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ABSTRACT

In general, obtaining the exact steady-state distribution of
queue lengths is not feasible. Therefore, we focus on es-
tablishing bounds for the tail probabilities of queue lengths.
We examine queueing systems under Heavy Traffic (HT)
conditions and provide exponentially decaying bounds for
the probability P(✏q > x), where ✏ is the HT parameter de-
noting how far the load is from the maximum allowed load.
Our bounds are not limited to asymptotic cases and are ap-
plicable even for finite values of ✏, and they get sharper as
✏ ! 0. Consequently, we derive non-asymptotic convergence
rates for the tail probabilities. Furthermore, our results of-
fer bounds on the exponential rate of decay of the tail, given
by � 1

x log P(✏q > x) for any finite value of x. These can be
interpreted as non-asymptotic versions of Large Deviation
(LD) results. To obtain our results, we use an exponential
Lyapunov function to bind the moment-generating function
of queue lengths and apply Markov’s inequality. We demon-
strate our approach by presenting tail bounds for a contin-
uous time Join-the-shortest queue (JSQ) system.

1. INTRODUCTION

Queueing models are used to study performance of many
systems such as cloud computing, data centers, ride hailing,
call centers etc. In general, obtaining the complete distribu-
tion of queue lengths in these systems is intractable. There-
fore, a common approach is to study asymptotic regimes.
Recently, the Many-Server Heavy-Traffic (Many-Server-HT)
regime has gained more popularity, where the system is
loaded to maximum capacity while simultaneously increas-
ing the number of servers. The system’s behavior varies
greatly depending on how quickly the load increases rela-
tive to the number of servers. As such one employs very
different analysis techniques to study queueing systems in
different regimes.

In the study of HT asymptotics, one typically scales the
queue lengths using a parameter that represents the sys-
tem’s load. By denoting the load as 1 � ✏, where ✏ is the
HT parameter, the HT limit is achieved when ✏ approaches
zero. For a load balancing system in Heavy Traffic (HT),
which when satisfies the so-called Complete Resource Pool-
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ing (CRP) condition, it is well-known that the scaled queue
length follows an exponential distribution in the HT limit,
which gives the tail probabilities of the limiting system.
However, the rate of convergence of the tail probabilities
(of the pre-limit system) to the corresponding HT value re-
mains unknown.

Most real world systems involve Service Level Agreements
(SLA), where customers are promised a specific level of ser-
vice, including the maximum delay they can expect. Moti-
vated by this, in this paper, we focus on establishing sharp
bounds on the tail probabilities of scaled queue length of the
pre-limit system, i.e., for ✏ > 0. In particular, we get non-
asymptotic bounds of the form P(✏q > x)  (✏, x)e�✓(✏)x

,

where q represents the total queue length in steady state.
Here, ✓(✏) gives the decay rate of the tail probability of the
pre-limit system, and ✓(✏) converges to the correct HT value
as ✏ ! 0. Recent results show the rate of convergence to HT
in terms of the mean, moments, or Wasserstein’s distance.
These methods focus on the entire distribution of the queue
lengths and drown the tail. For example, consider the sec-
ond moment, and suppose ✏q converges in distribution to
the random variable ⌥. Then, from existing results, one
obtains that |E[✏2q2] � E[⌥2]| is O(✏), which gives a valid
bound. From these results, one can obtain bounds in terms
of tail probability of the form |P(✏q > x)�P(⌥ > x)|  O(✏).
However, these are not very informative as the tail proba-
bility itself can be much smaller than O(✏). Therefore, the
rate of convergence of tail probabilities cannot be obtained
using the existing methodologies. In this work, we correctly
characterize ✓(✏) to obtain the rate of convergence of tail
probability to the corresponding HT value. Our results are
non-asymptotic in the sense that they are valid whenever
✏ is small, and not just when ✏ ! 0. Also, our results are
precise when ✏ gets closer to 0, recovering the HT results.

Our work bridges the gap between the Large Deviations
(LD) and Many-Server-HT regimes. When one studies the
LD regime, the goal is to find the exponential rate at which
the tail probability decays, which is precisely given by ✓(✏).
As such, our tail bounds can be used to recover the non-
asymptotic LD results. Thus, our tail bounds are at a con-
fluence of non-asymptotic HT and non-asymptotic LD. To
the best of our knowledge, such comprehensive LD results
have not been previously reported in the existing literature.

2. MODEL: JSQ SYSTEM

We consider a continuous-time queueing system consist-
ing of n Single-Server Queues (SSQ) in parallel, each serv-
ing jobs according to first-come-first-serve. At any time t,
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let q(t) denote the queue length vector, where qi(t) is the
queue length of i

th queue. For the ease of notation, we
use q(t) to denote the total queue length at time t, i.e.,
q(t) =

Pn
i=1 qi(t). Jobs arrive to the system according to

a Poisson process with rate �n, and service times are ex-
ponentially distributed with rate µ. When a job arrives,
it is dispatched according to JSQ, that is, the job is sent
to the queue with index i

⇤(t) 2 argmini qi(t), breaking ties
uniformly at random.

The system load is ⇢n := �n
nµ < 1, and we define ✏n = 1�

⇢n. In the context of the JSQ system, we consider the Many-
Server-HT regime, where the system size n grows to infinity
while the HT parameter ✏n approaches zero. Specifically,
we consider ✏n = n

�↵ with ↵ > 1 constant, and take the
limit as n ! 1. We use q to denote the steady-state queue
length vector, and q :=

Pn
i=1 qi.

