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ABSTRACT: In organic light-emitting diodes (OLEDs), only 25% of electrically generated excitons
are in a singlet state, S1, and the remaining 75% are in a triplet state, T1. In thermally activated delayed
fluorescence (TADF) chromophores the transition from the nonradiative T1 state to the radiative S1
state can be thermally activated, which improves the efficiency of OLEDs. Chromophores with inverted
energy ordering of S1 and T1 states, S1 < T1, are superior to TADF chromophores, thanks to the absence
of an energy barrier for the transition from T1 to S1. We benchmark the performance of time-dependent
density functional theory using different exchange-correlation functionals and find that scaled long-
range corrected double-hybrid functionals correctly predict the inverted singlet−triplet gaps of N-
substituted phenalene derivatives. We then show that the inverted energy ordering of S1 and T1 is an
intrinsic property of graphitic carbon nitride flakes. A design strategy of new chromophores with
inverted singlet−triplet gaps is proposed. The color of emitted light can be fine-tuned through flake size
and amine substitution on flake vertices.

O rganic light-emitting diodes (OLEDs) have attracted
great interest for display and lighting applications.1−3

The efficiency of conventional OLEDs is low because 75% of
electrically generated excitons are in a triplet state, whose
radiative decay to the singlet ground state is forbidden by
selection rules. Phosphorescent heavy-metal complexes were
used in so-called second generation of OLEDs because heavy
metal atoms enhance spin−orbit coupling and facilitate light
emission from the triplet state. However, heavy metal atoms
are environmentally hazardous. Thermally activated delayed
fluorescence (TADF)4−9 chromophores used in third gen-
eration OLEDs are purely organic and may also possess a
nearly 100% internal quantum efficiency,10,11 i.e., full
conversion of all excitons into light.
In 2011, Endo et al. demonstrated that spatially separating

the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) leads to a very
small electron exchange energy, resulting in a small energy gap,
ΔEST, between the lowest singlet excited state, S1, and the
lowest triplet excited state, T1.

12 This enables thermal
activation of the transition from the nonradiative T1 state to
the radiative S1 state, followed by light emission from S1. They
synthesized a donor−acceptor molecule whose HOMO and
LUMO are separated and located on the donor and acceptor
moieties, respectively. This chromophore was found to have a
small ΔEST of 0.11 eV, leading to efficient TADF. In the past
decade, numerous donor−acceptor TADF molecules have
been experimentally synthesized and/or theoretically pro-
posed.5−9,13,14

In 2015, Hatakeyama et al. proposed a new design strategy
to separate the HOMO and LUMO, namely, multiple
resonance (MR) induced TADF.15,16 MR-TADF chromo-

phores are rigid polycyclic aromatic hydrocarbons (PAHs)
doped with electron-donating atoms, such as N, simulta-
neously with electron-withdrawing atoms, such as B. The
HOMO and LUMO are spatially separated on two groups of
atoms due to the opposite resonance effect of electron-
donating and electron-withdrawing atoms. Owing to their
conformational rigidity, MR-TADF molecules have the
advantage of a narrow emission peak and high color purity,
compared to donor−acceptor TADF molecules.16−18 Addi-
tional MR-TADF chromophores have been experimentally
synthesized and/or theoretically proposed.17−31

The ΔEST of TADF molecules is positive, albeit small.
According to Hund’s multiplicity rule, in closed-shell organic
molecules, the T1 state should be lower in energy than the S1
state. However, there exist a handful of compounds32−35 that
violate Hund’s rule. The inverted energy ordering of the S1 and
T1 states leads to an energetically downhill reverse intersystem
crossing (RISC) from T1 to S1. Thanks to the absence of a
thermal activation energy for RISC, such compounds are
superior to TADF chromophores in OLED applications. Using
a model system of cycl[3.3.3]-azine, shown in Figure 1a, de
Silva theoretically demonstrated that a double excitation
character of low-lying excited states is a prerequisite for the
inversion of S1 and T1.
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Another N-substituted phenalene with a negative ΔEST is
heptazine (Hz), shown in Figure 1b.33 The singlet−triplet
inversion has been attributed to the double excitation character
of low-lying excited states and a small electron exchange energy
due to minimized spatial overlap between the HOMO and
LUMO.33,34 Similarly to the spatial separation of frontier
orbitals of MR-TADF molecules, the HOMO of Hz is located

on the 6 peripheral electron-donating N atoms, whereas the
LUMO is located on C atoms and the central N atom, as
shown in Figure 1c. Pollice et al. computationally screened N-
substituted and functionalized phenalenes and discovered
some compounds exhibiting negative singlet−triplet gaps and
substantial fluorescence rates, considered promising for
OLEDs.34 In addition to molecules with an inherently negative
ΔEST, it has been shown that the inversion may be facilitated
by the stabilization of singlet states in exciplexes, i.e.,
complexes of two molecules where one is in an excited
state,36 in a microcavity,37 or in polarizable environments.38

