
We obtain the optimal solution as the solution of a fixed point equation. In all the works discussed,
the optimal prices are obtained under restrictive assumptions [4, 21], or assume non-random (or
less random) service valuations [5, 7]. We also assume a more general structure for the valuation
distribution, which can be viewed as a generalization of valuation models such as in [22] and [19].
Hence, the results in this article are more general.

1.2 Organization of the Article

The rest of this article is organized as follows. In Section 2, we describe the system model, formulate
the problem as an MDP, and write the Bellman’s equations corresponding to the optimal policy. In
Section 3, we solve the Bellman’s equations after truncating the equations. In Section 4, we obtain
a myopic policy that is easy to implement and serves as a benchmark for comparison. In Section 5,
we solve the Bellman’s equations for the special case when the valuation function is deterministic.
Numerical simulations are presented in Section 6. For ease of reading, we have moved some of the
lengthier proofs into a separate section, Section 7.

2 SYSTEM MODEL AND PRELIMINARIES

We begin with description of the system model, specifically of the stochastic valuation functions.
Subsequently, we frame the optimal pricing problem as a continuous time Markov decision
problem (CTMDP). We write the Bellman’s equations and derive several properties.

2.1 System Model

We model the system as a single server queue with infinite buffer size. Customers arrive as a
Poisson process of rate A. Each arriving customer has a random service time requirement S. We
will assume that the service requirements of different customers are i.i.d. exponential with mean ;11
The admission price is a function of the number of customers present in the system. We model the
service valuation as a non-negative quantity, stochastically decreasing with the number of waiting
customers, motivated by the fact that the mean waiting time of a customer is directly proportional
to the number of waiting customers. As such, two customers who see the same queue length on
arrival will have i.i.d. valuations. If two customers see queue lengths i; and i on arrival, where
iy > iy, their valuations V;, and V;, will be stochastically ordered, i.e.,

P[V;, < x] 2 P[V;, <x], x > 0. 1)

2
Condition (1) implies that on average, customers seeing a higher queue length on arrival will have
lower valuation. Let G;(-) denote the value distribution for a customer seeing i customers on arrival,
ie., Gi(x) = P[V; < x]. We denote the complementary valuation distributions by G; £ 1 — G; for
each i. We have succinctly represented our system model in Figure 1.

We assume that the service provider selects a deterministic service fee of u; for an arriving
customer that sees i queued customers at its arrival. If the valuation V; exceeds this fee, then the
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customer pays this service fee u; to the provider and joins the system; else he leaves without
joining the system. That is, given that an incoming arrival sees i queued customers, its probability
of joining the system is G;(u;) independent of everything else. We denote the sequence of prices
asu = (uo, Uy, ... ). Our objective is to find the stationary price sequence that maximizes the long
term average revenue generated by the service provider.

2.1.1 Discussion on the Valuation Model. The valuation model we present here subsumes as a
special case other waiting cost models studied in the literature, as the following examples illustrate.

Example 1 (Valuation Model of [7]). Let the random valuation of arriving customers be i.i.d. , and
denoted by V for a typical customer. Let the price of admission be u. Let 7 be the random waiting
time until service completion for a typical customer, ¢ be the cost per unit time of waiting, and
y > 0 be some discount factor. An arriving customer joins the system if

V-E [c j: e_ytdt] > u. (2)

If the service times of customers are i.i.d. exponential with mean 1 and there are i existing cus-
tomers in the system at the time of the arrival, 7 is equivalent to the sum of i + 1 exponential
random variables. Then, (2) is equivalent to

c ( U )i+1 c
+ - -—>u. (3)
Yy \H+Yy Y

Thus, the effective valuation of the job from the perspective of the customer who sees n people
queued ahead is V + 5(#”7)/ 1 ?, which is a decreasing function of the queue length i seen
on arrival. If the discount factor y = 0, the queue length dependent valuation can be seen to be

V- @ From this example, it makes sense to consider mean valuation decreasing in queue length.
Such an assumption generalizes the above model and accommodates (2) for all non-negative values
of y. It also includes other models where the cost of delay may have a different functional behavior,
though the mean cost of delay increases in queue length.

Example 2 (Valuation Model of [19]). Let the valuation of a customer who sees i customers on
arrival be given by V; = X — iY, where X and Y are proper non-negative random variables. For
i1 > Iy, it is easy to check that

P[Vi, < x] =2 P[V;, < x].
Thus, this is a special case of our valuation model.

2.2 MDP Formulation

We formulate the pricing problem as a CTMDP [3, chapter 5]. The state of the CTMDP is the
number of customers Q(¢) present in the system at time ¢. This state evolves over the state space
Q £ {0,1,2,3,...}. The action in each state i is to pick the corresponding price u;, and we seek
to find a stationary state dependent policy u = (u;,i € Q). The state of the system evolves in a
Markovian manner in continuous time. The transition rates from state i to i + 1 are

Ai £ AGi(uy).
The transition rate from state i + 1 to i is always the service rate p. The state transition diagram is
given in Figure 2.
Thus, the transition rates of the CTMDP under a policy u are given by
AG_()(uo) ifi = 0,
vi(ui) =

- 4
,u+/1Gl~(ui) lfl>1 ( )
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Ao A Ao
H H H
Fig. 2. State transition diagram of Markov chain Q(t).

The pairwise transition probabilities are given by, po; (up) = 1 and for i > 1,

AGi(ui)

i) ifj=i+1,
pij(u;) = ﬁ ifj=i-1, 5)
0 otherwise.

Customers pay the price on arrival. Therefore, in state i, the provider receives a reward of u; if
the next transition is due to an arrival that accepts the price, and does not receive any reward if
the transition is due to a departure. Thus, on average, the reward ¢g(i, u;) received in state i under
an action u; is given by

L,Uuj) = NeNoTh
gt —A”Vf(";ﬁ;“) ifi>1.

Following the discussion in [3], we observe that the long term average revenue is equal to

N
) 1
R(u) = lim RE;g@n, ug,), ()

where ty is the completion time of the Nth transition of the Markov chain. We formally state our
problem in the following.

PrROBLEM 1. Find the optimal state dependent price sequence u : Q — R, that maximizes long
term average reward R(u) defined in (7), where the state evolves as a controlled CTMC with transition
rates (vi(u;) : i € Q) defined in (4) and controlled transition probabilities (p;;(u;) : i,j € Q) for the
associated jump chain defined in (5), under any price sequence u. That is, we can define the optimal
pricing as

u* £ arg max R(u), (8)
and the optimal revenue rate as

0* £ R(u*). )

2.3 Bellman’s Equations

First, we obtain Bellman’s equations corresponding to the average reward CTMDP problem defined
in Problem 1, and rewrite them as a series of iterative equations. Finding the optimal solution for
Problem 1 is equivalent to solving the following set of Bellman’s equations

0

h(i) = mue}x g(i,u;) — o)

+ ) pyluh()p.  ieQ (10)
J

2.3.1 Uniformization. From the definition of transition rates v;(u) defined in (4) and the fact
that G;(u;) < 1, it follows that the transitions rates are uniformly bounded for all states i € Q and
pricesu : Q — R, where

vi(u)) < A2 p+ A
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Optimal Pricing in a Single Server System 12:7

By scaling the transition rates with A, we can uniformize the controlled CTMC. The state transi-
tion probabilities are redefined to allow self-transitions such that the resulting dynamics remains
unchanged. Specifically, we define the transition probabilities for the jump chain of uniformized
controlled CTMC as

A f g,
pijus) = {225 =, (11)
£ ifj=i-1.

Thus, we can transform the CTMDP problem defined in Problem 1 to an equivalent MDP defined
below.

PrROBLEM 2. Consider a controlled DTMC with transition probabilities (p;j(u;) : i,j € Q) and
per stage reward g(i,u;) defined in (6), for any price sequence u : Q — R.. Find the optimal state
dependent price sequence u that maximizes the long term average reward

N
R@w 2 lim <2 6(0n.ug,). (12)
n=1

The set of Bellman’s equations for the MDP defined in Problem 2 is equivalent to the set of
Bellman’s equations given in (10) and are given by

h(i) = max $ g, u)vi(us) = 0+ ) py(udh() p, i€ Q. (13)

J

Remark 1. The pair (0, h) satisfies the Bellman’s equation for the original continuous time prob-
lem defined in Problem 1 if and only if the pair (0, fz) satisfies the Bellman’s equation for the discrete
time problem defined in Problem 2, where fz(l) = Ah(i) for all i. Moreover, for all the states, the
optimal actions for the two problems are identical [3, Chapter 5, Proposition 3.3].

2.3.2  Reduction of Bellman’s Equations. Substituting the values of ¢g(i, u) from (6) in the Bell-
man’s Equation (13) for the discrete-time system, we obtain

h(i) = max 1 A G (us) = 0 + Zﬁij(u,-)fz(j) , ieq. (14)
! J

We define the scaled difference of (i) for all i € Q, as
AGi) 2 (h(i) = h(i + 1)) /A. (15)

We define the following functions that help us understand the properties of optimal pricing and
revenue rate for Problem 2. For all i € Q, we define

m;(B) £ sup {(u - B)Gi(u)} ) (16)
u
AsSUMPTION 1. The supremum in (16) is achieved and m;(B) is finite for all B and i. In particular,
we assume that lim,_,. uG;(u) < co foralli € Q.
We further define for all i € Q, the pricing functions
u;(B) £ maxarg max {(u - B)Gi(u)} . (17)
The terms u; (B) and m;(B) can be interpreted as follows. Suppose the system is in state i (i.e., there

are i customers). For any price u that is set, the instantaneous revenue at the next arrival is uG; (u).
Suppose B is the “cost” that captures reduced valuation of the future users due to increase in queue
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12:8 A. Krishnan K. S. et al.

length because of admitting this user, then the expected instantaneous “profit” is (u — B)G;(u), and
u;(B) is the price that maximizes this expected instantaneous profit and m; (B) is the corresponding
profit. We note that the cost B is a priori unknown but is yielded by the analysis in Section 3.

