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Introduction

Let f(z) ∈ C[z0, . . . , zd+1] be a generic homogeneous polynomial of degree d +2, where 
d ≥ 1. Then

X := {z0z1 . . . zd+1 + tf(z) = 0} ⊂ Pd+1 ×C∗ (⋆)

defines a maximally degenerate 1-parameter family of complex Calabi–Yau manifolds, 
polarized by L := O(d +2)|X . By Yau’s theorem [63], we can equip each Xt with a Ricci 
flat metric in the Chern class of L|Xt . The structure of Xt as t → 0 is described by two 
fundamental conjectures, namely the SYZ conjecture [60] and the Kontsevich–Soibelman 
conjecture [39]. These two conjectures have recently been related to a conjecture about 
solutions to the non-Archimedean Monge-Ampère equation [40]. In this paper we address 
the latter conjecture and prove a weak version of the SYZ conjecture in the setting above.

To explain all this, first note that X defines a smooth projective variety over the non-
Archimedean field K := C( (t) ) of complex Laurent series. Its Berkovich analytification 
Xan has a canonical closed subset Sk(X) ⊂ Xan, the essential skeleton, [39,50], which 
in this case can be identified with the boundary of a (d + 1)-dimensional simplex. The 
skeleton has a canonical piecewise integral affine structure, and in particular a canonical 
Lebesgue measure.

The Kontsevich–Soibelman conjecture states that, as t → 0, Xt converges (after rescal-
ing) in the Gromov–Hausdorff sense to a metric space whose underlying topological space 
is Sk(X), and whose metric is determined by the solution to—roughly speaking—a real 
Monge–Ampère equation on the skeleton, with right hand side given by the Lebesgue 
measure on Sk(X). Making sense of this equation is not obvious, but something that we 
address satisfactorily in Theorem B below in our setting.

As an alternative, one can look at the non-Archimedean Monge–Ampère equation. To 
any continuous semipositive metric ∥ · ∥ on Lan is associated a Chambert–Loir measure
c1(L, ∥ · ∥)d, a positive Radon measure on Xan of mass (d + 2)d+1 [14,34]. By the main 
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results in [7,64], any positive Radon measure ν on Sk(X) of this mass is the Chambert–
Loir measure of a continuous semipositive metric, unique up to scaling.

When ν equals Lebesgue measure on the skeleton, it is expected that the solution 
to the non-Archimedean Monge–Ampère equation can be used to define the metric in 
the Kontsevich–Soibelman conjecture, as explored by Yang Li in his groundbreaking 
work [40] (see also [42]). Unfortunately, the proof in [7] is variational in nature, and does 
not give any information beyond continuity.

Our first main result gives a much more precise description of the solution in terms 
of convex functions or, put differently, toric metrics.

Theorem A. If ν is a symmetric positive measure on Sk(X) of mass (d +2)d+1, then any 
solution to c1(L, ∥ · ∥)d = ν is the restriction of a symmetric toric metric on OPd+1(d +
2)an.

Let us be a bit more precise. In Theorem A we assume that the polynomial f(z) used 
to define X is admissible in the following sense: for any intersection Z of coordinate 
hyperplanes zj = 0 in Pd+1, f does not vanish identically on Z and V (f |Z) is smooth, 
see §7. A general polynomial is admissible.

The symmetric group Sd+2 acts on projective space and its analytification by permut-
ing the coordinates zi. This action preserves Sk(X), but not necessarily Xan. We say 
that a measure ν on Sk(X) is symmetric if it is invariant under the action. For example, 
Lebesgue measure is symmetric.

A particular example of an admissible polynomial is the Fermat polynomial f(z) =∑d+1
0 zd+2

i . The resulting Fermat family is the central object in [41]. For this family, 
Theorem A was obtained independently by Pille-Schneider [57] in the special case when 
ν is the Lebesgue measure, by using the results from [41].

To prove Theorem A we study the real Monge–Ampère equation on the skeleton 
Sk(X), as alluded to above. In doing so we exploit the structure of X ⊂ Pd+1, as in [41]. 
Namely, we view Pd+1 as a toric variety with character lattice M and co-character lattice 
N . Let ∆ ⊂ MR be the polytope for the anticanonical bundle O(d +2) on Pd+1. There is 
a bijection between continuous semipositive toric metrics on OPd+1(d + 2)an and convex 
functions ψ : NR → R whose Legendre transforms are continuous convex functions on 
∆.

Both ∆ and its polar ∆∨ ⊂ NR are (d + 1)-dimensional simplices. It turns out that 
the boundary B := ∂∆∨ can be identified with the essential skeleton of X; we therefore 
work on B rather than Sk(X). Let Q ⊂ C0(B) be the set of restrictions ψ|B, with ψ as 
above, and Qsym ⊂ Q the subset of Sd+2-invariant functions.

Each d-dimensional face τi of B comes with an integral affine structure, and the 
restriction of any ψ ∈ Q to τi is a convex function. This allows us to define the real 
Monge–Ampère measure MAR(ψ|τ◦

i
) on the interior τ◦i of τi. We show that this Monge–

Ampère operator extends naturally to all of B, at least for symmetric functions. Let 
Msym denote the space of positive, symmetric measures on B of mass (d + 2)d+1/d!.
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Theorem B. There exists a unique continuous map Qsym ∋ ψ (→ νψ ∈ Msym such that

νψ|τ◦
i

= MAR(ψ|τ◦
i
) (†)

for all ψ ∈ Qsym and all i. Moreover, this map induces a homeomorphism Qsym/R →
Msym.

The space B is an integral tropical manifold in the sense of [28], and Theorem B can 
be seen as solving a tropical Monge–Ampère equation; slightly more precisely we can 
define a natural integral affine structure on a subset B0 ⊂ B, with B \B0 of codimension 
2. Any ψ ∈ Qsym can then be viewed as a convex metric on a certain affine R-bundle 
over B0, in the sense of [36], with real Monge–Ampère measure νψ|B0 ; see §3.4 and §4.14
for details. While the real Monge–Ampère measure of this convex metric is only defined 
on B0, Theorem B gives a way of extending this operator over the singular set B \B0.

After the first draft of this paper appeared, it was pointed out to us by Rolf Andreasson 
that the main result of [13] directly gives a regularity result for solutions ψ to νψ =
µ which implies they define smooth Hessian metrics over B0 when µ is the Lebesgue 
measure on A. See [2, Theorem 3, Lemma 16 and Lemma 17] for details and an extension 
to other symmetric polytopes.

Combining Theorem B and its proof with the work of Li [40] we obtain a weak version 
of the SYZ conjecture in our setting. The SYZ conjecture predicts that Xt admits a 
special Lagrangian fibration for small t.1

Corollary C. Given δ > 0, for all sufficiently small t there exists a special Lagrangian 
torus fibration on an open subset of Xt of normalized Calabi–Yau volume at least 1 − δ;

This is stronger than the main result of [41], in which the analysis is restricted to the 
Fermat family, where f(z) =

∑d+1
j=0 z

d+2
j , and to subsequences Xtn , with tn → 0.

In [40], Li gave an argument reducing Corollary C (as well as the corresponding 
statement for more general families) to a certain conjectural comparison property of 
the solution to the non-Archimedean Monge–Ampère equation. In fact, our proof of 
Corollary C follows [40], using a weaker version of the comparison property that we 
derive from Theorem A and its proof.

Li also proved a weak version of the Kontsevich–Soibelman conjecture for the Fermat 
family in [41]: any subsequential Gromov–Hausdorff limit of Xt as t → 0 contains a 
dense subset locally isometric to the regular part of a Monge–Ampère metric on B0. 
The injectivity in Theorem B implies that the dense set in these subsequential Gromov–
Hausdorff limits is uniquely determined up to local isometry, as is also obtained in [57].

The solution ψ ∈ Qsym to the equation νψ = ν, where ν is Lebesgue measure on B, can 
be used to state a precise version of the Kontsevich–Soibelman conjecture in this setting. 

1 Ruddat and Siebert proved that X0 itself admits a special Lagrangian fibration, see [58].
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Namely, if we knew that (the metric associated to) ψ is smooth and strictly convex on 
B0, then its Hessian would give B0 the structure of a metric space, whose completion 
should be homeomorphic to B, and equal to the Gromov–Hausdorff limit of Xt as t → 0. 
It seems plausible that having a well-posed global (tropical) Monge–Ampère equation 
may allow us to improve the local regularity results [23,47–49], which themselves are not 
sufficient, at least in dimension d ≥ 3.

See also [17,26,27,31,32,30,46,55,56,59] for related, but slightly different, approaches 
to the SYZ and Kontsevich–Soibelman conjectures. In particular, a version of the 
Kontsevich–Soibelman conjecture is known in dimension 2 [30,56].

Strategy

We now describe the main ideas behind Theorem B. While there are satisfactory re-
sults for the Monge–Ampère equation on Hessian manifolds [16,22,36,35], extending these 
to general integral tropical manifolds seems challenging. Instead, our approach heavily 
uses the large symmetry group of B; this allows us to adapt the variational approach 
in [3,5,7] for solving real, complex, and non-Archimedean Monge–Ampère equations, 
respectively.

More precisely, if A := ∂∆ ⊂ MR, then the canonical pairing of MR and NR induces 
a cost function on A × B, in the sense of optimal transport. From this, one defines the 
c-transform (generalizing the usual Legendre transform), which can be used to recover 
Q as the class of c-convex functions, and to define a notion of c-subgradients.

While the c-transform and c-subgradient express some pathological behavior in gen-
eral, for symmetric functions, they reduce to the usual Legendre transform and sub-
gradient when viewed in coordinate charts for the integral affine structure. For any 
ψ ∈ Qsym, we may then define νψ as the pushforward of Lebesgue measure on A under 
the c-subgradient map of ψc, the c-transform of ψ.

Solving νψ = ν, for a given ν ∈ Msym, can now be reformulated as minimizing a 
certain functional F = Fν on Qsym; as in [3,5,7] the crucial fact that the minimizer 
is a solution amounts to a differentiability property for F , which we can prove in the 
symmetric case (and, surprisingly, fails in the non-symmetric case, see Example 4.20).

We now outline how to deduce Theorem A from Theorem B. For this, we need to 
explain the relation between Sk(X) and B.

The variety X admits a natural model X over the valuation ring C!t", given by 
the same equation as above in (⋆). Its special fiber X0 is the union of the coordinate 
hyperplanes in Pd+1

C , and the associated dual complex can be identified with Sk(X). 
There are d + 2 closed points ξi ∈ X0 where d + 1 distinct hyperplanes meet, and the 
preimage of ξi under the specialization map Xan → X0 is an open subset Ui ⊂ Xan, 
whose intersection with Sk(X) is the relative interior τ̃◦i of a d-dimensional simplex τ̃i; 
in fact, we have Sk(X) =

⋃
i τ̃i. We have a natural retraction Ui → τ̃◦i , and this retraction 

is an affinoid torus fibration.
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Let T ⊂ Pd+1 be the torus. There is a canonical tropicalization map trop: T an → NR. 
One can show that Sk(X) ⊂ T an, and that the tropicalization map restricts to a homeo-
morphism of Sk(X) onto B, sending τ̃i onto τi for each i. On Ui ⊂ Xan, the tropicalization 
map is also invariant under the retraction to τ̃◦i , and the restriction trop: Ui → τ◦i is an 
affinoid torus fibration.

Now consider the case of a symmetric measure ν on Sk(X) ≃ B that is sufficiently 
smooth, say equivalent to Lebesgue measure; the general case in Theorem A can be 
treated by approximation. Pick ψ ∈ Qsym with νψ = ν. We can extend ψ to a convex 
function on NR whose Legendre transform is a symmetric continuous convex function on 
∆. As already mentioned, this induces a symmetric continuous semipositive toric metric 
on O(d + 2)an, over Pd+1,an, and by restriction a continuous semipositive metric ∥ · ∥ on 
Lan.

By construction, the restriction of ∥ · ∥ to Ui can be viewed as the pullback of the 
convex function ψ on τ◦i . Combining (†) with a theorem of Vilsmeier in [61], it follows 
that the Chambert-Loir measure c1(L, ∥ · ∥)d agrees with the measure ν on an open 
subset of Sk(X) ≃ B, and hence everywhere, as this open set carries all the mass of ν.

