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We explore the cosmology of the dark-dimension scenario taking into account perturbations in the linear
regime. In the context of the dark-dimension scenario, a natural candidate for dark matter in our Universe
is the excitations of a tower of massive spin-2 Kaluza-Klein (KK) gravitons. These dark gravitons are
produced in the early Universe and decay to lighter KK gravitons during the course of cosmological
evolution. The decay causes the average dark matter mass to decrease as the Universe evolves. In addition,
the kinetic energy liberated in each decay leads to a kick velocity for the dark matter particles, leading to a
suppression of structure formation. Using current cosmic microwave background (Planck), baryon acoustic
oscillation, and cosmic shear (KiDS-1000) data, we put a bound on the dark matter kick velocity today
Vioday < 2.2 X 10~*c at 95% CL. This leads to rather specific regions of parameter space for the dark-
dimension scenario. The combination of the experimental bounds from cosmology, astrophysics, and table-
top experiments leads to the range /s ~ 1-10 pm for the size of the dark dimension. The dark-dimension
scenario is found to be remarkably consistent with current observations and provides signatures that are

within reach of near-future experiments.
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I. INTRODUCTION

The particle nature of dark matter (DM) is one of the
major outstanding problems in particle physics and cos-
mology. There are a plethora of models that are consis-
tent with observations and well motivated from a particle
physics point of view [1]. However, when viewed from an
effective field theory perspective, these models leave many
questions unanswered such as those related to the electro-
weak and/or cosmological hierarchy problems.

Recently, it has been pointed out [2] that the swampland
program (see [3] for a review) can offer a new take on the
cosmological hierarchy problem, leading to a unification of
dark energy and DM. In the context of the swampland
program, it is natural for there to be a tower of particles with
mass close to the energy scale set by the cosmological
constant:

m~ A%,

(1.1)

in Planck units and with a ~ O(1). This is essentially the
statement of the (anti—)de Sitter distance conjecture [4].
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In [2] it was shown that, when this line of thought is
followed to its logical conclusion, one is led to an
essentially unique model of our Universe, dubbed the dark
dimension. In more detail, it was argued that theoretical and
experimental constraints select « = 1/4 and allow for only
a single tower of Kaluza-Klein (KK) states. This has led to
the idea of viewing DM as excitations in this tower [5]. The
light matter consists of the Standard Model (SM) fields in
addition to a tower of massive KK gravitons. Each particle
in the tower is coupled only gravitationally to the SM and
to other particles in the tower. In the presence of the KK
graviton tower and the (necessary) gravitational couplings,
it was also shown in [5] that a population of KK gravitons
will be produced in the early Universe, leading to a natural
candidate for DM, which can constitute all of the DM. This
led to a concrete unification of DM and dark energy.
Towers of particles have also been considered previously
in the context of DM models where they have been
motivated by their genericity in string theory (see for
example the dynamical DM scenario of [6,7]). The dark
dimension is then a well-motivated model from a theoreti-
cal perspective given its consistency with swampland
principles and its potential to provide a new take on the
cosmological hierarchy problem and its unification with
DM. It also has phenomenologically interesting signatures
as well as possible alternative scenarios that were inves-
tigated in various recent papers [8—12].

The purpose of this work is to explore potentially
observable cosmological aspects of the dark-dimension
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model. In particular, we focus on studying perturbations in
the linear regime within a simplified version of the full
model that nonetheless captures the important physics.
Remarkably, we find that the model, although borne out of
very general string-theoretic principles, is consistent with
current observations and provides signatures that are within
reach of near-future experiments.

This paper is organized as follows. In Sec. II we review
the relevant phenomenology of the dark dimension. In this
section we introduce some details of the “kick” velocity of
the DM and distribution functions that we use in our
analysis. In Sec. III we present our results and discuss the
effects that play an important role in the constraint that we
get. Then, in Sec. IV we discuss the parameters of the dark-
dimension model in light of the new constraints derived
from cosmology as well as other experimental data. Finally,
we give some concluding remarks and discuss some open
questions in Sec. V.

II. KK GRAVITONS AS DARK MATTER

Let us begin by reviewing the essential features of the
dark-dimension scenario. For more details, we refer the
reader to [5]. In this scenario, the Universe has a tower of
massive gravitons with spacing

mygx ~ A% ~ 10 — 100 meV. (2.1)
These are the KK modes of the graviton in a mesoscopic
dimension of length / < 30 pm. The particles of the SM
live on a brane localized in the extra dimension and their
coupling to the graviton KK modes is determined [up to
O(1) numbers] by the 5D equivalence principle. This
allows the KK gravitons to be produced from a hot brane
in the early Universe. In particular, if we start with an empty
extra dimension (i.e., the KK graviton sector) and an SM
brane at temperature 7; ~ 1 GeV, we produce the correct
abundance of KK gravitons to account for all of the observed
DM. The coupling between each KK graviton and the SM
is of gravitational strength. Given this weak coupling, the
tower states play an essential role in this production mecha-
nism since it would be difficult to produce a sufficient
amount of DM with only gravitational-strength couplings
to a few particle states without going close to Planckian
temperatures. The large number of particles in the tower
allows for the production of enough DM at temperatures
much lower than Planckian temperatures.

Generically, the extra dimension need not be homo-
geneous [13] and this inhomogeneity will induce a cou-
pling between the different graviton KK modes. In
particular, this coupling will allow heavier KK gravitons
to decay to lighter ones, again via gravitational-strength
interactions. The large number of graviton modes available
for this decay enhances this decay width relative to decays
to the SM (see [5] for more details). Thus, when massive
gravitons decay, they predominantly decay to lighter
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FIG. 1. The mass distribution of KK gravitons at different times

in cosmic history. The horizontal axis should be thought of as a
discretum with spacing mgyg. The distribution starts at heavier
masses and moves to lower masses as the gravitons decay to
lighter gravitons.

gravitons rather than SM particles.' We parametrize the
energy scale of this inhomogeneity by o - mgg, where
&~ O(1), which determines the violation of KK-number
conservation. More precisely, a parent particle with mass
my. can decay to two daughter particles with masses m; and
my such that my = m; + m; + e, with € <6 - mgg. How-
ever, in practice we simply take € & § - mgg. Given our lack
of knowledge of the precise spacing of the tower (which will
depend on the inhomogeneity), we in general also allow for
noninteger values of . Finally, while 6 captures the wave-
length of the inhomogeneity of the extra dimension, we
introduce another effective parameter f that captures the
amplitude of these inhomogeneities. This in particular
controls the rate of decay of KK gravitons within the tower.

Most dark gravitons are produced at the initial temper-
ature when T ~ T'; with a mass m ~ T, and it is a very good
approximation to ignore further graviton production at
lower temperatures. By then, the most important effects
are the decays. Our interest here is in decays within the KK
graviton tower. These cause the DM occupation numbers in
each mode to vary in the course of cosmological evolution
and effectively lead to a time-dependent DM mass (see
Fig. 1). As the particles decay, the average DM mass
decreases with time and the distribution creeps to lower
masses while keeping its shape. At a given time ¢, the peak
of the DM mass distribution is at

1 <M§lmKK> /7 1

o ) o PP

mpp (1) *

where the parametric dependence can be deduced from the
total decay width [5] and the prefactor is fixed from
numerical simulations.