Substituting the values of p;;(u) from (11), the reduced Bellman’s Equation (14) can be rewritten
in terms of the functions m;(-)’s defined in (16) and scaled differences A(-)’s defined in (15), as

mo(A0) = 5. (18)

mi(Ai)) = w, i1 (19)

2.3.3 Limiting Valuation and Pricing. We show that the valuation distribution G;’s being
stochastically ordered implies that there exists a distribution function G which is the limit of G;’s
at all continuity points. Thus, the valuations V;’s converge in distribution to a random variable V'
with the distribution G.

LEMMA 3. The random valuations V;’s converge in distribution to a limiting random variable V
with distribution G that satisfies G(u) = lim;_,o, G;(u) at all the continuity points u of G.

ProoOF. See Section 7.1.1. =]

Remark 2. Notice that G(-) is identical to lim;_,., G;(-) at its continuity points; it may differ at
the points where G(+) is not continuous. In fact, the limit lim;_,., G; may not be a distribution
function. If the distributions G; are all continuous and converge to a continuous function G, this
distinction is not important. Furthermore, Assumption 1 implies that lim,, . uG(u) < co.

Let C C [0, 00) be the set of non-negative continuity points of G(-), and define

m(B) £ max {(u - B)G(u)| = max {(-B)Gw)}, (20)
u(B) £ max arg max {(u - B)G(u)} . (21)

We have defined the limiting value m(B) and limiting price u(B) assuming that the maximization
in (20) has a solution for each B. It can be shown that lim;_,. m;(B) > m(B) for all B. It is not
clear whether m;(B) and u;(B) converge to m(B) and u(B), respectively. However, it is not hard
to imagine that these sequences converge under certain smoothness assumptions. We summarize
these assumptions below.

ASSUMPTION 2. The maximum in (20) is achieved, lim;_,o, m;(B) = m(B) and lim;_,o u;(B) =
u(B) for all B.

This assumption is used in Lemma 30 to argue that if the original problem is non-degenerate,
then the k-truncated problems are also non-degenerate for large k.

Example 4. Consider the exponential valuation distributions, where the complimentary distri-
bution function of valuation is defined as G;(u) = e (*V¥ for 4 > 0 and i € Q. We can see that
G;’s converge to G which is zero everywhere except at u = 0. Correspondingly, m(B) = 0 and
m;(B) = %e_(HB("“)) and we can see that m;(B) — m(B) as i — oo.

We observe that Assumption 2 holds in this case.
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3 OPTIMAL PRICING

We have an infinite system of equations from Bellman’s equation for the problem. The properties of
optimal pricing sequences depend on the limiting valuation of the customer that sees an arbitrary
large number of existing customers. Thus, we need to understand the limit of valuations V;’s and
the distributions G;’s. This is the focus of the first subsection. In the next subsection, we propose
a truncation method to obtain an approximate solution. We show that as the truncation threshold
gets larger, we converge to the optimal solution to Problem 2 with an infinite system of equations.

3.1 Existence of the Optimal Solution
Definition 5. We call a pricing policy u ergodic if it renders the CTMC positive recurrent.

ProOPOSITION 6. Let (6, A(0),A(1),...) be a solution to (18) and (19) such that (A(i) : i € Q) are
bounded. Then 0 is an upper bound on the revenue rate for any ergodic policy u, and hence an upper
bound on the optimal average revenue rate 6*. Moreover, if the policy i : Q — R, is defined by

i; = u;(A(i)) foralli € Q (22)
is ergodic, then 0* = 0, implying that @ = u*, the optimal price sequence.
Proor. See Section 7.2. O

Degeneracy. Before proceeding further, we discuss a special case. Recall that u* is the optimal
ergodic policy and §* £ R(u*) is the maximum revenue rate across all the ergodic policies. Let
0* < Am(0) = Amax, uG(u). The policy u = (u(0),u(0),...) achieves a revenue rate R(u) >
Au(0)G(1(0)). The inequality follows from the fact that (V; : i € Q) are stochastically decreasing.
This result implies that the policy u achieves a revenue rate greater than or equal to the maximum
revenue rate 6* across all ergodic policies. In this case, we call our pricing problem degenerate [11].
As in [11], we will bypass the degenerate case, i.e., we will focus on the case 6% > Am(0).

Remark 3. Observe that if 0* < Am(0), then u cannot be an ergodic policy. That is, AG; (u(0)) > p
for infinitely many i € Q. Since V;’s are stochastically decreasing, it implies that AG;(u(0)) > p
for all i € Q. In particular, AG(u(0)) > p. This implies that even at arbitrary large queue-length,
the valuation of incoming customers does not decrease enough to discourage them from entering
the system leading to instability. On the other hand, if 6* = Am(0), then u may or may not be an
ergodic policy. Further analysis of this case is quite subtle, and we do not consider this case.

3.2 Truncated Problems

We recall the reduced Bellman’s Equations (18) and (19), which characterize the optimal price
sequence for the revenue rate maximization problem. This being an infinite system of equations is
not amenable to numerical computation. We address this issue by considering the corresponding
k-truncated systems defined as follows.

Definition 7. Consider a system with sequence of valuation distributions (G; : i € Q). For any
k € @, the corresponding k-truncated system is defined as the one with sequence of valuation
distributions (Gjar : i € Q). We refer to Problem 2 associated with k-truncated system as the
k-truncated problem.

Remark 4. We observe that in the original problem, the valuation distribution is non-decreasing
for all states i € Q. However, the valuation distribution gets fixed for all i > k in the k-
truncated problem. It follows that the optimal revenue rate for k-truncated problems would be
non-increasing in k, and lower bounded by the optimal revenue rate of the original problem.
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In the following, we derive properties of the optimal pricing sequences and the corresponding
revenue rates for the k-truncated problem. We also prove that as the truncation threshold k in-
creases, the corresponding optimal pricing sequences when applied to the original system yield
revenue rates arbitrarily close to the optimal revenue rate 6*. In Section 3.4, we develop an algo-
rithm to derive the numerical solution to a k-truncated problem.

Remark 5. 1t follows from (16) and (17) that the m;s and ;s for a k-truncated system are (m; :
i € Q)and (ujnr : i € Q), respectively. Thus, the optimal price sequence for the k-truncated
system is characterized by k + 2 equations,

0

mo(A) = 7. (23)
mam) = 7D ik (24)
Alk) = Ak = 1). (25)

We can view these k + 2 equations as a fixed point equation in 0 as follows. We express A(i)’s
successively in terms of 6. In particular, we define functions ¢; : Ry — R as

$-1(0) =0,
b0y (1280

Then, from (18) and (19), we can see that A(i) = ¢;(0) for all i € Q and the above system of
equations reduces to ¢ (0) = @r_1(0). We analyze this fixed point equation in Proposition 9.

), icQ. (26)

For notational convenience, we define functions §; : R, — Rforall € R, andi € Q, as
5:(0) = $:(6) — ¢i-1(0). (27)
Then 8(0) = my'(0/A), and for i > 1,

%@) = $i-1(0) = $:(6) -

Furthermore, the desired fixed point equation for the k-truncated system reduces to 8, (0) = 0.
We characterize the solutions to these equations for all thresholds k in Proposition 9. However, it
requires the following assumption.

0= 2mi($:(0) o8)
Iz

5:(6) = m;" (

AsSUMPTION 3. For all B > 0, the probability G;(u;(B)) of joining the queue under price u;(B) is
non-increasing in the observed state i € Q.

This assumption is used in Proposition 9 and in Theorem 15 to establish that the k-truncated
problems posses unique optimal revenue rates, s, which are non-increasing in k. Consequently,
all the results that require Proposition 9 rely on this assumption. It is also used in Lemma 30. This
assumption is also satisfied by many valuation sequences. Following is one such instance.

Example 8. Let Gi(u) = 1 — e"*D¥ foru > 0 and i € Q. In this case, u;(B) = B+ - and
Gi(u;(B)) = e"1+BU+D) for B> 0 and i € Q. This is clearly non-increasing in i.

ProprosITION 9. Under Assumption 3, there exists a unique non-increasing sequence (0 : k € Q)
such that 5 (0) = 0 for all k € Q. Moreover, for functions ¢;(-) defined in (26), allk € Q and i < k,

$i-1(0k) < $i(O).

PrOOF. See Section 7.3. O
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Remark 6. If 0; < Amy(0), the k-truncated problem is degenerate, and uniform pricing, i.e.,
setting the same price for all queue length states, offers better revenue rate than any ergodic pricing
policy.

The following theorem characterizes the optimal revenue rate as well as an optimal price se-
quence for the non-degenerate k-truncated problem.