Corollary C relies on Theorem A and the ideas of [40]. Namely, while the model 
X above is not semistable snc, Theorem A implies that we still have the comparison 
property for the non-Archimedean and real Monge–Ampère operators in the sense of [40, 
Definition 3.11]. The arguments in [40] then go through essentially unchanged; see §9 for 
details.

The variational principle we developed in Theorem B has been applied in some more 
general contexts after the first draft of this paper appeared. In particular, in [43] it has 
been used to prove the SYZ for families of hypersurfaces in some toric Fano manifolds; 
this partially extends our approach to the non-symmetric setting, imposing however a 
condition on the vertices of ∆ and ∆∨, which seems unfortunately rather restrictive. 
In [2], using to a larger extent the connections to optimal transport, Andreasson and 
Hultgren provide a necessary and sufficient condition for the solvability of the tropical 
Monge–Ampère equation on a reflexive polytope, which implies the SYZ conjecture for 
the corresponding family of Calabi–Yau hypersurfaces.

Structure

The paper is organized as follows: after a discussion of the toric setup and the structure 
of B as a tropical manifold, we introduce in §3 the class of c-convex functions, and show 
their basic properties. In §4, we define the Monge–Ampère operator on the subclass of 
symmetric c-convex functions, and in §5 we solve the tropical Monge–Ampère equation, 
proving Theorem B. The relation between c-convex functions and toric metrics on the 
Berkovich analytification on O(d + 2) is explored in §6, whereas the restriction of the 
tropicalization map to Xan is studied in §7. After that, combining all the ingredients, 
we prove Theorem A in §8 and Corollary C in §9.
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Notation

Given a variety X over a non-Archimedean field K, we denote by Xan the Berkovich 
analytification of X, and by Xval ⊂ Xan the subset of valuations on the function field 
of X extending the valuation on K. Given an abelian group Γ, we set ΓR := Γ ⊗Z R. If 
g is a convex function on Rn, then the subgradient ∂g(x) at x ∈ Rn is the set of linear 
functions ℓ ∈ (Rn)∗ such that the function g − ℓ attains its minimum at x. The (real) 
Monge–Ampère measure MAR(g) of g is taken in the sense of Alexandrov, i.e. as the 
Lebesgue measure of the subgradient image, see e.g. [23, §2.1].
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1. Toric setup

Fix an integer d ≥ 1. Our toric terminology largely follows [25].

1.1. Lattices and tori

Consider the lattice M ′ := Zd+2 with basis

e0 = (1, 0, . . . , 0), . . . , ed+1 = (0, . . . , 0, 1).

Let T ′ := SpecK[M ′] ≃ Gd+2
m be the corresponding (split) torus. Each m ∈ M ′ defines 

a character on T ′. If we denote by zi the character associated to the basis element ei, 
then the character associated to a general element m = (y0, . . . , yd+1) ∈ M ′ is given by

zm := zy0
0 · . . . · zyd+1

d+1

Define a sublattice M ⊂ M ′ by M = {y ∈ Zd+2 |
∑d+1

0 yi = 0}. For any i ∈
{0, . . . , d + 1} the set {ej − ei}j ̸=i forms a basis for M . Let T := SpecK[M ] ≃ Gd+1

m be 
the associated torus. The inclusion M ⊂ M ′ induces a morphism T ′ → T , allowing us 
to view T as a quotient of T ′. The characters zi on T ′ can be viewed as homogeneous 
coordinates on T .
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Set N ′ := Hom(M ′, Z) and N := Hom(M, Z). Then N ′ ≃ Zd+2 and

N ≃ Zd+2/Z(1, . . . , 1).

1.2. Tropicalization

We use ‘additive’ conventions for valuations and semivaluations. Thus T an is the set 
of semivaluations v : K[M ] → R ∪ {+∞} restricting to the given valuation on K, and 
equipped with the topology of pointwise convergence. We have a tropicalization map

trop: T an → NR = Hom(M,R)

characterized by

⟨m, trop(v)⟩ = −v(zm)

for all m ∈ M . This map is continuous and surjective. It admits a natural continuous 
one-sided inverse, which to n ∈ NR associates the valuation vn ∈ T val ⊂ T an defined by

vn

(
∑

m∈M

amzm
)

= min
m

{−v(am) − ⟨m,n⟩};

this is the minimal element in the fiber trop−1(n), with respect to the natural partial 
ordering on T an.

1.3. Simplices and projective space

Let ∆ ⊂ MR be the convex hull of the elements

mi := (d + 1)ei −
∑

j ̸=i

ej ∈ M, i = 0, . . . , d + 1.

Then ∆ is a simplex, whose polar polytope2

∆∨ := {n ∈ NR | sup
m∈∆

⟨m,n⟩ = max
0≤i≤d+1

⟨mi, n⟩ ≤ 1},

is also a simplex, with vertices given by

n0 = (−1, 0, . . . , 0), . . . , nd+1 = (0, . . . , 0,−1).

2 We use a different sign convention from [41].
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The fan in NR dual to ∆ has rays generated by ni, 0 ≤ i ≤ d + 1, and defines a toric 
variety that we identify with Pd+1. In fact, ∆ is the moment polytope for the anticanon-
ical bundle O(d + 2) on Pd+1, and the unique effective torus invariant anticanonical 
divisor on Pd+1 is given by −KPd+1 =

∑d+1
i=0 Di, where Di is the prime divisor on Pd+1

corresponding to ni.
For later reference, we note that

⟨mi, nj⟩ =
{
−(d + 1) if i = j

1 if i ̸= j
(1.1)

We can view z0, . . . , zd+1 as homogeneous coordinates on Pd+1. For any m ∈ M , zm is 
a rational function on Pd+1. If m ∈ ∆ ∩M , then zm can be viewed as a global section 
of O(d + 2) = O(−KPd+1), in the sense that div(zm) −KPd+1 ≥ 0. More generally, for 
any r ≥ 1, the set

{zm | m ∈ r∆ ∩M}

is a basis for H0(Pd+1, O(r(d + 2))).
There is an alternative description in which a global section of O(r(d + 2)) is given 

as a homogeneous polynomial in the zi of degree r(d + 2). Given m ∈ r∆ ∩M , define a 
monomial

χr,m := zm
d+1∏

i=0
zri .

Then (χr,m)m∈r∆∩M is a basis of the space of homogeneous polynomials of degree r(d +2)
in the zi, and hence a basis for H0(Pd+1, O(r(d + 2))). Note that the sections χr,rmi =
zr(d+2)
i , 0 ≤ i ≤ d + 1, have no common zeros.

2. Tropical manifolds

Above we defined simplices ∆ ⊂ MR and ∆∨ ⊂ NR. Their boundaries

A := ∂∆ and B := ∂∆∨

will be key players in what follows. As we will see, they are integral tropical manifolds 
in the sense of [29]. The exposition below more or less follows [41].

The spaces A and B are naturally equipped with piecewise integral affine structures, 
and hence a canonical volume form that we refer to as Lebesgue measure. The total mass 
of A and B is |A| = (d + 2)d+1/d! and |B| = (d + 2)/d!, respectively. It will occasionally 
be convenient to parametrize A and B as follows:
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Fig. 1. Subset τ1 for d = 2.

A = {
∑

j

αjmj | αj ∈ R,min
j

αj = 0,
∑

j

αj = 1} (2.1)

B = {
∑

j

βjnj | βj ∈ R,min
j

βj = 0,
∑

j

βj = 1}. (2.2)

2.1. Singular integral affine structure

Following [29,41], we now upgrade the piecewise integral structures on A and B to 
singular integral affine structures. This means that we have open dense subsets A0 ⊂ A

and B0 ⊂ B, of real codimension 2, such that A0 and B0 each admit a sheaf of integral 
affine functions.

In general, there is a great deal of flexibility in the choice of A0 and B0, see e.g. [51]. 
We will, however, be interested in symmetric data on A and B, i.e. data invariant under 
the action of the permutation group G = Sd+2 on A and B. This gives a canonical choice 
of our singular set, namely, the barycentric complexes of the (d − 1)-dimensional faces 
of A and B.

Let us now be more precise. First consider the d-dimensional faces of A and B. These 
are of the form

σi := {max
j

nj = ni = 1} ⊂ MR and τi := {max
j

mj = mi = 1} ⊂ NR

for 0 ≤ i ≤ d + 1, and we write σ◦
i , τ◦i for the relative interiors (Fig. 1). The integral 

affine functions on σ◦
i (resp. τ◦i ) are the restrictions of the integral affine functions on 

MR (resp. NR).
Second, we can define the integral affine structure near vertices of A and B, respec-

tively. Let Star(mi) =
⋃

j ̸=i σj be the closed star of mi, and Star◦(mi) = A \σi the open 
star. The stars Star(ni) and Star◦(ni) are defined analogously.

As follows from (1.1), given i ̸= j, the integral linear map MR → Rd given by

m (→ (⟨m,nj − nk⟩)k ̸=i,j (2.3)

restricts to a piecewise integral affine isomorphism Star(mi) ∼→ S̃, where S̃ ⊂ Rd is the 
simplex with vertices given by
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(d + 2, 0, . . . , 0), . . . , (0, . . . , d + 2), and (−(d + 2), . . . ,−(d + 2)).

It will be notationally convenient to denote the map in (2.3) by

p−1
i,j : Star(mi) ∼→ S̃.

In this way, the inverse pi,j : S̃ → Star(mi) is an integral piecewise affine isomorphism, 
whose restriction to any simplex spanned by the origin and d of the vertices of S̃ above 
is an integral affine isomorphism onto a simplex σk, k ̸= i, when σk is endowed with the 
integral affine structure above. We view p−1

i,j as coordinates on Star(mi).
By using Proposition 2.2 below, one can easily check that for any j, k, ℓ ̸= i, the 

function (nk − nℓ) ◦ pi,j : S̃ → R is the restriction of an integral linear function on 
Rd. From this, it follows that p−1

i,k ◦ pi,j : S̃ → S̃ is the restriction of an integral linear 
isomorphism of Rd.

Similarly, we define coordinates on Star(ni) by:

q−1
i,j (n) =

(〈
mk −mj

d + 2 , n

〉)

k ̸=i,j

= (⟨ek − ej , n⟩)k ̸=i,j ⊂ Rd. (2.4)

Note the sign change, which makes the duality pairing in the charts compatible with 
the global pairing between MR and NR, see Proposition 2.2. We get a piecewise integral 
affine isomorphism

qi,j : T̃ ∼→ Star(ni),

where T̃ ⊂ Rd is the simplex spanned by

(−1, 0, . . . , 0), . . . , (0, . . . ,−1), and (1, . . . , 1).

If j, k ̸= i, then q−1
i,k ◦ qi,j : T̃ → T̃ is the restriction of an integral linear isomorphism 

of Rd, and for j, k, l ̸= i, (mk −ml) ◦ qi,j : T̃ → R is the restriction of an integral linear
function on Rd.

As pi,j and qi,j are integral piecewise integral isomorphisms, they map Lebesgue mea-
sure on Rd to Lebesgue measure on A and B, respectively.

It is tempting to define integral affine structures on Star◦(mi) and Star◦(ni) by pulling 
back the sheaf on integral affine functions on S̃◦ and T̃ ◦, respectively. However, these 
sheaves don’t agree on the overlaps; we need to define branch cuts in the above charts in 
order to work globally on A and B. This corresponds to choosing the singular part of the 
singular affine structure, which again we will canonically choose to be the barycentric 
complex of the (d − 1)-dimensional faces.

To describe this explicitly, define subsets Si ⊂ Star(mi) and Ti ⊂ Star(ni) by

Si := {ni = min
j

nj} and Ti := {mi = min
j

mj}.
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Fig. 2. Subset T1 for d = 2.

