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Introduction
Let f(z) € C|zo,- .., zda+1] be a generic homogeneous polynomial of degree d+2, where
d > 1. Then

X = {Z()Zl ce e Zd+1 + tf(Z) = O} C Pd+1 X (C* (*)

defines a maximally degenerate 1-parameter family of complex Calabi—Yau manifolds,
polarized by L := O(d+2)|x. By Yau’s theorem [63], we can equip each X; with a Ricci
flat metric in the Chern class of L|x,. The structure of X; as ¢ — 0 is described by two
fundamental conjectures, namely the SYZ conjecture [60] and the Kontsevich—Soibelman
conjecture [39]. These two conjectures have recently been related to a conjecture about
solutions to the non-Archimedean Monge-Ampére equation [40]. In this paper we address
the latter conjecture and prove a weak version of the SYZ conjecture in the setting above.

To explain all this, first note that X defines a smooth projective variety over the non-
Archimedean field K := C((t)) of complex Laurent series. Its Berkovich analytification
X?" has a canonical closed subset Sk(X) C X", the essential skeleton, [39,50], which
in this case can be identified with the boundary of a (d + 1)-dimensional simplex. The
skeleton has a canonical piecewise integral affine structure, and in particular a canonical
Lebesgue measure.

The Kontsevich—-Soibelman conjecture states that, as t — 0, X; converges (after rescal-
ing) in the Gromov—Hausdorff sense to a metric space whose underlying topological space
is Sk(X), and whose metric is determined by the solution to—roughly speaking—a real
Monge—Ampere equation on the skeleton, with right hand side given by the Lebesgue
measure on Sk(X). Making sense of this equation is not obvious, but something that we
address satisfactorily in Theorem B below in our setting.

As an alternative, one can look at the non-Archimedean Monge-Ampeére equation. To
any continuous semipositive metric || - || on L*" is associated a Chambert—Loir measure
c1(L, | - )%, a positive Radon measure on X" of mass (d + 2)4*t! [14,34]. By the main
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results in [7,64], any positive Radon measure v on Sk(X) of this mass is the Chambert—
Loir measure of a continuous semipositive metric, unique up to scaling.

When v equals Lebesgue measure on the skeleton, it is expected that the solution
to the non-Archimedean Monge-Ampeére equation can be used to define the metric in
the Kontsevich—Soibelman conjecture, as explored by Yang Li in his groundbreaking
work [40] (see also [42]). Unfortunately, the proof in [7] is variational in nature, and does
not give any information beyond continuity.

Our first main result gives a much more precise description of the solution in terms
of convex functions or, put differently, toric metrics.

Theorem A. If v is a symmetric positive measure on Sk(X) of mass (d+2)?t!, then any
solution to ci(L, || - |)¢ = v is the restriction of a symmetric toric metric on Opati(d +
2)an,

Let us be a bit more precise. In Theorem A we assume that the polynomial f(z) used
to define X is admissible in the following sense: for any intersection Z of coordinate
hyperplanes z; = 0 in P4+, f does not vanish identically on Z and V(f|z) is smooth,
see §7. A general polynomial is admissible.

The symmetric group S4+2 acts on projective space and its analytification by permut-
ing the coordinates z;. This action preserves Sk(X), but not necessarily X?". We say
that a measure v on Sk(X) is symmetric if it is invariant under the action. For example,
Lebesgue measure is symmetric.

A particular example of an admissible polynomial is the Fermat polynomial f(z) =
ZSH zf”. The resulting Fermat family is the central object in [41]. For this family,
Theorem A was obtained independently by Pille-Schneider [57] in the special case when
v is the Lebesgue measure, by using the results from [41].

To prove Theorem A we study the real Monge—Ampeére equation on the skeleton
Sk(X), as alluded to above. In doing so we exploit the structure of X C P! asin [41].
Namely, we view P91 as a toric variety with character lattice M and co-character lattice
N. Let A C Mg be the polytope for the anticanonical bundle O(d+2) on P4+!. There is
a bijection between continuous semipositive toric metrics on Opa+1(d+ 2)*" and convex
functions v: Ng — R whose Legendre transforms are continuous convex functions on
A.

Both A and its polar AV C Ng are (d + 1)-dimensional simplices. It turns out that
the boundary B := A" can be identified with the essential skeleton of X; we therefore
work on B rather than Sk(X). Let Q C CY(B) be the set of restrictions 1|z, with ¢ as
above, and Qg C Q the subset of Sg;o-invariant functions.

FEach d-dimensional face 7; of B comes with an integral affine structure, and the
restriction of any ¢ € Q to 7; is a convex function. This allows us to define the real
Monge-Ampére measure MAR (¥|¢) on the interior 77 of 7;. We show that this Monge-
Ampere operator extends naturally to all of B, at least for symmetric functions. Let
Mym denote the space of positive, symmetric measures on B of mass (d + 2)d+1 /4.
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Theorem B. There exists a unique continuous map Qsym D P — vy € Mgym such that

Vylre = MAR (¢

Ti(,)) (T)

for all ¥ € Qgym and all i. Moreover, this map induces a homeomorphism Qgym /R —

M sym -+

The space B is an integral tropical manifold in the sense of [28], and Theorem B can
be seen as solving a tropical Monge—Ampére equation; slightly more precisely we can
define a natural integral affine structure on a subset By C B, with B\ By of codimension
2. Any 9 € Qgym can then be viewed as a convex metric on a certain affine R-bundle
over By, in the sense of [36], with real Monge—Ampére measure vy|p,; see §3.4 and §4.14
for details. While the real Monge—Ampére measure of this convex metric is only defined
on By, Theorem B gives a way of extending this operator over the singular set B\ By.

After the first draft of this paper appeared, it was pointed out to us by Rolf Andreasson
that the main result of [13] directly gives a regularity result for solutions i to vy =
1 which implies they define smooth Hessian metrics over By when p is the Lebesgue
measure on A. See [2, Theorem 3, Lemma 16 and Lemma 17] for details and an extension
to other symmetric polytopes.

Combining Theorem B and its proof with the work of Li [40] we obtain a weak version
of the SYZ conjecture in our setting. The SYZ conjecture predicts that X; admits a
special Lagrangian fibration for small ¢.!

Corollary C. Given § > 0, for all sufficiently small t there exists a special Lagrangian
torus fibration on an open subset of X; of normalized Calabi—Yau volume at least 1 — 9,

This is stronger than the main result of [41], in which the analysis is restricted to the
Fermat family, where f(z) = Z;P:ré Z;ZJFQ, and to subsequences X, , with ¢, — 0.

In [40], Li gave an argument reducing Corollary C (as well as the corresponding
statement for more general families) to a certain conjectural comparison property of
the solution to the non-Archimedean Monge—Ampeére equation. In fact, our proof of
Corollary C follows [40], using a weaker version of the comparison property that we

derive from Theorem A and its proof.

Li also proved a weak version of the Kontsevich—Soibelman conjecture for the Fermat
family in [41]: any subsequential Gromov—Hausdorff limit of X; as ¢ — 0 contains a
dense subset locally isometric to the regular part of a Monge-Ampére metric on Bj.
The injectivity in Theorem B implies that the dense set in these subsequential Gromov—
Hausdorff limits is uniquely determined up to local isometry, as is also obtained in [57].

The solution ¥ € Qgym to the equation v,y = v, where v is Lebesgue measure on B, can
be used to state a precise version of the Kontsevich—Soibelman conjecture in this setting.

! Ruddat and Siebert proved that Xy itself admits a special Lagrangian fibration, see [58].
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Namely, if we knew that (the metric associated to) ¢ is smooth and strictly convex on
By, then its Hessian would give By the structure of a metric space, whose completion
should be homeomorphic to B, and equal to the Gromov—Hausdorff limit of X; ast — 0.
It seems plausible that having a well-posed global (tropical) Monge-Ampeére equation
may allow us to improve the local regularity results [23,47-49], which themselves are not
sufficient, at least in dimension d > 3.

See also [17,26,27,31,32,30,46,55,56,59] for related, but slightly different, approaches
to the SYZ and Kontsevich—-Soibelman conjectures. In particular, a version of the
Kontsevich-Soibelman conjecture is known in dimension 2 [30,56].

Strategy

We now describe the main ideas behind Theorem B. While there are satisfactory re-
sults for the Monge—Ampeére equation on Hessian manifolds [16,22,36,35], extending these
to general integral tropical manifolds seems challenging. Instead, our approach heavily
uses the large symmetry group of B; this allows us to adapt the variational approach
in [3,5,7] for solving real, complex, and non-Archimedean Monge-Ampére equations,
respectively.

More precisely, if A := 0A C Mg, then the canonical pairing of Mg and Ng induces
a cost function on A x B, in the sense of optimal transport. From this, one defines the
c-transform (generalizing the usual Legendre transform), which can be used to recover
Q as the class of c-convex functions, and to define a notion of c-subgradients.

While the c-transform and c-subgradient express some pathological behavior in gen-
eral, for symmetric functions, they reduce to the usual Legendre transform and sub-
gradient when viewed in coordinate charts for the integral affine structure. For any
1 € Qsym, we may then define vy, as the pushforward of Lebesgue measure on A under
the c-subgradient map of ¥¢, the c-transform of .