THEOREM 10. The optimal revenue rate of the k-truncated problem is upper bounded by 0. defined
in Proposition 9. We define the following policy in terms of ¢;(-)’s defined in (26) and Oy, as
s u;i (i (Or)) fori € {0,1,...,k—1},
! ug (¢x (0k)) fori > k.

If O > Ami(0), then policy u* is ergodic, achieves revenue rate 6y, and hence optimal for the k-
truncated problem.

(29)

Proor. See Section 7.3.2. O

3.3 Convergence to an Optimal Solution

We now show that the optimal solutions to the k-truncated problem converge monotonically to an
optimal solution to the original pricing problem, as the threshold k — co. We also obtain a bound
on the performance (i.e., the revenue rates) of the optimal policy for a k-truncated problem. First,
we show that as the truncation threshold k increases, the corresponding optimal pricing sequences
(u* : k € Q) when applied to the original system yield revenue rates R(u*) arbitrarily close to the
optimal revenue rate 6.

Remark 7. From Theorem 10, 0 is the optimal revenue rate for a k-truncated problem. From
Remark 4, the sequence (0, k € Q) is non-increasing and 0, 2 infrcq 6x > 0*. Since ¢;(-) is
continuous and strictly decreasing (see Lemma 29 in Section 7.3), it follows that ¢; (k) is mono-
tonically increasing in k and converges to ¢; £ maxieq ¢i(0r) = ¢i(f). Recall from Proposition 9
that ¢;(6x) is non-decreasing for all i < k. From continuity of ¢;(-)’s, it follows that the sequence
(¢7.i € Q) is non-decreasing and converges to ¢o = sUp;cq ;-

The price function u; (-) is right-continuous and increasing (see Lemma 27 in Section 7.2). There-
fore, the sequence (u;(¢;(0k)), k € Q) isincreasing and hence converges to u} = SUPgeq Ui (9i(Ok))
for all i € Q. Since u;’s need not be left-continuous, we can only infer that u} < u;(¢]). Since the
valuations are stochastically non-increasing, it follows that for all i € Q,

inf Gi(ui($:(0r))) = Gi(uy) = Gi(ui(¢7)).
In particular, using the definition of uf in Theorem 10, infrcq Gi(uf) > Gi(u).

If 0o < Am(0), then 6* < Am(0), rendering the original pricing problem degenerate. We dis-
pense with this case and focus on the case ., > Am(0).

THEOREM 11. If 0 > Am(0), then 05 = 0*. Moreover, limy_,« R(uk) = 0*.
Proor. See Section 7.4. O

Recall that the optimal policies for the k-truncated problems converge to u* = (u},i € Q). In
general, the asymptotic policy u* needs not be optimal for the original problem. The following
corollary to Theorem 11 states that if limy_, Gi(uf.‘) = G;(u}) for all i € Q, then u* is an optimal
policy for the original problem. We know from Remark 7 that, in general, lim_, Gi(uf) > Gi(u).
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COROLLARY 12. Iflimj_e0 Gi(u¥) = Gi(u}) for alli € Q, thenu* = (u},i € Q) is an optimal
policy for the original problem.

PRrROOF. See Section 7.4.2. m]

3.4 Solution to the k-Truncated Problem

Under Assumption 3, we can iteratively obtain the revenue rates 6; and the optimal policies u*

for the k-truncated problems for all k € @, as shown in Proposition 9. It warrants solving (58)
for each threshold k (see Section 7.3), which is a considerable computational task. In particular,
this equation resembles an intricate fixed point equation which can be solved for 6y via iterative
methods. In this section, we develop a fixed point iteration that yields 0y for any given k. Note
that, from Theorem 11 and Corollary 12, R(uk) and u* are close to the optimal revenue rate and
the optimal policy, respectively, for large k.

Recall that the optimal price sequence for the k-truncated system is characterized by k + 2
equations, namely (18) for i = 0, (19) for i € [k], and A(k) = A(k — 1). We claim the following
property of any solution to these equations.

LemMa 13. Let (0,A(i),0 < i < k) be a solution to (18), (19) fori € [k] and A(k) = A(k — 1).
Then A(i),0 < i < k are non-negative and non-decreasing in i.

PRrROOF. See Section 7.5.1. O

We again express A(i)’s successively in terms of 0 and treat these k +2 equations as a fixed point
equation in 6. In particular, we define functions ¢/; : R, — R as follows. Let /4 (0) be a solution of
the following fixed point equation in A :

0 — uA

mi(8) = — (30)

and 0 0
:(6) = - mi+;(‘//i+1( ) (31)
fori =0,1,...,k — 1. Then, A(i) = ¥;(0) for all i = 0,1, ..., k and the above system of equations
reduces to Amg(1y(0)) = 0. We first prove certain properties of (30) before proposing a fixed point
iteration and analyzing it in Proposition 15. We can define fi(A) to rewrite (30) as

fiay & L2 AmB)

Since m(A) is non-negative, non-increasing, continuous, and convex in A, fi(A) is non-
decreasing, continuous, and concave in A. Moreover, by definition, f;(A) < 0/p for all A. Hence,
for a given 0, the necessary and sufficient condition for existence of a fixed point is f;(A) > A for
some A, or alternatively, Amy (A) + pA < 0 for some A. So, defining

0 2 min{uA + (M),

A. (32)

we see that (32) has a solution for all § > 6 and does not have a solution for § < 6. Observe that
0 < Amy(0). The following proposition summarizes the properties of the fixed points of (32) for
0=>0.

PROPOSITION 14. Let p = A/p. The fixed point Equation (32) has a solution under the following
conditions.

(a) If pGi.(0) < 1, then (32) has a unique solution, D(0), for all 0. Also, D(0) is increasing in 0.
(b) If pGr(0) > 1, then (32) has two solutions, D1(0) and D4(0), where D1(0) < Dy(0), for 6 > 0.
Also, D1(0) is decreasing in 6 whereas D3(0) is increasing in 0.
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Proor. See Section 7.5.3. O

Remark 8. Let us observe a few more properties of the roots D(6), D;(6), and D,(8) of (32);
we use these properties in Theorem 15 to assert existence and uniqueness of the fixed point of
0 = Amo(Yp(0)). If @ = Amy(0), then A = 0 satisfies (32). Hence, for pGr(0) < 1, D(0) = 0 if
0 = Amy(0). Moreover, from Proposition 14(a), D(0) > 0if 6 > Amy(0) and D(6) < 0if 0 < Amy(0).
For pGi(0) > 1, (1)if 6 > Amy(0), then D1(9) < 0 and Dy(0) > 0, (2)if 0 = Amy(0), then either
D1(0) = 0or Dy(0) = 0,and (3)if 0 € (8, Amy(0)), either both D;(0) and D,(0) are positive or both
are negative.

Remark 9. The fact that fi(A) is non-decreasing, continuous, and concave in A, leads to the
following monotonicity properties of solutions of (32). For pGy(0) < 1, given 6 and y, the unique
root of (32), D(0), is decreasing in A. Also, given 0 and A, D(0) is decreasing in p if 6 > Amy (0) and
is increasing in y if < Amy(0). For pGi(0) > 1 also the larger root of (32), D,(0), exhibits these
properties.

Notice that if pG (0) > 1, then (32) has two solutions, D; () and D, (). However, D;(0) = D,(9)
for 6 = 0; we refer to the common value as A(0). We set

D(0) if pGr(0) < 1
Yi(60) = {D1(6) if pG(0) = 1,A(8) > 0 and Amo((6)) < 0
D, (60) otherwise.

For this setting, we establish existence and uniqueness of fixed point of 8 = Amq (¢, (6)) in Theo-
rem 15. As a part of the proof of the theorem, we also show that this fixed point equation does not
have a solution for other potential choices of 1/ (0). As in Section 2.2, we let 0 denote the unique
solution of Am (1o (0)) = 0. Recall that if 0, < Am(0), then the policy u = (ux(0), ux(0), .. .) pro-
vides at least as much revenue rate as any ergodic policy. We will distinguish this degenerate case
and the case 0 > Amy(0) in what follows. Note that if 8 > Amy (0), then (32) has unique positive
root which is increasing in 0; it is D(0) if pGy(0) < 1 and D,(0) if pGy(0) > 1. We present a fixed
point iteration that solves Amq (1o (0)) = 0 when ¥ (0) = D(0) or ¥ (0) = D,(0). In particular, the
algorithm yields 0 whenever it exceeds Amy (0).

3.4.1 An lterative Algorithm. Algorithm 1, displayed below, is an iterative algorithm that gen-
erates two sequences 0,,n > 0 and 0,,n > 0 starting with 6, = Am(0) and 0y = Amy(1/o(Am(0))),
respectively.

ALGORITHM 1:
initialize n = 0,0y = Amy(0), Oy = Amo (o (Am(0))),

while (true) do > ‘true’ can be replaced by |0, — 0, > § where § is the desired precision.
5 0,+0,
91’! == - 2 = s

Ons1 = max{6y,, min{0,, Amo (Yo (0))}}.
On+1 = min{0,,, max{0n, Amo (Y0 (6x))}},
n=n+1

THEOREM 15. Under Assumption 3, the following results hold.