Since 1989, various carbon nitride (C3N4) structures have
been computationally proposed.39−42 Graphitic carbon nitride
(g-C3N4) structures, proposed in 1996, have been found to be
the most stable.43 In particular, the Hz-based g-C3N4, shown in
Figure 1d, has been reported to be the most stable
allotrope.44−47 Hz-based g-C3N4 is a two-dimensional material
consisting of Hz and N linkers. Hz-based g-C3N4 has been
extensively studied in the context of photocatalytic applica-
tions, such as degradation of pollutants,48−54 water split-
ting,55−60 and CO2 reduction.

61−64 Here, we computationally
explore the prospects of the C3N4 family of materials for new
applications in high-efficiency OLEDs. First, we establish that
time dependent density functional theory (TDDFT) based on
spin scaled long-range corrected (LC) double hybrid func-
tionals65 correctly predicts the negative ΔEST of Hz. Second,
using this method, we show that negative ΔEST is an intrinsic
property of g-C3N4 flakes regardless of their size and shape.
Third, we find that the S1 energy, which corresponds to the
color of the emitted light, can be fine-tuned by modifying the
flake size and by amine substitution on flake vertices. Different
building blocks and linking atoms/groups may be used to
further improve the performance of g-C3N4 derivatives in
OLEDs.
In order to assess prospective chromophores for use in

OLEDs, it is desirable to have a computational method that is
sufficiently efficient to screen a large number of candidates and
that is sufficiently accurate to provide reliable predictions.
Thanks to the appealing balance between accuracy and
efficiency, TDDFT has been widely used for the prediction
of excited state properties of molecules,13,66,67 including

Figure 1. N-substituted phenalenes: (a) cycl[3.3.3]-azine and (b)
heptazine. C, N, and H atoms are shown in brown, gray, and pink. (c)
Frontier orbitals of heptazine visualized with an isosurface value of
0.03 au. (d) Heptazine-based graphitic carbon nitride.

Figure 2. Schematic illustration of the combinations of exchange and correlation terms included in the global hybrid functionals (blue), LC hybrid
functionals (cyan), double hybrid functionals (orange), and scaled and unscaled LC double hybrid functionals (red) benchmarked here for Hz.
Fractions of different terms are denoted as α with a corresponding subscript.
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chromophores with inverted singlet−triplet gaps.34,68−70

TDDFT is a formally exact theory, but its predictive power
strongly depends on the choice of approximation to the
exchange-correlation (xc) functional. Local and semilocal
approximations may fail in the description of charge-transfer
(CT) excited states, doubly excited states, and Rydberg states.
Specifically, CT excitation energies may be significantly
underestimated.14,71−75 The low-lying excited states of Hz
are intramolecular CT states with substantial double excitation
character. Therefore, we begin by benchmarking the perform-
ance of different classes of hybrid exchange-correlation
functionals for Hz to determine which functionals are
sufficiently reliable.
Figure 2 shows a schematic illustration of the combinations

of exchange and correlation terms included in the B3LYP76

global hybrid functional (blue), the LC-BLYP77 and ωB97X78

long-range corrected (LC) hybrid functionals (cyan), the
B2PLYP79 and B2GP-PLYP80 double hybrid functionals
(orange), the ωB2PLYP81 and ωB2GP-PLYP81 unscaled LC
double hybrid functionals (red),82 and the spin-component
scaled (SCS)83 and spin-opposite scaled (SOS)83,84 LC double
hybrid functionals (red).
In global hybrid functionals, a fraction of global exact

exchange, EX
HF, is mixed with the semilocal exchange, EX

DFT, and
correlation, EC

DFT. This mitigates the effect of the self-
interaction error (SIE),85−87 which causes underestimation of
HOMO−LUMO gaps and destabilization of localized
molecular orbitals. Correcting CT excitation energies requires
a very large fraction of EX