Solving vy, = v, for a given v € Mgym, can now be reformulated as minimizing a
certain functional F' = F,, on Qsym; as in [3,5,7] the crucial fact that the minimizer
is a solution amounts to a differentiability property for F', which we can prove in the
symmetric case (and, surprisingly, fails in the non-symmetric case, see Example 4.20).

We now outline how to deduce Theorem A from Theorem B. For this, we need to
explain the relation between Sk(X) and B.

The variety X admits a natural model X' over the valuation ring C[t], given by
the same equation as above in (*). Its special fiber Ay is the union of the coordinate
hyperplanes in IP’éH, and the associated dual complex can be identified with Sk(X).
There are d + 2 closed points &; € Xy where d + 1 distinct hyperplanes meet, and the
preimage of & under the specialization map X?" — A} is an open subset U; C X?",
whose intersection with Sk(X) is the relative interior 77 of a d-dimensional simplex 7;;
in fact, we have Sk(X) = J, 7i- We have a natural retraction U; — 77, and this retraction
is an affinoid torus fibration.
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Let T C P%*! be the torus. There is a canonical tropicalization map trop: 7" — Ng.
One can show that Sk(X) C 7", and that the tropicalization map restricts to a homeo-
morphism of Sk(X) onto B, sending 7; onto 7; for each i. On U; C X" the tropicalization
map is also invariant under the retraction to 77, and the restriction trop: U; — 77 is an
affinoid torus fibration.

Now consider the case of a symmetric measure v on Sk(X) ~ B that is sufficiently
smooth, say equivalent to Lebesgue measure; the general case in Theorem A can be
treated by approximation. Pick ¢ € Qg with v, = v. We can extend 9 to a convex
function on Ng whose Legendre transform is a symmetric continuous convex function on
A. As already mentioned, this induces a symmetric continuous semipositive toric metric

on O(d+2)2", over P4+1:an and by restriction a continuous semipositive metric || - || on
LA,
By construction, the restriction of || - || to U; can be viewed as the pullback of the

convex function ¢ on 77. Combining (1) with a theorem of Vilsmeier in [61], it follows
that the Chambert-Loir measure ¢ (L, || - |)? agrees with the measure v on an open
subset of Sk(X) ~ B, and hence everywhere, as this open set carries all the mass of v.

Corollary C relies on Theorem A and the ideas of [40]. Namely, while the model
X above is not semistable snc, Theorem A implies that we still have the comparison
property for the non-Archimedean and real Monge-Ampére operators in the sense of [40,
Definition 3.11]. The arguments in [40] then go through essentially unchanged; see §9 for
details.

The variational principle we developed in Theorem B has been applied in some more
general contexts after the first draft of this paper appeared. In particular, in [43] it has
been used to prove the SYZ for families of hypersurfaces in some toric Fano manifolds;
this partially extends our approach to the non-symmetric setting, imposing however a
condition on the vertices of A and AV, which seems unfortunately rather restrictive.
In [2], using to a larger extent the connections to optimal transport, Andreasson and
Hultgren provide a necessary and sufficient condition for the solvability of the tropical
Monge-Ampere equation on a reflexive polytope, which implies the SYZ conjecture for
the corresponding family of Calabi—Yau hypersurfaces.

Structure

The paper is organized as follows: after a discussion of the toric setup and the structure
of B as a tropical manifold, we introduce in §3 the class of c-convex functions, and show
their basic properties. In §4, we define the Monge—Ampeére operator on the subclass of
symmetric c-convex functions, and in §5 we solve the tropical Monge-Ampeére equation,
proving Theorem B. The relation between c-convex functions and toric metrics on the
Berkovich analytification on O(d + 2) is explored in §6, whereas the restriction of the
tropicalization map to X?" is studied in §7. After that, combining all the ingredients,
we prove Theorem A in §8 and Corollary C in §9.
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Notation

Given a variety X over a non-Archimedean field K, we denote by X" the Berkovich
analytification of X, and by XV3 C X" the subset of valuations on the function field
of X extending the valuation on K. Given an abelian group I', we set I'g := 1 ®z R. If
g is a convex function on R™, then the subgradient dg(x) at x € R™ is the set of linear
functions ¢ € (R™)* such that the function g — ¢ attains its minimum at z. The (real)
Monge-Ampére measure MAg(g) of g is taken in the sense of Alexandrov, i.e. as the
Lebesgue measure of the subgradient image, see e.g. [23, §2.1].
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1. Toric setup
Fix an integer d > 1. Our toric terminology largely follows [25].
1.1. Lattices and tori
Consider the lattice M’ := Z%*2? with basis
eo=(1,0,...,0),...,e441 = (0,...,0,1).

Let T" := Spec K[M'] ~ G%+2 be the corresponding (split) torus. Each m € M’ defines
a character on T". If we denote by z; the character associated to the basis element e;,
then the character associated to a general element m = (yo, ..., ya+1) € M’ is given by

m._ Yo L Ydrl
20 =y o 2

Define a sublattice M C M’ by M = {y € 7292 | ZSH y;, = 0}. For any i €
{0,...,d+ 1} the set {e; — €;};; forms a basis for M. Let T := Spec K[M] ~ G&I* be
the associated torus. The inclusion M C M’ induces a morphism 77 — T, allowing us
to view T as a quotient of T”. The characters z; on T can be viewed as homogeneous
coordinates on T
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Set N’ := Hom(M’,Z) and N := Hom(M,Z). Then N’ ~ Z*2 and
N ~7Z%%2/7.(1,...,1).
1.2. Tropicalization
We use ‘additive’ conventions for valuations and semivaluations. Thus 72" is the set
of semivaluations v: K[M] — R U {40} restricting to the given valuation on K, and
equipped with the topology of pointwise convergence. We have a tropicalization map
trop: T%" — Ng = Hom(M, R)
characterized by
(m, trop(v)) = —v(z"™)

for all m € M. This map is continuous and surjective. It admits a natural continuous
one-sided inverse, which to n € Nr associates the valuation v, € TV C T?" defined by

Up, ( Z amzm> = mﬂin{—v(am) — (m,n)};

meM

this is the minimal element in the fiber trop~!(n), with respect to the natural partial
ordering on 7°".

1.8. Simplices and projective space
Let A C Mg be the convex hull of the elements

mi = (d+1)e;—» e €M, i=0,...,d+1.
ji

Then A is a simplex, whose polar polytope®

AV = Y = ; <1
{n € R ‘ :Lléli<m)n> 0§T§§+1<mlan> ~ }a

is also a simplex, with vertices given by

no = (=1,0,...,0),...,n441 = (0,...,0,—1).

2 We use a different sign convention from [41].



J. Hultgren et al. / Advances in Mathematics 439 (2024) 109494 9

The fan in Ng dual to A has rays generated by n;, 0 < i < d+ 1, and defines a toric
variety that we identify with P4t In fact, A is the moment polytope for the anticanon-
ical bundle O(d + 2) on P4+l and the unique effective torus invariant anticanonical
divisor on P*! is given by —Kpa+1 = Zfiol D;, where D is the prime divisor on P?t!
corresponding to n;.

For later reference, we note that

—(d+1) ifi=j
(mi, n;) = T (1.1)
1 ifi+#j
We can view 2, ..., zq4+1 as homogeneous coordinates on P4*!. For any m € M, 2™ is

a rational function on P41, If m € A N M, then 2™ can be viewed as a global section
of O(d+2) = O(—Kpa+1), in the sense that div(z™) — Kpa+1 > 0. More generally, for
any r > 1, the set

{z™|merAnM}

is a basis for HY(P4L, O(r(d + 2))).

There is an alternative description in which a global section of O(r(d + 2)) is given
as a homogeneous polynomial in the z; of degree r(d + 2). Given m € rA N M, define a
monomial

d+1
XM= 2" H z .
i=0

Then (X™™)meranas is a basis of the space of homogeneous polynomials of degree r(d+2)
in the z;, and hence a basis for HO(P4*!, O(r(d + 2))). Note that the sections Y™™ =
z:(d+2), 0 <i < d+ 1, have no common zeros.

2. Tropical manifolds
Above we defined simplices A C Mg and AV C Ng. Their boundaries
A:=0A and B :=0AY

will be key players in what follows. As we will see, they are integral tropical manifolds
in the sense of [29]. The exposition below more or less follows [41].

The spaces A and B are naturally equipped with piecewise integral affine structures,
and hence a canonical volume form that we refer to as Lebesgue measure. The total mass
of Aand B is |A| = (d+2)%*!/d! and |B| = (d + 2)/d!, respectively. It will occasionally
be convenient to parametrize A and B as follows:
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no

n3

ny

no

Fig. 1. Subset 7; for d = 2.

A:{Zajmj |aj€R,mjnaj:O,Zaj:1} (2.1)
. j .
J j

B={> Bin;|B;¢c R,min f; = 0,y B;=1}. (2.2)
J J

2.1. Singular integral affine structure

Following [29,41], we now upgrade the piecewise integral structures on A and B to
singular integral affine structures. This means that we have open dense subsets Ag C A
and By C B, of real codimension 2, such that Ag and By each admit a sheaf of integral
affine functions.

In general, there is a great deal of flexibility in the choice of Ag and By, see e.g. [51].
We will, however, be interested in symmetric data on A and B, i.e. data invariant under
the action of the permutation group G = S442 on A and B. This gives a canonical choice
of our singular set, namely, the barycentric complexes of the (d — 1)-dimensional faces
of A and B.