Their relative interiors are given by S◦
i = {ni < minj ̸=i nj} and T ◦

i = {mi < minj ̸=i mj}, 
respectively, and are open neighborhoods of mi and ni in A and B, respectively (Fig. 2). 
Note that S◦

i ∩ S◦
j = ∅ and T ◦

i ∩ T ◦
j = ∅ if i ̸= j. We can easily describe these sets in 

terms of the parametrizations (2.1) and (2.2); for example,

Si =

⎧
⎨

⎩
∑

j

αjmj | αi ≥ max
j ̸=i

αj ≥ min
j ̸=i

αj = 0,
∑

j

αj = 1

⎫
⎬

⎭ .

We now define the integral affine structure on S◦
i and T ◦

i as the pullback of the integral 
affine structures on Rd under the maps p−1

i,j and q−1
i,j , respectively. This is compatible 

with the integral affine structure on the open simplices σ◦
l and τ◦l as above. Moreover, 

the integral affine structures on S◦
i and S◦

j (resp. T ◦
i and T ◦

j ) are trivially compatible 
for i ̸= j, since S◦

i ∩ S◦
j = ∅ (resp. T ◦

i ∩ T ◦
j = ∅). We therefore obtain integral affine 

structures on

A0 :=
⋃

i

σ◦
i ∪

⋃

i

S◦
i and B0 :=

⋃

i

τ◦i ∪
⋃

i

T ◦
i ,

and A \A0, B \B0 have codimension two.

2.2. Pairing and symmetries

The pairing MR ×NR → R restricts to a pairing

A×B → R.

Given m ∈ A and n ∈ B, write m =
∑d+1

j=0 αjmj and n =
∑d+1

j=0 βjnj , where minj αj =
min βj = 0 and 

∑
j αj =

∑
j βj = 1. Using (1.1) we then have

⟨m,n⟩ = 1 − (d + 2)
∑

j

αjβj . (2.5)

In §4 it will be important to understand how the pairing interacts with the action of 
the permutation group G = Sd+2 on M ′ = Zd+2, and its various induced actions. Note 
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that G acts on the sets of simplices σi, τi and stars Star(mi), Star(ni), Si, Ti, mapping 
relative interiors to relative interiors. We also have ⟨g(m), g(n)⟩ = ⟨m, n⟩ for m ∈ A, 
n ∈ B, but not always ⟨m, g(n)⟩ = ⟨m, n⟩.

Lemma 2.1. Pick any m ∈ A, n ∈ B, and let G(m, n) ⊂ G be the set of g ∈ G such that 
⟨m, g(n)⟩ is maximal. Then, for any i ∈ {0, 1, . . . , d + 1} we have:

(i) if m ∈ σi (resp m ∈ Si), then g(n) ∈ Ti (resp. g(n) ∈ τi) for some g ∈ G(m, n);
(i′) if m ∈ σ◦

i (resp m ∈ S◦
i ), then g(n) ∈ Ti (resp. g(n) ∈ τi) for all g ∈ G(m, n);

(ii) if n ∈ τi (resp n ∈ Ti), then g(m) ∈ Si (resp. g(m) ∈ σi) for some g ∈ G(m, n);
(ii′) if n ∈ τ◦i (resp n ∈ T ◦

i ), then g(m) ∈ Si (resp. g(m) ∈ σi) for all g ∈ G(m, n).

Proof. It suffices to prove (i) and (i′); the proofs of (ii) and (ii′) are analogous. Write 
m =

∑
j αjmj and n =

∑
j βjnj , with minj αj = minj βj = 0 and 

∑
j αj =

∑
j βj = 1.

To prove (i), suppose m ∈ σi (resp. m ∈ Si), so that αi = 0 (resp. αi = maxl αl). 
Pick any g′ ∈ G(m, n), and choose j such that g′(n) ∈ Tj (resp. g′(n) ∈ τj), that is, 
βg′ −1(j) = maxl βl (resp. βg′ −1(j) = 0). Set g = h ◦ g′, where h ∈ G is the transposition 
of {0, 1, . . . , d + 1} exchanging i and j. Then g(n) ∈ Ti (resp. g(n) ∈ τi), and we claim 
that g ∈ G(m, n). But (2.5) implies

⟨m, g(n) − g′(n)⟩ = (d + 2)(αj − αi)(βg′ −1(j) − βg′ −1(i)) ≥ 0.

The proof of (i′) is similar. Assume m ∈ σ◦
i (resp. m ∈ S◦

i ), so that minj ̸=i αj > αi = 0
(resp. αi > maxj ̸=i αj). It suffices to prove that if n ̸∈ Ti (resp. n ̸∈ τi), then there exists 
g ∈ G such that ⟨m, g(n) − n⟩ > 0. But n ̸∈ Ti (resp. n ̸∈ τi) means that βj > βi for 
some j (resp. βi > 0). Let g ∈ G be transposition exchanging i and j. Then

⟨m, g(n) − n⟩ = (d + 2)(αj − αi)(βj − βi) > 0,

completing the proof. !

2.3. Pairing in coordinate charts

Lemma 2.1 suggests that the pairing between A and B is most natural between σi and 
Star(ni), or between Star(mi) and τi. We now calculate the pairing between elements in 
compatible coordinate charts defined on these regions.

Proposition 2.2. Fix indices i ̸= j. For x ∈ p−1
j,i (σi) and y ∈ T̃ = q−1

i,j (Star(ni)), we have:

⟨x, y⟩ = ⟨pj,i(x) −mj , qi,j(y)⟩. (2.6)

Similarly, for all x ∈ S̃ = p−1
i,j (Star(mi)) and y ∈ q−1

j,i (τi), we have

⟨x, y⟩ = ⟨pi,j(x), qj,i(y) − nj⟩. (2.7)
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Note that the pairing on the right-hand sides of (2.6), (2.7) is between MR and NR, 
while the pairing on the left-hand side is the scalar product on Rd.

Proof. Pick m ∈ σi ⊂ Star(mj) and n ∈ Star(ni). Write m =
∑

k ̸=i αkmk and n =∑
k βknk, where αk, βk ≥ 0 and 

∑
k αk =

∑
k βk = 1. Then m −mj =

∑
k ̸=i,j αk(mk −

mj), so that

⟨m−mj , n⟩ = (d + 2)
∑

k ̸=i,j

αk(βj − βk)

in view of (1.1). On the other hand, (2.3) and (2.4) give

p−1
j,i (m) = (d + 2)(αk)k ̸=i,j and q−1

i,j (n) = (βj − βk)k ̸=i,j ,

which implies ⟨m − mj , n⟩ = ⟨p−1
j,i (m), q−1

i,j (n)⟩. We now obtain (2.6) by inverting the 
coordinate maps, and (2.7) is proved in the same way. !

3. The c-transform and the class of c-convex functions

Denote by L∞(A) and L∞(B) the space of bounded real-valued functions on A and 
B, respectively.

3.1. General definitions and properties

We start by defining the c-transforms

L∞(A) → L∞(B) and L∞(B) → L∞(A)

as follows. Given φ ∈ L∞(A), we define a new function φc ∈ L∞(B) by

φc(n) := sup
m∈A

⟨m,n⟩ − φ(m). (3.1)

Note that φc is bounded since −(d + 1) ≤ ⟨m, n⟩ ≤ 1. Similarly, given ψ ∈ L∞(B), we 
define ψc ∈ L∞(A) by

ψc(m) := sup
n∈B

⟨m,n⟩ − ψ(n). (3.2)

Remark 3.1. The c-transform in this setting is inspired by the usual one in optimal 
transport [1], and can be defined much more generally, e.g. when X = A and Y = B are 
replaced by arbitrary sets, and ⟨m, n⟩ by an arbitrary ‘cost’ function c : X × Y → R. In 
that generality, φc and ψc may take infinite values, but our cost function is uniformly 
bounded, so we can restrict to bounded functions.
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It is a general fact that (φ + a)c = φc − a and (ψ + a)c = ψc − a for any bounded 
functions φ, ψ and any constant a. Moreover, if φ1 ≤ φ2, then φc

1 ≥ φc
2, and similarly for 

the c-transform in the other direction. This formally implies that the c-transforms are 
contractive: ∥φc

1 − φc
2∥ ≤ ∥φ1 − φ2∥ and ∥ψc

1 − ψc
2∥ ≤ ∥ψ1 − ψ2∥ for φi ∈ L∞(A) and 

ψi ∈ L∞(B), where ∥ · ∥ denotes the sup norm.
In our case, we also have 0c = 1, as follows from maxm∈A⟨m, n⟩ = 1 for all n ∈ B and 

maxn∈B⟨m, n⟩ = 1 for all m ∈ A.

Lemma 3.2. For any bounded functions φ : A → R and ψ : B → R, we have φcc ≤ φ, 
ψcc ≤ ψ, φccc = φc, and ψccc = ψc.

Proof. This is formal, see [1, p. 8]. !

Definition 3.3. We define P ⊂ L∞(A) and Q ⊂ L∞(B) as the images of the c-transform,

P := {φ = vc | v ∈ L∞(B)} and Q := {ψ = uc | u ∈ L∞(A)},

and equip P and Q with the supremum norm.

The functions in P and Q are called c-convex. It follows from the remarks above 
that the spaces P and Q of c-convex functions are invariant under the addition of a 
real constant, and they consist of bounded functions. They also contain all constant 
functions.

Lemma 3.4. The c-transform defines isometric bijections P → Q and Q → P that are 
inverse to each other.

Proof. By Lemma 3.2, the two maps are bijective, and inverse to one another. As they 
are both contractive, they must be isometries. !

Lemma 3.5. The functions in P and Q are uniformly Lipschitz continuous.

Proof. Suppose ψ is a bounded function on B. By definition, ψc(m) = supn∈B(⟨m, n⟩ −
ψ(n)); this defines a locally bounded function on MR. Each of the ⟨m, n⟩ − ψ(n) is 
linear, with uniform Lipschitz constant, since B is compact. It follows that ψc(m) is 
also Lipschitz on MR, with the same constant. The same argument obviously works for 
Q. !

Corollary 3.6. The spaces P and Q are closed subspaces of C0(A) and C0(B), respec-
tively. Moreover, P/R and Q/R are compact.

Proof. Lemma 3.5 shows that P ⊂ C0(A). To prove that P is a closed subspace, consider 
a sequence (φk)∞1 in P converging uniformly to φ ∈ C0(A). Then φcc

k = φk for all k, so 
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since the double c-transform is a continuous (even contractive) map from C0(A) → P, 
we must have φcc = φ, so that φ ∈ P. Thus P is closed.

To prove that P/R is compact, it suffices to show that the closed subspace P0 := {φ ∈
P | max φ = 0} is compact. But Lemma 3.5 shows that the functions in P0 are uniformly 
bounded, and equicontinuous, so we conclude using the Arzelà–Ascoli theorem.

The same argument shows that Q ⊂ C0(B) is closed and that Q/R is compact. !

Remark 3.7. For any subset A′ ⊂ A and any bounded function φ : A′ → R, the function 
ψ : B → R defined by ψ = supm∈A′(m − φ(m)) is c-convex. Indeed, ψ is the c-transform 
of the extension of φ to A defined by φ|A\A′ ≡ supA′ φ + d + 2.

Lastly, we have the following definition, also standard in the optimal transport liter-
ature:

Definition 3.8. Given ψ ∈ Q, the c-subgradient of ψ is the multi-valued map ∂cψ : B → A

given by

(∂cψ)(n) := {m ∈ A | ψ(n) + ψc(m) = ⟨m,n⟩}

for any n ∈ B.

By continuity, the c-subgradient is nonempty. When it is a singleton, we call it a 
c-gradient. We make similar definitions for φ ∈ P. It is evident that for ψ ∈ Q, m ∈ A

and n ∈ B, we have m ∈ (∂cψ)(n) iff n ∈ (∂cψc)(m), so that ∂cψ and ∂cψc are inverses, 
in the sense of multi-valued maps.

Example 3.9. Let ψ = maxi mi ≡ 1 ∈ Qsym where the max is taken over the vertices of 
A. Then

∂cψc(n) = {m ∈ A : ⟨m,n⟩ = 1}

is the face in A dual to the smallest face in B containing n.

3.2. Extension property

In [41], Li studies the class of functions on A and B which satisfy what he calls the 
extension property, motivated in part by extension theorems for (quasi-)plurisubhar-
monic functions: see e.g. [19,18,62,54,20]. Here, similarly to [41, Proposition 3.19], we 
show that these extendable functions are exactly those in P and Q, and discuss their 
canonical extensions to MR and NR.