HF in global hybrid functionals, which
is detrimental to the overall accuracy.86 To address this, LC
hybrid functionals employ a range-splitting of the exact
exchange term. These functionals contain a mixture of
semilocal exchange and exact exchange in the short-range,
EX
SR‑DFT and EX

SR‑HF, and full exact exchange in the long-range,
EX
LR‑HF. This ensures the correct 1/r12 decay of the potential,

where 1/r12 is the interelectronic distance. The interplay
between the short- and long-range is controlled by a range-
separation parameter, ω. We previously benchmarked TDDFT
for 16 donor−acceptor TADF chromophores and 3 MR-
TADF chromophores.14,31 Functionals with a full exact
exchange in the long-range and a range separation parameter
of about 0.30 bohr−1 have been shown to provide a balanced
description of valence excitations (between orbitals localized
on the same region of the molecule) and intramolecular CT
excitations. Considering the intramolecular CT character of
the low-lying excited states of Hz, functionals with LC
exchange are necessary for reliable treatment of Hz-based g-
C3N4 flakes.
Some excited states may have a double excitation character,

meaning a many-electron state that is dominated by a doubly
excited Slater determinant with two electrons in occupied
orbitals promoted to unoccupied orbitals.88−90 Such states can
be calculated with wave-function-based methods that include
doubles.71 An alternative approach within the framework of
TDDFT is to use double hybrid functionals, which include a
perturbative second-order correlation, EC

PT2, to account for
doubly excited configurations, as shown in Figure 2.91 For
example, the B2PLYP and B2GP-PLYP global double hybrid
functionals and their range-separated variants, ωB2PLYP and
ωB2GP-PLYP, apply a fraction, αC,PT2, of Head-Gordon’s
configuration interaction singles with perturbative doubles
[CIS(D)]92 correction, ΔCIS(D), to the TDDFT excitation
energies obtained with global or LC hybrid functionals:83,91,93

= +E Edouble hybrid
TDDFT

hybrid
TDDFT

C,PT2 CIS(D) (1)

It has been demonstrated in several studies that LC double
hybrid functionals are useful for predicting the inverted
singlet−triplet gaps of various chromophores.34,68−70 We
note, however, that TDDFT with global double hybrid
functionals has been shown to yield a large deviation for
double excitations in polyene molecules.94 The performance of
TDDFT for transitions with double-excitation character may
be improved by using scaled LC double hybrid functionals.
The CIS(D) energy correction to the configuration interaction
singles (CIS) total energy of an excited state has a “direct”
term and an “indirect” term. These two terms can be broken
down into same-spin and opposite-spin components with four
scale parameters.95 Readers are referred to refs 93 and 83 for
the explicit form of the same- and opposite-spin terms and SCS
and SOS settings of the four parameters. Using the appropriate
SCS or SOS settings, ΔCIS(D) in eq 1 is updated to produce
TDDFT excitation energies with scaled LC double hybrid
functionals. Casanova-Paéz et al. benchmarked 8 unscaled and
14 scaled global and LC double hybrid functionals for 203
excitations of different molecules and different excitation
types.83 The benefit of using SCS and SOS is a more accurate
description, with mean deviations typically being closer to zero.
Unlike some ground-state wave function methods where SOS
leads to inferior results compared to SCS,96,97 the SCS and
SOS variants of double-hybrid functionals show negligible
differences of 0.03 eV at most in the root-mean-square
deviations of excitation energies.83

To assess the reliability of TDDFT for the compounds
studied here, we benchmark global, unscaled, and scaled LC
double hybrid functionals specifically for the building block of
g-C3N4, Hz. The S1 → S0 transition of Hz is dipole-forbidden,
and no experimental data are available for T1. Therefore, the
results of high-level quantum chemistry methods are used as
reference values. Several multireference methods have been
employed to study excited states of Hz and similar molecules
in different groups.33,70,98−102 Table 1 shows the excitation
energies of Hz, obtained using TDDFT with different
exchange-correlation functionals, compared to example refer-
ence values33 obtained using second-order algebraic dia-
grammatic construction [ADC(2)],103 third-order algebraic
diagrammatic construction [ADC(3)], approximate coupled
cluster singles-and-doubles (CC2),104 equation-of-motion
singles-and-doubles coupled cluster (EOM-CCSD),105 and
multiconfigurational second-order perturbation theory
(CASPT2).106