Let us now be more precise. First consider the d-dimensional faces of A and B. These
are of the form

o;:={maxn; =n; =1} C Mg and 7;:={maxm; =m; =1} C Ng
J J

for 0 < i < d+ 1, and we write of, 77 for the relative interiors (Fig. 1). The integral

79

affine functions on o} (resp. 77) are the restrictions of the integral affine functions on
Mg (resp. NR).

Second, we can define the integral affine structure near vertices of A and B, respec-
tively. Let Star(m;) = (J,; 0; be the closed star of m;, and Star®(m;) = A\ 0; the open
star. The stars Star(n;) and Star®(n;) are defined analogously.

As follows from (1.1), given i # j, the integral linear map Mg — R? given by

mo= (M, g — i) (2.3)

restricts to a piecewise integral affine isomorphism Star(m;) = S, where S € R is the
simplex with vertices given by
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(d+2,0,...,0),...,(0,...,d+2), and (—(d+2),...,—(d + 2)).
It will be notationally convenient to denote the map in (2.3) by
p;j.lz Star(m;) = S.

In this way, the inverse p; ;: S — Star(m;) is an integral piecewise affine isomorphism,
whose restriction to any simplex spanned by the origin and d of the vertices of S above
is an integral affine isomorphism onto a simplex oy, k # i, when o}, is endowed with the
integral affine structure above. We view p;- jl as coordinates on Star(m;).

By using Proposition 2.2 below, one can easily check that for any j,k,¢ # i, the
function (nx — ne) o p;j : S — R is the restriction of an integral linear function on
R<. From this, it follows that pl_,i opij: S — S is the restriction of an integral linear
isomorphism of R<.

Similarly, we define coordinates on Star(n;) by:

1 my — m; d
q; ;i (n) = (<,n>) = ((er —€j,m)) ;- CR% (2.4)
7 d+2 oy I ki

Note the sign change, which makes the duality pairing in the charts compatible with
the global pairing between MR and Ng, see Proposition 2.2. We get a piecewise integral
affine isomorphism

gij: T 5 Star(n;),
where T C R? is the simplex spanned by
(-1,0,...,0),...,(0,...,—1), and (1,...,1).

If j, k # i, then ql_k1 0 : T — T is the restriction of an integral linear isomorphism
of R, and for j,k,1 # i, (my —my)oq ;: T — R is the restriction of an integral linear
function on R<.

As p; ; and ¢; ; are integral piecewise integral isomorphisms, they map Lebesgue mea-
sure on R? to Lebesgue measure on A and B, respectively.

It is tempting to define integral affine structures on Star®(m;) and Star®(n;) by pulling
back the sheaf on integral affine functions on S° and 7°, respectively. However, these
sheaves don’t agree on the overlaps; we need to define branch cuts in the above charts in
order to work globally on A and B. This corresponds to choosing the singular part of the
singular affine structure, which again we will canonically choose to be the barycentric
complex of the (d — 1)-dimensional faces.

To describe this explicitly, define subsets S; C Star(m;) and T; C Star(n;) by

S; ' ={n; =minn;} and T;:={m; =minm;}.
J J



12 J. Hultgren et al. / Advances in Mathematics 439 (2024) 109494

n2

n3

ni

no

Fig. 2. Subset T4 for d = 2.

Their relative interiors are given by SS9 = {n; < min;x; n;} and T = {m; < min,;-; m;},
respectively, and are open neighborhoods of m; and n; in A and B, respectively (Fig. 2).
Note that S NSy = 0 and T NT} = () if i # j. We can easily describe these sets in
terms of the parametrizations (2.1) and (2.2); for example,

S; = a;m; | a; > maxo; > mina; =0 a; =1
‘ ijl TR T T g ’Z]
J J

We now define the integral affine structure on Sy and 7T as the pullback of the integral
affine structures on R? under the maps p;jl and g;_ jl, respectively. This is compatible
with the integral affine structure on the open simplices o7 and 7;° as above. Moreover,

the integral affine structures on S7 and S; (resp. TY and T ]‘?) are trivially compatible

for i # j, since Sy N S; = 0 (resp. TP N 17 = ). We therefore obtain integral affine
structures on

Ag = Uof U LJS;3 and By := UTZ»O U UTZ-O,
i i i i
and A\ Ay, B\ By have codimension two.
2.2. Pairing and symmetries

The pairing Mg x Ng — R restricts to a pairing

Ax B — R.

. . _ d+l _ d+l _ S
Given m € A and n € B, write m = 3 ;75 aym; and n = 3 57, Bjn;, where min; a; =

minB; =0and }>; o =3, B = 1. Using (1.1) we then have
(m,n) =1-(d+2))_ a;B;. (2.5)
J

In §4 it will be important to understand how the pairing interacts with the action of
the permutation group G = Sqyo on M’ = Z92 and its various induced actions. Note
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that G acts on the sets of simplices o;, 7; and stars Star(m;), Star(n;), S;, T;, mapping
relative interiors to relative interiors. We also have (g(m),g(n)) = (m,n) for m € A,
n € B, but not always (m, g(n)) = (m,n).

Lemma 2.1. Pick any m € A, n € B, and let G(m,n) C G be the set of g € G such that
(m,g(n)) is mazximal. Then, for any i € {0,1,...,d+ 1} we have:

) if m € oy (respm € S;), then g(n) € T; (resp. g(n) € 1;) for some g € G(m,n);
(i") if m € o} (resp m € S7), then g(n) € T; (resp. g(n) € 1) for all g € G(m,n);
(ii) if n €1 (resp n €T;), then g(m) € S; (resp. g(m) € o;) for some g € G(m,n);

) if n €Ty (respn €T?), then g(m) € S; (resp. g(m) € ;) for all g € G(m,n).

Proof. It suffices to prove (i) and (i’); the proofs of (ii) and (ii’) are analogous. Write
m =), a;m;and n =}, Bn;, with minj oy = min; f; =0 and >, a; =3, 5 = L.

To prove (i), suppose m € o; (resp. m € S;), so that a; = 0 (resp. a; = max; ay).
Pick any ¢’ € G(m,n), and choose j such that ¢’(n) € T; (resp. ¢'(n) € 7;), that is,
By —1(;y = max; B (vesp. By -1(;) = 0). Set g = hog’, where h € G is the transposition
of {0,1,...,d + 1} exchanging ¢ and j. Then g(n) € T; (resp. g(n) € 7;), and we claim
that g € G(m,n). But (2.5) implies

(m, g(n) = g'(n)) = (d+2)(a; — @) (By —1j) = By=1(3)) = 0-

The proof of (i') is similar. Assume m € o (resp. m € S7), so that min;; o; > o; =0
(resp. oy > max;»; o). It suffices to prove that if n ¢ T; (resp. n & 7;), then there exists
g € G such that (m,g(n) —n) > 0. But n € T; (resp. n € 7;) means that 3; > f; for
some j (resp. B; > 0). Let g € G be transposition exchanging ¢ and j. Then

(m,g(n) =) = (d+2)(e; — i) 85 — ) > 0,
completing the proof. O
2.8. Pairing in coordinate charts
Lemma 2.1 suggests that the pairing between A and B is most natural between o; and
Star(n;), or between Star(m;) and 7;. We now calculate the pairing between elements in
compatible coordinate charts defined on these regions.
Proposition 2.2. Fiz indices i # j. For x € p;zl (05) andy € T = qile(Star(ni)), we have:
(x,y) = (psi(x) —my,qi,;(y))- (2.6)

Similarly, for all x € S = p;jl(Star(mi)) and y € quil(n), we have

<$, y> = <pi,j(m)’ Qj,i(y) - nj)' (27)
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Note that the pairing on the right-hand sides of (2.6), (2.7) is between Mg and N,
while the pairing on the left-hand side is the scalar product on R

Proof. Pick m € o; C Star(m;) and n € Star(n;). Write m = 37, apmy, and n =

>k Brnk, where ag, B, > 0and Y, ar = >, fr = 1. Then m —m; = Zk;ém- ag(mg —
m;), so that

(m—myj,n)=(d+2) Y ar(B; — )

ki, j

in view of (1.1). On the other hand, (2.3) and (2.4) give

P (m) = (d+2)(ar)kzi; and g} (n) = (85 — Br)ki

which implies (m —mj,n) = (p;zl (m)7q;jl(n)). We now obtain (2.6) by inverting the
coordinate maps, and (2.7) is proved in the same way. O

3. The c-transform and the class of c-convex functions

Denote by L*>°(A) and L*(B) the space of bounded real-valued functions on A and
B, respectively.

3.1. General definitions and properties
We start by defining the c-transforms
L>®(A) = L>®(B) and L*(B)— L*(A)
as follows. Given ¢ € L*°(A), we define a new function ¢¢ € L*°(B) by

¢°(n) := sup (m,n) — ¢(m). 3.1
meA
Note that ¢¢ is bounded since —(d + 1) < (m,n) < 1. Similarly, given ¢» € L>°(B), we
define ¢ € L>(A) by

¢(m) := sup(m,n) — ¢ (n). (3.2)
neB
Remark 3.1. The c-transform in this setting is inspired by the usual one in optimal
transport [1], and can be defined much more generally, e.g. when X = A and Y = B are
replaced by arbitrary sets, and (m,n) by an arbitrary ‘cost’ function ¢: X x Y — R. In
that generality, ¢ and ¢ may take infinite values, but our cost function is uniformly
bounded, so we can restrict to bounded functions.
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It is a general fact that (¢ + a)¢ = ¢¢ —a and (¥ + a)® = ¥° — a for any bounded
functions ¢, ¥ and any constant a. Moreover, if ¢1 < ¢9, then ¢§ > ¢§, and similarly for
the c-transform in the other direction. This formally implies that the c-transforms are
contractive: g5 — g5l| < [l1 — gl and |65 — 5| < |1 — ] for ¢ € L>(4) and
; € L*°(B), where || - || denotes the sup norm.