We set some notation. As in [3], let P+ be the set of convex functions φ : MR → R
such that φ = maxj nj + O(1), and Q+ the set of convex functions ψ : NR → R with 
ψ = maxj mj + O(1). Using (3.1) and (3.2), we can view the c-transforms as maps
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L∞(A) → Q+ and L∞(B) → P+,

so that all functions in P and Q come from restrictions of functions in P+ and Q+. The 
following proposition shows the converse:

Proposition 3.10. Suppose that ψ ∈ Q+. Then ψcc ≥ ψ on NR \ (∆∨)◦. It follows that 
ψcc = ψ on B = ∂∆∨. The corresponding statements hold for φ ∈ P+.

Proof. It suffices to prove ψcc ≥ ψ on NR \ (∆∨)◦. Indeed, the inequality ψcc ≤ ψ on B
is formal, see Lemma 3.2.

Pick any n0 ∈ NR \ (∆∨)◦. To see that ψ(n0) ≤ ψcc(n0), it will suffice to find an 
m ∈ A such that:

ψ(n0) ≤ ⟨m,n0⟩ − ψc(m),

since the right-hand side is dominated by ψcc(n0). Let m′ be a subgradient of ψ at n0, 
i.e.

ψ(n) ≥ ⟨m′, n− n0⟩ + ψ(n0),

for all n ∈ NR. Since ψ ∈ Q+, the subgradients for ψ satisfy ∂ψ(NR) ⊆ ∆ (see e.g. [3, 
Lemma 2.5]). Also, as n0 is not in the interior of ∆∨, we can find a hyperplane, repre-
sented by m0 ∈ MR, such that supn∈B⟨m0, n⟩ ≤ ⟨m0, n0⟩.

Now let λ ≥ 0 be such that m := m′ + λm0 ∈ A. Then we have that:

ψc(m) = sup
n∈B

⟨m,n⟩ − ψ(n) ≤ −ψ(n0) + sup
n∈B

⟨m′ + λm0, n⟩ + ⟨m′, n0 − n⟩

= ⟨m′, n0⟩ − ψ(n0) + λ sup
n∈B

⟨m0, n⟩ ≤ ⟨m,n0⟩ − ψ(n0),

and we are done. !

Corollary 3.11. The spaces P and Q are convex.

Proof. This is clear since the spaces P+ and Q+ are convex. !

Remark 3.12. Unlike the plurisubharmonic case, functions in P (resp. Q) admit a canon-
ical extension to MR (resp. NR), namely the supremum of all such extensions. We omit 
the proof.

3.3. Convexity in coordinate charts

Following Li [41], we show that the functions in P and Q are convex in the coordinate 
charts defined in §2.1, up to adding a piecewise linear term.
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Lemma 3.13. [41, Proposition 3.26] If ψ ∈ Q, then for any i ̸= j, the function

ψi,j := (ψ −mj) ◦ qi,j

is convex on q−1
i,j (Star(ni)). As a consequence, ψ◦qi,j is convex on q−1

i,j (τk) for any k ̸= i.
Similarly, if φ ∈ P, then for any i ̸= j, the function

φi,j := (φ− nj) ◦ pi,j

is convex on p−1
i,j (Star(mi)), and φ ◦ pi,j is convex on p−1

i,j (σk) for any k ̸= i.

In the terminology of [41], the lemma says that the functions in P and Q are locally 
convex.

Proof. We prove the statement about Q; functions in P are handled in the same way. 
Thus pick ψ ∈ Q. We shall in fact prove the following: if n ∈ τj ⊂ Star(ni) and m ∈
∂cψ(n), then p−1

j,i (m) is a subgradient for ψi,j at q−1
i,j (n) (here we are thinking of p−1

j,i as a 
global map from A to Rd, and make no assumption on where m is inside A). Accepting 
this, and noting that ∂cψ(n) is non-empty for any n ∈ B by compactness, it follows that 
ψi,j is convex on Star(ni). The proposition then follows by noting that

ψi,k = (ψi,j + (mj −mk) ◦ qi,j) ◦ q−1
i,j ◦ qi,k,

(mj −mk) ◦ qi,j is affine on q−1
i,j (Star(ni)) for any j, k ̸= i, and that the maps q−1

i,j ◦ qi,k
are linear on q−1

i,k (Star(nk)).
First, from the definition of the c-subgradient, we have:

ψ(n) = ⟨m,n⟩ − ψc(m) ≤ ⟨m,n− n′⟩ + ψ(n′)

for all n′ ∈ Star(ni). With y := q−1
i,j (n), y′ := q−1

i,j (n′), we have that

ψi,j(y′) − ψi,j(y) ≥ ⟨m−mj , n
′ − n⟩,

and it remains to estimate the right-hand side in terms of the coordinates.
We can write m = m′ +rmi, where m′ ∈ σi and r ≥ 0. Indeed, if m =

∑
k αkmk, then 

we can pick m′ =
∑

k ̸=i(αk + αi
d+1 )mk and r = 2αi. Now set x := p−1

j,i (m), x′ := p−1
j,i (m′), 

and xi := p−1
j,i (mi). By Proposition 2.2, we have

⟨x′, y′ − y⟩ = ⟨m′ −mj , n
′ − n⟩.

On the other hand, a direct calculation as in the proof of Proposition 2.2 yields

⟨xi, y⟩ = ⟨mi, n⟩ + (d + 1)⟨mj , n⟩ and ⟨xi, y
′⟩ = ⟨mi, n

′⟩ + (d + 1)⟨mj , n
′⟩.
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By linearity, x = x′ + rxi, and hence

⟨x, y′ − y⟩ = ⟨m′ −mj , n
′ − n⟩ + r(⟨mi, n

′ − n⟩ + (d + 1)⟨mj , n
′ − n⟩)

= ⟨m−mj , n
′ − n⟩ + r(d + 1)⟨mj , n

′ − n⟩ ≤ ⟨m−mj , n
′ − n⟩,

where the inequality holds since n ∈ τj implies ⟨mj , n⟩ = 1 ≥ ⟨mj , n′⟩. Altogether, this 
yields

ψi,j(y′) − ψi,j(y) ≥ ⟨x, y′ − y⟩,

and completes the proof. !

3.4. A principal R-bundle

We can interpret the convexity statement in Lemma 3.13 geometrically as follows. For 
0 ≤ j ≤ d +1, set Yj := NR, and define a topological space Λ by Λ :=

∐
j Yj×R/ ∼, where 

(n, λ) ∈ Yj×R and (n′, λ′) ∈ Yj′ ×R are equivalent iff n = n′ and λ′−λ = ⟨mj′ −mj , n⟩. 
The evident map π : Λ → NR gives Λ the structure of a principal R-bundle.3

Let Z ⊆ NR. A continuous section of Λ over Z is a continuous function s : Z → Λ such 
that π ◦ s = id. By construction, Λ is trivial, and comes equipped with isomorphisms 
θj : Λ ∼→ Yj ×R. These give rise to a canonical reference section sref over NR, defined by 
θj(sref(n)) = (n, ⟨mj , n⟩). For any continuous section s over Z, s − sref is a continuous 
function on Z. We set sj := sref + mj .

A continuous metric on Λ over Z can be viewed as a continuous function Ψ : π−1(Z) →
R which respects the R-action, i.e. Ψ(s +r) = Ψ(s) +r, for s ∈ π−1(Z), r ∈ R. By checking 
its representations in coordinate charts, Ψ is naturally a section of the “dual” bundle −Λ; 
this is defined in exactly the same way as Λ, except we require λ′ − λ = ⟨mj −mj′ , n⟩. 
It follows that −sref is a canonical reference metric on Λ.

The restriction of Λ (and −Λ) to the integral affine manifold B0 ⊂ NR can be equipped 
with the structure of an integral affine R-bundle in the sense of [36]. Namely, we declare 
that, for any i, a continuous section s of Λ over τ◦i (resp. T ◦

i ) is integral affine iff the 
function s − sj on τ◦i (resp. T ◦

i ) is integral affine for some (equivalently, any) j ̸= i.
Lemma 3.13 now implies that for any ψ ∈ Q, the metric Ψ = ψ − sref on Λ is convex 

over B0, since it is convex in any affine trivializations (equivalently, Ψ is a convex section 
of −Λ [36]).

4. Symmetric c-convex functions and their Monge–Ampère measures

The c-transform is modeled on the Legendre transform between convex functions on a 
vector space and its dual, and as shown in Lemma 3.13, leads to a seemingly satisfactory 

3 One can also view Λ as the skeleton of the analytification of the line bundle O(d +2) over Pd+1, restricted 
to NR ⊂ Pd+1,an, see [9, §2.1].
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notion of “local convexity” on A and B. However, if one attempts to generalize Alexan-
drov’s definition of the weak Monge–Ampère measure to this setting, some interesting 
problems manifest.

As suggested by Li [41], these issues disappear if we take into account the action of 
the permutation group G = Sd+2, and restrict ourselves to symmetric data.

4.1. Controlling the c-gradients

We denote by Psym ⊂ P and Qsym the set of symmetric functions, that is, G-invariant 
functions. These are closed subsets of P and Q, respectively, so the quotients Psym/R and 
Qsym/R are compact by Corollary 3.6. The c-transform is equivariant for the G-action, 
and restrict to isometric bijections between Psym and Qsym.

As we now show, symmetry places a number of strong restrictions on the possible 
c-subgradients a function could have.

Lemma 4.1. For any ψ ∈ Qsym, we have ∂cψ(T ◦
i ) ⊆ σi and ∂cψ(τ◦i ) ⊆ Si. The analogous 

inclusions hold for φ ∈ Psym.

Proof. By symmetry of ψ and ψc, m ∈ (∂cψ)(n) implies ⟨m, n⟩ = maxg∈G⟨g−1(m), n⟩. 
The result now follows from Lemma 2.1. !

Since ∂cψ and ∂cψc are inverses, applying Lemma 4.1 to ψc gives:

Corollary 4.2. For any ψ ∈ Qsym, we have S◦
i ⊆ ∂cψ(τi) and σ◦

i ⊆ ∂cψ(Ti), with analo-
gous results for φ ∈ Psym.

Next we look at the subgradients in charts. Recall that the function ψi,j := (ψ−mj) ◦
qi,j is convex on q−1

i,j (Star(ni)), see Lemma 4.1.

Remark 4.3. Lemma 4.1 gives an alternative proof a weaker version of Lemma 3.13, 
namely, that ψi,j is convex on q−1

i,j (T ◦
i ) for every ψ ∈ Qsym. Indeed, the lemma implies 

that ψ|T◦
i

is a supremum of functions of the form 
∑

k ̸=i θkmk + c, with c ∈ R θk ≥ 0, 
and 

∑
k θk = 1. For each j, k ̸= i, the function (mk + c − mj) ◦ qi,j is affine, and this 
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implies that ψi,j is convex. In fact, even when k = i, the function (mk + c −mj) ◦ qi,j
is convex (although not affine); hence a similar argument can be used to prove the full 
statement of Lemma 3.13.

Lemma 4.4. Suppose that ψ ∈ Qsym and i ̸= j. Then p−1
j,i gives a bijection of (∂cψ)(n)

onto ∂ψi,j(q−1
i,j (n)) for any n ∈ T ◦

i . The same result holds for any n ∈ τ◦j . Moreover, the 
analogous results hold for Psym.

Proof. First suppose n ∈ T ◦
i . By Lemma 4.1, we have (∂cψ)(n) ⊂ σi. Lemma 2.1 and 

symmetry of ψ show that, for m ∈ σi, we have:

ψc(m) = sup
n∈Ti

⟨m,n⟩ − ψ(n) = sup
n∈Star(ni)

⟨m,n⟩ − ψ(n).