The S1 excitation energies produced by ADC(2), ADC(3),
CC2, EOM-CCSD, and CASPT2 range from 2.326 eV (533
nm) to 2.81 eV (441 nm), corresponding to green to violet
light. The S1 excitation energies produced by TDDFT are
higher, on average, ranging from 2.779 to 3.137 eV. The T1

reference values range from 2.551 to 2.963 eV. The TDDFT
T1 values are also higher on average, ranging from 2.716 to
3.104 eV. Overall, global hybrid functionals and global double
hybrid functionals slightly overestimate the S1 excitation
energy, whereas the T1 excitation energies are close to those
of ADC(2), ADC(3), CC2, EOM-CCSD, and CASPT2. The
S1 and T1 excitation energies obtained with LC hybrid
functionals and unscaled LC double hybrid functionals further
increase owing to the larger fraction of exact exchange in the
long-range. The overestimations of ωB2PLYP and ωB2GP-
PLYP are partly corrected by their SCS and SOS variants, but
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the excitation energies are still higher than reference values.
The TDDFT excitation energies obtained with the B2PLYP,
ωB2PLYP, and SCS/SOS-ωB2PLYP functionals agree well
with the values reported in ref 68 with differences of less than
0.01 eV in ΔEST.
All of the reference methods correctly predict an inverted

singlet−triplet gap. The ΔEST values of ADC(2) and CC2 are
very close and smaller than those of others. The ADC(3) ΔEST

is the largest but still negative. In contrast, TDDFT does not
consistently predict an inverted singlet−triplet gap. The
B3LYP global hybrid functional and the LC-BLYP and
ωB97X LC hybrid functionals incorrectly yield a positive

ΔEST. We attribute this to the lack of a perturbative correlation
component to account for doubly excited configurations. With
the B2PLYP and B2GP-PLYP double hybrid functionals, ΔEST

turns slightly negative, close to the reference value of ADC(3).
The use of range separated exchange to balance the description
of valence excitations and intramolecular CT excitations in the
ωB2PLYP and ωB2GP-PLYP LC double hybrid functionals
does not significantly change the ΔEST compared to B2PLYP
and B2GP-PLYP. However, with TDDFT@ωB2PLYP ΔEST

becomes slightly positive. This small change is determined by
the similar CT character of the S1 and T1 excited states of Hz.
Specifically, the transition from HOMO to LUMO contributes
94% and 92% to the TDDFT@ωB2PLYP S1 and T1 states.
With the scaled LC double hybrid functionals SCS/SOS-

ωB2PLYP, SCS-ωB2GP-PLYP, and SOS-ωB2GP-PLYP,
TDDFT yields negative ΔEST values that are quantitatively
closer to the reference values. For example, TDDFT@SCS-
ωB2GP-PLYP produces S1, T1, and ΔEST values that are within
0.002 eV of the EOM-CCSD values. This indicates that
TDDFT with scaled LC double hybrid functionals, where LC
exchange and scaled perturbative correlation are added to DFT
exchange and correlation, is an efficient and accurate approach
for calculating excited states exhibiting CT and double
excitation character, such as those of chromophores with
negative ΔEST. To show that this conclusion can be
generalized, we have compiled a benchmark set of 10 N-
substituted phenalene derivatives, shown in Figure S1 in the
Supporting Information. For these compounds, experimental
values are available for the S1 excitation energies107−112 and
EOM-CCSD and ADC(2) values are available for S1 and T1.

34

Tables S1−S3 and Figure S2 show that the trends observed
here for Hz persist across the entire benchmark set. TDDFT
with LC double hybrid functionals correctly reproduce the
qualitative trends in the relative energies of S1 and T1 among
different molecules. However, with the unscaled LC double
hybrid functionals, TDDFT overestimates the S1 excitation
energies by about 0.3 eV, leading to larger (more positive)

Table 1. Excitation Energies of Hz Obtained with ADC(2),
CC2, EOM-CCSD, CASPT2, and TDDFT Using Different
Exchange-Correlation Functionalsa