(a) The fixed point equation 8 = Amy(Yy(0)) has unique solution 0. Moreover, 6 > Amy(0) when
Yi(8) = D(0) and Oy € [0, Amy(0)] when . (6) = D1 (0).
(b) In Algorithm 1, 0, T O and 0,, | O when y.(6) = D(6) or Y, (0) = D2(0).
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PRrROOF. See Section 7.5.4. O
Remark 10. When 6 > Amy.(0) the policy u* defined as
Sk A u; (Y (0)) fori € {0,1,...,k—1},
' ur (Vi (Or)) for i > k.

is an optimal ergodic policy. Recall from Proposition 10 that 6r > Amg(0) implies
AGr (ur (Vi (0x))) < p, as required for ergodicity of uX.

(33)

4 A MYOPIC POLICY

We now proceed to construct a simple myopic policy that is easy to implement. This will serve
as a performance benchmark and help us characterize the loss of revenue due to sub-optimality.
Towards this, we first have the following result about the stability of the Markov chain (Q(t), t > 0)
introduced in Section 2. All the results in this section are subject to Assumption 1. Let the load
factor be defined as

A
pE=. (34)
U
ProposITION 16. For any load factor p and the pricing vector u, define
) i-1
a=1+zpl]_[c‘;j(uj). (35)
=1 j=0
If o < oo, the Markov chain (Q(t),t > 0) is positive recurrent with stationary distribution m(u),
where
o7l i=0,
m(w) S : (36)
o p' T2 Gj(uj), i>1.

This is a standard result from the theory of Markov chains [12, Section 6.11]. From this result,
we deduce the following result regarding the stability of our model.

CoROLLARY 17. For all load factors p and any price vector u that satisfies
lim pG;(u;) < 1,
1—00

the Markov chain Q(t) is positive recurrent.

Proor. Applying the ratio test [24, Section 3.34] for the convergence of the series o defined
above, we see that if lim;_,., pG;(u;) < 1, then o < co. |

Example 18. If the valuations are G;(u) = P[max(X — iY,0) > u], for proper, non-negative
random variables X and Y, we see that any non-decreasing price vector will result in a positive
recurrent Markov chain. In particular, this is true for the constant price vector u = (v, u, u, ... ).

For any price vector u that results in the Markov chain (Q(t),t > 0) positive recurrent, we can
rewrite the revenue rate in the following form.

PROPOSITION 19. Let u be a pricing vector under which the Markov chain (Q(t),t > 0) is positive
recurrent with stationary distribution m(u). Then, the revenue rate is given by

R(u) = Z (W) Ay
i=0
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PRrOOF. Recall that R(t) denotes the cumulative reward till time ¢. Denote the number of arrivals
till time ¢ by N(¢), and the jump chain associated with the CTMC (Q(t),t > 0) by (Qn,n € Z,).
We can write

N(t)
R(t) = ) r(Qn. Qnin). (37)
n=1
where r(i, j) is non-zero only if j = i + 1, and is given by r(i, i + 1) = u;. Recall from Section 2 that
the rate of this transition is A;. From [26, Equations 4.32 and 4.33], it follows that, almost surely,

_R(t)
th_fﬂlo — Z mi(w)Aiu;. (38)
From (37), we can see R(t)/t < (Zf;l Vo, )/t. Applying [26, Theorem 45] to (Zf;l Vo,)/t, we
see that it converges to ; 7;(u)EV; almost surely. Therefore, using the dominated convergence
theorem [2, Theorem 2.3.11], we have

_ER(t)
tll)n’olo T taoo Z 7 (u A ithi-
O
Following Proposition 19, we can rewrite the optimal pricing problem defined in (8) as
u" = arg, max Z i (w)A;u;. (39)

i=0
Obtaining an analytical solution to the optimal pricing problem in (39) is difficult in general
because the stationary distribution has a complex structure, as seen in (36). Define the myopic
pricing vector @ = (i, iy, Uy, - . . ) such that per state price is the maximizer of the expected revenue
in each state. That is,
i; £ arg, max uGi(u), i€Q. (40)
While this pricing vector is sub-optimal, we obtain the following bound that shows that the revenue
R(u) under myopic pricing is greater than a fixed fraction of the optimal revenue R(p*), for all
values of p for which a stationary distribution exists. Following the bound, we show by numerical
examples that in some cases, the fraction of revenue of the optimal that can be obtained by the
myopic policy is substantial. We observe that the lower bound on the revenue fraction depends
only on the myopic policy, and hence, is easily computable.

THEOREM 20. For the pricing vector i, we define a sequence & such that o; (1) = = g ( i) for all
20
i € Q. Let m(10) denote the stationary distribution under the pricing vector . Then, a; (@) < 1for all
i€, and
R@) > (Y mi(@)e (@ JR(w). @)

ieQ

ProOF. We fix an i € Q and observe that G, (u) < G;(u) from the assumption on the service
valuation distribution. Therefore,

141G (fi41) < di41Gi (1) < @G (i),
where the last inequality follows from the definition of #;. Hence, we have shown that for all

i €@,

u;iGi(u;) > ul+1Gl+1(ul+1) (42)
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It follows that for any price u and any i € Q, uG;(u) < 4;G;(i;) < 1ioGo(lo). This implies that
R(u*) < AdigGo (ilp), and hence we have

R(u) uG(u)
R(u*) ~ Z '

The myopic pricing scheme is guaranteed to yield at least a positive fraction of the optimal
revenue rate. Note that this lower bound was obtained by upper bounding the optimal revenue
rate R(u*), by using the inequality uz‘ai(u;‘) < 119Gy (ily). Hence, the bound being close to zero
may not indicate that the myopic policy is bad, but that the gap between uz‘éi(u?) and oG (i)
is large for states i which have a high value of 7;(u*). Characterizing this gap would require
an analytical description of the behavior of u*, which is non-trivial in general, as seen from the
preceding sections.

We obtain the value of this fraction for an example value function, below. In this case the myopic
pricing performs well, yielding more than 78% of the optimal revenue for all p < 1.

Example 21. Let a € le be positive sequence such that 0 < @ < a; < a(i + 1), and let the
service valuations be exponential with G;(u) £ e~ for all u > 0 and i € Q. For this sequence
of service valuations, the myopic price vector is & = (1/ag, 1/ay, .. .). It follows that G(i1;) = 1/e,
and the stationary distribution exists for all p < e, and is given by

(@) = (1 - S)(g)i foralli € Q.

Since 1 < a;j/ay < i+ 1forall i € Q, we can bound the ratio between revenue rate under myopic
and optimal pricing as

a2 DD E) 8= (-0

ieQ i€eQ
Using the fact that },,>4 % = —In(1 — x) for x < 1, we can write
R@® (1 - E)ln(1 - 3).
R(u*) p e

We plot this lower bound in Figure 3. For small values of load p, this is quite close to 1. As we
increase p to 1, this decreases to 0.78. However, for loads p > 1, the bound decreases further,
and is zero when p = e. Thus, the myopic policy performs well when the value exponent decays
slower than a linear function, and at lower values of load p. Also note that, in this example, the
myopic policy can only stabilize the system for loads p < e. It turns out that at higher load values,
we can do better than the myopic policy and stabilize the system using simple policies, which are
possibly non-optimal, as demonstrated in the next example.

Example 22. Consider the service valuations G;(u) 2 e (*V¥ for all i € Q. This sequence

satisfies the conditions of Example 21 with @ = 1. In this case, the myopic pricing is given by
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Fig. 3. Lower bound for the ratio of revenues of myopic and optimal policies in Example 21.

ii; = =, and the revenue under myopic pricing is given by (for all p < e)

i+1°
R() =2 ) mi ()G (i) (43)
neQ
S(-9)5 ()
:—%(1—5)111(1—5). (45)
K

Now consider the pricing given by u; = for some K > 1. It is easy to check that this policy

it1°
stabilizes the system for loads p < eX. Denoting the revenue of such a system by RX, we can obtain,

as before,

RKz—%l(l—eﬁK)ln(l—eﬁK). (46)

Note that R! = R(i1). We plot the value of RX for three values of K = 1, 2,3 in Figure 4, with 1 = 1.
Note that the revenues are plotted only for the stability region for each policy, which, respectively,
correspond to p < e, p < €2, and p < e*. It is easy to see that R? dominates R! (the myopic policy)
after a certain p, and similarly, R3 dominates R? after a point. Also note that the revenue of the
myopic policy, as well as of the other policies, goes to zero as the load increases. This example
points to the possibility that the optimal policy can do better than the myopic policy.

Next, we consider the special case when all the value distributions are identical, i.e., G; = G for
all i € Q. In this case, the customer is not sensitive to waiting time. The optimal price in this case
turns out to be the myopic price.

COROLLARY 23. When service valuation distribution does not depend on the system state, i.e., G; =
G for alli € Q, then the pricing u* = u*1 = (u*,u”,...) is optimal, where
u* £ arg, max uG(u)

1
Gu*)”

forall p <

Proor. For any load factor p < ﬁ, we see that (35) converges and hence, o < co. Hence a

stationary distribution exists under the pricing u*. For any other price vector u with stationary
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Fig. 4. Revenue of myopic policy versus other policies.

distribution 7 (u), we have u;G(u;) < u*G(u*). For this price vector u, the revenue rate is given by

R(u) = Z 7 (WAu:G(u;) < AGu®) = R(u*1).
ieQ

The second inequality follows from the definition of ™ and the fact that };cq 7;(u) = 1. O

Intuitively, if the valuations are insensitive to the queue length, then the operator could just
maximize the average reward for each arrival, resulting in a myopic optimal policy. This result
suggests that a myopic policy is good in situations where the valuations do not change much with
the queue length. We now proceed to solve these equations for the special case of deterministic
service valuations.