Thus, m ∈ (∂cψ)(n) iff

⟨m,n⟩ − ψ(n) ≥ ⟨m,n′⟩ − ψ(n′)

for all n′ ∈ Star(ni). Writing m = pj,i(x) and n = qi,j(y), Proposition 2.2 implies that 
the above inequality is equivalent to

⟨x, y⟩ − ψi,j(x) ≥ ⟨x, y′⟩ − ψi,j(y′)

for all y′ ∈ q−1
i,j (Star(ni)), which amounts to x ∈ ∂ψi,j(y). The case when n ∈ τ◦j is proved 

in the same way, using Lemma 4.1, and the proof for functions in Psym is completely 
analogous. !

Lemma 4.4 allows us to apply many standard results for convex functions to c-convex 
functions. For example, we have:

Lemma 4.5. If φ ∈ Psym, then the following properties hold:

(i) the c-subgradient (∂cφ)(m) is a singleton for almost every m ∈ A (i.e. φ has a 
c-gradient a.e.);

(ii) the a.e. defined function (∂cφ) : A → B is measurable, and the set:

{n ∈ (∂cφ)(m) ∩ (∂cφ)(m′) | m,m′ ∈ A0, m ̸= m′}

has Lebesgue measure 0.

Similar results hold for ψ ∈ Qsym.

Proof. The convex function φi,j (defined analogously to ψi,j) is almost everywhere dif-
ferentiable, so applying Lemma 4.4 to each of the S◦

i , say, implies that (∂cφ)(m) is a 
singleton for a.e. m ∈ A, showing (i).
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The second point follows similarly, since the qi,j are measurable and A is covered, up 
to a set of measure zero, by the sets S◦

i . !

Next we relate the c-transform on symmetric functions to the usual Legendre trans-
form on Rd. Denote by L∞

sym(A) and L∞
sym(B) the sets of symmetric bounded functions 

on A and B, respectively.

Lemma 4.6. If ψ ∈ L∞
sym(B) and i ̸= j, then the convex function (ψc − nj) ◦ pi,j on 

p−1
i,j (Si) ⊂ Rd is the Legendre transform of the bounded function ψ◦qj,i on q−1

j,i (τi) ⊂ Rd. 
Similarly, the convex function ψc◦pi,j on p−1

i,j (σj) is the Legendre transform of the convex 
function ψj,i = (ψ−mi) ◦qj,i on q−1

j,i (Tj). The analogous statements hold for φ ∈ L∞(A).

Proof. If m ∈ Si, then Lemma 2.1 implies that ψc(m) = supn∈τi(⟨m, n⟩ −ψ(n)). Writing 
m = pi,j(x), n = qj,i(y), and using Proposition 2.2, we see that

(ψc − nj)(x) = sup
y∈q−1

j,i (τi)
(⟨x, y⟩ − ψ(pj,i(y)),

which proves the first assertion. The remaining statements are proved in the same 
way. !

Denote by C0
sym(B) the set of symmetric continuous functions on B.

Lemma 4.7. Suppose ψ ∈ Qsym and v ∈ C0
sym(B). Then, for almost every m ∈ A, the 

function t (→ (ψ + tv)c(m) is differentiable at t = 0, with derivative −v((∂cψc)(m)).

Proof. Working in charts, using Lemma 4.6, this follows from the corresponding result 
about the Legendre transform on Rd, as stated in e.g. [3, Lemma 2.7].

A more direct proof goes as follows. Note that (ψ+ tv)c(m) is convex in t. This means 
its left and right derivatives exist at t = 0 and

d(ψ + tv)c(m)
dt

∣∣∣∣
t=0−

≤ d(ψ + tv)c(m)
dt

∣∣∣∣
t=0+

. (4.1)

Assume ∂cψc(m) = {n}, and for each t ̸= 0, pick nt such that

(ψ + tv)c(m) = ⟨m,nt⟩ − ψ(nt) − tv(nt), (4.2)

which is possible by compactness of B. By compactness of B, {nt} converges up to passing 
to subsequence to some n0 ∈ B when t → 0. We get, by continuity of the c-transform, 
that n0 satisfies ψc(m) + ψ(n0) = ⟨m, n0⟩; hence n0 = n and nt → n. Using (4.2), this 
yields

(ψ + tv)c(m) − ψc(m)
t

= −v(nt) −
ψ(nt) − ψ(n) − ⟨m,nt − n⟩

t
. (4.3)



J. Hultgren et al. / Advances in Mathematics 439 (2024) 109494 23

The numerator on the right hand side is positive since m ∈ ∂cψ(n); hence

d(ψ + tv)c(m)
dt

∣∣∣∣
t=0+

≤ −v(n) ≤ d(ψ + tv)c(m)
dt

∣∣∣∣
t=0−

.

Combining this with (4.1) proves the lemma. !

By Dominated Convergence, we obtain the following result, which is the analogue of 
the differentiability result needed to solve the complex and non-Archimedean Monge–
Ampère equations, respectively, see [4, Theorem B] and [7, §7]. In what follows, µ denotes 
Lebesgue measure on A, of total mass (d + 2)d+1/d!.

Corollary 4.8. If ψ ∈ Qsym and v ∈ C0
sym(B), then the function

t (→
∫

A

(ψ + tv)c dµ

is differentiable at t = 0, with derivative − 
∫
A v((∂cψc)(m)) dµ.

4.2. The tropical Monge–Ampère measure

We can now use Corollary 4.8 to assign a symmetric positive measure νψ on B to 
any symmetric function ψ ∈ Qsym, in a way which is compatible with the variational 
approach to the Alexandrov Monge–Ampère operator. Hence, we will think of νψ as the 
Monge–Ampère measure of ψ.

Definition 4.9. Given ψ ∈ Qsym we define a positive Radon measure νψ on B of mass |A|
by declaring

∫

B

v dνψ := − d

dt

∣∣∣∣
t=0

∫

A

(ψ + tv)c dµ = −
∫

A

(v ◦ ∂cψc) dµ

for every v ∈ C0
sym(B).

Proposition 4.10. For any ψ ∈ Qsym and Lebesgue measurable U ⊂ B, we have

νψ(U) = µ((∂cψ)(U)).

Proof. First, by Lemma 4.5, the multivalued map ∂cψc is µ-a.e. single valued, so by the 
standard change of variables formula and Corollary 4.8, we have:

νψ = (∂cψc)∗µ.
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Since ∂cψc and ∂cψ are inverses, the result now follows from the definition of the push-
forward measure. !

That νψ is compatible with the Monge–Ampère measure in charts now follows imme-
diately from Lemma 4.4:

Corollary 4.11. For any ψ ∈ Qsym and any i ̸= j, we have:

νψ|T◦
i

= (qi,j)∗ MAR

(
ψi,j |q−1

i,j (T◦
i )

)
and νψ|τ◦

j
= (qi,j)∗ MAR

(
ψi,j |q−1

i,j (τ◦
j )

)
,

and for any j we have

νψ|τ◦
j

= MAR((ψ ◦ qi,j)|q−1
i,j (τ◦

j )).

Corollary 4.11 allows us to now apply the standard theory for the Monge–Ampère 
operator. For instance, we see that νψ is weakly continuous under uniform convergence 
of the potentials, using the following result:

Lemma 4.12. [37, Theorem 2.1.22] Let Ω ⊂ Rd be an open convex subset, uj, u : Ω → R
convex functions, and assume that uj → u pointwise on Ω. Then there exists a subset 
E ⊂ Ω of full measure such that for every x ∈ Ω, uj and u are differentiable at x, and 
u′
j(x) → u′(x).

Proposition 4.13. If a sequence (ψk)∞k=1 of functions in Qsym converges uniformly to 
ψ ∈ Qsym, then νψk → νψ weakly as measures on B.

Proof. By definition, we have νψ = (∂cψc)∗µ, so by Dominated Convergence it suffices 
to prove that ∂cψc

k → ∂cψc a.e. Now, the c-transform is 1-Lipschitz, so we have ψc
k → ψc

uniformly on A. Further, on the open stars S◦
i , which together have full measure, the 

c-gradient is computed as the gradient of a convex function on an open subset of Rd, see 
Lemma 4.4. The result now follows from Lemma 4.12. !

Remark 4.14. As noted in §3.4, any ψ ∈ Q defines a convex metric Ψ on an integral 
affine R-bundle Λ on the integral affine manifold B0. Such a convex metric has a natural 
Monge–Ampère measure MAR(Ψ), defined as MAR(Ψ ◦ s) for any local affine section s, 
and Corollary 4.11 shows that the restriction of νψ to B0 equals MAR(Ψ). Note, however, 
that νψ may put mass also on B \B0, see Example 4.17.

4.3. Examples

We conclude by giving a few examples. Recall that the total mass of νψ is always 
(d+2)d+1

d! for ψ ∈ Qsym. For instance, when d = 2, the total mass is 32.



J. Hultgren et al. / Advances in Mathematics 439 (2024) 109494 25

Example 4.15. Let ψ = maxi mi ≡ 1 ∈ Qsym and m ∈ A. The supremum

sup
n∈B

⟨m,n⟩ − ψ(n) = sup
n∈B

⟨m,n⟩ − 1

is achieved at one of the vertices {n0, . . . , nd+1}. It follows that ∂cψc(m) contains a 
vertex for each m ∈ B. Consequently, since ∂cψc is single valued almost everywhere, νψ
is supported at the vertexes and by symmetry νψ =

∑
i

(d+2)d
d! δni .

Example 4.16. For each i, let n′
i := −ni

3 be the barycenters of the τi. Using basic prop-
erties for the c-gradient, one can see that ψ := (maxi n′

i)c satisfies νψ :=
∑

i
(d+2)d

d! δn′
i
. 

This can be computed explicitly, for example when d = 2,

ψ = max
{

max
i

m′
i −

1
9 ,max

i̸=j

mi + mj

2 − 1
3

}
,

where m′
i = −mi

3 .

Example 4.17. ψ can also charge the singular set – indeed, when d = 2, one can verify that 
ψ = max

{
maxi m′

i,
1
3
}

does not charge B0 at all, and so we have νψ =
∑

xi∈B\B0
16
3 δxi , 

by symmetry. One can also check that, while ψj,k is actually convex on all of q−1
j,k(Star(nj), 

MAR(ψj,k)(xi) = 80
9 > 16

3 for each xi ∈ Star(nj)◦\B0, so the equalities in Corollary 4.11
cannot be extended to all of Star(nj)◦.

For ψ ∈ Qsym, we have two equivalent definitions for νψ (Definition 4.9 and Proposi-
tion 4.10), which agree with the Monge–Ampère measure of ψi,j in coordinates (Corol-
lary 4.11). For non-symmetric ψ ∈ Q, none of these are well-defined in general, and when 
they are, they need not agree with the Monge–Ampère computed in coordinates, as the 
following examples show.

Example 4.18. Let d = 2 and ψ := mi, for some fixed i; then the Monge–Ampère measure 
of ψi,j is MAR(ψi,j) = 128δ0. Since this gives a total mass larger than 32, we conclude 
that Corollary 4.11 cannot hold for this ψ.

Example 4.19. Let d = 2, and fix 0 ≤ i ≤ 3. If ψ = maxj ̸=i mj , then one checks that 
µ(∂cψ) = 8δni +32δn′

i
; hence the right hand side in Proposition 4.10 does not assign the 

correct total mass for non-symmetric ψ.

Example 4.20. Let d = 1, and ψ(n) = maxi⟨mi, n − n′
0⟩, with n′

j = −nj

2 for j = 0, 1, 2. 
Let v ≥ 0 be a piecewise linear function with v(n0) = 1 and v(n′

1) = v(n′
2) = 0. Then 

(ψ + tv)c(m) will not be differentiable in t ∈ (−ε, ε) for all m ∈ σ0; hence Definition 4.9
does not make sense for this ψ.
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5. The tropical Monge–Ampère equation

We are now ready to study the (symmetric) tropical Monge–Ampère equation. Thus, 
given a symmetric positive measure ν on B of mass |A|, we seek to find ψ ∈ Qsym such 
that νψ = ν. In particular, we will prove Theorem B in the introduction.

5.1. Variational formulation

Given a measure ν as above, we define a functional

F = Fν : Qsym → R

by

F (ψ) :=
∫

A

ψc dµ +
∫

B

ψ dν.

Lemma 5.1. A function ψ ∈ Qsym minimizes the functional F iff νψ = ν.