Methods S1 T1 ΔEST

ADC(2)b 2.569 2.851 −0.282

ADC(2)c 2.68 2.92 −0.24

ADC(3)c 2.81 2.88 −0.07

CC2b 2.676 2.947 −0.271

EOM-CCSDb 2.781 2.963 −0.182

CASPT2b 2.326 2.551 −0.225

B3LYP 2.936 2.716 0.220

LC-BLYP 3.118 2.848 0.270

ωB97X 3.292 3.016 0.276

B2PLYP 2.782 2.813 −0.031

B2GP-PLYP 2.845 2.928 −0.083

ωB2PLYP 3.137 3.067 0.070

ωB2GP-PLYP 3.100 3.104 −0.004

SCS/SOS-ωB2PLYPd 2.918 3.029 −0.111

SCS-ωB2GP-PLYP 2.779 2.963 −0.184

SOS-ωB2GP-PLYP 2.805 3.041 −0.236
aAll values are in eV. bReference values are from ref 33. cReference
values are from ref 98. dSCS-ωB2PLYP and SOS-ωB2PLYP
functionals have the same parameters.83

Figure 3. (a) TDDFT@SOS-ωB2GP-PLYP HOMO−LUMO gap, S1, and T1 energies of amine-substituted Hz referenced to Hz. (b) LUMO of
amine-substituted Hz visualized with an isosurface value of 0.03 au. (c) Electron density difference, Δρ, between low-lying excited states and
ground states visualized with an isosurface value of 0.002 au. The green and blue represent positive Δρ (electron gain) and negative Δρ (electron
loss).
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ΔEST values than those of EOM-CCSD and ADC(2). With the
scaled LC double hybrid functionals, the TDDFT S1 and T1

excitation energies agree quantitatively with the reference
values. In particular, TDDFT@SOS-ωB2GP-PLYP ΔEST

energies exhibit the same sign as those obtained with EOM-
CCSD across the benchmark set, i.e., eight negative and two
positive ΔEST values. Based on this, we henceforth use
TDDFT with scaled LC double hybrid functionals to study the
singlet−triplet gaps of graphitic carbon nitride derivatives.
For the OLEDs, it is desirable to tune the S1 energy to

achieve a range of colors. We then examined whether the S1
energy of Hz can be tuned by side-group substitutions. Because
Hz moieties in g-C3N4 are linked by N atoms, we study the
properties of amine-substituted Hz molecules, Hz-xN, where x
= 1−3 indicates the number of H atoms substituted by amine
groups. Hz-3N, i.e., melem, is an efficient luminescent
material.113 The HOMO−LUMO gaps of Hz-xN increase
with the number of amine groups, as shown in Figure 3a.
In addition to orbital energies, amine substitution affects the

spatial distribution of frontier orbitals. The HOMOs of Hz-xN
are located on the 6 peripheral N atoms of Hz, similar to the
HOMO of Hz. The LUMOs are extended to the amine groups
of Hz-xN, as shown in Figure 3b. This is consistent with our
previous observation that in other MR-TADF chromophores
the HOMO (or LUMO) is extended to substituents attached
to electron donating (or withdrawing) atoms.31 For Hz-1N
and Hz-2N, the LUMO distribution on the Hz skeleton is
slightly shifted toward the peripheral N atoms farther from the

amine substituents, increasing the overlap between the HOMO
and LUMO.
The effect of amine substitution on the energies and spatial

distribution of the molecular orbital propagates to excited-state
properties. As shown in Figure 3a, the changes in the S1 and T1

excitation energies track the change in the HOMO−LUMO
gap. This is because these excited states are dominated by the
transition from HOMO to LUMO, except for the T1 excitation
of Hz-3N (the spectral decomposition of these states is
provided in the Supporting Information). Electron density
differences between low-lying excited states and ground states,
Δρ, are visualized for Hz and Hz-xN in Figure 3c. In general,
the electron charge is transferred from the six peripheral N
atoms to the C atoms and the central N atom, similar to the
case for unsubstituted Hz. For the S1 states of Hz-xN, there is
also electron gain on the amine groups because of the extended
LUMO distribution. For the T1 states of Hz-1N and Hz-2N,
the electron gain on the amine group vanishes. For Hz-3N, the
three lowest triplet excited states, T1, T2, and T3, are very close
in energy. T3 is dominated by the transition from HOMO to
LUMO and has a similar Δρ distribution to the singlet state, S1
(the spectral decomposition of T1, T2, and T3 is provided in
the Supporting Information).
Amine substitution also affects ΔEST, which increases from

Hz to Hz-1N, and further increases to a small positive value for
Hz-2N, as shown in Figure 4a. A negative ΔEST stems from
both double excitation character of low-lying excited states, as
demonstrated by de Silva,32 and minimal spatial overlap
between the HOMO and LUMO. The increase of ΔEST for