5 DETERMINISTIC SERVICE VALUATION

We now consider the special case where the customers’ valuation of the service is a deterministic
function of the number of customers in the queue. We assume that the customer valuation for
the service is v; when there are i jobs in the queue, and the valuation sequence (v;,i € Q) is
monotonically decreasing. Equivalently, sequence of valuation distribution functions (G;(-), i € Q)
are Dirac measures with respective atoms at (v;,i € Q). The Bellman’s equations are identical to
Equations (18) and (19), where for alli € Q

m;(B) = max{(u — B)L{u<o,}} = (vi — B)",

uz>0
and u;(B) = vi ifB< v
' (vi, )  otherwise.
In particular, m;(0) = v; for all i € Q. Equations (18) and (19) now simplify to

0

(vo — A0))" = T (47a)
0—puA(i-1

(= At = LAY s (47b)

A

Unlike Section 3 where we proposed an algorithm to obtain the optimal policy for the k-truncated
version of the problem, we now derive the optimal policy for the deterministic valuation problem

without the need for any truncation. Consider the limiting equation (v — A)* = 9_/1—”A involving
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( )é 0-A(v-A)*

the asymptotic valuation v = lim;_, v;. Defining g(A , it can be rewritten as

g(8) = A. (48)

Let us observe a few properties of the fixed point Equation (48). Since (v — A)* is non-negative,
non-increasing, continuous, and convex in A, it follows that g(A) is non-decreasing, continuous,
and concave in A. From the definition, it follows that g(A) < 6/ for all A. In particular, we have
g(A) — A < 0forall A > 0/p. If there exists a A such that g(A) — A > 0, then from the continuity
of g(A) — A it follows that there must exists a A such that g(A) — A = 0. Hence, for a given 0,
the necessary and sufficient condition for existence of a fixed point is g(A) > A for some A, or
equivalently, A(v — A)* + pA < 6 for some A. So, defining § £ mina{uA + A(v — A)*}, (48) has a
solution for all & > 6 but does not have a solution for 8 < 6. We have the following result about
the solutions of this limiting equation.

PROPOSITION 24. The Equation (48) has a solution for all 0 > 0, but does not have a solution for
0 < 0. The value of 0 is given by

g l® HA<u
T Az

Furthermore, the solution to (48) is given by

0 (l—/lv/min(e,yv)) lf/1 <

H lfg/u
D(6) = {9A:A<;} ifA=pand0 = po

; ifA=pand0 > po
{%(1‘A”/9),%} ifA>pand 0 > po

Proor. See Section 7.6.1. O

5.1 Optimal Revenue Rate

Let (9,A(i),i € Q) be a solution to (47a)-(47b) and (48). Let K £ max{i € Q : A(i) < v;}. It is
possible that A(i) < v; for all i in which case K is infinity. We will first consider the ﬁnlte K case.
In the following we write the solution as (6%, AX (1) i € Q) to explicitly express the dependence on

K Since AK(K+1) > vk, from (47b), AK(K) = &~ . Furthermore, AK(K-1) = Ww <

= AK(K), and (vg_1—AK(K-1))* > (vg_1— AK(K)) > (vg—AK(K))*. Continuing iteratively
fori =K -2,...,0, we can infer that

AF(0) < AR(1) < -+ < AR(K),  and (vg — AK(0)" > (v — AK(1))* = (vk - AR (K))*.
Notice that AX (i) < v; for all i < K. Furthermore, from (47a), AK(0) = vy — 65/, and from (47b),

0K uAK(i-1
LAY

AR (i) = v — —
(i) =vi -~ p)

We thus obtain

w0 =3 (5) -T2

i=0 i=0
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Combining it with AX(K) = 6% /u, we get

or oK = = - = = - (50)
S N O

K p\K-1

and AK(K) = =0 % <A) - (51)
=5 (5)
In fact, using (47b) for i > K + 1,
QK

AK (i) = " AK(K), Vi > K. (52)

In view of (51), vg = AK(K) is equivalent to

Let there also be another K’ > K such that AKX’ (K’) < vgr, or equivalently, vgr > AK~1(K’ - 1).
This implies that vg:_; > AK"1(K’~1). Iteratively, we can show that vg,; > AK(K), also implying
that vy > AK(K + 1) (see (52)). This contradicts the assumption that K = max{i : AX(i) < v;}.
Hence we must have

K =max{i: A'(i) < = max{i : 0" < pv;)
for (6%, AX(i),i > 0) to be a solution.

Next we focus on the case where A(i) < v; for all i and derive the revenue rate in this case. We
first consider a truncated system in which A(i) = A(K) for all i > K. We again write the solution as
(6K, AK(i),i > 0) to explicitly express the dependence on K. Notice that A(K) is still given by (49).
But, using (47b) for i = K + 1, we also have AK(K) = (6% — Avk)/(u — A). Combining these two
equations

K—i
7+ X v (5)
= —. (53)
,ﬁ +328 (%)
To distinguish the two expressions of the revenue rates in (50) and (53), we refer to them as OIK
and 9§< , respectively, in what follows.

We now derive conditions under which each of the above two solutions arise. For clarity of

exposition, we make the following assumption

OK

ASSUMPTION 4. Fori=1,2,limy_ e Qf exist; 07° £ limy e 9!‘.1
Following theorem yields the optimal revenue rates and the optimal prices.

THEOREM 25. (a) A < u:
0 = 0y if 0 € [Av, po]
0K if 6 > po,

I The subsequent analysis can also be carried out with limy_, o, 9ik replaced by liminfy_,q, 9ik or limsup;._, ., 9;‘ as appro-
priate if the limit does not exist.
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0.8 | b

Price

0.6 - b

0.4 b

I I I I I
0 5 10 15 20

Number of customers in queue

Fig. 5. Optimal price vectors for different arrival rates, for value distribution G;(u) = 1 — exp(—1log(e + i)u).

where K = max{i : A'(i) < v;}. If 0° € [Av, po] then u; = v; for all i, and if 6° > po then
u; =v; foralli < K andu; € v,,OO)foralll > K.
(b) 1> p
. A if0K € [pv, 0]
0" =
0% ifok > Jo.

where K is as defined above. If 0K € [pv, Av] then u; = v; for all i, and if 65° > Av then u; = v;
foralli < K andu; € (v;, ) foralli > K.

ProOF. See Section 7.6.2. O

Remark 11. If A < pand 07° > pv or A > p and 9{< > Av, then new jobs are not accepted
provided there are K jobs in the system. If 1 < /1 and 0° < pvor A > pand 91K < Av, then all the
jobs are accepted. Notice that A < pv/vg or u < Av/vK imply this case.

6 NUMERICAL SIMULATIONS

In all the simulations for random valuations mentioned below, the optimal prices refer to those
for k-truncated systems for k = 1000, and the optimal revenue rates refer to the revenue rates
corresponding to these prices.

We first consider a system with fixed service rate 4 = 5 and valuation distribution G;(u) =
1 — exp(—log(e + i)u). We plot the optimal prices versus queue length for three different values
of arrival rate A, in Figure 5. The optimal prices are higher for larger arrival rates but decrease
monotonically as the number of customers in the queue increases. At higher arrival rates, the
service provider can charge higher prices without the risk of losing a customer, because another
customer will be available soon. This leads to higher prices, and consequently, higher revenue.

Next, we plot the optimal price vector for a system with arrival rate A = 5, service rate u = 1, and
the state dependent value distribution G;(u) = 1 — e @ T, We vary the number of customers
in the queue from 0 through 30, in Figure 6. We see that the prices sharply decrease initially as
in the previous example but then increase as the queue length further increases. As the queue
length becomes larger, customers valuations become very small, and admitting and serving new
customers would lower the service provider’s revenue rate. Thus the service provider increases
the prices to discourage new customers so that the queue length can be kept small.

In Figure 7(a), we plot the revenue versus arrival rate, for the optimal policy as well as the
myopic policy in (40). The valuation function is G;(u) = 1 —exp(—log(e +i)u), and the service rate
u = 5. Both revenues increase monotonically with arrival rate. The myopic policy performs close
to optimal at low values of arrival rate. As arrival rate increases above the service rate (i.e., A > 5

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 8, No. 4, Article 12. Pub. date: August 2023.



12:22 A. Krishnan K. S. et al.
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Fig. 6. Optimal price versus number of customers in queue, for value distribution G;(u) = 1 — e mu
when incoming arrival sees i customers in the queue. The region in the box is zoomed in on the right, and
we can see that prices are increasing.
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(a) Myopic Policy vs Optimal Policy (b) Random vs Deterministic valuation

Fig. 7. Revenue variation with arrival rate.

or p > 1), the two revenues begin to diverge. This is similar to what we had observed in Example
21. From Proposition 20, we can see that at low values of p, the stationary distribution will decay
quite fast with n. Hence the stationary distribution can be approximated by its first few elements.
For these values, the ratio «, (@) in (41) will close to one as well. Hence, the myopic policy will give
value close to the optimal. The gap between the two revenues increases as arrival rate increases.
Hence, at higher arrival rates, the revenue rate can be improved by using the optimal policy.

