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ABSTRACT

This paper studies the Heavy Traffic (HT) joint distribution
of queue lengths in an Input-queued switch (IQ switch) op-
erating under the MaxWeight scheduling policy. 1Q switch-
serve as representative of SPNs that do not satisfy the so-
called Complete Resource Pooling (CRP) condition, and
consequently exhibit a multidimensional State Space Col-
lapse (SSC). Except in special cases, only mean queue lengths
of such non-CRP systems is known in the literature. In this
paper, we develop the Transform method to study the joint
distribution of queue lengths in non-CRP systems. The key
challenge is in solving an implicit functional equation involv-
ing the Laplace transform of the HT limiting distribution.
For the general n x n IQ switch that has n? queues, under
a conjecture on uniqueness of the solution of the functional
equation, we obtain an exact joint distribution of the HT
limiting queue-lengths in terms of a non-linear combination
of 2n iid exponentials.

1. INTRODUCTION

Stochastic Processing Networks (SPNs) are ubiquitous in
engineering with applications in manufacturing, telecommu-
nications, transportation, computer systems, etc. A general
SPN consists of jobs or packets that compete for limited
resources, and can be modeled using a set of interacting
queues. A key performance metric of interest in such sys-
tems is queue length. In general, it is not possible to exactly
characterize the steady-state queue length behavior in such
SPNs. Therefore, SPNs are studied in various asymptotic
regimes. In this paper, we consider the HT regime where
the system is loaded close to its capacity. The queue length
in this case, usually blows up to infinity, at a rate of 1/e,
where € is the HT parameter that denotes the gap between
the arrival rate and the system capacity. Therefore, the ob-
jective of interest is typically the asymptotic behavior of the
queue length, scaled by e.

Using HT analysis, it was shown that the scaled queue
length distribution of a single server queue converges to that
of an exponential random variable. Since then, a variety of
SPNs has been studied in HT. A key phenomenon in the
HT regime is that the multi-dimensional queue-length vector
typically collapses to a lower-dimensional subspace. This

*This work was partially supported by NSF grants EPCN-
2144316 and CMMI-2140534.

Copyright is held by author/owner(s).

is called State Space Collapse (SSC), and it simplifies the
analysis of an SPN. When the so-called Complete Resource
Pooling (CRP) condition is satisfied, various SPNs exhibit
an SSC to a one-dimension subspace, i.e., a line. In this
case, the SPN behaves like a single server queue in HT, and
the limiting distribution of scaled queue lengths converges
to an exponential random variable.

However, several SPNs that arise in practice do not sat-
isfy the CRP condition, and the SSC occurs to a multi-
dimensional subspace. Despite special efforts, except in spe-
cial cases, the classical diffusion limit approach failed to
characterize the HT steady state queue length behaviour.
Recent work [3, 1] developed the drift method and used it
to characterize the mean of the (weighted) sum of the queue
lengths in such systems under great generality. However, it
was shown in [1]| that the drift method is insufficient to even
obtain the individual mean queue lengths. Going beyond
the mean queue lengths, the key question we focus on in
this paper is: What is the HT joint distribution of queue
lengths in an SPN when the CRP condition is not satisfied?

In this work, we consider a well-studied stochastic process-
ing networks (SPN), viz., an IQ switch policy. We charac-
terize the HT joint distribution by establishing an implicit
functional equation, and also provide the solution to the
functional equation under certain condition.

2. MODEL

An Input-Queued switch (IQ switch) is a device that ex-
changes data from one channel to another in a data center.
A switch of size n consists of n input ports and n output
ports. The message packets flow from input ports to out-
put ports in a time-slotted manner. For time slot ¢, we
denote the arrival a;n(j—1)(t) to be the number of packets
that come input ¢ to be sent to output port j. As there
are n? such input-output pairs, the arrival in any time slot
can be represented by an n? vector a(t). The architecture
of the device doesn’t allow all the packets to be transferred
in one go, which leads to a queue build up on the inputs.
We use gitn(j—1)(t) (or g(t) in vector notation) to denote
the backlog of packets that needs to be transferred to the
output j from input i. We assume that the arrivals are i.i.d.
with respect to t and the distribution of the arrivals have a
bounded support (i.e. for (4,7) and ¢, a;yn(j—1)(t) < Gmax)-
The mean arrival rate vector is given by E[a(t)] = X and let
o? be the co-variance matrix of the arrival vector a(t).

The bottlenecks in the system don’t allow the transfer of
all the packets in the queue simultaneously. Every port can
send or receive at most one packet in any time slot. Also,
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the packet transfer can happen only among the connected
input-output pairs in that time slot. A schedule denoted
by s(t) € {0, 1}"2 gives the set of input-output pairs that
are connected in time slot t. The element s;,(;—1)(t) =1
if and only if the pair (4,7) is connected in time slot ¢. It
follows that the set of possible schedules X is given by the
set of vectors s € {0, 1}712 such that D7 | siynj—1) = 1Vj
and Z?:l Sitn(j—1) = 1 Vi.