Proof. First suppose ν = νψ. For any ψ′ ∈ Qsym we then have

F (ψ′) =
∫

A

(ψ′c + ψ′ ◦ (∂cψc)) dµ.

For almost every m ∈ A, we have

ψ′c(m) + ψ′((∂cψc)(m)) ≥ ⟨m, (∂cψc)(m)⟩ = ψc(m) + ψ((∂cψc)(m)),

and it follows that F (ψ′) ≥ F (ψ), so that ψ is a minimizer for F .
Conversely, suppose that ψ ∈ Qsym is a minimizer for F , and let us show that νψ = ν. 

We must prove that 
∫
B v dνψ =

∫
B v dν for all v ∈ C0(B). As ν and νψ are both symmet-

ric, it suffices to establish this for v ∈ C0
sym(B). Indeed, the function v̄ = 1

|G|
∑

g∈G v ◦ g
is symmetric, and we have 

∫
B v dνψ =

∫
B v̄ dνψ, 

∫
B v dν =

∫
B v̄ dν.

Thus suppose v ∈ C0
sym(B), and consider the function on R defined by

f(t) :=
∫

A

(ψ + tv)c dµ +
∫

B

(ψ + tv) dν.

It follows from Corollary 4.8 that f(t) is differentiable at t = 0, with

f ′(0) = −
∫

B

v dνψ +
∫

B

v dν,
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so we are done if we can prove that f(t) has a (global) minimum at t = 0.
Now (ψ + tv)cc ∈ Qsym, and (ψ + tv)ccc = (ψ + tv)c, whereas (ψ + tv)cc ≤ ψ + tv. 

Thus

f(t) ≥
∫

A

(ψ + tv)c dµ +
∫

B

(ψ + tv)cc dν = F ((ψ + tv)cc) ≥ F (ψ) = f(0),

completing the proof. !

5.2. Existence and uniqueness

We will prove

Theorem 5.2. For any symmetric positive measure ν on B of total mass |A|, there exists a 
function ψ ∈ Qsym, such that νψ = ν. Moreover, ψ is unique up to an additive constant, 
and the map ψ (→ νψ is a homeomorphism from Qsym/R to the space Msym(B) of 
positive, symmetric measures of mass |A|.

Proof. We use Lemma 5.1. To prove existence of a solution, it suffices to show that the 
functional Fν admits a minimizer on Qsym. But as φ (→ φc is Lipschitz continuous, one 
sees that F is Lipschitz continuous. It is also translation invariant, so the existence of a 
minimizer follows from compactness of Qsym/R, see Corollary 3.6.

We now show uniqueness. It suffices to prove that if ψ0, ψ1 ∈ Qsym are two minimizers 
of F , normalized by 

∫
ψi dν = 0, i = 0, 1, then ψ0 = ψ1. Set ψ := 1

2 (ψ0 + ψ1). Then 
ψ ∈ Qsym, by convexity of Qsym, and we have 

∫
B ψ dν = 0. Now

ψc = sup
n∈B

(n− ψ(n)) ≤ 1
2 sup

n∈B
(n− ψ0(n)) + 1

2 sup
n∈B

(n− ψ1(n)) = 1
2(ψc

0 + ψc
1),

pointwise on A. As 
∫
B ψ dν = 0, this leads to

Fν(ψ) =
∫

A

ψc dµ ≤ 1
2

∫

A

ψc
0 dµ + 1

2

∫

A

ψc
1 dµ = min

Qsym
Fν .

Thus equality holds, so since ψc
0, ψ

c
1, ψ

c are continuous, we must have ψc = 1
2 (ψc

0 + ψc
1). 

For a.e. m ∈ A, ψc
0, ψc

1 and ψc all admit a c-gradient at m. If we set n := (∂cψc)(m), 
then

ψc(m) = ⟨m,n⟩ − ψ(n)

= 1
2(⟨m,n⟩ − ψ0(n)) + 1

2(⟨m,n⟩ − ψ1(n))

≤ 1
2ψ

c
0(m) + 1

2ψ
c
1(m)

= ψc(m).
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Thus ψc
i (m) = ⟨m, n⟩ − ψi(n) for i = 1, 2, so we must have

(∂cψc
0)(m) = (∂cψc

1)(m) = n

for a.e. m. We may assume m lies in some open star S◦
i . Pick any j ̸= i. By Lemma 4.4, 

the convex functions (ψc
0 − mj) ◦ pj,i and (ψc

1 − mj) ◦ pj,i on p−1
j,i (S◦

i ) have the same 
gradient at a.e. point. By Lemma 5.3 below, these two functions differ by an additive 
constant, so ψc

0−ψc
1 is constant on S◦

i . By continuity of the elements of P and density of ⋃
i S

◦
i in A, we get that ψc

0−ψc
1 is constant on A. It follows that ψ0−ψ1 is also constant, 

and hence zero, by our normalization.
It follows that the Monge–Ampère operator ψ (→ νψ defines a bijection between the 

compact Hausdorff spaces Qsym/R and Msym(B). By Proposition 4.13, this bijection is 
continuous, and hence a homeomorphism. !

Lemma 5.3. If Ω ⊂ Rn is open and convex, and u0, u1 are convex functions on Ω such 
that ∇u0 = ∇u1 a.e. on Ω, then u0 − u1 is constant on Ω.

Proof. Let E ⊂ Ω be the set of points where ∇u0 = ∇u1. Pick any point x0 ∈ Ω. 
After adding a constant to u1, we may assume u0(x0) = u1(x0). Pick r > 0 such that 
B(x0, 2r) ⊂ Ω. It suffices to prove that u0 = u1 on B(x0, r). Fubini’s theorem implies 
that for almost every point v on the unit sphere in Rn, we have x0 + tv ∈ E for almost 
every t ∈ (−r, r). For such v it follows that the convex functions fi(t) := ui(x0 + tv) on 
(−r, r) satisfy f ′

0(t) = f ′
1(t) for a.e. t. As f0(0) = f1(0), this implies that f0 = f1, see [24, 

Theorem 3.35]. Thus u0(x0 + tv) = u1(x0 + tv) for almost every v and all t ∈ (−r, r). By 
continuity, we see that u0 = u1 on B(x0, r). !

Proof of Theorem B. It is clear from Theorem 5.2 and Corollary 4.11 that ψ (→ νψ
satisfies all the properties stated in Theorem B. Now let ψ (→ ν′ψ be a continuous map 
from Qsym to Msym such that ν′ψ|τ◦

i
= MAR(ψ|τ◦

i
) for every i. Thus ν′ψ = νψ for all 

ψ ∈ Qsym such that νψ puts full mass on 
⋃

i τ
◦
i . But it follows from Theorem 5.2 that 

the set of such functions is dense in Qsym; indeed, the set of measures on Msym putting 
full mass on 

⋃
i τ

◦
i is dense. The result follows. !

Remark 5.4. It is of interest to the SYZ conjecture to investigate the regularity of the 
solution ψ when ν is Lebesgue measure on B, using classical and more recent results, 
see [23,47–49]. We hope to address this in future work.

6. Induced metrics on the Berkovich projective space

Here we define a procedure that to a symmetric c-convex function on B associates a 
symmetric toric continuous psh metric on the Berkovich analytification of OPd+1(d + 2). 
As before, K is any non-Archimedean field.
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6.1. Continuous psh functions and metrics

The study of continuous psh (or semipositive) metrics in non-Archimedean geometry 
goes back to Zhang [65] and Gubler [33], who defined the notion of a continuous psh 
metric on the analytification of an ample line bundle on a projective variety defined over 
a nontrivially valued non-Archimedean field K. This theory is global in nature.

More recently, a local theory was developed by Chambert-Loir and Ducros [15]. Given 
any non-Archimedean field K, any K-analytic space4 Z, can be endowed with a sheaf of 
continuous psh functions. For example, if f1, . . . , fn are invertible analytic functions on 
Z, Ω ⊂ Rn is an open subset such that (log |f1(z)|, . . . , log |fn(z)|) ∈ Ω for all z ∈ Z, and 
χ : Ω → Rn is a convex function, then the function z (→ χ(log |f1(z)|, . . . , log |fn(z)|) is 
a continuous psh function on Z. A general continuous psh function is locally a uniform 
limit of functions of this type.

If L is a line bundle (in the analytic sense) on Z, then a continuous metric on L in the 
‘multiplicative’ sense, is a continuous function ∥ · ∥ on the total space of L with values 
in R≥0, and a suitable homogeneity property along the fibers of L → Z. We say that 
∥ · ∥ is semipositive if for some (equivalently, any) local analytic section s : Z → L, the 
continuous function − log ∥s∥ on Z is psh. It will be natural for us to instead use ‘additive’ 
terminology, and view a continuous metric on L as an R-valued function Ψ = − log ∥ · ∥
on the total space with the zero section removed. If Ψ is a continuous metric on L and 
s is a nonvanishing section of L over an open set U ⊂ Zan, then we can view Ψ − log |s|
as a continuous function on U , and we say that Ψ is psh if Ψ − log |s| is psh on U ; this 
is equivalent to ∥ · ∥ = exp(−Ψ) being semipositive.

In fact, the global notion in [33,6] is a priori stronger. Let X be a projective variety, 
and L an ample line bundle on L. Then a continuous metric Ψ on Lan is globally psh if 
it can be uniformly approximated by Fubini–Study metrics, i.e. metrics of the form

Ψ = 1
r

max
1≤j≤N

(log |sj | + λj), (6.1)

where r ≥ 1, sj ∈ H0(X, rL) are global nonzero sections with no common zero, and 
λj ∈ R. Such a metric is continuous psh in the sense above, and we shall only consider 
globally psh metrics.

6.2. Monge–Ampère measures

To any continuous psh function ϕ on a pure-dimensional K-analytic space Z is associ-
ated a ‘non-Archimedean’ Monge–Ampère measure MANA(ϕ), a positive Radon measure 
on Z. We refer to [15] for the definition, but note that the Monge–Ampère operator is 
continuous under locally uniform convergence.

4 All K-analytic spaces will be assumed good and boundaryless.
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If L is an analytic line bundle on Z and Ψ is a continuous psh metric on L, then 
the Monge–Ampère measure MANA(Ψ) is a well-defined positive Radon measure on Z
with the following property: for any nonvanishing section s of L over some open subset 
U ⊂ Z, we have MANA(Ψ)|U = MANA((Ψ − log |s|)|U ). In ‘multiplicative’ notation, this 
measure is written c1(L, ∥ ·∥)d, where d = dimZ and ∥ ·∥ = exp(−Ψ), as first introduced 
by Chambert–Loir [14].

In this paper, all computations involving the non-Archimedean Monge–Ampère mea-
sure will be deduced from the following result, essentially due to Vilsmeier [61].

Lemma 6.1. Let T ≃ Gn
m be a split torus, with tropicalization map trop: T an → NT,R. 

Let Ω ⊂ NT,R ≃ Rn be an open subset, and g : Ω → R a convex function. Then the 
composition g ◦ trop: trop−1(Ω) → R is a continuous psh function, and we have

MANA(g ◦ trop) = n! MAR(g)

on trop−1(Ω), where the left-hand side denotes the non-Archimedean Monge–Ampère 
measure on trop−1(Ω), and the right-hand side denotes the real Monge–Ampère measure 
on Ω ⊂ trop−1(Ω).

Proof. We argue as in the proof of [61, Corollary 5.10]. By ground field extension, we 
may assume K is algebraically closed and non-trivially valued, and in particular has 
dense value group. We may also assume T = SpecK[z±1 , . . . , z±n ] and NT,R = Rn. The 
statement is local on Ω ⊂ Rn, so pick any point t = (t1, . . . , tn) ∈ Ω, and nonzero 
elements a, b1, . . . , bn ∈ K such that the set

{s = (s1, . . . , sn) ∈ Rn | sj ≥ log |bj |, log |a|−1 +
∑

j

log |bj | ≥
∑

j

sj}

is contained in Ω and contains t in its interior. After performing the change of coordinates 
zj (→ bjzj we may assume bj = 1 for all j. Now consider the formal scheme

X = Spf(K◦⟨z0, . . . , zn⟩/(z0 . . . zn − a)).