"The decay to the SM of course also occurs and has been
investigated in [14].
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The intratower graviton decays also lead to another
important effect: DM velocities. When a parent KK
graviton decays, it imparts a kick velocity to the daughter
particles that can affect cosmological structure formation.
Intuitively, these particles can escape gravitational potential
wells and lead to less structure in the late Universe. The
kick velocity can be easily determined from the kinematics
of the problem and using the knowledge that the coupling
between KK particles is gravitational. This latter fact
implies that the most likely decay products are the most
massive ones. In other words, the gravitational nature of the
decay means that when a KK graviton of mass m decays to
two daughter particles, the most likely outcome is two
particles of masses close to m/2 (up to the mass violation
€ = 0 - mgg discussed above). For simplicity, we assume
this to always be the case and neglect subdominant effects
from asymmetric decays where one of the daughter particles
is much heavier than the other. Finally, we work in the non-
relativistic regime since relativistic DM is strongly ruled out
and this approximation will be shown to be self-consistent
given the experimental constraint derived below.

Under these assumptions, the kick velocity is determined
by the mass of the parent particle alone. We consider the
decay of a KK graviton of mass m and treat € = & - mgy as
small compared to m. This is a very good approximation
(as we will see later) since e~ mgg ~meV, while
m ~ 100 keV. The velocity of the daughter particles is
deduced by equating their kinetic energy to the difference
in masses, i.e., 0 - mgyg. This gives

5mKK
VR —= o 117,
mMpm

where the time dependence is implied by the time depend-
ence of mpy. We take the velocity as a function of time to
be given by Eq. (2.3). One might worry that we should
incorporate the history of kick velocities. The justification
for ignoring this history follows from two effects. The first
is that velocity redshifts as the Universe expands, whereby
v decreases as a~'. The second is that the kick velocity
increases with time as !/7. These two effects, in addition to
the fact that we are working in the nonrelativistic regime,
imply that we can ignore the history of particle kicks and
focus only on the kick velocity that a particle receives in the
last decay. See also Appendix A for more details.

To sum up, we have three” parameters in our model rele-
vant to the analysis in this paper: mgg, 8, and . However,
the data we use is only sensitive to the combination that

(2.3)

gives the velocity in Eq. (2.3), and that is the single
parameter we implement and constrain in the bulk of this
paper. Afterwards, we will use these constraints along with
others to derive bounds on the dark-dimension model itself.
These will be discussed in Sec. IV.

At this point, it is worth emphasizing again that we only
make use of theory and data in the linear regime. As such,
our analysis does not capture the implications our model
might have on the oy tension. In fact, in the linear regime,
the significance of the og tension is much lower (see, for
example, Fig. 3) and there is not really a puzzle to resolve.
That said, dark gravitons cause a suppression in the amount
of fluctuations on small scales and go in the right direction
to resolve the og tension. It would be interesting to study
this effect more closely by running N-body simulations
that capture the essential phenomenology such as the kick
velocities discussed above in the nonlinear regime. How-
ever, this is beyond the scope of this work. Finally, we
mention that the loss in mass of the dark graviton model is
reminiscent of that studied in [15] and may have implica-
tions for the Hubble tension as well.

A. Kick velocities

We have already argued that the mean velocity of DM in
our model behaves as in Eq. (2.3). There is also a typical
spread in velocities which is of the same order of magnitude
as the mean velocity. These two features of our model are
important for phenomenology and we capture them by
assuming the following background distribution of DM
momenta:

o L1 (N T=(p = po()?
fﬂ("”t)_ca(t)3 ? <tmday> ep[ 2npo(1)? }

vtoday
(2.4)

where py = Muioday (1/tioaay)'/” and we have added an
O(1) constant 5 to parametrize the variance of the dis-
tribution in terms of the mean. In all of our numerical
simulations we set n = 0.25, which follows from the
behavior of the velocity distribution at late times (see
Appendix A for more details). The time-dependent nor-
malization of this function is chosen such that the DM
energy density redshifts like a=*. As shown in [5], this is a
very good approximation despite the decay of DM particles
and the subsequent loss of the daughter particle kinetic
energy as the Universe expands. In fact, the fractional
energy loss in one Hubble time is

*There are two other free parameters of the model: (i) 4, which controls decay back to the SM, and (ii) y, which determines the mass of
the lightest particle in the tower in terms of myy. The first parameter can be neglected for this investigation as the decays to SM particles
have little effect on the evolution of perturbations on large scales. In a companion paper [14], we showed that astrophysical bounds are
only compatible with natural values of 1 ~ O(1) if the DM mass today is lighter than about 0.3 MeV. The second parameter is also
irrelevant for cosmology but can have an impact on the interpretation of bounds from fifth-force experiments. See Sec. IV for a more

extended discussion of these two additional parameters.
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H! dlogp ~ omx ~ 12
dt mpm

(2.5)

We will see later that we need v~ 107*, implying a
negligible loss in DM energy density due to the decays.
Said differently, the energy loss is an O(v?) effect which is
subdominant to the O(v) velocity effects that we study in
this work.

We study perturbations by taking

fo— fo(1+4),

where the Boltzmann equation determines the evolution of
A. Rather than tracking the evolution of the full distribution
function (2.4) and its perturbation via a Boltzmann
hierarchy, we work in the fluid approximation and deal
with moments of f;, and its perturbation. We truncate the
Boltzmann hierarchy at Legendre multipole [, =2
(see, for example, [16]). For a different approach see,
for example, the treatment of [17]. The relevant definitions
and equations governing the perturbations are the familiar
ones and are reproduced in Appendix B for completeness.

III. ANALYSIS WITH COSMOLOGICAL DATA

The DM we consider has a few novel features compared
to particle physics models often considered in the literature
(see, e.g., [18]). First, our DM starts with small velocity
which then increases over time. This is an unusual behavior
from the point of view of cosmology, where velocities and
temperatures decrease with the expansion of the Universe.
Moreover, since all of the dark gravitons participate in
decays, it is all of the DM that acquires larger velocities
with time rather than just a fraction. In addition, our model
does not have a dark radiation component unlike models of
decaying DM which often include dark radiation as well.
Finally, on a more detailed level, the one-seventh power in
Eq. (2.3) may allow future experiments to distinguish this
model from other models of decaying DM (see below for
more on this).

The features mentioned above play an important role in
the phenomenology. The main effect is on the evolution of
density perturbations (and the related gravitational poten-
tials). In general, one has to do a full N-body simulation to
capture the nonlinear behavior of a model. In this study, we
only focus on the linear regime (see also Sec. III D for more
details). In this regime, we study effects on the cosmic
microwave background (CMB) and large-scale structure of
the Universe. That the CMB is affected is easy to see
through the line-of-sight formalism where the gravitational
potentials enter explicitly in the calculation of the temper-
ature anisotropies. The effect on the large-scale structure
that we study can be traced back to a suppression in the
amount of structure on small (but still linear) scales. We
probe these effects indirectly via the changes they induce in
the CMB and weak lensing. We rely on Planck 2018 data
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FIG. 2. 68% and 95% CL constraints in the (.. Sg) plane
when using various data sets. The Planck data set includes high-7
and low-# temperature and polarization data as well as lensing.
The Linear K1K data are described in Sec. III D. In addition, all
data combinations include the BAO data described in Sec. III B.
The contours show how K1K and Planck data provide comple-
mentary constraints on v,q,, and Sg.

for measurements of the CMB and KiDS-1000 for weak
lensing (see also Sec. III B below).
Using Planck data, we get a robust constraint on vq,y:

Vtoday < 1.2 x 1073 (95% CL, Planck).