In our case, we also have 0° = 1, as follows from max,,c4(m,n) =1 for all n € B and
maxpep(m,n) =1 for all m € A.

Lemma 3.2. For any bounded functions ¢: A — R and ¥: B — R, we have ¢°¢ < ¢,
/lpCC < w ¢CCC — ¢C and /lpCCC — ,lpc.

Proof. This is formal, see [1, p. §]. O

Definition 3.3. We define P C L>°(A) and Q C L*°(B) as the images of the c-transform,
P:={p=v"|vel>®B)} and Q:={p=u’|ueLl>*A)},

and equip P and Q with the supremum norm.

The functions in P and @ are called c-convex. It follows from the remarks above
that the spaces P and Q of c-convex functions are invariant under the addition of a
real constant, and they consist of bounded functions. They also contain all constant
functions.

Lemma 3.4. The c-transform defines isometric bijections P — Q and Q — P that are
inverse to each other.

Proof. By Lemma 3.2, the two maps are bijective, and inverse to one another. As they
are both contractive, they must be isometries. O

Lemma 3.5. The functions in P and Q are uniformly Lipschitz continuous.

Proof. Suppose 9 is a bounded function on B. By definition, ¥°(m) = sup,c5((m,n) —
¥(n)); this defines a locally bounded function on Mg. Each of the (m,n) — ¢(n) is
linear, with uniform Lipschitz constant, since B is compact. It follows that ¢¢(m) is
also Lipschitz on Mg, with the same constant. The same argument obviously works for

Q. O

Corollary 3.6. The spaces P and Q are closed subspaces of C°(A) and C°(B), respec-
tively. Moreover, P/R and Q/R are compact.

Proof. Lemma 3.5 shows that P C C°(A). To prove that P is a closed subspace, consider
a sequence (¢y)5° in P converging uniformly to ¢ € CY(A). Then ¢¢¢ = ¢y for all k, so
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since the double c-transform is a continuous (even contractive) map from C°(A) — P,
we must have ¢°“ = ¢, so that ¢ € P. Thus P is closed.

To prove that P /R is compact, it suffices to show that the closed subspace Py := {¢ €
P | max ¢ = 0} is compact. But Lemma 3.5 shows that the functions in Py are uniformly
bounded, and equicontinuous, so we conclude using the Arzela—Ascoli theorem.

The same argument shows that @ C C°(B) is closed and that Q/R is compact. O

Remark 3.7. For any subset A’ C A and any bounded function ¢: A" — R, the function
1 B — R defined by ¥ = sup,,,c - (m — ¢(m)) is c-convex. Indeed, v is the c-transform
of the extension of ¢ to A defined by ¢|a\ar =supy ¢ +d + 2.

Lastly, we have the following definition, also standard in the optimal transport liter-
ature:

Definition 3.8. Given ¢ € Q, the c-subgradient of 1) is the multi-valued map 9): B — A
given by

(0Y)(n) :=={m € A|P(n) +¢*(m) = (m,n)}
for any n € B.

By continuity, the c-subgradient is nonempty. When it is a singleton, we call it a
c-gradient. We make similar definitions for ¢ € P. It is evident that for ¢y € Q, m € A
and n € B, we have m € (0°)(n) iff n € (0°)°)(m), so that 0% and 9°Y° are inverses,
in the sense of multi-valued maps.

Example 3.9. Let ¢ = max; m; = 1 € Qg where the max is taken over the vertices of
A. Then

OY°(n) ={me A: (m,n) =1}
is the face in A dual to the smallest face in B containing n.
3.2. FExtension property

In [41], Li studies the class of functions on A and B which satisfy what he calls the
extension property, motivated in part by extension theorems for (quasi-)plurisubhar-
monic functions: see e.g. [19,18,62,54,20]. Here, similarly to [41, Proposition 3.19], we
show that these extendable functions are exactly those in P and Q, and discuss their
canonical extensions to Mg and Ng.

We set some notation. As in [3], let P4 be the set of convex functions ¢: Mg — R
such that ¢ = max;n; + O(1), and Q4 the set of convex functions ¢: Ng — R with
1 = max; m; + O(1). Using (3.1) and (3.2), we can view the c-transforms as maps
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L*(A) - Q4 and L*(B)— Py,

so that all functions in P and Q come from restrictions of functions in Py and Q.. The
following proposition shows the converse:

Proposition 3.10. Suppose that » € Q. Then ¢ > 1 on Nr \ (AY)°. It follows that
Y =1 on B = 0AV. The corresponding statements hold for ¢ € Py .

Proof. It suffices to prove ¥ > ¢ on N \ (AV)°. Indeed, the inequality ¢°“ < ¢ on B
is formal, see Lemma 3.2.

Pick any ng € Ng \ (AY)°. To see that 1(ng) < ¥“(ng), it will suffice to find an
m € A such that:

¥(no) < (m,ng) — ¢°(m),

since the right-hand side is dominated by ¥°¢(ng). Let m’ be a subgradient of ¥ at nyg,
ie.

1[)(71) > <m/7 n— TL0> + w(no)v

for all n € Ng. Since ¢ € 9, the subgradients for v satisfy d¢(Ng) C A (see e.g. [3,
Lemma 2.5]). Also, as ng is not in the interior of AV, we can find a hyperplane, repre-
sented by my € Mg, such that sup,,cg(mo,n) < (mg, no).

Now let A > 0 be such that m := m’ + Amg € A. Then we have that:

¥°(m) = sup(m,n) —(n) < —(ng) + sup(m’ + Amq,n) + (m’,ng — n)
neB neB

= (m',no) —¥(no) + A sgg(mmn) < (m,ng) — ¥ (no),

and we are done. O
Corollary 3.11. The spaces P and Q are convex.
Proof. This is clear since the spaces Py and Q. are convex. O

Remark 3.12. Unlike the plurisubharmonic case, functions in P (resp. Q) admit a canon-
ical extension to Mg (resp. Ngr), namely the supremum of all such extensions. We omit
the proof.

3.8. Converity in coordinate charts

Following Li [41], we show that the functions in P and Q are convex in the coordinate
charts defined in §2.1, up to adding a piecewise linear term.
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Lemma 3.13. [/ 1, Proposition 3.26] If 1) € Q, then for any i # j, the function

Vi = (Y —mj)oq;

is convez on q; ; !(Star(n;)). As a consequence, Yoq; j is convex on qi_J1 (1) for any k # 1.
Similarly, ngb € P, then for any i # j, the function

g = (& —15) o pij
is conver on p, ; ! (Star(m;)), and ¢ o p;; is convex on p;jl (ok) for any k # 1.

In the terminology of [41], the lemma says that the functions in P and Q are locally
convex.

Proof. We prove the statement about Q; functions in P are handled in the same way.
Thus pick ¢ € Q. We shall in fact prove the following: if n € 7; C Star(n;) and m €
0%(n), then p;ll (m) is a subgradient for ); ; at qifjl(n) (here we are thinking of p;ll as a
global map from A to R? and make no assumption on where m is inside A). Accepting
this, and noting that 9 (n) is non-empty for any n € B by compactness, it follows that
1;,; is convex on Star(n;). The proposition then follows by noting that

w (wl’] ( - mk:) © ql,]) © qz _7 qi,k?

(mj —my)og; j is affine on ¢, ; !(Star(n;)) for any j, k # i, and that the maps q;’jl Qi k
are linear on g; ! (Star(ny)).
First, from the definition of the c-subgradient, we have:

b(n) = (m,n) = ¢°(m) < (m,n —n') + ()
for all n’ € Star(n;). With y := q;jl (n),y' = qifjl (n'), we have that
$ii (') = ¥ij(y) = (m —my,n' —n),

and it remains to estimate the right-hand side in terms of the coordinates.

We can write m = m’+rm;, where m’ € o; and r > 0. Indeed, if m = >, apmy, then
we can pick m' =, (ax + 735 )my and r = 2a;. Now set z := p;}(m), x = p;}(m'),
and x; := p;zl(mz) By Proposition 2.2, we have

(@'Y —y) = (m' —mj,n" —n).
On the other hand, a direct calculation as in the proof of Proposition 2.2 yields

(@i, y) = (mi,n) + (d+1)(mj,n) and  (2,y') = (4, n') + (d + 1)(my, n').
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By linearity, z = 2’ + rx;, and hence

(z,y" —y) = (m' —mj,n" —n) +r((mi,n" —n) + (d+1)(m;,n" —n))

=(m—mj,n —n)+r(d+1)(m;,n" —n) < (m—mj;,n" —n),

where the inequality holds since n € 7; implies (m;,n) = 1 > (m;,n’). Altogether, this
yields

Yig(y') —vii(y) = (2,9 —v),
and completes the proof. O
3.4. A principal R-bundle

We can interpret the convexity statement in Lemma 3.13 geometrically as follows. For
0 <j <d+1,set Y; :== Ng, and define a topological space A by A := ]_[j Y; xR/ ~, where
(n,\) € Y;xRand (n/,\) € Y;s xR are equivalent iff n = n’ and X — A = (mjs —m;, n).
The evident map m: A — Ng gives A the structure of a principal R-bundle.?