2.1 Results for JSQ system

It is well known that the HT distribution of the scaled
steady-state total queue length ✏q converges to an exponen-
tial random variable as ✏ ! 0 [1]. Further, as shown in
[2], the result extends to Many-Server-HT, where ✏nq con-
verges to an exponential random variable in distribution if
↵ > 2, and it was conjectured that the result also holds for
↵ 2 (1, 2]. In Theorem 1, we complete the result by demon-
strating that ✏nq converges in distribution to an exponential
random variable ↵ > 1.

Theorem 1. Suppose the system satisfies the condition �n =
nµ(1 � n

�↵), i.e., ✏n = n
�↵, where ↵ > 1. Then, for any

✓ < 1, we have n
1�↵q

d! ⌥1 as n ! 1, where ⌥ is an
exponential random variable with mean 1.

The result in Theorem 1 thus fills the gap in the literature
and is in conjunction with all the prior work [2]. A crucial
step to this end is in establishing State Space Collapse (SSC)
for the JSQ system. In HT, that is as ✏n # 0, we have
✏nqi ⇡ ✏n

n

Pn
i=1 qi for all i 2 {1, 2, . . . , n}, that is, the n-

dimensional queueing vector collapses to a one-dimensional
subspace. This phenomenon, called SSC, is a key property of
the JSQ system in heavy traffic. In order to prove Theorem
1, we prove that the JSQ system satisfies SSC for all value
of ↵ > 1.

Theorem 2. Suppose the JSQ system satisfies the condi-
tion �n = nµ(1 � ✏n). Let ✏n is small enough such that
n✏n log

�
1
✏n

�
< 1, where 1 and 2 are positive constants.

Suppose ✓n := 1
✏n

log 1
1�✏n

. Then, for all x > 1� ✏n we have

e
�✓nx  P

⇣
✏nq̄ > x

⌘


h
2ex

�
1� 2n✏n log ✏n

�i
e
�✓nx

,

where the lower bound holds for any n � 1 and ✏n 2 (0, 1).
As a consequence, we have the following large deviation re-
sult,

lim
x!1

� 1
x
log P

⇣
✏nq̄ > x

⌘
= ✓n :=

1
✏n

log
1

1� ✏n
. (1)

Theorem 2 establishes the exponential decay of the tail of
the total queue length for a JSQ system in the Many-Server-
HT regimes. Further, the result in Theorem 2 is consistent
with the fact that the distribution of the scaled steady-state
total queue length, i.e., ✏nq, converges to an exponential
random variable in distribution, as n grows to 1.

In Theorem 2, we are able to characterize the exact tail
decay rate of the continuous time JSQ system. Our result

implies that, in Many-Server-HT with ↵ > 1 and when the
term n✏n log

�
1
✏n

�
is small enough, the decay rate of the JSQ

system exactly matches the tail decay rate of an SSQ. This
is a significant advancement compared to existing literature.
Previous work primarily focused on comparing the behavior
of the JSQ system with an SSQ under the limiting condi-
tions, specifically as ✏n ! 0. In contrast, our work exam-
ines the behavior of a pre-limit JSQ system and directly
compares it to the corresponding SSQ. Our bounds on tail
probability on JSQ system, presented in Theorem 2, can be
decomposed into terms as discussed below.

SSC violation: For the JSQ system, the SSC violation
term is given by

�
1 � 2n✏n log ✏n

�
. In non-asymptotic HT

conditions (i.e., when n < 1 in Many-Server-HT), the SSC
property is not fully satisfied. This introduces an additional
multiplicative term in the tail probability bound, which is
captured by 1�2n✏n log ✏n, and reflects the extent to which
SSC is violated. Further, in Theorem 2, we need the term
n✏n log 1

✏n
to be small enough, to ensure that the SSC is

not completely violated, and behaviour of the JSQ system
is close to a corresponding SSQ.

Pre-limit tail: The pre-limit tail denotes the actual de-
cay rate of the tail probability of ✏nq under non-asymptotic
HT condition, i.e., n < 1. For the continuous-time JSQ
system, we exactly characterize the pre-limit tail, which is
given by ✓n. When ✏n = n

�↵ with ↵ > 1, as n ! 1, the
tail of ✏nq matches that of an exponential distribution with
mean 1, as limn!1 ✓n = 1. Further, note that, the devia-
tion of the pre-limit tail from the corresponding HT value is
given by |✓n � 1|, which is of order O(✏n).

Pre-exponent error: In the context of the JSQ system,
the pre-exponent error is represented by the expression 2ex.
This error term arises from using Markov’s Inequality to
obtain tail-probability bounds using MGF. To clarify this
error term, consider a random variable X that follows an
exponential distribution with rate �. In this case, the MGF
of X is given by E[exp(✓X)] = 1

1�✓/� for all ✓ < �. Ap-
plying Markov’s Inequality to the MGF and optimizing over
the value of ✓, we obtain P(X > x)  e�xe

��x
. The upper

bound differs from the actual tail of X by a multiplicative
factor of e�x, which arises from using Markov’s Inequality.
We acknowledge that it may be possible to eliminate the
Markov-Inequality error by employing more complex tech-
niques. However, we have chosen to rely solely on Markov’s
Inequality for our analysis to maintain simplicity.

For more details on this work, please refer to [3].

3. REFERENCES

[1] D. Hurtado-Lange and S. T. Maguluri. Transform
methods for heavy-traffic analysis. Stochastic Systems,
10(4):275–309, 2020.

[2] D. Hurtado-Lange and S. T. Maguluri. A load
balancing system in the many-server heavy-traffic
asymptotics. Queueing Systems, 101(3-4):353–391,
2022.

[3] P. R. Jhunjhunwala, D. Hurtado-Lange, and S. T.
Maguluri. Exponential tail bounds on queues: A
confluence of non-asymptotic heavy traffic and large
deviations, 2023.

Performance Evaluation Review, Vol. 51, No. 4, March 2024 19