(3.1)
These constraints are derived from two effects that alter the
CMB. First, the intrinsic unlensed CMB is suppressed at
high multipole due to the presence of the graviton velocity
which suppresses fluctuations. The other important effect is
due to alterations of the lensing potential which relies on
the intermediate structure between us and the surface of last
scattering. In addition, as can be seen from Fig. 2, there is a
negative correlation between Sg and vyqay, as expected.
This is due to the intuitive fact that larger velocities would
lead to less structure. The Planck measurement of Sg (and
other cosmological parameters) has smaller uncertainty
and, when combined with weak lensing data, Planck fixes
these remaining cosmological parameters.

Let us now briefly discuss the constraints when adding
weak-lensing measurements. As mentioned previously, we
only make use of linear scales. Since this cutoff between
linear and nonlinear scales cannot be defined in a precise
way, the constraints on v4,, depend on where we make
this cut. More details on this is provided in Sec. III D. That
said, the 95% CL constraints are

2.2, ANL = 05, kNL,O =0.09 MpC_l,
1.1, ANL = 10, kNL,O =0.17 MpC_l,
(3.2)

—4
Vioday <107 x {
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where the definition of Ay is given in Sec. III D and the
subscript 0 indicates that this is the largest k in the linear
regime today. The mode numbers shown for Ay =
{0.5,1.0} are consistent with those found in [19]. It is
easy to understand where this constraint comes from
intuitively. The gravitons’ kick velocities allow them to
escape potential wells that would otherwise cause them to
collapse into bound structures. This suppresses the amount
of structure on small (but still linear) scales and alters the
lensing (convergence) power spectrum that the data mea-
sures. A large change that comes with a large value of the
velocity parameter vy,q,y is disfavored by the data. All in
all, and depending on the cut between linear and nonlinear
scales, the two data sets’ provide complimentary con-
straints in the Sg and v,,4,y plane, as shown in Fig. 2. While
we quote the bound for two values of Ayp here, we will
use the conservative constraint, with Ay = 0.5 in the rest
of the paper.

Finally, we comment briefly on related constraints
from nonlinear scales that have been discussed in the
literature [20,21]. These constraints come from comparing
the known abundance of low-mass subhalos with results
from N-body simulations that explore galactic substructure.
In these decaying DM models, one considers a long-lived
DM candidate. The lifetime of such a particle is taken to be
close to the age of the Universe, 7 ~ ty, and thus early
structure formation proceeds in the same way as in the A
cold dark matter (ACDM) model. However, once DM
particles begin to decay (typically at low redshifts because
of the chosen lifetime) the evolution can deviate from
CDM. This deviation depends on the recoil/kick velocity.
Intuitively, if the kick velocity is large enough, then it can
strip mass off halos and subhalos and make the latter
especially susceptible to tidal disruption events. As such,
fewer subhalos survive to the present day and one would
observe a reduced abundance. The reported bounds [21]
depend in general on the recoil/kick velocities [for exam-
ple, for kick velocities of 20 km/s (40 km/s), a lifetime
longer than 18 Gyr (29 Gyr) is required for the DM candi-
date to not be ruled out]. However, for recoil velocities
larger than the maximum circular velocity of the subhalos,
the bound becomes independent of the kick velocity and
depends only on the DM lifetime. For kick velocities this
large, all decays lead to the daughter particle being ejected
from the DM halo and all that matters is the number of
decays, which is set by the lifetime. In this case, lifetimes
shorter than ~40 Gyr are ruled out [21].

Our model is slightly different from models of a single
decaying dark particle since our DM decays throughout
cosmic history rather than just at low redshift. In addition,

One might worry about combining the two data sets given the
known oy tension. In this work, we restrict our attention to linear
scales where the two data sets are consistent at ~1c even under
ACDM.

as we previously argued, the kick velocity is a function of
time, as is shown in Eq. (2.3), unlike the constant kick
velocities often studied in the literature. However, despite
these differences one may hope that the bounds from the
literature can be applied to our model conservatively,
although it would be impossible to draw quantitative
conclusions without further analysis.

Given the discussion above, we check that our model
is not ruled out by observations of subhalo abundances.
The natural parameter range for our model has a kick
velocity that is of the same order as the bounds in Egs. (3.1)
and (3.2), which we can take to be vyqay ~ 107* ~ 30 km.
These velocities are similar to the recoil velocities studied
in [21]. As such, we are in the regime where only the
lifetime of the dark gravitons matters (as explained above)
and the lifetime bound 7z 2 40 Gyr is a constraint on our
model. We now show that our model automatically satisfies
this bound.

The dark graviton decay lifetime* is given by [5]

2 1/2
Mpmyx

T = m = 27/2tage ~ 1Otagev (33)
where we have substituted the expression for mpy, in terms
of 4, §, and mgg from Eq. (2.2) and #,,c = 13.7 Gyr is the
age of the Universe today. We see that the fact that mpy; is
slightly lower than the value obtained by equating the decay
rate to the Hubble rate (by a factor of 2 in this case) is the
reason our model automatically satisfies this bound. As
mentioned previously, the factor of 2 is obtained from
numerical simulations for O(1) parameters of the model.
That said, the following intuitive reasoning indicates that
the suppression by a factor larger than 1 is generic in our
model. Consider the situation where t ~ H™!, i.e., a Hubble
time has passed. At this time, particles with lifetimes
equal to a Hubble time have already decayed. As particles
decay mostly to daughter particles with half the mass
(modulo weak dependence on model parameters), the
remaining particles after a Hubble time have a mass equal
to half the mass of the particle whose lifetime is a Hubble
time. As such, the expectation is that the DM has a mass
suppressed from the naive estimate by a factor close to 2.
Simulations show that this factor can depend very weakly
on the parameters f and o [for example, it goes from 2 to 3
when (f, 6) goes from (3, 1) to (0.4, 10)]. As this
dependence is very weak, we do not attempt to quantify
it further but simply remark that our model will automati-
cally satisfy the lifetime bound if mpy is suppressed
relative to the naive parametric dependence by a factor
larger than 1.4.

*In fact, in our model, we only have a notion of average
lifetime which is parametrically of order the Hubble time but
differs by important O(1) factors such as $ and 6.
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A. Effect of the kick velocity on cosmology

In this section we discuss the effects of including a kick
velocity of the form (2.3) on the evolution of cosmic
perturbations. We are mainly interested in small scales that
are nonetheless in the linear regime. As usual, the larger
scales evolve just as in ACDM (cf., for example, the case of
warm DM [22,23] where only small scales differ from the
ACDM predictions). The inclusion of the kick velocity
washes out inhomogeneities on small scales, and in this
section we discuss the dynamics of this process. We work
in synchronous gauge but the translation to any other gauge
should be straightforward.