Let Z C Ng. A continuous section of A over Z is a continuous function s: Z — A such
that m o s = id. By construction, A is trivial, and comes equipped with isomorphisms
0;: A 5 Y; x R. These give rise to a canonical reference section s,ef over Ng, defined by
0;(sref(n)) = (n, (m;,n)). For any continuous section s over Z, s — syt is a continuous
function on Z. We set s; := Syef + M.

A continuous metric on A over Z can be viewed as a continuous function ¥ : 77(Z) —
R which respects the R-action, i.e. ¥(s+r) = ¥(s)+r, for s € 7~1(Z), r € R. By checking
its representations in coordinate charts, ¥ is naturally a section of the “dual” bundle —A;
this is defined in exactly the same way as A, except we require A’ — A = (m; —mj/, n).
It follows that —s.ef is a canonical reference metric on A.

The restriction of A (and —A) to the integral affine manifold By C N can be equipped
with the structure of an integral affine R-bundle in the sense of [36]. Namely, we declare
that, for any 4, a continuous section s of A over 77 (resp. T7) is integral affine iff the
function s — s; on 77 (resp. T7) is integral affine for some (equivalently, any) j # <.

Lemma 3.13 now implies that for any ¥ € Q, the metric ¥ = ¢ — st on A is convex

over By, since it is convex in any affine trivializations (equivalently, ¥ is a convex section
of —A [36]).

4. Symmetric c-convex functions and their Monge-Ampére measures

The c-transform is modeled on the Legendre transform between convex functions on a
vector space and its dual, and as shown in Lemma 3.13, leads to a seemingly satisfactory

3 One can also view A as the skeleton of the analytification of the line bundle O(d+2) over P4+, restricted
to Ng C Pa+1an see [9, §2.1].
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notion of “local convexity” on A and B. However, if one attempts to generalize Alexan-
drov’s definition of the weak Monge—Ampeére measure to this setting, some interesting
problems manifest.

As suggested by Li [41], these issues disappear if we take into account the action of
the permutation group G = Sg42, and restrict ourselves to symmetric data.

4.1. Controlling the c-gradients

We denote by Pgym C P and Qgym the set of symmetric functions, that is, G-invariant
functions. These are closed subsets of P and Q, respectively, so the quotients Psym /R and
Qsym/R are compact by Corollary 3.6. The c-transform is equivariant for the G-action,
and restrict to isometric bijections between Pgym and Qgym.

As we now show, symmetry places a number of strong restrictions on the possible
c-subgradients a function could have.

Lemma 4.1. For any ¢ € Qgym, we have 0°Y(I?) C o; and 0°Y(17) C S;. The analogous
inclusions hold for ¢ € Psym.

no m2
n mi
'\
na mo
TS5 S (for d = 2)

Proof. By symmetry of ¢ and ¢, m € (0°))(n) implies (m,n) = maxzeq{g~*(m),n).
The result now follows from Lemma 2.1. O

Since 0 and 0°Y° are inverses, applying Lemma 4.1 to ¢ gives:

Corollary 4.2. For any ¢ € Qgym, we have S{ C 0°Y(1;) and of C 0°Y(T;), with analo-
gous results for ¢ € Psym.

Next we look at the subgradients in charts. Recall that the function v, j := (¢ —m;)o
¢i,j is convex on q;j-l (Star(n;)), see Lemma 4.1.

Remark 4.3. Lemma 4.1 gives an alternative proof a weaker version of Lemma 3.13,
namely, that 1); ; is convex on ¢, jl (T7) for every ¥ € Qgym. Indeed, the lemma implies
that 9|7 is a supremum of functions of the form Zk# Opmy + ¢, with c € R 6, > 0,
and ), 0, = 1. For each j,k # i, the function (mj + ¢ —m;) o ¢; ; is affine, and this
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implies that v; ; is convex. In fact, even when k = 4, the function (my + ¢ —m;) o ¢; ;
is convex (although not affine); hence a similar argument can be used to prove the full
statement of Lemma 3.13.

Lemma 4.4. Suppose that ¢ € Qgym and i # j. Then p;ll gives a bijection of (9°)(n)
onto awi,j(q;jl(n)) for anyn € T7. The same result holds for any n € 7. Moreover, the
analogous results hold for Pyym.

Proof. First suppose n € 7. By Lemma 4.1, we have (0°¢))(n) C o;. Lemma 2.1 and
symmetry of 1 show that, for m € o;, we have:

¢(m) = sup (m,n) —¢P(n) = sup  (m,n) —Y(n).

neT; neStar(n;)

Thus, m € (0%)(n) iff

<ma Tl> - ¢(”) Z <m7n/> - T/J(”/)

for all n’ € Star(n;). Writing m = p; ;(z) and n = ¢; ;(y), Proposition 2.2 implies that
the above inequality is equivalent to

(,9) = ij(x) > (2, ") — i (y)

forally’ € qi_’jl(Star(ni)), which amounts to = € 01; j(y). The case when n € 77 is proved
in the same way, using Lemma 4.1, and the proof for functions in Psyy, is completely
analogous. O

Lemma 4.4 allows us to apply many standard results for convex functions to c-convex
functions. For example, we have:

Lemma 4.5. If ¢ € Psym, then the following properties hold:

(i) the c-subgradient (0°¢)(m) is a singleton for almost every m € A (i.e. ¢ has a
c-gradient a.e.);
(ii) the a.e. defined function (0°¢): A — B is measurable, and the set:

{n € (0°¢)(m) N (9°¢)(m') | m,m’ € Ay, m # m'}
has Lebesgue measure 0.
Similar results hold for ¢ € Qgym.

Proof. The convex function ¢; ; (defined analogously to v; ;) is almost everywhere dif-

ferentiable, so applying Lemma 4.4 to each of the S¢, say, implies that (0°¢)(m) is a

7
singleton for a.e. m € A, showing (i).



22 J. Hultgren et al. / Advances in Mathematics 439 (2024) 109494

The second point follows similarly, since the ¢; ; are measurable and A is covered, up
to a set of measure zero, by the sets S7. O

Next we relate the c-transform on symmetric functions to the usual Legendre trans-
form on R%. Denote by L, (A) and LZ,(B) the sets of symmetric bounded functions
on A and B, respectively.

Lemma 4.6. If ¢ € Lgy, (B) and i # j, then the convex function (¢ — nj) o p;; on
p;j-l(Si) C R? s the Legendre transform of the bounded function v oq;,; on qj_)i1 (1) C R4,
Similarly, the convex function ¢ op; ; on p;jl(crj) is the Legendre transform of the convex
function v; ; = (Y—m;)oq;,; on quil(Tj). The analogous statements hold for ¢ € L= (A).

Proof. If m € S;, then Lemma 2.1 implies that ¢¢(m) = sup,,¢,, ((m,n) —(n)). Writing
m = p; ;(x), n = ¢;,(y), and using Proposition 2.2, we see that

(W —mnj)(x) = sup ((z,y) —¥(p;i(y)),

yea;; (i)
which proves the first assertion. The remaining statements are proved in the same
way. 0O

Denote by ngm(B) the set of symmetric continuous functions on B.

Lemma 4.7. Suppose ¢ € Qsym and v € C2. (B). Then, for almost every m € A, the

sym

function t — (¢ + tv)(m) is differentiable at t = 0, with derivative —v((9°¥°)(m)).

Proof. Working in charts, using Lemma 4.6, this follows from the corresponding result
about the Legendre transform on R?, as stated in e.g. [3, Lemma 2.7].

A more direct proof goes as follows. Note that (¢ +tv)¢(m) is convex in ¢. This means
its left and right derivatives exist at t = 0 and

A+t (m)| @+ 1) (m)

4.1
dt =0- dt t=0+ ( )

Assume 0°Y°(m) = {n}, and for each t # 0, pick n; such that
(W + tv)(m) = (m,ny) — () — to(ny), (42)

which is possible by compactness of B. By compactness of B, {n;} converges up to passing
to subsequence to some ny € B when t — 0. We get, by continuity of the c-transform,
that ng satisfies ¥°(m) + ¥(ng) = (m,ng); hence ng = n and ny — n. Using (4.2), this
yields

(¢ + tv)e(m) — P°(m)
t

Y(ne) = ¥(n) = (m, e~ m)

= —v(m) - :

(4.3)
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The numerator on the right hand side is positive since m € 9“)(n); hence

ALt m)| ) < )M
dt t=0+ B dt =0

Combining this with (4.1) proves the lemma. O
By Dominated Convergence, we obtain the following result, which is the analogue of
the differentiability result needed to solve the complex and non-Archimedean Monge—

Ampeére equations, respectively, see [4, Theorem B] and [7, §7]. In what follows, u denotes
Lebesgue measure on A, of total mass (d + 2)4+1 /d!.

Corollary 4.8. If ¢ € Qsym and v € C, (B), then the function

sym
t /(¢+tv)cdu
A

is differentiable at t = 0, with deriwvative — [, v((0°¢°)(m)) dp.
4.2. The tropical Monge—Ampére measure

We can now use Corollary 4.8 to assign a symmetric positive measure v, on B to
any symmetric function ¢ € Qgym, in a way which is compatible with the variational
approach to the Alexandrov Monge-Ampere operator. Hence, we will think of vy as the

Monge-Ampeére measure of 1.