The generic fiber of X is isomorphic to the Laurent domain |zj| ≤ 1, 
∏

j |zj | ≥ |a| in 
T an, and the skeleton ∆ of X is the simplex {sj ≥ 0, 

∑
sj ≤ log |a|−1}. As this simplex 

contains the point t in its interior, the result now follows from Corollary 5.7 in [61]. !

Remark 6.2. Lemma 6.1 can also be deduced from [11] which systematically studies 
pluripotential theory for tropical toric varieties, and its relation to complex and non-
Archimedean pluripotential theory.
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6.3. The Fubini—Study operator

We now return to the setup earlier in the paper. There is a natural Fubini–Study 
operator that associates to any continuous convex function φ : ∆ → R a continuous psh 
metric FS(φ) on O(d + 2)an, see for example Theorem 4.8.1 in [12].5 It is characterized 
by the following two properties:

• φ → FS(φ) is continuous;
• if φ is Q-PL, then for any sufficiently divisible r ≥ 1, we have

FS(φ) = max
m∈r∆∩M

(r−1 log |χr,m|− φ(r−1m)).

Here φ is Q-PL if it is the maximum of finitely many rational affine functions, i.e.
functions of the form n + λ, where n ∈ NQ and λ ∈ Q. Any continuous convex function 
on ∆ is a uniform limit of Q-PL convex functions, so the two conditions above completely 
determine the operator FS.

6.4. From c-convex functions to continuous psh metrics

To any symmetric c-convex function ψ ∈ Qsym we now associate a continuous psh 
metric on O(d + 2)an. This metric, which we slightly abusively denote by FS(ψ), is 
defined by

FS(ψ) := FS(ψc|∆),

where we view the c-transform ψc as a convex function on MR, defined using (3.2). The 
map ψ (→ FS(ψ) is contractive, and equivariant for addition of constants.

The metric FS(ψ) is closely related to the canonical extension of ψ to NR in §3.2. 
Indeed, if m ∈ M∩∆, and χm := χ1,m ∈ H0(Pd+1, O(d +2)) is the corresponding section, 
then log |χm| is a continuous metric on O(d + 2)an over T an. Then FS(ψ) − log |χm| is a 
continuous psh function on T an, and we have

FS(ψ) − log |χm| = (ψ −m) ◦ trop, (6.2)

on T an, where trop: T an → NR is the tropicalization map.
Lemma 6.1 and (6.2) allow us to compute the Monge–Ampère measure of FS(ψ) on 

T an, but that is not what we want to do. Instead, we will consider the restriction of 
FS(ψ) to a Calabi–Yau hypersurface X ⊂ Pd+1.

5 In [12], the authors consider concave rather than convex functions on ∆.
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7. Calabi–Yau hypersurfaces

From now on, K = C( (t) ). Consider a hypersurface X ⊂ Pd+1
K of the form

X = V (z0 · . . . · zd+1 + tf(z)),

where f(z) ∈ C[z] is a homogeneous polynomial of degree d + 2 such that for any 
intersection Z of coordinate hyperplanes zj = 0 in Pd+1, f does not vanish identically 
on Z and V (f |Z) is smooth. We call such a polynomial admissible. The set of admissible 
polynomials determines an open in |OPd+1(d + 2)|, which is not empty as, for instance, 
the Fermat polynomial fd+2(z) =

∑d+1
i=0 zd+2

i is admissible. Moreover, X is smooth for 
any admissible polynomial.

7.1. Models and skeletons

Let Y be any smooth and proper variety over K. Given a scheme Y over R := C[[t]], 
we denote by YK , respectively Y0, the base change of Y to K, respectively to the residue 
field of R. A model of Y is a flat R-scheme Y such that YK ≃ Y . We say that the 
model is strict normal crossing (snc), respectively divisorially log terminal (dlt), if the 
pair (Y, Y0,red) is so; see [38, Definitions 1.7, 1.18] for more details.

Given any snc, more generally dlt, model Y of Y , we denote by D(Y0) the dual complex 
of Y0 (see [38, Definition 3.62]); this admits a canonical embedding D(Y0) ≃−→ Sk(Y) ⊂
Y val in Y val, whose image is called the skeleton of Y.

7.2. The essential skeleton of X

Let Xan be the analytification of X, and Xval ⊂ Xan the set of valuations on the 
function field of X. We have that Xan is a closed subset of Pd+1,an. Being the analytifi-
cation of a Calabi–Yau variety over C( (t) ), Xan admits a canonical subset Sk(X) ⊂ Xval, 
the essential skeleton, defined in two equivalent ways. On one side, Sk(X) is the locus 
where a certain weight function on Xan takes its minimal values, [39,50]; on the other 
side, Sk(X) is the skeleton associated with any minimal dlt model of X, [52].

In our case, Sk(X) can be concretely described as follows. Consider the model

X := V (z0 · . . . · zd+1 + tf(z)) ⊂ Pd+1
R

of X over R = C!t". The special fiber X0 is simply given by V (z0 · . . . ·zd+1) ⊂ Pd+1
C , and 

its dual complex D(X0) is evidently the boundary of a (d +1)-dimensional simplex, hence 
topologically a sphere. We have an anticontinuous specialization map spX : Xan → X0.

Now X is smooth away from Sing(X ) =
⋃

i̸=j V (zi, zj , t, f(z)). Since f is admissible,

- for any ξ ∈ V (zi1 , . . . , zim , t, f(z)) ⊂ Sing(X ) for some maximal m ∈ {2, . . . , d}, étale 
locally around ξ we have the isomorphism
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X ≃ V (x1 · . . . · xm − ty) ⊂ Am+2
xi,t,y ×Ad−m;

- (X , X0) is snc at the generic point of each stratum of the special fiber X0.

It follows that locally around any singular point, X is a toric subvariety of Ad+2 and 
the special fiber X0 consists of toric divisors; by [21, Proposition 11.4.24] the pair (X , X0)
is log canonical around the singular points of X . Finally, one can check that X is dlt 
by considering the small resolution of X obtained as blow-up of all but one irreducible 
component of the special fiber (see [38, §2.1, 4.2]), and is minimal since KX ∼ OX . We 
conclude that Sk(X) = Sk(X ) ≃ D(X0).

Let us be a bit more precise, and describe the embeddings of the d-dimensional faces 
of D(X0) in Xval. Such a face is determined by a zero-dimensional stratum of the special 
fiber, say the point ξi, where zj = 0 for j ̸= i. At ξi, X is smooth, the rational functions

wi,j = zj
zi
, j ̸= i,

form a coordinate system at ξi, and ui := −zd+2
i /f(z) is a unit at ξi. We can write

zmi =
∏

j ̸=i

w−1
i,j = t−1ui (7.1)

and, for j ̸= i,

zmj = wd+1
i,j ·

∏

l ̸=i,j

w−1
i,l . (7.2)

Given numbers λj ∈ R>0, j ̸= i with 
∑

λj = 1, there exists a unique minimal 
valuation vi,λ on OX ,ξi such that vi,λ(wi,j) = λj for all i. Then vi,λ defines a point in 
Xval. With a bit of work, one shows that λ (→ vi,λ extends to a homeomorphism of 
the closed simplex {

∑
j ̸=i λj = 1} ⊂ R{0,...,d+1}\{i}

≥0 onto a compact subset τ̃i of Xval.
Moreover, Sk(X) is a (non-disjoint) union of the τ̃i.

We equip each τ̃i with an integral affine structure, in which the affine functions are 
integral linear combinations of v (→ v(wi,j), j ̸= i.

Let Ui := sp−1
X (ξi) ⊂ Xan be the open subset of points specializing to the point ξi. 

Each point v ∈ Ui lies in T an as f(z) is generic, and defines a semivaluation on OX ,ξi

such that v(wi,j) > 0 for all j ̸= i, and 
∑

v(wi,j) = 1. There is a canonical retraction 
ri : Ui → τ̃◦i defined by ri(v) = vi,λ where λj = v(wi,j).

7.3. Tropicalization

The complement Pd+1,an \ T an consists of the hyperplanes zi = 0 and do not meet 
Xval, so Xval ⊂ T an. Note, however, Xval ∩ T val = ∅.
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By definition, the tropicalization of X ∩ T (viewed as a subset of T and with respect 
to the given valuation on the ground field), is the image

(X ∩ T )trop := trop(Xan ∩ T an) ⊂ NR.

By the Fundamental Theorem of Tropical Geometry (FTTG for short, due to Kapranov 
in the case of hypersurfaces [45, Theorem 3.1.3]), the tropicalization admits a different 
description. Namely, the Laurent polynomial g(z) = 1 +t f(z)

z0·...·zd+1
∈ K[M ] can be written 

as

g(z) = 1 + t
∑

m∈∆
amzm,

where am ∈ C and am ̸= 0 whenever m is a vertex of ∆. Then we have X ∩ T = V (g). 
The tropicalization of g is the convex, piecewise affine function on NR given by

gtrop(n) = max{0,−1 + max
m∈∆∩M,am ̸=0

⟨m,n⟩} = max{0,−1 + max
0≤i≤d+1

⟨mi, n⟩},

and the FTTG says that (X ∩ T )trop is the locus where the function gtrop fails to be 
locally affine. Its complement in NR has a unique bounded component, namely the set

{n ∈ NR | max
i

⟨mi, n⟩ < 1},

whose closure is exactly the simplex ∆∨ above. In particular, B = ∂∆∨ ⊂ (X ∩ T )trop.

Lemma 7.1. The map trop: Xan ∩ T an → (X ∩ T )trop ⊂ NR

(1) induces a homeomorphism of τ̃i onto τi, and of Sk(X) onto B;

(2) fits in the commutative diagram 

τ◦i

Ui

τ̃i
◦

trop

ri

≃ trop

(3) in particular, satisfies Ui := sp−1
X (ξi) = trop−1(τ◦i );

(4) induces an isomorphism between the integral affine structures on τ̃i and τi.

Proof. We consider a d-dimensional simplex τ̃i in Sk(X) as described in §7.2. Given 
numbers λj ∈ R≥0, j ̸= i with 

∑
λj = 1, let vi,λ be the minimal valuation on OX ,ξi such 

that vi,λ(wi,j) = λj for all j ̸= i. By definition, trop(vi,λ) ∈ NR satisfies

⟨m, trop(vi,λ)⟩ = −vi,λ(zm)
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for all m ∈ M . From (7.1) and (7.2) we have ⟨mi, trop(vi,λ)⟩ = −vi,λ(t−1ui) = 1 and

⟨mj , trop(vi,λ)⟩ = −(d + 1)vi,λ(wi,j) +
∑

l ̸=i,j

vi,λ(wi,l)

= −(d + 1)λj +
∑

l ̸=i,j

λl = −(d + 2)λj + 1 ≤ 1,
(7.3)

for j ̸= i. This means that trop(vi,λ) lies in τi ⊂ B, thus trop(τ̃i) ⊆ τi. The composition

{
∑

j ̸=i λj = 1} τ̃i τi

R{0,...,d+1}\{i}
≥0 Sk(X) B

≃ trop

is injective by (7.3) and surjective. Indeed, given n ∈ τi, set

λj = 1
d + 2(1 − ⟨n,mj⟩)

for j ̸= i. As −(d + 1) ≤ ⟨n, mj⟩ ≤ 1 we have λj ∈ R≥0. Moreover,

∑

j ̸=i

λj = 1
d + 2(d + 1 − ⟨n,

∑

j ̸=i

mj⟩) = 1
d + 2(d + 1 + ⟨n,mi⟩) = 1.

It follows that the restriction trop: τi → τ̃i is a homeomorphism, and trop: Sk(X) → B

does too.
Part (3) follows directly from (2). For (2), we first check that trop(v) ∈ τ◦i =

{maxj ̸=i mj < mi = 1} for any v ∈ Ui. Indeed, we have ⟨mi, trop(v)⟩ = −v(t−1ui) = 1
and ⟨mj , trop(v)⟩ = 1 − (d + 2)v(wi,j) < 1 since zj = 0 at ξi. To conclude, it is enough 
to check that trop(v) = trop ◦ri(v) on an integral basis for M :

⟨trop(v), ej − ei⟩ = −v(wi,j) = −λj = −vi,λ(wi,j) = ⟨trop(vi,λ), ej − ei⟩.