We start with the equations governing the evolution of
dark graviton perturbations (in synchronous gauge):

. h
o = =(1+w) (9f +§> —3H(ca—w)op,  (34)
k*c2

N o _ 2.2
@f'M13@@+HW

5, (3.5)

where an overdot denotes a derivative with respect to
conformal time 7 and the subscript f stands for “fluid,” as
we are treating the dark gravitons in the fluid approxima-
tion. In writing the above equations, we have dropped terms
proportional to the shear since they only play a subdomi-
nant role in the following discussion. That said, these terms
can be found in Appendix B and have been taken into
account in the full analysis. The expressions for the
equation of state w and the sound speed c2 (which is
obtained following Ref. [17]) are given by

:Po 2

( t )2/7
— -
tod ’
Po oty ttoday

a5 (-2 6))
A= (5-2002, (— . (3.7)
3(1+W)< Po today ttoday

where pg, po, and p, are the constant pressure, energy
density, and pseudopressure, respectively, and are defined
in Appendix B. In particular, the above equation shows that
for small vyyq,y, We have c2 ~ 5w/3 and the adiabatic sound
speed c2 and equation of state w are of the same order. The
CDM limit of the above perturbation equations is obtained
by taking v;4ey — 0, which implies w, c2 — 0. In addition
to the above two equations, we need equations for the
metric perturbations /2 and all other perturbations that
source /. These are standard and can be found in many
treatments of cosmological perturbation theory so we omit
a detailed discussion and simply write the schematic form
of the & equation:

Ld [ h
wir(02) < oo

w

(3.6)

(3.8)

where the sum is over all of the species present in the
Universe.

We now consider the evolution of the dark graviton
perturbations 6, and 6, for a particular comoving wave
number k. The wave numbers of interest are superhorizon
modes deep in the radiation era and enter the horizon in the
radiation era. These modes start with the same adiabatic
initial conditions as cold DM:

o3 i
s =250 ¥ wo,

0 =2 { (3.9)

where 65” is the initial condition for the photon density
perturbation and the vanishing initial velocity perturbation
is the usual one imposed on CDM in synchronous gauge.
The choice of CDM initial conditions is justified in our case
because the kick velocity vanishes in the limit # — 0, so that
our graviton DM reduces to CDM at very early times. This
is also apparent in Egs. (3.4) and (3.5), which also reduce to
the CDM evolution equations at early times. Since we have
the same initial conditions and evolution equations as CDM
at early times, the density and velocity perturbations of dark
gravitons evolve just like CDM until other non-CDM terms
in Egs. (3.4) and (3.5) become important.

In particular, deep in the radiation era, the gravitational
potentials are set by the radiation perturbations (photons
and neutrinos) and the dark graviton perturbations simply
evolve in these potential wells. While they are still super-
horizon, the density perturbations grow as &, ~ a?, just
like CDM. However, unlike CDM, the velocity perturba-
tion @y, is small but nonzero.” While 0y vanishes initially,
the second term of Eq. (3.5) is nonzero and causes the 6
solution to deviate from its CDM counterpart. The two
terms are at the same order and 6, is given by the
parametric expression

K*w
This value is still suppressed (by the smallness of w)
compared to 6, and unimportant at this stage. Intuitively,
for superhorizon modes, the pressure is not large enough
to affect the evolution of the fluid. That said, as 6, grows,
the velocity perturbation also grows and this will even-
tually alter the evolution of this wave number so that it
deviates from the CDM solution. For the values of voqqy
and wave numbers relevant to our analysis, this happens in
the matter era.

Let us then continue following our perturbation mode
through horizon crossing and into the matter era. A parti-
cular wave number becomes subhorizon when H < k. This
happens in the radiation era for modes and parameters of

>See also Appendix A for a discussion of this velocity
perturbation in the context of the synchronous gauge.
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interest to us, as we mentioned previously. In this case, the
evolution of 5, no longer follows a® and becomes loga-
rithmic instead, going like Ina. This continues until the
Universe transitions into matter domination, where &, starts
growing like a power law 6y ~ a again. Throughout this
time, the velocity perturbation is growing, as is given by
Eg. (3.10). This behavior continues until 6 is large enough

to compete with the gravitational potential / term in
Eq. (3.4). At this point, the pressure (in this mode) can
counteract the effect of gravitational collapse and the mode
stops growing and starts oscillating instead. As such, this
mode ends up today with a lower amplitude than it would
have had in the CDM case, i.e., the linear matter power
spectrum P (k) is suppressed. Smaller wavelength modes
deviate from the CDM behavior earlier and thus end up
with more suppressed fluctuations compared to longer
wavelengths.

In the following sections, we will be referring to the
Newtonian gauge gravitational potentials, so we briefly
review the physics of the suppression of fluctuations in this
gauge. Recall first the Newtonian gauge metric perturba-
tions @ and ¥ that appear in the 00 and ii components. We
work in the limit where we ignore the shear, implying (as
usual) that @ = V. The analog of Eq. (3.8) is now the
algebraic Poisson equation that determines the gravitational
potential @ directly in terms of the matter perturbation
variables 6; and 6,. As such, we focus our discussion on the
matter perturbations only. In Newtonian gauge, these are
governed by the following equations:

5p=—(1+w)(0y —3®) —=3H(c2 —w)s;,  (3.11)
. 5 K¢ )
0; = —H(1 —3cu)9f+]+wéf+k ®,  (3.12)

where we are ignoring shear contributions as in the
previous discussion in synchronous gauge. Like before,
we are interested in modes that enter the horizon during the
radiation era. As in the case of the synchronous gauge
above, the evolution of these modes splits into two regimes
(see, for example, [24]). In the first regime, we focus on
horizon entry in a radiation-dominated Universe. This is
followed by a second regime which tracks subhorizon
evolution through matter-radiation equality.

We start by reviewing the evolution of these modes in the
CDM limit (obtained by taking w, c¢2 — 0) before moving
on to the discussion of dark gravitons. In the standard
ACDM model, the CDM density perturbation remains
constant for superhorizon modes in the radiation era.
After horizon entry in the radiation era, CDM perturbations
grow logarithmically (proportional to Ina) and then lin-
early (proportional to @) when the Universe becomes matter
dominated. Similar to the matter perturbation, the gravita-
tional potential @ also remains constant for superhorizon
modes in the radiation era. It then decays rapidly in the

radiation era (proportional to a~2?) when it becomes sub-
horizon. Once the Universe becomes matter dominated, the
amplitude of this ® mode remains constant (until the dark
energy epoch, which is beyond our interest here).

Let us contrast the above behavior to that of our model
where w, ¢2 # 0. In particular, the 0 Eq. (3.12) contains a
term proportional to the density perturbation which grows
with time. This term increases for two reasons: because the
0 perturbation is growing, and because the kick velocities
cause the sound speed to increase. As such, there comes
a time (usually during the matter era for the modes of
interest) where this term can interfere with the standard
evolution of 6, due to Hubble expansion and the gravita-
tional potential. When this happens, it causes the 6 and (in
turn) & perturbations to oscillate instead of grow. As such,
these density perturbations end up with a smaller amplitude
today (compared to their CDM counterparts) and the matter
power spectrum is suppressed on these scales. Relatedly,
the gravitational potentials, which are determined algebrai-
cally in terms of §; and 6;, are also suppressed.

In summary, the growth of the velocity perturbation for
graviton DM leads to a suppression in fluctuations on small
scales. The details of this mechanism are quantitatively
different from other models relying, for example, on the
t'/7 factor in Eq. (2.3). This will distinguish signals of dark
gravitons from other mechanisms that also suppress the
power spectrum (for example, warm DM) allowing future
experiments to potentially differentiate the dark-dimension
scenario from other models.

The cosmological effects we discuss in this paper can all
be traced back to this suppression in density (and, relatedly,
gravitational potential) perturbations on small scales com-
pared to their ACDM counterparts. Ultimately, this leads to
a suppression in the matter power spectrum and this may
help alleviate tensions between large-scale structure and
CMB data within the ACDM paradigm. That said, we do
find evidence of this in the linear regime, and a more in-
depth analysis into the nonlinear regime is required to shed
light on these tensions. We now turn to a brief discussion of
these effects.