Definition 4.9. Given ¢y € Qgyy we define a positive Radon measure vy, on B of mass |A]

/vdz/w = —%

B

by declaring

[ s wran= —Z(v 0 0°9°) di

=04
for every v € C3,,,(B).
Proposition 4.10. For any ¢ € Qsym and Lebesgue measurable U C B, we have

vy (U) = p((0°9)(U)).

Proof. First, by Lemma 4.5, the multivalued map 9y is p-a.e. single valued, so by the
standard change of variables formula and Corollary 4.8, we have:

vy = (0°0°).p.



24 J. Hultgren et al. / Advances in Mathematics 439 (2024) 109494

Since 9°)¢ and 0% are inverses, the result now follows from the definition of the push-
forward measure. 0O

That vy is compatible with the Monge-Ampere measure in charts now follows imme-
diately from Lemma 4.4:

Corollary 4.11. For any ¥ € Qgym and any i # j, we have:

vplre = (gij)« MAR (wi,j q;;(T;)) and - vylre = (¢i;)« MAR (’LpiJ'q;jl(Tf)) ;

and for any j we have

Vele = MAR(( 0 405)l 2 05)-

Corollary 4.11 allows us to now apply the standard theory for the Monge—Ampére
operator. For instance, we see that v, is weakly continuous under uniform convergence
of the potentials, using the following result:

Lemma 4.12. [37, Theorem 2.1.22] Let Q C R? be an open convexr subset, uj,u: Q — R
convex functions, and assume that u; — u pointwise on Q. Then there exists a subset
E C Q of full measure such that for every x € 2, u; and u are differentiable at x, and
ul () — u' (7).

Proposition 4.13. If o sequence ()52, of functions in Qgym converges uniformly to
Y € Qgym, then vy, — vy weakly as measures on B.

Proof. By definition, we have vy = (0°%°).u, so by Dominated Convergence it suffices
to prove that 0%y — 0%)¢ a.e. Now, the c-transform is 1-Lipschitz, so we have ¢§ — ¢°
uniformly on A. Further, on the open stars S, which together have full measure, the
c-gradient is computed as the gradient of a convex function on an open subset of R?, see
Lemma 4.4. The result now follows from Lemma 4.12. O

Remark 4.14. As noted in §3.4, any ¢ € Q defines a convex metric ¥ on an integral
affine R-bundle A on the integral affine manifold By. Such a convex metric has a natural
Monge-Ampére measure MARg (¥), defined as MAg (¥ o s) for any local affine section s,
and Corollary 4.11 shows that the restriction of vy, to By equals MAR (V). Note, however,
that vy, may put mass also on B\ By, see Example 4.17.

4.3. Examples

We conclude by giving a few examples. Recall that the total mass of v, is always

(d+2)d+l

- for ¢ € Qgym. For instance, when d = 2, the total mass is 32.
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Example 4.15. Let 1 = max; m; = 1 € Qgym, and m € A. The supremum

sup{m,n) —(n) = sup(m,n) — 1
neB neB

is achieved at one of the vertices {no,...,ng+1}. It follows that 9°)°(m) contains a
vertex for each m € B. Consequently, since 0°¢)¢ is single valued almost everywhere, vy

d
is supported at the vertexes and by symmetry vy, = . (d';!z) On,; -
Example 4.16. For each i, let n} := — be the barycenters of the 7;. Using basic prop-
d
erties for the c-gradient, one can see that 1 := (max; n}) satisfies vy := ), (d';?) O -

This can be computed explicitly, for example when d = 2,

—,max ——— — -

1 mi—l—mj 1
97 i#j 2 3 ’

1) = max {max m;, —
K3

—m;

where m; =

Example 4.17. ¢ can also charge the singular set — indeed, when d = 2, one can verify that
1) = max {maxi m}, %} does not charge By at all, and so we have vy, = ineB\Bo %61“
by symmetry. One can also check that, while 1), 1 is actually convex on all of qj_,i (Star(n;),
MAR (¥j)(z;) = 3 > 18 for each x; € Star(n;)°\ By, so the equalities in Corollary 4.11
cannot be extended to all of Star(n;)°.

For ¢ € Qgym, we have two equivalent definitions for vy, (Definition 4.9 and Proposi-
tion 4.10), which agree with the Monge-Ampeére measure of ¥; ; in coordinates (Corol-
lary 4.11). For non-symmetric ¢ € Q, none of these are well-defined in general, and when
they are, they need not agree with the Monge-Ampére computed in coordinates, as the
following examples show.

Example 4.18. Let d = 2 and ¢ := m,, for some fixed i; then the Monge—Ampere measure
of 1; ; is MAR(¢; ;) = 1280¢. Since this gives a total mass larger than 32, we conclude
that Corollary 4.11 cannot hold for this .

Example 4.19. Let d = 2, and fix 0 < 7 < 3. If ¥ = max;»; m;, then one checks that
p(0°)) = 86y, +32J,; hence the right hand side in Proposition 4.10 does not assign the
correct total mass for non-symmetric .

Example 4.20. Let d = 1, and ¢(n) = max,;{m;,n — ng), with n; = 7;7' for j =0,1,2.
Let v > 0 be a piecewise linear function with v(ng) = 1 and v(n}) = v(n}) = 0. Then
(¢ + tv)¢(m) will not be differentiable in ¢ € (—¢,¢) for all m € o¢; hence Definition 4.9
does not make sense for this ).
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5. The tropical Monge—-Ampére equation

We are now ready to study the (symmetric) tropical Monge-Ampeére equation. Thus,
given a symmetric positive measure v on B of mass |A|, we seek to find ¢ € Qgym such
that vy, = v. In particular, we will prove Theorem B in the introduction.

5.1. Variational formulation

Given a measure v as above, we define a functional
F=F,: Qym—R

by

Pwm—!ww+!ww

Lemma 5.1. A function ¢ € Qgym minimizes the functional F iff vy = v.

Proof. First suppose v = vy. For any ¢’ € Qqym we then have

FWU:/Wﬁ+Wow%%MM

A

For almost every m € A, we have

P(m) + ' ((079°)(m)) = (m, (0°)°)(m)) = $°(m) + ((0°¢°)(m)),

and it follows that F'(¢') > F(1), so that 1 is a minimizer for F.

Conversely, suppose that 1 € Qgym is a minimizer for F, and let us show that vy = v.
We must prove that [, vdry = [pvdv forallv € C°(B). As v and vy, are both symmet-
ric, it suffices to establish this for v € CQ ,(B). Indeed, the function v = ﬁ > gec Vo9

is symmetric, and we have [yvdvy = [pvdvy, [pody = [podv.
Thus suppose v € C2  (B), and consider the function on R defined by

sym

ft) = /(¢ +tv)¢ dp + /(¢ + tv) dv.
A B
It follows from Corollary 4.8 that f(t) is differentiable at ¢ = 0, with

f’(O):—/vdud,—i-/vdy,

B B
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so we are done if we can prove that f(¢) has a (global) minimum at ¢ = 0.
Now (¢ + tv)®® € Qgym, and (¢ + tv)°°° = (¢ + tv)°, whereas (¢ + tv)* < ¥ + to.
Thus

ft) = /(w+tv)cdﬂ+/(¢+tv)00dv = F((¢ +1tv)*) = F(v) = f(0),

A B

completing the proof. O
5.2. Erxistence and uniqueness

We will prove

Theorem 5.2. For any symmetric positive measure v on B of total mass |A|, there exists a
function ¥ € Qgym, such that vy = v. Moreover, 1 is unique up to an additive constant,
and the map ¢ — vy is a homeomorphism from Qsym/R to the space Meym(B) of
positive, symmetric measures of mass |A|.

Proof. We use Lemma 5.1. To prove existence of a solution, it suffices to show that the
functional F, admits a minimizer on Qgym. But as ¢ — ¢¢ is Lipschitz continuous, one
sees that F is Lipschitz continuous. It is also translation invariant, so the existence of a
minimizer follows from compactness of Qsym/R, see Corollary 3.6.

We now show uniqueness. It suffices to prove that if 1, 91 € Qsym are two minimizers
of F, normalized by [;dv = 0, i = 0,1, then o = ¥1. Set ¢ := (1o + ¥1). Then
¥ € Qgym, by convexity of Qgm, and we have [, dv = 0. Now

Y = sup(n — (n)) < 5 sup(n — o(n)) + 5 sup(n — pu(m)) = 5 (U6 + ¥5),
neB neB neB

pointwise on A. As [ dv = 0, this leads to
1 1 .
F, () = /1/chu < E/wgdm §/wfd,u: Inin F,.
A A A Sym

Thus equality holds, so since g, ¢f,¢° are continuous, we must have ¢ = %( S+ Uf).
For a.e. m € A, ¢§, ¥§ and 9° all admit a c-gradient at m. If we set n := (9°%°)(m),
then

$(m) = (m,n) —(n)
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Thus ¢§(m) = (m,n) — ;(n) for i = 1,2, so we must have

(0°95)(m) = (0°¢7)(m) = n

for a.e. m. We may assume m lies in some open star S7. Pick any j # ¢. By Lemma 4.4,
the convex functions (¢§ — m;) o p;; and (¢Y§ — m;) o p;,; on p]_zl(Sf) have the same
gradient at a.e. point. By Lemma 5.3 below, these two functions differ by an additive
constant, so ¥§ —{ is constant on S;. By continuity of the elements of P and density of
U; 7 in A, we get that 1§ — 4 is constant on A. It follows that 19 — 1/, is also constant,
and hence zero, by our normalization.