A scheduling algorithm is then the policy that chooses
the schedule in each time slot. The queue length evolution
process is given by

q(t+1) = [a(t) +a(t) —s(t)]" = q(t) +a(t) - s(t) +u(t),

where operation []* in the above equation is used because
the queue length can’t be negative. The terms u(t) is the
unused service, which arises because it might happen that
there is a connection between a input-output pair but there
is no packet available to be transferred.

As is well-known, the capacity region of the switch system
is given by the set of A € ]Ri2 such that >0 | Aiyni—1) <
1Vjand 377 ) Xiyngi—1) < 1 Vi. Let F denote the part of
boundary of the capacity region given by the convex hull of
X. A switch system is in HT when the arrival rate vector
A approaches the boundary F. There exists a vector v € F
and the HT parameter € € (0,1) such that A = (1 — €)v.

A well known scheduling algorithm is MaxWeight schedul-
ing which chooses the schedule with maximum weight, where
weight of the schedule is the sum of the queue lengths that
are being served in the given time slot. It has been proved
in prior literature that MaxWeight scheduling is throughput
optimal, i.e., the corresponding Markov chain is stable for
any arrival rate vector in C. From here onwards, we consider
an I1Q switch operating under MaxWeight scheduling.

3. RESULTS
Let B € {0,1}" %" is such that for any 1 < 4,5 < n,
Bitn(i-1),i = BitnG-1)n+i = 1,
and all other elements are zero. Consider the subspace S C

R™ to be the space spanned by columns of B. For any vector

X € R"2, let x| s denote its projection to the subspace S and
X1s =X —X|s-

Proposition 1. There exist a C, independent of € such that
E[HQLSHT] < Cp,¥r>1.

According to Proposition 1, for MaxWeight scheduling al-
gorithm, the moments of q s are bounded irrespective of
the HT parameter e. We know from [3, Proposition 1|, that
in HT queue length scales at least at the rate of (1/e).
This shows that, in HT, q s is insignificant compared to q
and so, in HT, eq ~ eqs. This is known as SSC.

Theorem 2 (Functional equation). Consider the IQ switch
operating under MaxWeight scheduling algorithm. Let ® =

{6 € cioe S, Re(BTO) < 02,}. Then, for any 6 € ©,
P(6) = (2(0,1,2) — n(6,5°0)) L(8) — 2n(6,M(8)) = 0,
where Yk € {1,2,...,n%},

L() = lim Ere [e9 Y], My (8) = lim 1g.. [ure @ D).
e—0 e—0 €
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The functional equation (P(6) = 0 in Theorem 2) is math-
ematical relationship between the term L(0), which is the
Laplace transform of the limiting HT distribution and the
terms Mj(0), which intuitively denote the Laplace trans-
form under the condition gx = 0 (since ux = 1 implies
gr = 0). Further, the set © is appropriately chosen such
that the quantities L(0) and My(0)’s are well defined.

The steps to establish the functional equation for IQ switch
consists of two steps. The first step is to use the complex ex-
ponential as the Lyapunov function and equate its expected
drift to zero in steady-state. After that, we use the second-
order approximation of the complex exponential in terms of
the HT parameter € and eliminate the higher order terms to
get the functional equation. Here, SSC plays a key role in
the mathematical analysis. To be more specific, due to the
SSC, we only have to consider q) , which leads to a lot of
technical simplicity.

Conjecture 3. There is a unique set of functions L(0) and
My, (0)’s defined in Theorem 2, that satisfies the functional
equation P(0) =0 for all 6 € ©.

A major challenge in solving the implicit functional equa-
tion given in Eq. (2) is proving that the functional equation
has a unique solution. For simpler systems, where the SSC
happens to a two-dimensional subspace, one can prove that
the corresponding functional equation has a unique solution
using the theory of Carleman boundary value problem. Ex-
tending that result to a functional equation with more than
two variables, such as for the IQ switch, is open.

Theorem 4. Assume Conjecture 3 holds. Suppose the vari-
ance vector o is symmetric, i.e., 02 = 0212, where L2 is
the identity matriz of size n®. Then,

€q -5 B(Y — T1a,),

where X = (T1,...,Tay) is a vector of 2n independent expo-
nential random variables with mean "—22 and Y = min Y.
1<k<2n

Assuming Conjecture 3 holds, Theorem 4 completely char-
acterizes the HT distribution of the IQ switch under the
symmetric variance condition. The key idea behind the
proof is to show that the Laplace transform of the limit-
ing distribution provided in the Theorem 4 is a solution of a
functional equation (Eq. (2)) given in Theorem 2 when the
variances of the arrival process are symmetric. And under
the assumption that the functional equation has a unique
solution claimed by Conjecture 3, the solution provided in
Theorem 4 is the unique solution for the HT distribution for
1Q switch under symmetric variance condition.

For more details on this work, please refer to [2].
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