B. Data sets

In order to compare our model to cosmological data, we
modify the publicly available Boltzmann solver CLASS [25]
and interface it with the sampler MontePython [26,27].
The modification adds one additional parameter viqay
that we vary alongside the usual ACDM parameters
{A;,n,, 0, Q0% Q.1 1., }. We use the following data
sets in various combinations.

(1) Planck 2018: We use the DR3 version of publicly
available likelihood code released by the Planck
Collaboration. In particular, we use high- and low-#
temperature and polarization data as well as the
Planck lensing measurements [28-30].
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(2) Baryon acoustic oscillations (BAO): We use the
combined galaxy and Lyman-a BAO likelihood
released in [31]. This likelihood uses data from
eBOSS DR14 galaxy BAO measurements and auto-
and cross-correlation of Lyman-a absorption with
quasars [32,33].

(3) KiDS-1000 weak lensing measurements: We use the
cosmic shear measurements of KiDS-1000 [34] in
the form of E- and B-mode band powers. The band-
power spectra are implemented in a MontePython
likelihood [35] and can be used for Markov chain
Monte Carlo simulations in a KiDS Cosmology
Analysis Pipeline environment [36]. The power
spectra are obtained by correlating cosmic shear
measurements in five tomographic redshift bins for a
total of 15 independent cross- or auto-correlations.
We modify the publicly available likelihood to make
use of only the linear scales. This is discussed further
in Sec. III D.

We perform a Markov chain Monte Carlo likelihood
analysis, where the sampling is done using the Metropolis-
Hastings algorithm, except when deriving constraints from
the KiDS-1000 likelihood only where we use nested
sampling [37-39]. Finally, when running chains using only
the KiDS-1000 data, we impose the priors listed in Table I
that match those used in [35], for example, as well as other
KiDS analyses. In addition, we fix the ACDM parameters
n, and 7 to their Planck measured values as KiDS-1000
data does not constrain them.

C. Effects on the CMB

The CMB can be potentially altered in two ways by the
dark graviton kick velocities. First, there is a possible
change to the intrinsic unlensed CMB. Neglecting large-
scale effects (such as the late integrated Sachs-Wolfe
effect), this will happen on scales that begin to deviate
from their ACDM behavior at or before recombination
(z ~ 1100). This happens at very small scales on the order
of 10-20 Mpc~! (recall that larger scales deviate from

TABLE 1. Table of priors imposed on the varying parameters
when only KiDS-1000 and BAO data are used. The parameter Q
is the density parameter for dark gravitons which play the role of
DM in our model. The last two parameters (n,, 7) are fixed to their
Planck best-fit values when only KiDS-1000 and BAO data are
used since they are otherwise poorly constrained.

Parameter Priors

Sg [0.1, 1.3]
)y [0.019, 0.026]
Q [0.1, 0.5]

h [0.64, 0.82]
g 0.966
Treio 0.0543

ACDM at later times) and in fact much smaller than those
accessible to current observations.

The second important effect is gravitational lensing.
Here, we can divide the story into two parts: the lensing
power spectrum itself and the lensing of the CMB. The
lensing potential quantifies the deviation of light geodesics
as they approach an observer and can be calculated by a
line-of-sight integral:

. xews - yems =X -
o) =2 [ a2 o e )

(3.13)

where 7 is conformal time, y is the comoving angular
diameter distance, and @ is the Newtonian potential. It is
clear that the lensing potential will incur large changes
when the Newtonian potential @ varies. In particular, in our
case, where the Newtonian potential in some modes decays
at late times, we expect to observe a smaller value of ¢ and
its variance on those scales. A large suppression in the
lensing power spectrum is disfavored by the Planck lensing
likelihood and this is partially responsible for our model
constraints.

The lensing potential defined in Eq. (3.13) is also
responsible for lensing of the CMB (see, for example,
[40,41]). Schematically, the observed lensed temperature
anisotropy ®(f) = AT(f)/T is related to its unlensed
counterpart O(f) by

O(h) = O(h + V¢) = O(H) + V¢ - VO(h) (3.14)
in the limit of weak lensing. A smaller lensing potential
leads to less distortion of the CMB and sharper peaks in the
power spectra. For vy,qay ~ 1073, this effect contributes an
O(1%) in the power spectrum.

Finally, we discuss how the above effects change the
goodness of fit by appealing to the Planck 2018 like-
lihoods. To do that, we compare two models: one with
Dioday K 1073 (the ACDM limit) and the other with
Dioday X 1073, This latter one is at the boundary of the
95% CL region shown in Eq. (3.1). We use the full
TTTEEE likelihood as well as versions with the £ range
restricted to £ < 800 and # < 1600 to understand what
region of the CMB drives these constraints. The results are
presented in Table II. We see that a change in 244,y (While
keeping all other parameters fixed) affects the CMB on all
scales. In addition, the fit to the reconstructed lensing
power spectrum also deteriorates, as shown by the Planck
lensing likelihood. Altering the cosmology cannot improve
the CMB fit by much and the largest improvement is to the
lensing power spectrum. Nuisance parameters, on the other
hand, improve the CMB fit for the most part. Altogether,
the overall fit remains slightly worse than that with lower
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TABLE II.

Breakdown of —2 In £ contributions in going from one best-fit model to another along a path where we

change one set of parameters at a time. The two best-fit models are (i) a v;o4ey < 1073 best-fit model (the ACDM
limit) and (ii) the best-fit model with a fixed vi,gay ~ 1073, Fitting is done to full Planck data in addition to the BAO
data set discussed in Sec. III B. The table is best read from left to right with changing parameters indicated in the
headers and the differences in —21In £ in the table. The first and last columns show the value of —21In L. The
benchmark value vy,4,y # 107 is chosen since it lies within the 95% CL constraint using Planck data

(see Fig. 2).

Likelihood ACDM Vioday = 1072 Cosmology  Nuisance Vtoday ~ 1072 best fit
Planck T 4+ P (¢ < 800) 1109.23 +0.93 —0.15 —0.05 1109.95
Planck T+ P (¢ < 1600) 2117.17 +2.03 —0.47 —0.06 2118.68
Planck T+ P 2347.16 +2.80 —0.40 —0.55 2349.01
Planck lensing 8.74 +0.93 —0.44 —0.01 9.22

Vioday» Tesulting in an upper bound on the kick velocity
shown in Eq. (3.1).

D. Effects on weak lensing

The observed image of a galaxy can be gravitationally
lensed by intervening cosmic structure along the line of
sight to the galaxy. This can cause two types of distortions
of the original image (for a review see [42]). The first is an
isotropic stretching of the image, which is quantified by the
convergence. The second is an anisotropic stretching
altering the shapes of galaxies and is quantified by the
shear. This decomposition of the shear field is exactly
analogous to the decomposition of the CMB temperature
anisotropies into curl-free E-modes and divergence-free
B-modes.

In the case of weak lensing, the B-mode autocorrelation
spectrum is expected to vanish in the absence of system-
atics. As such, we focus our discussion on the E-mode
(convergence) power spectrum, although we use the E-
and B-mode power spectra supplied by the KiDS-1000
Collaboration [34,35] in our analysis. In the Limber
approximation, the convergence power spectrum can be
expressed in terms of a line-of-sight integral over the matter
power spectrum multiplied by two weight functions g, (x)
(see also [43,44] for more details):

(©) _A“ dxwﬂn (k—#;;(), (3.15)

where y is the comoving distance to the horizon and P,, is
the matter power spectrum. The window functions quantify
the lensing efficiency and contain information about the
galaxy redshift distribution. They are given by

3Q,H: y [ 7 —x
a0) =570 [, R,

where n,(y) is a normalized source redshift distribution.
The presence of two weight functions is because we are
computing a two-point correlation function. The indices

Cc

H

(3.16)

4, v indicate that, depending on the chosen weight func-
tions, one can compute the convergence power spectrum
between different source populations. For instance, in the
KiDS-1000 analysis that we follow here, the galaxy sample
is divided into five tomographic redshift bins and one
considers the 15 independent convergence correlations
between these bins. In this case, there are five choices for
each weight function and they quantify the galaxy redshift
distribution in each tomographic bin.