It follows that the Monge-Ampere operator ¢ — vy, defines a bijection between the
compact Hausdorff spaces Qgym /R and Mgym (B). By Proposition 4.13, this bijection is
continuous, and hence a homeomorphism. O

Lemma 5.3. If Q C R™ is open and convex, and ug,u; are convez functions on €1 such
that Vug = Vuy a.e. on Q, then ug — uy is constant on €.

Proof. Let E C Q be the set of points where Vuyg = Vuy. Pick any point 2y € €.
After adding a constant to uj, we may assume ug(zg) = u1(zg). Pick » > 0 such that
B(xg,2r) C Q. It suffices to prove that ug = uy on B(xg,r). Fubini’s theorem implies
that for almost every point v on the unit sphere in R", we have x¢ + tv € E for almost
every t € (—r,r). For such v it follows that the convex functions f;(t) := u;(z¢ + tv) on
(—r,r) satisfy f{(¢t) = fi(t) for a.e. t. As fo(0) = f1(0), this implies that fo = f1, see [24,
Theorem 3.35]. Thus ug(z + tv) = u1(zg +tv) for almost every v and all ¢ € (—r,r). By
continuity, we see that ug = u; on B(xg,r). O

Proof of Theorem B. It is clear from Theorem 5.2 and Corollary 4.11 that ¥ — vy
satisfies all the properties stated in Theorem B. Now let ¢ — V;b be a continuous map
from Qgym to Mgym such that V{p|7§ = MARg(¢|;2) for every i. Thus I/,fp = vy for all
1) € Qgym such that vy puts full mass on | J; 7. But it follows from Theorem 5.2 that
the set of such functions is dense in Qgym; indeed, the set of measures on Mgy, putting
full mass on J; 7 is dense. The result follows. O

Remark 5.4. It is of interest to the SYZ conjecture to investigate the regularity of the
solution 1 when v is Lebesgue measure on B, using classical and more recent results,
see [23,47-49]. We hope to address this in future work.

6. Induced metrics on the Berkovich projective space
Here we define a procedure that to a symmetric c-convex function on B associates a

symmetric toric continuous psh metric on the Berkovich analytification of Opa+1(d+ 2).
As before, K is any non-Archimedean field.
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6.1. Continuous psh functions and metrics

The study of continuous psh (or semipositive) metrics in non-Archimedean geometry
goes back to Zhang [65] and Gubler [33], who defined the notion of a continuous psh
metric on the analytification of an ample line bundle on a projective variety defined over
a nontrivially valued non-Archimedean field K. This theory is global in nature.

More recently, a local theory was developed by Chambert-Loir and Ducros [15]. Given
any non-Archimedean field K, any K-analytic space® Z, can be endowed with a sheaf of
continuous psh functions. For example, if fi,..., f, are invertible analytic functions on
Z,Q C R™ is an open subset such that (log|fi(z)[,...,log|fn(2)]) € Qforall z € Z, and
x: Q — R™ is a convex function, then the function z — x(log|fi(2)|,...,log|fn(2)]) is
a continuous psh function on Z. A general continuous psh function is locally a uniform
limit of functions of this type.

If L is a line bundle (in the analytic sense) on Z, then a continuous metric on L in the
‘multiplicative’ sense, is a continuous function || - || on the total space of L with values
in R>g, and a suitable homogeneity property along the fibers of L — Z. We say that
|| - || is semipositive if for some (equivalently, any) local analytic section s: Z — L, the
continuous function — log ||s|| on Z is psh. It will be natural for us to instead use ‘additive’
terminology, and view a continuous metric on L as an R-valued function ¥ = —log]|| - ||
on the total space with the zero section removed. If ¥ is a continuous metric on L and
s is a nonvanishing section of L over an open set U C Z2, then we can view ¥ — log |s]
as a continuous function on U, and we say that U is psh if U — log |s| is psh on U; this
is equivalent to || - || = exp(—¥) being semipositive.

In fact, the global notion in [33,6] is a priori stronger. Let X be a projective variety,
and L an ample line bundle on L. Then a continuous metric ¥ on L*" is globally psh if
it can be uniformly approximated by Fubini-Study metrics, i.e. metrics of the form

1
v = 1 i+ A 1
- ax (logs;| +45), (6.1)
where 7 > 1, s; € H’(X,rL) are global nonzero sections with no common zero, and
A; € R. Such a metric is continuous psh in the sense above, and we shall only consider
globally psh metrics.

6.2. Monge—Ampére measures
To any continuous psh function ¢ on a pure-dimensional K-analytic space Z is associ-
ated a ‘non-Archimedean’ Monge-Ampére measure MAxa (¢), a positive Radon measure

on Z. We refer to [15] for the definition, but note that the Monge-Ampére operator is
continuous under locally uniform convergence.

4 All K-analytic spaces will be assumed good and boundaryless.
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If L is an analytic line bundle on Z and ¥ is a continuous psh metric on L, then
the Monge-Ampére measure MAxa (P) is a well-defined positive Radon measure on Z
with the following property: for any nonvanishing section s of L over some open subset
U C Z, we have MANA (U)|y = MANA (¥ —log|s|)|v). In ‘multiplicative’ notation, this
measure is written ¢, (L, || - ||)¢, where d = dim Z and || - || = exp(—¥), as first introduced
by Chambert—Loir [14].

In this paper, all computations involving the non-Archimedean Monge—Ampeére mea-
sure will be deduced from the following result, essentially due to Vilsmeier [61].

Lemma 6.1. Let T' ~ G} be a split torus, with tropicalization map trop: T®" — NpR.
Let Q C Nprr ~ R™ be an open subset, and g: Q@ — R a convex function. Then the
composition g o trop: trop~1(Q) — R is a continuous psh function, and we have

MAna (g o trop) = n! MAR(g)

on trop~1(Q), where the left-hand side denotes the mon-Archimedean Monge-Ampére
measure on trop~1(Q), and the right-hand side denotes the real Monge—Ampére measure
on Q C trop~1(Q).

Proof. We argue as in the proof of [61, Corollary 5.10]. By ground field extension, we
may assume K is algebraically closed and non-trivially valued, and in particular has
dense value group. We may also assume 1" = Spec K[zli, ..., 25] and Nrr = R". The

statement is local on  C R"™, so pick any point t = (¢1,...,t,) € Q, and nonzero
elements a, by, ...,b, € K such that the set

{s=(s1,...,50) €R" | 5; > log|bj|,log|a| ™" + Zlog|bj| > Zsj}
J J

is contained in €2 and contains ¢ in its interior. After performing the change of coordinates
zj + bjz; we may assume b; = 1 for all j. Now consider the formal scheme

X = Spf(K°(z0,...,2n)/(20...2n — a)).

The generic fiber of X is isomorphic to the Laurent domain |z;] < 1, T[; |2;| = |a| in
T2, and the skeleton A of X is the simplex {s; > 0, s; < log|a|~'}. As this simplex
contains the point ¢ in its interior, the result now follows from Corollary 5.7 in [61]. O

Remark 6.2. Lemma 6.1 can also be deduced from [11] which systematically studies
pluripotential theory for tropical toric varieties, and its relation to complex and non-
Archimedean pluripotential theory.
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6.3. The Fubini—Study operator

We now return to the setup earlier in the paper. There is a natural Fubini—Study
operator that associates to any continuous convex function ¢: A — R a continuous psh
metric FS(¢) on O(d + 2)*", see for example Theorem 4.8.1 in [12].° It is characterized
by the following two properties:

o ¢ — FS(¢) is continuous;
o if ¢ is Q-PL, then for any sufficiently divisible > 1, we have

FS(¢) = max (r 'log|x"™| — ¢(r~'m)).

(@)= max (r~" log|x"™|—¢(r~"m))

Here ¢ is Q-PL if it is the maximum of finitely many rational affine functions, i.e.
functions of the form n + A, where n € Ng and A € Q. Any continuous convex function
on A is a uniform limit of Q-PL convex functions, so the two conditions above completely
determine the operator FS.

6.4. From c-convex functions to continuous psh metrics

To any symmetric c-convex function ¢ € Qgym We now associate a continuous psh
metric on O(d 4 2)®*. This metric, which we slightly abusively denote by FS(v), is
defined by

FS(¥) := FS(¢°a),

where we view the c-transform ¢ as a convex function on My, defined using (3.2). The
map ¥ — FS(¢) is contractive, and equivariant for addition of constants.

The metric FS(¢) is closely related to the canonical extension of ¥ to Ng in §3.2.
Indeed, if m € MNA, and y™ := x1'™ € HO(P4*t!, O(d+2)) is the corresponding section,
then log |x™| is a continuous metric on O(d + 2)*" over T*". Then FS(¢)) —log [x™] is a
continuous psh function on 7", and we have

FS(¢) — log [x™| = (4 — m) o trop, (6.2)

on 172" where trop: T*" — N is the tropicalization map.