Finally, we also plot the optimal revenue rate for a deterministic valuation function. We consider
the deterministic valuation v(i) = m, which is the deterministic counterpart of the random
value function with distribution G;(u) = 1 — exp(—log(e + i)u). We compare the revenue rates for
the random and deterministic rates in Figure 7(b). The service rate p = 5. While both revenues
are increasing in arrival rate, as expected, the revenue extracted is higher in the deterministic case.
This is because the service provider knows exactly how much each customer is willing to pay, and
extracts it completely. There is no loss due to randomness.

7 PROOFS
7.1 Proofs of Section 2

7.1.1  Proof of Lemma 3. We first show the existence of a distribution function G(-). Observe that
for any given u, G;(u) are non-decreasing and bounded, and hence lim;_,, G;(u) exists. Moreover,
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by Helly’s selection theorem, there exists a subsequence of G;(-),i > 0, G;,(-),n > 0, and a right-
continuous, non-decreasing function G(-) such that G(u) = lim,_ G;, (1) at all the continuity
points u of G. Clearly, lim;_,o, G;(u) = lim,_« G;, (1) at all these points. This function has the
following properties.

(1) lim, o G(u) = 0: For any u < 0, which is a continuity point of G(-), G;(u) = 0.So G(u) =0
for any u < 0.

(2) lim, o G(u) = 1: Let us fix an € < 1. There exists a u,, a continuity point of G(-), such
that Go(u) > 1 — e for all u > uc. Since G;(ue) T G(ue) and G(-) is also non-decreasing,
G(u) > 1 — € for all u > u.. Choosing € to be arbitrarily small leads us to the desired result.

7.2 Proofs of Section 3.1

We provide the proof of Proposition 6 in this section. Recall that price u;(B) attains the maximum
value m;(B) in (17) for all i € Q. Thus, we first understand the properties of (m;(B),i € Q),
followed by properties of price sequence (u;(B),i € Q).

LEMMA 26. The sequence of functions (m;(B),i € Q) defined in (16) have the following properties.

(a) m;(B) is non-negative and decreasing in B.

(b) m;(B) is a Lipschitz-1 continuous, convex function of B with derivative —G;(u;(B)) wherever it
exists.

(c) For each B, the sequence (m;(B),i € Q) is non-increasing and converging.

Proor. (a) It directly follows from (16) that m;(B) > 0 for all B € R. For any By, B € R,

m;(B) > (u;i(By) — B)G;(ui(By)) = mi(%)%
= m;(By) + %(30 — B) = m;(Boy) — Gi(ui(Bo))(B — Bo).

This inequality implies that m;(By) — m;(B) < G;(u;(By))(B— By). Hence, for By > B, m;(By) —
m;(B) < 0 as desired.

(b) It follows from the above inequality that m;(-) is convex. Since it is finite valued, it is also
continuous and differentiable almost everywhere. The above inequality also implies that the
derivative of m;(B) is —G; (u;(B)) wherever the former exists. Finally, from the above inequality,
m;(By) — m;(B) < By — B. We can similarly see that m;(B) — m;(By) < B — By. These together
imply |m;(B) — m;(By)| < |B — Byl, and so, Lipschitz-1 continuity of m;.

(c) Let us fix B and consider i, j such that j > i. Then, (u — B)G;(u) > (u — B)G;(u) for allu > B.
This implies that m;(B) > (u — B)G;(u), for all u > B, and, in turn, that m;(B) > m;(B). It
follows that the sequence (m;(B), i € Q) is non-decreasing in i, and since the sequence is lower
bounded by zero, it converges as desired.

O

LEMMA 27. The price u;(B) defined in (17) satisfies u;(B) > B is right-continuous, and non-
decreasing in B foralli € Q.

Proor. For B],Bz S R, we have (ul(Bl) - Bg)Gl(ul(Bl)) < (u,(Bg) - Bz)G_i(ui(Bg)), 1mply1ng
By (Gi(ui(Bs)) — Gi(ui(B1))) < ui(B2)Gi(u;i(Bz)) — ui(B1)Gi(u;i(By)). (54)
We can similarly obtain

Bi(Gi(ui(B1)) — Gi(ui(B2))) < ui(B1)G;(ui(Bi1)) — ui(B2)Gi(ui(By)). (55)
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Summing (54) and (55), we get (By — By)(G;(u;i(Bz)) — Gi(u;i(B1))) < 0. Hence, if By < By,
G—i(ui(Bz)) < Gi(u,’(B1)), 1mplymg that ui(Bz) > ui(Bl). O

LEMMA 28. The limiting value m(B) defined in (20) and limiting price u(B) defined in (21) have
the following properties.
(a) m(B) is non-negative and decreasing in B.
(b) m(B) is a Lipschitz-1 continuous, convex function of B.
(c) u(B) > B and is right-continuous and increasing in B.

Proor. It is identical to the proofs of Lemmas 26 and 27. ]

7.2.1  Proof of Proposition 6. Let u = (ug, uy, . .. ) be an arbitrary ergodic policy. For any i > 1,
from the definition of m;(-), we have (w; — A(i))G;(u;) < m;(A(i)), and using (19), AG; (u;) (u; —
A(i)) < 60— pA(i—1). Multiplying both the sides by 7; and using A7;G;(u;) = 7+ which follows
from ergodicity of u, 7 p(u; — A(i)) < m;0 — mpA(i — 1), or

i1 Ui — 7[,'9 < 7Ti+1/lA(i) - ﬂi[.lA(i — 1) (56)
A similar argument for i = 0 implies
7y pug — 76 < 7y peA(0). (57)

Summing (56) and (57) for i > 1 (summability is ensured by boundedness of A(i), i > 0), we obtain
U Yoy Tiviti < 6. Once again using ergodicity of u, we obtain that O(u) = 1), miGi(ui)u; < 0.
Since the above holds for any arbitrary ergodic policy u, " < 0 as desired. Moreover, replacing the
arbitrary policy u with u*, the corresponding inequalities (56) and (57) hold with equality, implying
that 0" = 6.

7.3 Proofs of Section 3.2

We begin with proving certain properties of ¢ (-) in the following lemma.

LEMMA 29. Foreachi € Q, ¢;(-) is continuous, strictly decreasing and unbounded both above and
below.

PrOOF. Recall that m;(-) are continuous, decreasing functions for all i € Q, so are m;'(-). In
particular, ¢ () is continuous and decreasing. It is also unbounded. Assuming ¢;(0) is continuous,
decreasing, and unbounded, (6 — p¢;(6))/A is continuous, increasing, and unbounded. Combining
it with the properties of m;},(-), we can infer that ¢;.1(6) is also continuous, decreasing, and
unbounded. Therefore, the claim holds via induction. O

7.3.1  Proof of Proposition 9. Setting 8,(6) = my'(6/1) = 0, we obtain 6, = Amg(0). Also observe
that &y (+) is continuous and decreasing on [0, Am(0)].

Let us now fix a k € Q. Assume that there exist unique 6y > 0; - - - > 0y satistying J;(6;) = 0 for
all i < k. Further assume that, for all i < k, §;(+) are continuous and decreasing on [0, 0;]. Observe
that

A
01 (0) = ¢r(0) = pr—1(6) = i (mi(9xc(0)) = mr11(Pr+1(0)))

= % (mi(9ic(0)) = mr11(Pic(0)) + Mpes1 (P (0)) — Mics1(Pre+1(0)))

1 $ra(0)
= - <mk(¢k(9)) — miy1(Px(0)) + f Gk+1(uk+1(3))d3)-
H Pr(0)
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Rearranging the terms and using the definition of 8,+1(0),

Pre(0)+6k1(0) I

f¢ " G (1 (BB = £8(0) + 1 (9(6)) - me($(0)). (58)
k

The first term on the right-hand side is decreasing in 6 from the induction hypothesis. We argue

that the second term is also decreasing in . In view of ¢« (6) being decreasing in 0, it is enough to

show that my.1(B) — mg(B) in increasing in B for B > 0. For 0 < B; < By,

B, B,

Gi+1(uk+1(B))dB > —f G (uk(B))dB = my(B,) — mi(By),

By

e (By) = mpes (By) = — f

By

where the inequality follows from Assumption 3. This implies that

Mic+1(Bz) — mic(Bz) 2 mp.1(By) — mi(B1)

as desired. This implies that the left-hand side is also decreasing in 6. Combining this with the
facts that ¢y () is decreasing in 0, uy,,(B) is increasing in B and Gy (1) is non-increasing in u, we
infer that dx, is also decreasing in 0.

Furthermore, for 6 = 6, the first term on the right-hand side is zero whereas the second term
is negative. So the left-hand side is also negative for 6 = 6, implying that 81 (6x) < 0. This also
implies that there exists a unique 6x.; < 0 such that dx41(6k+1) = 0. This completes the induction
step, and so, the proof of the first statement. Monotonicity of §;(-) along with 6; > 6 forall i < k
also implies that 8;(0x) = ¢; (0r) — ¢i-1(0r) = 0 for all i < k. This proves the second statement.

7.3.2  Proof of Theorem 10. Observe that (O, ¢o(0k), p1(0k),...) satisfy (18) and (19), and
(¢i(0x), i € Q) are bounded. It remains to show that u* as defined above is ergodic if 6 > Amy (0).
Then, the desired claim follows from Proposition 6.