Figure 4. (a) TDDFT@SOS-ωB2GP-PLYP ΔEST of Hz, Hz-xN, and g-C3N4 flakes. (b) Hz-based g-C3N4 flakes and their labels. The blue triangles
represent the Hz moieties, and the black circles represent N linkers or amine side-groups on vertices. (c) Electron density difference, Δρ, between
low-lying excited states and the ground state of the Hz3a flake, obtained with TDDFT@SOS-ωB2GP-PLYP, visualized with an isosurface value of
0.002 au. The green and blue represent positive Δρ (electron gain) and negative Δρ (electron loss). (d) TDDFT@SOS-ωB2GP-PLYP S1 energies
of Hz, Hz-xN, and g-C3N4 flakes. n is the lowest number of N linkers or amine groups bonded to any of the Hz moieties in a g-C3N4 flake.
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Hz-1N and Hz-2N may be attributed to increased overlap
between the HOMO and LUMO. ΔEST of Hz-3N is close to
that of Hz, which may be attributed to the similar HOMO and
LUMO distributions. Hz-xN molecules are suitable for OLEDs
in terms of ΔEST. Hz-1N and Hz-3N still exhibit an
energetically downhill RISC. Hz-2N is an MR-TADF
chromophore with a very small energy barrier to RISC. In
terms of the excitation energy, substitution with one amine
group shifts the emitted light to the high-energy end of the
visible spectrum. A larger number of amine groups, as in Hz-
3N, increases S1 beyond the visible range.
The effect of amine substitution on the excitation energies of

Hz derivatives is also manifested in the excited-state properties
of Hz-based g-C3N4 flakes. We consider a set of nine g-C3N4

flakes of different sizes and shapes, with a varying number of
amine groups attached to their vertices, as shown in Figure 4b.
Different Hz moieties in the same flake may be linked to

different numbers of N linkers. For example, in the Hz3a flake,
the two peripheral Hz moieties are linked to one N atom,
whereas the middle Hz moiety is linked to two N atoms. Based
on the excitation energy analysis of Hz-xN above, we expect
the excitons located on the peripheral Hz moieties of Hz3a to
have a lower energy than the exciton localized on the middle
Hz moiety. This is confirmed by the electron density difference
between the low-lying excited states and the ground state,
shown in Figure 4c. The molecule’s symmetry leads to
degeneracy in the energies of S1 and S2 and T1 and T2. All four
low-lying excited states are located on the peripheral Hz
moieties of Hz3a, which have fewer N linkers than the middle
Hz moiety. This trend in spatial localization of low-lying
excited states is also observed in other g-C3N4 flakes, as shown
in the Supporting Information. For g-C3N4 flakes with amine
side groups, the low-lying excited states tend to be localized on
Hz moieties with unsubstituted vertices independent of the
overall flake size and shape.
We define a parameter, n, as the lowest number of N linkers

or amine groups bonded to any of the Hz moieties in a g-C3N4

flake, which is 1 in the case of Hz3a. The parameter n affects
the spatial distribution and energies of the low-lying excited
states of the g-C3N4 flakes. Figure 4d shows the TDDFT@
SOS-ωB2GP-PLYP S1 energies of Hz, Hz-xN, and g-C3N4

flakes (values obtained with other scaled LC double hybrid
functionals are provided in the Supporting Information). The
S1 energy increases with the number of amine substitutions,
i.e., with n, in Hz, Hz-1N, Hz-2N, and Hz-3N, as shown in
Figures 3a and 4d. Another example is Hz3c, Hz3c-1N, Hz3c-
2N, and Hz3c-3N, which have the same flake shape but
different numbers of amine substitutions. The former three
flakes have the same n of 2 and consequently very close S1
energies around 3.040 eV. In comparison, the latter flake,
Hz3c-3N, has a larger n of 3, and thus a larger S1 energy of
3.324 eV. In addition to n, the S1 energy depends on the flake
size. Within a family of flakes with the same n, the S1 energy
generally decreases as the flake size increases, which may be
attributed to the quantum size effect.
This leads to a two-parameter approach to fine-tune the

color of emitted light by modifying the flake size and amine
substitutions on flake vertices. For the flakes considered here,
the S1 energy varies over a range of about 0.5 eV above that of
the parent Hz compound, which corresponds to a decrease in
wavelength of about 70 nm. This would correspond to tuning
from, e.g., green to blue or blue to purple. We note, however,
that because of the uncertainty in our calculations, with the

reference values for the S1 energy of Hz ranging from 2.326 to
2.81 eV (green to violet region), we cannot reliably predict the
exact emission color of the chromophores studied here.
Different linking atoms or side-groups may be used to shift
the color of emitted light toward the lower-energy end of the
visible range, further extending the color range of Hz-based
chromophores.114,115 For example, using electron-withdrawing
groups instead of amine substituents on Hz has been found to
decrease the S1 energy while preserving the negative ΔEST.