For (4), we recall that the affine functions on τ̃i are integral linear combinations of 
v (→ v(wi,j), for j ̸= i. The affine functions on τi are the elements of M ; as the set 
{ej − ei}j ̸=i forms an integral basis for M , the affine functions on τi are integral linear 
combinations of n (→ ⟨ej − ei, n⟩. From ⟨trop(vi,λ), ej − ei⟩ = −vi,λ(wi,j) we obtain 
(4). !

7.4. Affinoid torus fibration

As explored in [39,53,51], the analytification Xan of the Calabi–Yau variety X admits 
various affinoid torus fibrations. Here we show that the tropicalization map induces 
affinoid torus fibrations on the open subsets Ui of Xan.



36 J. Hultgren et al. / Advances in Mathematics 439 (2024) 109494

We recall that a continuous map ρ : Y an → S to a topological space S is an n-
dimensional affinoid torus fibration at a point s ∈ S if there exists an open neighborhood 
U of s in S, such that the restriction to ρ−1(U) fits into a commutative diagram:

ρ−1(U) trop−1(V )

U V,

≃

ρ

≃

trop

V being an open subset of Rn, the upper horizontal map an isomorphism of analytic 
spaces, the lower horizontal map a homeomorphism, and the map trop defined as in §1.2
for a torus of dimension n. In particular, an affinoid torus fibration induces an integral 
affine structure on the base S; see [39, §4.1] for more details.

Corollary 7.2. For any i, the map trop : Ui → τ◦i is an affinoid torus fibration. Moreover, 
the induced integral affine structure on τ◦i agrees with the one constructed in §2.1.

Proof. By Lemma 7.1, trop |Ui is homeomorphic to the retraction ri that is an affinoid 
torus fibration, see for instance the proof of [53, Theorem 6.1]. Again by Lemma 7.1, 
τ̃◦i and τ◦i are isomorphic as integral affine manifolds, hence the integral affine structure 
induced on τ◦i by the affinoid torus fibration trop is isomorphic to the one constructed 
in §2.1. !

8. Solution to the non-Archimedean Monge–Ampère equation

Let L := O(d + 2)|X . We are now ready to prove Theorem A in the introduc-
tion. Namely, we show that the preceding method recovers the solution to the non-
Archimedean Monge–Ampère equation [7], for a symmetric measure supported on the 
skeleton.

8.1. Existence and uniqueness

As mentioned above, to any (global) continuous psh metric Ψ on Lan is associated 
a measure MANA(Ψ) on Xan. By [64] we have MANA(Ψ1) = MANA(Ψ2) iff Ψ1 − Ψ2 is 
a constant, whereas the main result of [7] (see also [10]) states that for any measure ν
supported on Sk(X) ⊂ Xan, there exists Ψ such that MANA(Ψ) = ν.

8.2. Comparing Monge–Ampère measures

Given ψ ∈ Qsym we want to compare the tropical Monge–Ampère measure νψ on B
with the non-Archimedean Monge–Ampère measure of the continuous psh metric FS(ψ)
on Lan, via the embedding B ∼→ Sk(X) ⊂ Xan.
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Theorem 8.1. Let ψ ∈ Qsym be any symmetric c-convex function. Then the associated 
continuous psh metric FS(ψ) on Lan has Monge–Ampère measure MANA(FS(ψ)) = d! νψ, 
viewed as a measures on B ≃ Sk(X) ⊂ Xan.

To prove the theorem, we want to use Vilsmeier’s result in Lemma 6.1, but our torus 
T is of the wrong dimension. Instead, we use the fact that Xan admits local affinoid torus 
fibrations with bases that are open subsets of B ≃ Sk(X), and that these fibrations are 
compatible with the embedding of X into the toric variety Pd+1, see §7.4.

Proof. We first consider the case when the measure νψ gives full mass to the union of the 
open d-dimensional simplices τ◦i of B. By Corollary 7.2, the tropicalization map gives a 
affinoid torus fibration trop: Ui → τ◦i . For any i ̸= j we have

FS(ψ) − log |χmj | = (ψ −mj) ◦ trop

on Ui, by (6.2). Lemma 6.1 and Corollary 4.11 now give that MANA(FS(ψ)) = d! νψ
on τ◦i ⊂ Ui. As MANA(FS(ψ)) and νψ have mass d!|A| and |A|, respectively, we have 
accounted for all the mass of MANA(FS(ψ)), so MANA(FS(ψ)) = d!νψ.

Now consider the general case. We can find a sequence (νn) of symmetric measures 
on B of mass |A| converging weakly to νψ and such that νn gives full mass to 

⋃
i τ

◦
i . By 

what precedes, there exists a unique ψn ∈ Qsym such that νψn = νn and 
∫
B ψn dν = 0. 

By compactness of Qsym/R we may assume that ψn converges uniformly to a function 
ψ ∈ Qsym. By continuity of the Fubini–Study operator, FS(ψn) converges uniformly to 
FS(ψ). It follows that the Monge–Ampère measures MANA(FS(ψn)) converge weakly to 
MANA(FS(ψ)). Since MANA(FS(ψn)) = d! νn for all n, we get MANA(FS(ψ)) = d! νψ, 
and we are done. !

8.3. Invariance under retraction

Let ν be a symmetric positive measure of mass (d +2)d+1 on Sk(X). The results above 
give a rather explicit description of the solution (which is unique, up to a constant) to 
the non-Archimedean Monge–Ampère equation MANA(ψ) = ν on the Calabi–Yau variety 
X ⊂ Pd+1. For one thing, ψ is the restriction of a torus invariant metric on OPd+1(d +2). 
Note that we are not assuming that X is invariant under any torus action.

Here we investigate further properties of the solution.

Corollary 8.2. Let ν be any symmetric positive measure on Sk(X) of mass (d + 2)d+1, 
and let Ψ be a continuous psh metric on Lan, whose Monge–Ampère measure equals ν. 
Then Ψ is invariant under retraction to Sk(X), in the following sense: for any j ̸= i, 
the function Ψi,j := (Ψ − log |χmj |)|Ui satisfies Ψi,j = Ψi,j ◦ ri.
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Proof. By Theorem 5.2 there exists a function ψ ∈ Qsym such that νψ = ν, and by 
Theorem 8.1 Ψ = FS(ψ). By (6.2) we have FS(ψ) − log |χmj | = (ψ −mj) ◦ trop on T an. 
By Lemma 7.1, we have trop = trop ◦ri on Ui, hence the claim follows. !

9. Applications to the SYZ conjecture

In this section we prove Corollary C, following the work of Li. As f is admissible, for 
any t ∈ C∗,

Xt := {z0 . . . zd+1 + tfd+2(z) = 0} ⊂ Pd+1
C

is a smooth complex projective variety, which we view as a complex manifold. Set

αt := 1
(log |t|−1)c1(OPd+1(d + 2)|Xt).

We equip Xt with the unique Ricci flat Kähler metric in αt. Let νt be the corresponding 
smooth positive measure on Xt, and write (Xt, dt) for associated metric space.

9.1. Proof of Corollary C

We follow [40]. Let us identify

X = {z0 · · · zd+1 + tfd+2(z) = 0}

with the associated (singular) d +1-dimensional complex analytic subspace of Pd+1×C. 
The central fiber X0 consists of the d + 2 coordinate hyperplanes Hi = {zi = 0} in 
Pd+1 ≃ Pd+1 × {0}. For each i, let ξ :=

⋂
j ̸=i Hj ⊂ X0. Then X is smooth at ξi, and 

we may find local holomorphic coordinates wj , j ̸= i, at ξi such that t = w0 · . . . · wd. 
If we pick small (disjoint) neighborhoods Wi of ξi, and set W :=

⋃
i Wi, then we have a 

continuous map

LogX : W \ X0 →
⋃

i

τ◦i ⊂ B

defined by LogX =
∑

j ̸=i
log |wj |
log |t| nj on Wi.

By [8] (see [40, §3.1]), most of the mass of Xt lies in W for t ≈ 0. Indeed:

Lemma 9.1. We have limt→0 νt(Xt ∩W )/νt(Xt) = 1.

Proof. Viewed as a scheme over C!t", X is a minimal dlt model, whose skeleton Sk(X )
equals the essential skeleton Sk(X). If X were a semistable model, the lemma would 
follow from [8]. Now, there exists a projective birational morphism π : X ′ → X such that 
X ′ is an snc model of X, and such that π is an isomorphism over the regular part of 
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X . It follows that the only d-dimensional simplices of Sk(X ′) contained in Sk(X) are 
associated to ξ′i := π−1(ξi), 0 ≤ i ≤ d. We can pick corresponding neighborhoods W ′

i of 
ξ′i such that π(W ′

i ) ⊂ Wi for all i, and hence Xt ∩W ′ ⊂ Xt, where W ′ =
⋃

i W
′
i . By [8, 

Theorem 3.4], we have limt→0 νt(Xt ∩W ′)/νt(Xt) = 1, and the result follows. !

Let ψ ∈ Qsym be such that νψ equals Lebesgue measure on B ≃ Sk(X). In particular, 
the restriction of ψ to a d-dimensional face τ◦i satisfies the real Monge–Ampère equation, 
and is therefore smooth outside a small closed subset.

Let φ := ψc be the c-transform of ψ, viewed as a continuous convex function on ∆. 
This defines a continuous psh metric on OPd+1(d + 2)an whose restriction to Xan has 
Monge–Ampère measure equal to ν, by Theorem 8.1.

The continuous convex function on ∆ also defines a continuous psh metric on the 
holomorphic line bundle O(d +2) on Pd+1. Approximating ψ by a smooth strictly convex 
function, we can approximate this metric uniformly by a Kähler metric on O(d + 2). As 
in [40, Lemma 4.1], this leads to the existence, given ε > 0, of a Kähler metric ωt on 
(Xt, αt), such that, for any i, ωt has a local potential on Wi ∩Xt that differs from the 
function ψ ◦ LogX by at most ε.

As explained in [40, Lemma 4.2], we may, for small t and ϵ, by shrinking W (so that 
LogX (W ∩Xt) is contained in the smooth locus of ψ) find Lipschitz functions ft of C0-
norm on the order of ϵ, smooth outside a set of measure 0, such that the (1, 1)-currents 
ωf,t = ωt + ddcft is positive on Xt and approximate ddc(ψ ◦ LogX ) on the smooth locus 
of f in W and the measure ωd

f,t is close to the Calabi–Yau volume form νt on Xt in total 
variation. The proof then proceeds to get the C0 convergence on W of the potentials of 
the Calabi–Yau metrics on Xt to ψ◦LogX and the resulting C∞-convergence and special 
Lagrangian torus fibration on W in the same way as in §4.3 and §4.5 of [40].

9.2. Gromov–Hausdorff convergence

Consider the Fermat family

Xt = {z0z1 . . . zd+1 + t(zd+2
0 + · · · + zd+2

d+1)} ⊂ Pd+1
C .

As above, we write (Xt, dt) for the corresponding metric space.
Let ψ ∈ Qsym be a solution (unique, up to a constant) to the tropical Monge–Ampère 

equation νψ = ν, where ν is Lebesgue measure on B, see Theorem 5.2, and let Ψ be 
the corresponding metric on the affine R-bundle Λ, see Remark 4.14. By the regularity 
theory for the real Monge–Ampère equation on Rd, there exists an open subset Rψ ⊂ B0
such that B \ Rψ has (d − 1)-Hausdorff measure zero, and such that Ψ is smooth and 
strictly convex over Rψ. The Hessian of Ψ on Rψ then defines a metric on R, and we 
let (Rψ, dψ) be the resulting metric space.

By diameter bounds proved in [44], (Xt, dt) converges in the sense of Gromov–
Hausdorff after passing to subsequence. By [41, Theorem 5.1], any subsequential limit of 
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(Xt, dt) contain a dense subset locally isomorphic to the regular part of a Monge–Ampère 
metric on B0. By the injectivity in Theorem B, the latter space is uniquely determined 
as (Rψ, dψ).
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