For ergodicity of uk, we now show that /IGn(u]’:) < pif O > Amy(0). Recall that 6x(0;) = 0
implies

Ok = Amp (Px(Ok)) + i (Bk) = A(ur (Px (k) — Sk (k) G (ur ($x (Bk))) + i (6)
= JugGre(ug) + (1 = AGi (u)$i (0%
Furthermore, 0 > Amy(0) implies that (z — AGy (u,’j))(ﬁk(Gk) > A(mg(0) — u]I:Gk (ullz)) > 0 where

the last inequality follows from the definition of my(-). This inequality implies that AGy (u’]z) <pu
as desired.

7.4 Proofs of Section 3.3

We first prove the following lemma for the case 6 > Am(0). It will subsequently be used in our
main result.

LEMMA 30. If Assumption 2 and Assumption 3 hold and 0, > Am(0), then there exists an integer
K and « € (0,1) such thath_j(uj’?) < aforallk > j> K.
Proor. We prove the result separately for the cases j = k > Kand K < j < k.

(a) If O > Am(0), then using convergence of m;(0) as in Assumption 2, there exists an integer
K such that for all k > K, we have % > A+ €, where € = %( % — A). Equivalently,
Or = (A + €e)my(0) for all k > K. As in the proof of Proposition 10, this implies that

(1 = AGk () (Bk) = A(my (0) — g G (ug)) + ey (0) > emy (0)
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for all k > K. This further implies that for all kK > K, we have

emy(0) B em(0) A
N T N

(b) For all K < j < k, we have ¢j(0r) = ¢x(0k) = ¢x(0k), where the first inequality
follows Proposition 9 and the second one from the facts that 0 < 0Ox and ¢x(0) is de-
creasing in 6 (see Lemma 29). The above inequalities imply that ug (¢;(0x)) = uk(¢px(0k)),
and so Gk (ug (px(0x))) > Gr(ux($;(6k))). Also, from Assumption 3, Gk (uk (4;(6k))) >
G;(u;j(¢;(6k))). Combining these inequalities, G;(u;(¢;(0k))) < Gk (uk (¢x(0k))). We get the
desired inequality by realizing that qu = u;($;(0k)) and using the result of Part (a).

pGr(uy) < 1-

7.4.1  Proof of Theorem 11. From Lemma 30, if 5, > Am(0), then pG_k(u’;) <aforallk > K
and so pGi(u’]z) < aforalli > kand k > K. Hence, for all k > K, the policies uk are ergodic for
the modified systems as well as the original system. For such k, the stationary distribution of the
original system under the policy u* is

ky-1 i .
G < k’
i (uF) 2 U(Hk) L [17= Gy (u}). o (59)
o) 155 G ) T Gi(uf), 0>k,
where o (u¥) is the normalizing factor;
k i-1 00 k— i-1
Z p'| |G Z ]—[ Gj( ]k Gj ().
=0 j=0 i=k+ j=0 j=k
The revenue rate of the policy u* is
k
ky =2 Z (W) uk Gy (uF) + Auk Z 7 (uF)Gi (ub). (60)
i=0 i=k+1
Similarly, the stationary distribution of the k-truncated system under the policy u* is
= k=1 i T1ic1 A ok ;
o(u -~ Gi(u¥), i <k,
(et {_( k)—lpi ?c_—o1 -J( ]k) N L (61)
Gk 15 Gy (k) (Gew)) . i> K,
where
k — oo k-1 _k
5(u) = Zp y+ > o [ ]G (Gew) ™
i=0  j=0 i=k+1  j=0
The revenue rate of the policy u* for the k-truncated system is
Ox _Azm Yuk G (uf) + Ak G (ul) Z 7 (u). (62)
i=k+1

Combining (60) and (62), we see that 6 = R(u*) + Yo ei(k) where

() 2 |G ) = i), i <k,
ST Mk (7 (0 G ) — ()G, i > k.
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Using Lemma 30 it can be shown that, for all k > K, 6(uk) - o(uk) < caf, where ¢ > 01is a
constant. Moreover, it can also be shown that

0 i g k’
ei(k) < { I
cfiat, i>k
for bounded constants ﬁlk ,i > 0. Suppose ﬁlk < A. Then, we easily obtain the following bound
0 < R(u¥) +cAak(ﬁ), for all k > K. Combining it with the earlier observation R(u¥) < 6* < 6;
yields

CAO{k+1 CA(Zk+1

O —

< R@U) < 0* < 6 < Ob) + (63)

Furthermore, taking k — oo, we conclude that limy_,e 9(uk ) =0, = 0%

Remark 12. One can use (63) to bound the difference between the revenue rate corresponding
to uF and the optimal revenue rate 6%, as

CAa,k+1
1-a
7.4.2  Proof of Corollary 12. From (59) and (60), the revenue rate under policy u¥, R(u¥), is a
continuous function of (uf,i € Q) and (Gi(uf),i € Q). From Remark 7, (uf,k € Q) converges
to u] for all i € Q. Moreover, from the hypothesis of the corollary, (G,—(ufC ).k € Q) converges to
G;(u}) for all i € Q. Consequently, lim_, R(u*) = R(u*). Also, from Theorem 11, R(u*) = 6%,
implying that u* is an optimal policy.

0* — R(u*) < (64)

7.5 Proofs for Section 3.4
7.5.1  Proof of Lemma 13. From (19), we have A(i—1) = w fori =1,..., k. Inparticular,

0 — Ami (A(k))

Atk 1) = = A(K).

Furthermore, from Lemma 26, my_;(A(k — 1)) = my_1(A(k)) = mi(A(k)). Hence, continuing
iteratively for i = K — 2,...,0, we can infer that A(0) < A(1) < -+ < A(k). It remains to show
that A(0) > 0. Notice that A(1) > A(0) implies (see Lemma 26)
my(A(1)) < mo(A(1)) < mo(A(0)).

Hence, using (18) and (19) for i = 1, we get w < % or A(0) > 0 as desired.

7.5.2  Properties of the Lower Bound. This lower bound 6 has the following properties.

LemMa 31. (a) If pGr(0) < 1, then § = —oo,
(b) If pGr(0) > 1, then 6 > 0.

ProoF. (a) We will show that gA + Amy(A) has slope at least 1 — AG(0) everywhere, i.e., it is
strictly increasing in A. This implies that = limp_,— (A + Amy(A)) = —oo. Let us consider
Ay and A, > Aq. Then

Amp (A1) + pAy = Ami (A1) + A1Gr(0)) + (1 — AGk(0)) Ay
= ngc{uék(u) + A1(Gr(0) = G ()} + (1 — AGr(0)) A4
< Aglgg{uék(u) + A2(Gie(0) = Gie ()} + (1 = AGi(0)) Ay + (1 — AGr(0)) (A1 — Ay)

= Ami(Az) + phg + (1 — AGi(0)) (A1 — Ay),

2 A Ay)—(A A A 5
(Amg (Ag)+p AZZ—(Almk( ILTIAVENR (1 = AGk(0)).

which gives the desired lower bound on the slope,
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(b) Clearly, uA + Amg(A) > 0 for all A > 0. For any A < 0, mg(A) > —AG,(0) implying uA +
Amy(A) > (1 — AGr(0))A, which also is non-negative since 1 < AGy(0). These facts together
prove the claim.

|

LEMMA 32. Suppose pGi(0) = 1.

(a) If Gr.(u) > Gi(0) forallu > 0 then 0 = 0,
(b) If there exists au® > 0 such that Gy (u®) = G¢(0) then § > AGy(0)u°.

Proor. (a) We have already seen in Lemma 31(a) that § > 0. To prove our claim we will show
that 8 < e for all € > 0. Recall the definitions of my (A) and u (A) in (16) and (17), respectively.
Also, fix an € € (0, Amy(0)) and define

(G (e/A)=Gr(0)

N —eAm© e (A) > e/A forall A < 0,
¢ max {A < 0: urp(A) < €/A} otherwise.

Observe that A is well defined because Gy (u) > G (0) for all u > 0. We will prove that 0 < €
for each of the two cases in the right-hand side separately. First, let ux(A) > €/A for all A < 0.
Then

0 < phe + /11'5123)({(“ — A)Gi(u)} = Aug(Ae) G (u (Ae)) + (p - AGk (ur (Ae)))Ac
< Amie(0) + (p — AGx(€/1)Ae = Ami(0) + A(Gk (0) — Gi(e/A))Ae = e,
where the second last inequality follows since pG (0) = 1. In the second case also, we have

0 < Aup(Ae)Gr(ur(Ae)) + (1 = AGk (ur (Ae))) Ac
<e+ (,U - AGk(uk(Ae)))Ae =€+ /I(Gk(o) - G_k(uk(Ae)))Ae < €,

where the last inequality uses the assumption that pG.(0) = 1.
(b) For all A, A + Amy(A) > AulGr(u®) + (u — AGr (u®))A = Au’Gy(0)). The last equality holds
because Gy (u°) = G(0) and u = AG(0) = AGx (u°). Hence, by definition, § > AGy (u°).
O

7.5.3  Proof of Proposition 14.

(a) Notice that existence of a fixed point follows from Lemma 31. So only uniqueness has to be
established. However, the proof of Lemma 31(a) also shows that yA + Amy (A) is strictly increas-
ing for all 1 < 1/G(0). So, for any 0 > 0, there cannot be two or more solutions to (32). This
also implies monotonicity of the solution, D(0), with 0.