The original KiDS-1000 analysis makes use of nonlinear
approximations to the matter power spectrum P, (for
example, using Halofit [45,46] or HMCode [47,48]). How-
ever, our model is expected to be different from ACDM on
nonlinear scales and the prescriptions for deducing the
nonlinear power spectrum from the linear one (as is done
in Halofit Or HMCode) need to be modified. We leave this
for future work and focus instead on the linear regime
approximating P,, by the linear power spectrum P, In
addition, we need to ensure that we only use information
from linear scales and we do this by restricting the multi-
pole range in the convergence (and shear) power spectra
according to the following prescription.

We consider a comoving scale k at redshift z to be
nonlinear if it is larger than ky; , where the latter is given by
the following criterion:

k13\ILP1ni1n(kNLv Z)

s (3.17)

= ANL?

where Pli"(k, z) is the linear power spectrum and we take
three values for Ay € {0.5, 1.0}. Doing this allows us to
quantify the dependence on ky since the cutoff between
linear and nonlinear scales is not sharp. We emphasize that
knt, depends on redshift since the linear power spectrum
grows with time. In practice, the above restriction to linear
scales means that we only use certain low multipoles for
each redshift and discard all of the higher ones. When the
spectrum in question is a cross-correlation between two
redshift bins, then we take the more conservative choice for
the multipole range (i.e., only using the data points that are
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FIG. 3.

KiDS-1000 data overlayed with the CEE best-fit power spectrum calculated for ACDM and from our model for a fixed value of

Vioday ¥ 1073, The grey data points have been masked in the analysis since they lie in the nonlinear regime. See Sec. III D for more

details.

linear at both redshifts). We refer to this restricted data
set by the name “Linear K1K” and use it instead of the
full KiDS-1000 data when constraining our model.
Finally, we note that for Ay € {0.5, 1.0}, we get ky. €
{0.09,0.17} Mpc~! at z = 0, which is roughly when the
linear approximation begins to breakdown.

Constraints on vy,q,, are easily understood by consider-
ing Eq. (3.15), which clearly shows that a suppression in
the amount of structure [i.e., P,,(k, z)] leads to a suppres-
sion in the convergence power spectrum. We show an
example of the convergence power spectrum in the ACDM
limit (vqey — 0) and the benchmark v,q,y ~ 1073 in
Fig. 3. Note that C,’s measuring correlations between
higher-redshift bins deviate more from ACDM. This is due
to the fact that the lensing power is a cumulative effect
given by a line-of-sight integral [see Eq. (3.15)]. Light from
the higher-redshift tomographic bins travels a longer
distance and this gives a bigger difference in the cumulative
lensing effect between our model and ACDM.

IV. MODEL PARAMETER CONSTRAINTS

In this section we set the cosmological constraint on the
velocity of dark gravitons today in the context of our model
and other experimental bounds. In particular, we discuss
what range of model parameters are compatible with
current experimental constraints.

Let us begin by summarizing the constraints we have.
First, we have the bound on the velocity today derived in
this paper:

om KK

Vioday = <22x 107

mpm

(this work, linear cosmology).  (4.1)

Next, we have the astrophysical bound derived in [14],
0.1\2/3 .
mpw < | —- x 100 keV (astrophysics).  (4.2)

Finally, we also have the bound on the lightest particle in
the KK tower from fifth-force experiments [49,50]:

(fifth-force experiments).
(4.3)

m; = ymgg > 6.6 meV

In the last inequality, we included an O(1) number y that is
the ratio of the mass of the lightest KK particle to mgy,
which is the spacing of the tower at asymptotically large
KK numbers.
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Before discussing the constraints these imply on our
model parameters, we briefly review the parameters them-
selves and their physical meaning.

(1) A: This is a measure of a suitably average wave-

function overlap between SM fields that live on a
(3 + 1)-brane and KK gravitons that live in an
effectively 5D spacetime. This parameter sets the
strength of the coupling between the dark gravitons
and the SM. As stated earlier, this coupling is of
gravitational strength and is determined parametri-
cally by Mp,, but the wave-function overlap changes
the value of the coupling by an O(1) coefficient that
we call 4.

(2) p: This is a measure of the amplitude of inhomo-
geneities in the extra dimension. This parameter sets
the strength of the coupling between particles in the
dark graviton tower. Intratower decays are faster for
larger S.

0: This describes the wave number of the violation
of KK momentum in dark graviton decays (as
discussed in Sec. II).

mgy: This is the spacing between KK particles at
large KK quantum numbers and, physically, it is the
inverse of the size of the extra dimension.

y: This is the ratio of the mass of the lightest particle
in the tower to mgy, the asymptotic mass spacing.
We note that mpy, is not an independent parameter in our
model as it can be derived from the remaining parameters.
Generally, the parametrics of mpy; are set by equating the
decay rate to the Hubble rate [as shown in Eq. (2.2) and
discussed in Sec. II]. For convenience, we repeat that

equation below:
N 1 /M ﬁlmKK
) 53 ﬂ4

We can get a lower bound on mpy, today using Egs. (4.1)
and (4.3):

3

“

&)

1/7 1

mpp (1)

A=0.1
1.
0.5}
“w
021 ny=2
y=1
0.1¢ y=0.5
10 20 50 100
B

4

In summary, our model has five independent parameters
(4.B.8, mgk.y) and two derived parameters (¥ioday- 7pm)
that are determined in terms of the free parameters. In addi-
tion, we have three constraints given by Egs. (4.1)—(4.3).
These rule out a portion of parameter space and the goal is
to determine the largest region that is compatible with all
constraints.

The strongest inequalities we can derive involve
weighted products of the parameters f and §. Given values
for the remaining parameters, these inequalities will lead to
constraints in the (f, ) plane. The first such inequality is
easy to find by rearranging Eq. (2.2) and using the lower
bounds on myg from Eq. (4.3) and mp}, from Eq. (4.2).
This gives

fP83% > y=1/2(1002)7/3. (4.5)

Next, we can also find an upper bound on a weighted
product of  and o. This can be obtained by expressing the
DM mass in terms of the velocity (as well as § and ) and
using the inequalities from Eqs. (4.1) and (4.4). This gives

PR < 4y. (4.6)
The remaining combination of inequalities is given by
Egs. (4.1) and (4.2), but it is easy to check that this leads to
a bound on mgy that is much weaker than the experimental
constraint (4.3) [at least for 6,4 ~ O(1)].

These last two inequalities provide the strongest relations
between the dimensionless parameters of our model. They
can be combined (e.g., by eliminating one of f or ) to
obtain

5 <0.2xyA?/3, (4.7)
p > 800 x y~ 12773 (4.8)
A=0.5
0.50 "
0.20 ¢
«© 0.10}
y=2
0.05F oy
ny=0.5
0.02 : : .
200 500 1000
B

FIG. 4. Allowed region in the (f, §) plane for various choices of the parameters A and y. Note the different scales on the axes.
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That said, it is more illuminating to work with the bounds
on the weighted products themselves [Eqgs. (4.5) and (4.6)],
so we proceed to do that.