33

Figure 4a shows the ΔEST of Hz, Hz-xN, and g-C3N4 flakes
obtained with TDDFT@SOS-ωB2GP-PLYP. Tabulated
TDDFT excitation energies and ΔEST of g-C3N4 flakes
obtained with SCS/SOS-ωB2PLYP, SCS-ωB2GP-PLYP, and
SOS-ωB2GP-PLYP functionals are provided in the Supporting
Information. Apart from the higher values for Hz-1N and Hz-
2N, ΔEST is between −0.3 and −0.2 eV, corresponding to a
downhill RISC process, which is favorable for OLEDs. Based
on the set of g-C3N4 flakes of different sizes and shapes, and a
varying number of amine side-groups on vertices, we infer that
the inverted lowest singlet and triplet excitation energy
ordering is an intrinsic and robust property of g-C3N4 flakes,
echoing reports of Hz derivative single molecules and Hz
polymers.32,33,116

In summary, in search of candidate materials for high-
performance OLEDs, we have investigated a family of graphitic
carbon nitride flakes, composed of Hz building blocks, which
possess an inverted energy ordering of S1 and T1. The negative
ΔEST has been attributed to a combination of minimal spatial
overlap between frontier orbitals and the double excitation
character of low-lying excited states. Based on a benchmark set
of 10 N-substituted phenalene derivatives, we have shown that
TDDFT with scaled LC double hybrid functionals correctly
predicts inverted singlet−triplet gaps and produces ΔEST

values in quantitative agreement with reference values of
high-level quantum chemistry methods. We attribute the
success of scaled LC double hybrid functionals to the inclusion
of full exact exchange in the long-range and scaled perturbative
correlation. The exact exchange term mitigates the effect of the
SIE and ensures the correct 1/r12 decay of the potential,
improving the description of CT excitations. The scaled
perturbative correlation term is necessary for the correct
treatment of double excitations. Therefore, we recommend
TDDFT with scaled LC double hybrid functionals for a
reliable assessment of prospective chromophores with a
negative ΔEST.
The inverted energy ordering of S1 and T1 has been reported

for single molecules of Hz derivatives and polymeric
Hz.32,33,100,116 We have demonstrated that the inverted
singlet−triplet gap is also an inherent property of Hz-based
g-C3N4 flakes, which persists independent of the flake size and
shape. Furthermore, the S1 energy, corresponding to the color
of the emitted light, can be fine-tuned via a two-pronged
approach of altering the flake size and functionalizing the flake
vertices. Based on this, we may propose a strategy for
computationally designing chromophores with high fluores-
cence rates, downhill RISC, and tunable colors for use in high-
efficiency OLEDs. The starting point is choosing compounds
out of the family of N-substituted and functionalized
phenalenes, which possess a negative ΔEST and exhibit high
fluorescence rates.34 These compounds can then be used as
building blocks for graphitic carbon nitride flakes while
preserving their inverted singlet−triplet gaps. Finally, the S1
energies, corresponding to the color of emitted light, can be
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fine-tuned by changing the flake size and by chemical
substitutions at the flake vertices, as exemplified in the case
of g-C3N4. This design strategy opens up exciting prospects for
high-performance, layered-based OLEDs based on carbon
nitride derivatives.

■ COMPUTATIONAL DETAILS

All calculations were performed with version 5.0.0 of the
ORCA code.117,118 Molecular geometries were optimized with
the def2-TZVP basis sets119 and the ωB97X-D3 functional,120

which incorporates the empirical atom−atom dispersion
corrections from DFT-D3.121 Tight SCF convergence criteria
corresponding to an energy tolerance of 1 × 10−8 au were
applied. DefGrid2 grids were used.122 The Def2-TZVP and
def2-TZVP/C auxiliary basis set123 were utilized in the
TDDFT calculations with double hybrid and LC double
hybrid functionals. We previously demonstrated the con-
vergence of this basis set in TDDFT calculations.14 The
Tamm−Dancoff approximation was not used.
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