(b) Recall that f;.(A) is increasing and concave and upper bounded. Also, f(0) = (0 — Am(0))/p.
Hence, it is enough to show that fi (A) = A has two solutions, D;(6) and D, (6), D1(0) < D,(09),
for all 0 > Amy(0). Monotonicity of D;(0) and D;(6) as stated also immediately follows. So,
let us consider any 8 > Am(0). Since fi.(0) > 0 and fxA) is upper bounded, fi(A) = A
assumes a positive solution. We call it D,(0). To show existence of another solution, let us
define A £ 0/(u — AGy(0)) < 0. Clearly, 8/u + AGr(0)A/u = A, implying fi(A) < A. The last
assertion holds since —my(A) < Gr(0)A for all A < 0. So we can conclude that there exists a
D1(0) € [A,0) that also solves g(A) = A.
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7.5.4  Proof of Theorem 15. (a) We consider the following three cases separately.

(1) pGi(0) < 1: We first argue that Amg(1/o(Amg(0))) = Amy(0). Observe that i (Amy (0)) =
A(Amy(0)) = 0. Hence

Amp(0) — Amg (0
s (0)) = DTy i 0) =
and, from Lemma 26, we have my_;({/x—1(Am (0)) = my (Yx—1(Ami(0)) = my(0). Continu-
ing iteratively for i = k — 2, ..., 0, we can infer that

Yo (Ami(0)) < Y1 (Amg(0)) < -+ < Y (Ami(0)) = 0,
and that
mo (Yo (Ami(0)) = my(Y1(Ami(0))) > -+ = my(0).

In particular, Amg (o (Amg(0))) = Amy(0).

We next argue that Amg (1 (0)) is decreasing in 6. Recall that i, (6) = D(0) is increasing in 0.
Suppose that, for some i, 1/; (0) is increasing in 6. Then, m; (1/; (0)) will be decreasing in 6 and
so ¥;-1(0) will also be increasing in 6. Arguing inductively, we see that 1,(0) is increasing
in 6, and finally, that Am (1, (0)) is decreasing in 6.

The above two facts, Amg (o (Amy(0))) = Amy(0) and Amg () (6)) is decreasing in 0, together
establish both existence and uniqueness of the fixed point of 6 = Amg(y(0)). In particular,
the unique fixed point 0y € [Amy(0), Amg (Yo (Amy(0)))].

(2) pGi(0) > 1 and A(0) < 0: Considering 1, (0) = Dy (0), ¥k (Amy(0)) = 0 and /4 (0) is increas-
ing in 6. Hence, as in Case (1), Amg(o(Amy(0))) = Ami(0) and Amo(p(0)) is decreasing
in 6, establishing existence and uniqueness of the fixed point. Again, the unique fixed point
Ok € [Amyc(0), Amo (Yo (Am(0)))].

(3) pGk(0) > 1 and A() > 0: Now we consider the following two subcases separately.

(i) Amo((0)) > 0: Considering . (0) = D,(0), Yx(0) is increasing in 6. Hence, as in
Case (1), Amo((0)) is decreasing in 0, establishing existence and uniqueness of the
fixed point. The unique fixed point 0y € [8, Amo(¥o(9))].

(i) Amo(Yo(0)) < 0: Considering Y% (0) = D;(0), we get Y (Amy(0)) = 0. Again, as in
Case (1), Amg (o (Amy(0))) = Amy(0). So, Amg(1/o(0)) = 0 has a solution in [0, Am (0)].
In the following, we argue via contradiction that Amg(iy(6)) = 0 has unique solution.
Suppose it has two solutions, 0y and 0, where 6, > 0. Then, yy—1(0;) = ¥ (0;) =
D (8]) < Di(6k) = Y(0k) = Y1 (6k). Moreover,

Ve (8) Yea(8))
A f Grr (g1 (B))dB < 4 f G (ux(B))dB
Yre—1(6k) Ure—1(6k)
Ve(6])
p Gr(ue(B))dB < ~(6] - 6;)
Ui (k)

where the inequalities follow from Assumption 3 and the fact that ¢ (6;) < ¢x—1(6k)-
We argue via induction that ¢;(6;) — i (6k) < ¥i+1(0;) — Yi+1(6k) < 0 and
vi(0r) Yin(0r)
A Gi(ui(B))dB < A Gis1(ui1(B))dB < — (0, — 0k)
Vi (Or) Yi+1(0k)
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forall 0 < i < k — 1. We have readily seen these for i = k — 1. Suppose these hold for
some i < k — 1. This implies that

, (6, 0) + A [, 1%) Gi(us(B))dB
1//i—1(9k) - ¢i—1(9k) = I
i+1 6
0= 00+ A [ 08 Grawin(BNAB
< P = 1:(0;) — Vi (Ok).

Furthermore,

[ZB1C Vi1(0)+i (O)—i-1(0k)

AI// o Gi-1(u;-1(B))dB < A o Gi-1(u;-1(B))dB
i-1\Uk i\Uk

vi(6,) (o)
< Af Gi_l(ul-_l(B))dB < Af Gl(ul(B))dB
1 Y

i(0k) i(Ok)
where the first inequality follows because ¥;-1(6;) < i-1(6k), ¥i(0k) = ¥i-1(k),
u;_1(B) is non-decreasing in B and G;_, is a non-increasing function, the second be-
cause ¥;(0;) = ¥i-1(0;) + ¥i(0k) — ¥i-1(0k) and the third from Assumption 3 and the
fact that ¢;(0;) < (k). This completes the induction step. In particular, we observe

that
Yo(6]) Yi(0,)
A ot nas <2 [ Gt (B)d5 < (0 - 0. (65)
Yo (Or) ¥1(0k)
On the other hand, Ox = Amo (Yo (0k)) and 0, = Amg(¥(6;)), implying that
Yo(6])
A Go(uo(B))dB = —(6;, — bk). (66)
Yo (Ok)

From (65) and (66),

vi(0,)
Af G1(u1(B))dB = —(9;c — 0Ok).
v

1(9k)
Hence
(6, = 00) + 1 [ %) Ga(un(B))dB
Yo (0r) — Yo (bk) = P =0

and so, 0, — O = A(mo(%0(6;)) — mo(0(0k))) = 0. This establishes that Amg(1/0(0)) =
has unique solution.

Finally we show that, in all the above cases, 8 = Am(¢/o(6)) has no solution for other potential
choices of 1 (0).

(1) pGr(0) > 1 and A(9) < 0: Taking ¥4 (0) = D1(0), ¥ (0) < 0 for all > 6. But, from
Lemma 13, for (6x, A(i),0 < i < k) to be a solution to (18)-(19) and (32), A(k) = Yk (k) = 0.
Hence we can conclude that, for ;. (0) = D1(0), Amy (¥ (6)) = 6 does not have any solution.

(2) pGr(0) > 1 and A(6) > 0: We again consider the following two subcases separately.
(a) Amo(Yo(0)) > 0: If we take Y (0) = D1(0), then as shown in (65),

Yo(6)
A(mo (Yo () — mo(Y0(0))) = lfw Go(uo(B))dB < —(6 - 0)

0(6)
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for all 0 > 0. Equivalently, Amy(5(0)) — 6 > Amo(¥o(6)) — 8 > 0 for all 6 > 0. Hence,
Amgy (Yo (6)) = 6 cannot have a solution.
(b) Amo(0(0)) < 0: If we take ;. (0) = D,(0), as argued in Case (1) of Part (a), Amq (1o (6))
is decreasing in 0, and so Am (1 (6)) = 6 cannot hold for any 6 > 0.
(b) When ;. (6) = D(0) or Y4 (0) = D2(0), as shown in Case (1) of Part (a), Amq (¢ (0)) is decreasing
in 0. Hence, the claim follows from [9, Theorem 2.1].

7.6 Proofs of Section 5
7.6.1  Proof of Proposition 24. Observe that

0 =min {£n<1n{pA +A(v - A)Y) mm (A + A(v — A)* }

- if 1 < p,
=min {min{/lv + (g — A)A}, min yA} =17 1 N
A<v A>v i) ifA>p

Now we obtain D(@) under the different conditions stated.

(a) A < p: Observe that (48) has a unique solution (6 — Av)/(u — A) if the latter is less than or equal
to v, or equivalently, if 0 < pv. Also, (48) has a unique solution 8/ if 6 > pv. Combining both
these cases yields the desired expression.

(b) A = p: The claim for 6 = po follows from inspection. If 6 > pov, from (48), p(v—A) < p(v—A)",
implying that A > v. In this case, 0 = pA which yields the claimed solution.

() A > p:Firstlet A < v. Then, (48) becomes A = W, yielding D(0) = %(117_’1/1”/# 9). Similarly,

assuming A > v gives D(0) = =

7.6.2  Proof of Theorem 25. Clearly,

o0y = po

po  ifA>pu

e Zico /A" {Av if 1< p,
koo S () 2)

Similarly, we can show that
o < Avg ?f A<,
pvy  ifA>p

Now we consider the following three cases.

0y > yv In this case limy_, A¥(k) > . So, there exist k < oo such that A¥(k) > v and
K = max{i : Al(i) < v;} is finite. In this case (47a)-(47b) have a unique solution (0%, AX(i),i > 0).
Furthermore, the mean revenue rate 6 < pog.

07° < po: In this case limy AF(k) < v.So, Al(i) < v; for all i. Furthermore, the mean revenue
rate is 6;°

A > pand X < Av:In this case, following similar arguments as in Section 2.2, the policy
u = (vg, vy, . .. ) provides a revenue rate Av which is at least as much as the revenue rate provided
by any ergodic policy.
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