To get insight into the allowed values for # and &, we
have to choose values for the parameters A and y. The
natural region for the parameter A has been discussed
in [14]. There, it was found that A ~ O(1) is allowed by
astrophysical observations and large 4 (which is anyhow
unnatural from the point of view of our model) is ruled out.
As such, in this work, we take two benchmark values for
A =1{0.1,0.5}. For the parameter y, we take three values
{0.5,1.0,2.0}. We show the allowed regions in Fig. 4.

Finally, using the above constraints we can get a lower
bound on the size of the extra dimension (equivalently, an
upper bound on myg). This can be easily obtained using the
upper bound on v,q,, from Eq. (4.1) and the upper bound
on the mass of the dark gravitons from Eq. (4.4). These give

1 0. 0.1\2/3
- x 6.6 meV < mgg < <—5> <—> x 10 meV, (4.9)

y o A
30 [ 0 A\ 20 4.10
7 X 30 pm > 5><ﬁ)<0_1> x 20 pm.  (4.10)

In particular, note that the overall inequality reduces to
that in (4.7).

V. OUTLOOK AND CONCLUSION

In this work, we studied a model of DM motivated by
swampland considerations. In this model, dubbed the “dark
dimension,” DM is composed of a tower of massive spin-2
particles (gravitons) with spacing on the meV scale.
Particles in the tower are populated in the early Universe
and decay to lighter particles as the Universe evolves.
Each of these decays gives a kick velocity to the daughter
particles, which has an effect on cosmology. It is precisely
this effect that we investigated in this work.

We argued why the DM kick velocity is time-dependent
and used the fluid approximation to study how cosmo-
logical perturbations evolve in the presence of this kick
velocity. We found, as expected, that the kicks can inhibit
the growth of structure on small linear scales and that this
leads to a constraint on the velocity today. The constraint
originates from effects on the CMB and weak lensing. That
said, velocities in the natural range for our model are viable
and may be observed in future experiments.

For our analysis, we focused on the linear regime.
We leave a study of the dark-dimension model in the
nonlinear regime for future work. Exploring this question
can lead to better understanding of the model and improved
constraints.

Related to the above, large-scale structure surveys will
soon present us with a lot more data [51]. It would be
interesting to see what that data means in the context of the
dark-dimension model. As emphasized previously [2,5,14],

the natural parameter range for this model is close to
current limits. This view is also reinforced by the analysis
in this paper. With new data, the limits will improve and
could lead to a detection or ruling out of the model with
potential implications for our understanding of quantum
gravity.
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APPENDIX A: VELOCITY DISTRIBUTION

Let us justify the velocity distribution we use in Eq. (2.4).
Since we are interested in the nonrelativistic limit, the
problem is reduced to the addition of velocity distributions
taking into account the vector nature of the particle veloc-
ities. Moreover, we are simplifying our problem by assuming
that the kick velocity depends only on time. In this appendix
we use another simplification, which is to treat the velocity
kicks as happening at discrete time intervals. Each of these
time intervals corresponds to a Hubble time where roughly
all of our dark graviton particles that we had originally have
decayed.

To start with, let us ignore the expansion of the Universe
and find the evolution of the velocity distribution in flat
space ignoring gravity. Let us assume that we start with a
collection of particles, all of which are at rest so that the
initial velocity distribution is given by

1 dp N
MEIOEL A T}
° pdv? 1=t

(A1)
where we emphasize that all distributions we consider are
isotropic and depend only on the magnitude of the velocity
vector v = |V|. In fact, we consider the distributions as
functions of »? rather than », which we will see is a more
convenient choice. Finally, we point out that the definition
of y is normalized such that [ dv?y(v?) = 1.

At the first time step (the analogue of a Hubble time in
the cosmological scenario), all of these particles decay and
the daughter particles all get a nonzero velocity. However,
given that the magnitude of the kick velocity depends only
on time, all of the daughter particles will have velocities of
the same magnitude but different directions. The velocity
distribution then becomes

x(% 1) = 8(v? = i), (A2)
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where v, is the kick velocity obtained in going from ¢ to ;.
At the first time step, we see that the particles are no longer
at rest. Instead, their velocity distribution is given by a &
function.

At the next time step, in going from ¢, to #,, again all
particles decay and this imparts a kick velocity Vv, to be
added to the original velocity of the parent particle v;. The
magnitude of the resulting vector V5 is given by

2

V3 = 1}% + 1}% — 21}1’l}2 COS 912» (A3)

where 0, is the angle between v, and V,. Since the decay is
isotropic, the distribution of the cosine term is uniform,

cos 01, ~ Uniform(—1, 1), (A4)

so that v3 is also distributed uniformly between |v; — v,[?
and |v;, + v,|%:

x(v?, 13) = Uniform(|v, — v,[%, o) + v2]?)
B 1
or oo = oy = 0o
- 0(v* = |v; + 1,*)]
1
:4011)2
—0(v* = vy + 0],

[©(v* = |v; — va?)

[6(92 = vy - 02|2)
(AS)

where ® is the Heaviside function that vanishes for a
negative value of its argument and is unity otherwise. The
fact that the expression (A3) gives v? is the motivation for
taking y to be a function of 27

We see that the distribution becomes wider (going from
a ¢ function to Uniform) as we step forward in time, and
this is expected. However, our interest is in the late-time
behavior of this distribution. So we have to iterate the above
procedure for many time steps and describe the late-time
result. We will do this numerically but, in order to do that,
we need a formula to obtain y(v?,  + Ar) from y(v?, 1) for
a general function y. We do this by relying on this last
observation which says that a & function in velocity
becomes a uniform distribution at the next time step. All
we have to do is decompose any distribution of interest into
a “sum” over ¢ functions and replace each of these by a
uniform distribution.

We now take a general velocity distribution y(v2,1)
and deduce the time-evolved distribution y(v?, # + At) by
summing over contributions from all points on y (22, 1),
each of has with an amplitude like that given in Eq. (AS5).
Let us call the kick velocity v;. We then immediately have

[o+o]? 72t
;((112, t+ At) = / ‘ dv? 2(21) .
|o—vy? 4 521}%

(A6)

As a quick check, we can test the above formula by taking
(92, 1) = 8(v* — v?), and we recover Eq. (A5). Using the
above formula, and taking v, to increase as a function of
time, it is now straightforward to show (numerically, as we
do) that y(2?, t) has a peak around v; and a width of order
v; as well. This is the late-time behavior of the distribution
(v, t) that we are after.

We can now use the above equation to get an intuition
for how the velocity distribution changes in our model.
However, before doing that, we need to include the
cosmological expansion which also causes a redshift of
the velocity distribution between time steps.

In order to include the cosmological expansion, first
observe that the effect of redshift is to transform a
distribution y in the following way:

e () 20). o

where ay = a(ty). The overall factor is important to pre-
serve the normalization f ydv* =1 at all times. We can
then see that if we were to work with the quantity w =
a(t)v and consider distributions of w? rather than 22, then
the problem reduces to the one we already solved in the
nonexpanding spacetime. Given such a normalized distri-
bution 5(w?,t) and the function a(t), we can deduce the
corresponding distribution of v? using

dw?

