
Heavy Traffic Joint Queue Length Distribution without

Resource Pooling

Prakirt Raj Jhunjhunwala1, Siva Theja Maguluri2
prj2122@columbia.edu, siva.theja@gatech.edu

1Columbia University, 2Georgia Institute of Technology ⇤

ABSTRACT

This paper studies the Heavy Traffic (HT) joint distribution

of queue lengths in an Input-queued switch (IQ switch) op-

erating under the MaxWeight scheduling policy. IQ switch-

serve as representative of SPNs that do not satisfy the so-

called Complete Resource Pooling (CRP) condition, and

consequently exhibit a multidimensional State Space Col-

lapse (SSC). Except in special cases, only mean queue lengths

of such non-CRP systems is known in the literature. In this

paper, we develop the Transform method to study the joint

distribution of queue lengths in non-CRP systems. The key

challenge is in solving an implicit functional equation involv-

ing the Laplace transform of the HT limiting distribution.

For the general n ⇥ n IQ switch that has n2
queues, under

a conjecture on uniqueness of the solution of the functional

equation, we obtain an exact joint distribution of the HT

limiting queue-lengths in terms of a non-linear combination

of 2n iid exponentials.

1. INTRODUCTION

Stochastic Processing Networks (SPNs) are ubiquitous in

engineering with applications in manufacturing, telecommu-

nications, transportation, computer systems, etc. A general

SPN consists of jobs or packets that compete for limited

resources, and can be modeled using a set of interacting

queues. A key performance metric of interest in such sys-

tems is queue length. In general, it is not possible to exactly

characterize the steady-state queue length behavior in such

SPNs. Therefore, SPNs are studied in various asymptotic

regimes. In this paper, we consider the HT regime where

the system is loaded close to its capacity. The queue length

in this case, usually blows up to infinity, at a rate of 1/✏,
where ✏ is the HT parameter that denotes the gap between

the arrival rate and the system capacity. Therefore, the ob-

jective of interest is typically the asymptotic behavior of the

queue length, scaled by ✏.
Using HT analysis, it was shown that the scaled queue

length distribution of a single server queue converges to that

of an exponential random variable. Since then, a variety of

SPNs has been studied in HT. A key phenomenon in the

HT regime is that the multi-dimensional queue-length vector

typically collapses to a lower-dimensional subspace. This
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is called State Space Collapse (SSC), and it simplifies the

analysis of an SPN. When the so-called Complete Resource

Pooling (CRP) condition is satisfied, various SPNs exhibit

an SSC to a one-dimension subspace, i.e., a line. In this

case, the SPN behaves like a single server queue in HT, and

the limiting distribution of scaled queue lengths converges

to an exponential random variable.

However, several SPNs that arise in practice do not sat-

isfy the CRP condition, and the SSC occurs to a multi-

dimensional subspace. Despite special efforts, except in spe-

cial cases, the classical diffusion limit approach failed to

characterize the HT steady state queue length behaviour.

Recent work [3, 1] developed the drift method and used it

to characterize the mean of the (weighted) sum of the queue

lengths in such systems under great generality. However, it

was shown in [1] that the drift method is insufficient to even

obtain the individual mean queue lengths. Going beyond

the mean queue lengths, the key question we focus on in

this paper is: What is the HT joint distribution of queue
lengths in an SPN when the CRP condition is not satisfied?

In this work, we consider a well-studied stochastic process-

ing networks (SPN), viz., an IQ switch policy. We charac-

terize the HT joint distribution by establishing an implicit

functional equation, and also provide the solution to the

functional equation under certain condition.

2. MODEL

An Input-Queued switch (IQ switch) is a device that ex-

changes data from one channel to another in a data center.

A switch of size n consists of n input ports and n output

ports. The message packets flow from input ports to out-

put ports in a time-slotted manner. For time slot t, we

denote the arrival ai+n(j�1)(t) to be the number of packets

that come input i to be sent to output port j. As there

are n2
such input-output pairs, the arrival in any time slot

can be represented by an n2
vector a(t). The architecture

of the device doesn’t allow all the packets to be transferred

in one go, which leads to a queue build up on the inputs.

We use qi+n(j�1)(t) (or q(t) in vector notation) to denote

the backlog of packets that needs to be transferred to the

output j from input i. We assume that the arrivals are i.i.d.

with respect to t and the distribution of the arrivals have a

bounded support (i.e. for (i, j) and t, ai+n(j�1)(t)  amax).

The mean arrival rate vector is given by E[a(t)] = � and let

�2
be the co-variance matrix of the arrival vector a(t).

The bottlenecks in the system don’t allow the transfer of

all the packets in the queue simultaneously. Every port can

send or receive at most one packet in any time slot. Also,
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the packet transfer can happen only among the connected

input-output pairs in that time slot. A schedule denoted

by s(t) 2 {0, 1}n
2
gives the set of input-output pairs that

are connected in time slot t. The element si+n(j�1)(t) = 1
if and only if the pair (i, j) is connected in time slot t. It

follows that the set of possible schedules X is given by the

set of vectors s 2 {0, 1}n
2
such that

Pn
i=1 si+n(j�1) = 1 8j

and
Pn

j=1 si+n(j�1) = 1 8i.
A scheduling algorithm is then the policy that chooses

the schedule in each time slot. The queue length evolution

process is given by

q(t+ 1) = [q(t) + a(t)� s(t)]+ = q(t) + a(t)� s(t) + u(t),

where operation [·]+ in the above equation is used because

the queue length can’t be negative. The terms u(t) is the

unused service, which arises because it might happen that

there is a connection between a input-output pair but there

is no packet available to be transferred.