2,210 1) = a(t)n(a()?v? 1),

x(?1) = (A8)
In particular, the two distributions agree, as they must,
when a(7) = 1, but the time evolution of 7 under cosmic
expansion is trivial, whereas y does evolve according to the
previous formula.

To recap, we work with a distribution over w? = a(t)?v?
that we call # and we can deduce the time evolution of #
using

[w4we|? w2t
nw?, 1 + Ar) _/ ' dﬁzZM, (A9)

[w—wy |? 4 V_V2W%

where w; = a(t)vy is the kick in w. Then, given n(w?, 1)
and the function a(¢), we can find the velocity distribution
using Eq. (A8).

The argument is now apparent and we briefly state it
here. At late times, the distribution n(w?, ¢) behaves just
like its static spacetime counterpart. That is to say, it
develops a peak around w? and has a width that is also
comparable to w?. The distribution of v? is then seen to
have a peak that moves with time as v? ~*/7. The
distribution of velocities, which can then be obtained by
a simple change of variables, has a peak that moves as
vy ~ tY/7. The width of these distributions is always of
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FIG. 5. Late-time velocity distribution P(v) of decaying par-

ticles, where each decay imparts a time-dependent kick velocity
as in (2.3). The different curves show the distribution at time steps
separated by a Hubble time. The vertical grey lines show the peak
position. As explained in the text, the distribution peak moves to
higher velocity as ~¢'/7 and the width also increases so that the
ratio of the width to the peak position is about 0.249.
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order the peak position. We measure this width numerically
for the velocity distribution and find

idth
L —— = 0.249, (A10)
peak position
which is the number we use in our model of the distribution
function (2.4). An example of this evolution of the
distribution peak and width is shown in Fig. 5.

APPENDIX B: FLUID APPROXIMATION

We describe perturbations of the graviton DM using the
fluid approximation. This is adequate in our case since we
are dealing with nonrelativistic DM throughout cosmic
history. As such, we do not keep track of the full
distribution function and its evolution but only discuss
its first few moments, which amounts to using the fluid
approximation. The relevant moments are defined in the
standard way:

i / PdqE(q.7)fo(q.7).

2

fO(q’T)’

4

/qqu E(Z, T)3fo(q’f),

7 / PdqE(q. 9 fo(q.7)Bo(k.q.7).

2
folg,7)A(k, q,7)

2
folq,71)As(k, q,7)

q.7)
-+ Polks) = | raaa(5) Tola 0 Ko,
. 2
(p+ P)Z(k,7) = %(r)/ qquﬁ <%> 2f0(q,1)A2(k, q.7),

where ¢ is the particle comoving momentum and E(q, 7)
V¢* + a(t)?>m? is its comoving energy. These definitions
relate the multipoles of A to the variables of the fluid
description. Using these we can derive the equations
governing the fluid perturbations.

We can then proceed as usual by starting with the
Boltzmann equation for df/dt and perturbing it by taking
fo = fo(l + A). Taking moments, we can then find the

perturbation equations, and it is easy to check that these
remain unchanged. They give

. 5P
5__3H<5__w>5—(1+w)[9—31<o], (BI)
Y
. @ oP/dp
———" 9 -1 0+ —""k*5— k> kK
0=~ o0+ H(=1+30)0+ - k26— Ko+ 3kK,,

(B2)
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W 4
5= — ) I
G 1+W6+H( +3w)o +H +15®
2 0
X——K,| — = . B

In the last equation, we have included a term called X that
encapsulates the effect of truncation (i.e., A; = 0) versus
using the Ma-Bertschinger [52] approximation:

SE 1 EdI]
A3 N—Az— Al——ak— nfO .
gkt 3 ¢qdlng

In the case where a truncation is used, we have X = 0;
otherwise,

2 0
X=-26+20-——ak®(-Sw+=).
3P Ts ( W+ﬁ>

In addition, @ = 0 in the Newtonian gauge and a = (h +
67)/(2k?) in the synchronous gauge. Finally the terms K
depend on whether we are using the Newtonian or
synchronous gauge and they are given by

¢  (Newtonian),

KO = 1 <B4)
¢h  (synchronous),
lky  (Newtonian),

Ky =4° (BS)
0 (synchronous),
0 (Newtonian),

K2 — 1 . N (B6)
15 (h +67)h  (synchronous),

where the metric perturbations (h,n,, ¢) are defined in
the standard way (e.g., as in [52]). The system of equations
in Egs. (B1)—(B3) is not closed, and we close it in the same
way that was discussed in [17].

We work mostly in the synchronous gauge. This is an
incomplete gauge fixing and we are allowed to perform
gauge transformations that are time independent. This can be
a nuisance because once we get a solution, we have to check
whether it can be removed by a gauge transformation. We
usually resolve this ambiguity by demanding that the DM
velocity perturbation & = 0. This can be confusing because
all of our effects come from 6 # 0. How are we then to
understand the use of synchronous gauge in this case?

First, let us review why we can set & = 0 in the case of
CDM. The equation of motion for & implies that # = 0 for
CDM (.e., with w = 0 and 6P = 0 and when anisotropic
stresses vanish). We then have that (X) depends on X only
and we can use the remaining gauge freedom to set 6 = 0.
This completes the gauge fixing when we have a CDM
component.

In our case, we assume the presence of a very subdomi-
nant CDM component, with Q. ~ 10710 (this is in fact
already implemented in CLASS). The gauge freedom is
then removed by removing the velocity perturbation of this
component. Because of its extremely low energy density,
this fictitious component does not affect the evolution of
the Universe in any way that has bearing on experimental
constraints. It is then clear that the velocity perturbation of
our dark gravitons is physical.

This leaves open one question: even in the presence of
CDM, why not assume that there is a subdominant (also
cold) component and then treat the CDM velocity pertur-
bation as physical? The answer is that, as reviewed before,
for CDM we have the equation & =0 where we can
afterwards set & = 0 by a gauge transformation. So when-
ever we get a nonzero constant-in-time 6 for CDM, we can
remove it by a gauge transformation. (Typically, there
should be one linear combination of the two velocity
perturbations that can be removed and another one that
is physical.) What remains then is the velocity perturbation
of the subdominant component which again has little
bearing on cosmological evolution. In the case of dark
gravitons, the @ perturbation is not constant in time and it
cannot be removed by a time-independent gauge trans-
formation. The assumption of the existence of an additional
subdominant component with a vanishing velocity pertur-
bation completely fixes the synchronous gauge.

Finally, we quote the expressions for the constant
pressure, pseudopressure, and energy density used in
Eqgs. (3.6) and (3.7). These can be obtained by integrating
the distribution function in Eq. (2.4) as in the expressions
for P, p, and Q in the nonrelativistic limit. The result then
gives pg, po, and p, after factoring out the appropriate
powers of a(t) and Vyogay (1/t,5e)"/". These are

2 4
po = ”\f%m (271720 /(1 + 5n) + V2a(1 + 61 + 37)

x (1+Eif(1//21))), (B7)
po = 21/’ (2e-‘/2'7\/ﬁ +V27(1 + 1)
x (1+Eif(1/+/21))), (B8)

27t\/ﬁm4
Po = 3

(26‘1/2”\/77(1 +3n)(1 + 11n)
+V2r(1+ 150+ 15023 + ) (1 + Erf(1/y/21) ).
(B9)

where we take 7 =0.25 as per the discussion in
Appendix A. Here m is the DM mass, but it drops out
of all expressions in the nonrelativistic limit of interest to us
[see, for example, Egs. (2.4), (3.6), and (3.7)].
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