As is well-known, the capacity region of the switch system

is given by the set of � 2 Rn2

+ such that
Pn

i=1 �i+n(j�1) <
1 8j and

Pn
j=1 �i+n(j�1) < 1 8i. Let F denote the part of

boundary of the capacity region given by the convex hull of

X . A switch system is in HT when the arrival rate vector

� approaches the boundary F . There exists a vector ⌫ 2 F
and the HT parameter ✏ 2 (0, 1) such that � = (1� ✏)⌫.

A well known scheduling algorithm is MaxWeight schedul-
ing which chooses the schedule with maximum weight, where

weight of the schedule is the sum of the queue lengths that

are being served in the given time slot. It has been proved

in prior literature that MaxWeight scheduling is throughput
optimal, i.e., the corresponding Markov chain is stable for

any arrival rate vector in C. From here onwards, we consider

an IQ switch operating under MaxWeight scheduling.

3. RESULTS

Let B 2 {0, 1}n
2⇥2n

is such that for any 1  i, j  n,

Bi+n(j�1),i = Bi+n(j�1),n+j = 1,

and all other elements are zero. Consider the subspace S ✓
Rn2

to be the space spanned by columns ofB. For any vector

x 2 Rn2
, let xkS denote its projection to the subspace S and

x?S = x� xkS .

Proposition 1. There exist a Cr independent of ✏ such that
E
h
kq?Skr

i
 Cr, 8r � 1.

According to Proposition 1, for MaxWeight scheduling al-

gorithm, the moments of q?S are bounded irrespective of

the HT parameter ✏. We know from [3, Proposition 1], that

in HT queue length scales at least at the rate of ⌦(1/✏).
This shows that, in HT, q?S is insignificant compared to q
and so, in HT, ✏q ⇡ ✏qkS . This is known as SSC.

Theorem 2 (Functional equation). Consider the IQ switch
operating under MaxWeight scheduling algorithm. Let ⇥ =

{✓ 2 Cn2
: ✓ 2 S, Re(BT✓)  02n}. Then, for any ✓ 2 ⇥,

P(✓) =
�
2h✓,1n2i � nh✓,�2✓i

�
L(✓)� 2nh✓,M(✓)i = 0,

where 8k 2 {1, 2, . . . , n2},

L(✓) = lim
✏!0

E⇡✏ [e✏h✓,qi], Mk(✓) = lim
✏!0

1
✏
E⇡✏ [uke

✏h✓,qi].

The functional equation (P(✓) = 0 in Theorem 2) is math-

ematical relationship between the term L(✓), which is the

Laplace transform of the limiting HT distribution and the

terms Mk(✓), which intuitively denote the Laplace trans-

form under the condition qk = 0 (since uk = 1 implies

qk = 0). Further, the set ⇥ is appropriately chosen such

that the quantities L(✓) and Mk(✓)’s are well defined.

The steps to establish the functional equation for IQ switch

consists of two steps. The first step is to use the complex ex-

ponential as the Lyapunov function and equate its expected

drift to zero in steady-state. After that, we use the second-

order approximation of the complex exponential in terms of

the HT parameter ✏ and eliminate the higher order terms to

get the functional equation. Here, SSC plays a key role in

the mathematical analysis. To be more specific, due to the

SSC, we only have to consider qk , which leads to a lot of

technical simplicity.

Conjecture 3. There is a unique set of functions L(✓) and
Mk(✓)’s defined in Theorem 2, that satisfies the functional
equation P(✓) = 0 for all ✓ 2 ⇥.

A major challenge in solving the implicit functional equa-

tion given in Eq. (2) is proving that the functional equation

has a unique solution. For simpler systems, where the SSC

happens to a two-dimensional subspace, one can prove that

the corresponding functional equation has a unique solution

using the theory of Carleman boundary value problem. Ex-

tending that result to a functional equation with more than

two variables, such as for the IQ switch, is open.

Theorem 4. Assume Conjecture 3 holds. Suppose the vari-
ance vector �2 is symmetric, i.e., �2 = �2In2 , where In2 is
the identity matrix of size n2. Then,

✏q
d! B(⌥� ⌥̃12n),

where ⌥ = (⌥1, . . . ,⌥2n) is a vector of 2n independent expo-
nential random variables with mean �2

2 and ⌥̃ = min
1k2n

⌥k.

Assuming Conjecture 3 holds, Theorem 4 completely char-

acterizes the HT distribution of the IQ switch under the

symmetric variance condition. The key idea behind the

proof is to show that the Laplace transform of the limit-

ing distribution provided in the Theorem 4 is a solution of a

functional equation (Eq. (2)) given in Theorem 2 when the

variances of the arrival process are symmetric. And under

the assumption that the functional equation has a unique

solution claimed by Conjecture 3, the solution provided in

Theorem 4 is the unique solution for the HT distribution for

IQ switch under symmetric variance condition.

For more details on this work, please refer to [2].
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