Lemma 6.1 and (6.2) allow us to compute the Monge-Ampere measure of FS(¢) on
T2 but that is not what we want to do. Instead, we will consider the restriction of
FS(7)) to a Calabi-Yau hypersurface X C P94+,

5 In [12], the authors consider concave rather than convex functions on A.
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7. Calabi—Yau hypersurfaces
From now on, K = C((t)). Consider a hypersurface X C P& of the form
X=V(z-... 2441 +tf(2)),

where f(z) € CJz] is a homogeneous polynomial of degree d + 2 such that for any
intersection Z of coordinate hyperplanes z; = 0 in P*1 f does not vanish identically
on Z and V(f|z) is smooth. We call such a polynomial admissible. The set of admissible
polynomials determines an open in |Opa+1(d 4 2)|, which is not empty as, for instance,
the Fermat polynomial fgi2(z) = Zfiol 20%2 is admissible. Moreover, X is smooth for

any admissible polynomial.
7.1. Models and skeletons

Let Y be any smooth and proper variety over K. Given a scheme ) over R := C[[t]],
we denote by Vi, respectively ), the base change of ) to K, respectively to the residue
field of R. A model of YV is a flat R-scheme Y such that Vg ~ Y. We say that the
model is strict normal crossing (snc), respectively divisorially log terminal (dlt), if the
pair (¥, Vo red) is so; see [38, Definitions 1.7, 1.18] for more details.

Given any snc, more generally dlt, model Y of Y, we denote by D())) the dual complex
of Yy (see [38, Definition 3.62]); this admits a canonical embedding D(Vy) — Sk(Y) C
Yval in YVal whose image is called the skeleton of ).

7.2. The essential skeleton of X

Let X2 be the analytification of X, and X¥* C X?" the set of valuations on the
function field of X. We have that X" is a closed subset of P4+1:2" Being the analytifi-
cation of a Calabi-Yau variety over C((t)), X®" admits a canonical subset Sk(X) C XVal,
the essential skeleton, defined in two equivalent ways. On one side, Sk(X) is the locus
where a certain weight function on X?" takes its minimal values, [39,50]; on the other
side, Sk(X) is the skeleton associated with any minimal dlt model of X, [52].

In our case, Sk(X) can be concretely described as follows. Consider the model

X:=V(z... zap1 +1f(2)) C Pt

of X over R = C|[t]. The special fiber X is simply given by V(zq-...-zq41) C P&*!, and

its dual complex D(A}) is evidently the boundary of a (d+ 1)-dimensional simplex, hence

topologically a sphere. We have an anticontinuous specialization map spy: X*" — Xjp.
Now X is smooth away from Sing(X) = U, ; V (2, 2j,, f(2)). Since f is admissible,

- forany £ € V(ziy,...,2,,,t, f(2)) C Sing(X) for some maximal m € {2,...,d}, étale
locally around £ we have the isomorphism
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X:V(x1~...-xm—ty)CA;”toxAd m

- (X, X)) is snc at the generic point of each stratum of the special fiber Ap.

It follows that locally around any singular point, X is a toric subvariety of A%*? and
the special fiber Xy consists of toric divisors; by [21, Proposition 11.4.24] the pair (X, Xp)
is log canonical around the singular points of X'. Finally, one can check that X is dlt
by considering the small resolution of X obtained as blow-up of all but one irreducible
component of the special fiber (see [38, §2.1, 4.2]), and is minimal since Ky ~ Ox. We
conclude that Sk(X) = Sk(X) ~ D(X)).

Let us be a bit more precise, and describe the embeddings of the d-dimensional faces
of D(Xp) in XVl Such a face is determined by a zero-dimensional stratum of the special
fiber, say the point &;, where z; = 0 for j # 4. At &, X' is smooth, the rational functions

Wi,5 = —'77 J#1i,
2
form a coordinate system at &;, and u; := —zfl”/f(z) is a unit at &;. We can write

2™ = Hw;,jl =ty (7.1)
J#i

and, for j # i,

z"Mi d+1 Hw” (7.2)

I#i,j

Given numbers A\; € Ry, j # @ with > A; = 1, there exists a unique minimal
valuation v; » on Oy, such that v; x(w; ;) = A; for all i. Then v; 5 defines a point in
XV2l. With a bit of work, one shows that A\ — v; » extends to a homeomorphism of
the closed simplex {37, \; = 1} C R;%""dﬂ}wi} onto a compact subset 7; of XVal.
Moreover, Sk(X) is a (non-disjoint) union of the 7.

We equip each 7; with an integral affine structure, in which the affine functions are
integral linear combinations of v — v(w; ;), j # .

Let U; := sp;(1 (&) C X2 be the open subset of points specializing to the point &;.
Each point v € U; lies in T*" as f(z) is generic, and defines a semivaluation on Oy ¢,
such that v(w; ;) > 0 for all j # 4, and ) v(w; ;) = 1. There is a canonical retraction
ri: Uy — 77 defined by 7;(v) = v; » where A\; = v(w; ;).

7.3. Tropicalization

The complement P4+1:an \ T30 consists of the hyperplanes z; = 0 and do not meet
Xval g0 Xval c T3 Note, however, X ¥ N Tval = ().
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By definition, the tropicalization of X NT (viewed as a subset of T" and with respect
to the given valuation on the ground field), is the image

(X NT)™P := trop(X** N T*") C Ng.

By the Fundamental Theorem of Tropical Geometry (FTTG for short, due to Kapranov
in the case of hypersurfaces [45, Theorem 3.1.3]), the tropicalization admits a different
description. Namely, the Laurent polynomial g(z) = 1+t% € K[M] can be written
as

g(z) =1+t Z amz"™,

meA

where a,, € C and a,, # 0 whenever m is a vertex of A. Then we have X NT = V(g).
The tropicalization of g is the convex, piecewise affine function on Ny given by

9P (1) = max{0, —1 = max{0, —1 :
9P (n) = max{0, —|—m€AI%1AE/1[)§lm¢O<m,n>} max{0, +0§T§§+1<ml,n>},

and the FTTG says that (X N T)%°P is the locus where the function g"°P fails to be
locally affine. Its complement in Ng has a unique bounded component, namely the set

{n € Nr | max(m;,n) <1},
whose closure is exactly the simplex AV above. In particular, B = dAY C (X NT)"°P.

Lemma 7.1. The map trop: X** NT*" — (X NT)"°P C Ng

(1) induces a homeomorphism of 7; onto 7;, and of Sk(X) onto B;

T.

(2) fits in the commutative diagram z}mp

% o

Ti
©

(3) in particular, satisfies U; == spy' (&) = trop™(77);
(4) induces an isomorphism between the integral affine structures on 7; and ;.

Proof. We consider a d-dimensional simplex 7; in Sk(X) as described in §7.2. Given

numbers A\; € R>q, j # ¢ with > A; =1, let v; » be the minimal valuation on Ox ¢, such
that v; x(w; ;) = A; for all j # i. By definition, trop(v; x) € Ng satisfies

(m, trop(v; z)) = —v A (2™)
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for all m € M. From (7.1) and (7.2) we have (m;,trop(v; »)) = —v; x(t71u;) = 1 and

(my, trop(vix)) = —(d + Dvia(wiz) + Y via(wig)
I#i,j
—([@d+ DN+ D> N =—(d+2)XN+1<1,
1#4,j

(7.3)

for j # 4. This means that trop(v; ») lies in 7, C B, thus trop(7;) C 7;. The composition

~ ~ tro
{Zj;éz )‘j = 1} T; P P
{0 irl}\{'} £ \[
R3¢ ! Sk(X) B
is injective by (7.3) and surjective. Indeed, given n € 7;, set

A= (L= (n,my))

for j #1i. As —(d+1) < (n,m;) <1 we have \; € R>o. Moreover,

d = T d+1—(n (n,» my)) = (d+1+<n m)) = 1.

J#i Ve

It follows that the restriction trop: 7; — 7; is a homeomorphism, and trop: Sk(X) — B

does too.
Part (3) follows directly from (2). For (2), we first check that trop(v) € 77 =
{max;z; mj < m; = 1} for any v € U;. Indeed, we have (m;,trop(v)) = —v(t " u;) =1

and (m;,trop(v)) =1 — (d + 2)v(w; ;) < 1 since z; = 0 at . To conclude, it is enough
to check that trop(v) = trop or;(v) on an integral basis for M:

(trop(v), e; — e;) = —v(w; ;) = —Aj = —v A(w; ;) = (trop(v;n), €j — €;).

For (4), we recall that the affine functions on 7; are integral linear combinations of
v — v(w; ), for j # i. The affine functions on 7; are the elements of M; as the set
{e; — ei};»; forms an integral basis for M, the affine functions on 7; are integral linear
combinations of n — (e; — e;,n). From (trop(v;x),e; — e;) = —v; x(w; ;) we obtain
4). o

7.4. Affinoid torus fibration
As explored in [39,53,51], the analytification X" of the Calabi—Yau variety X admits

various affinoid torus fibrations. Here we show that the tropicalization map induces
affinoid torus fibrations on the open subsets U; of X?".
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We recall that a continuous map p : Y*" — S to a topological space S is an n-
dimensional affinoid torus fibration at a point s € S if there exists an open neighborhood
U of s in S, such that the restriction to p~1(U) fits into a commutative diagram:

p~ ' ({U) —— trop~ (V)
P trop

U—=——V,

V' being an open subset of R™, the upper horizontal map an isomorphism of analytic
spaces, the lower horizontal map a homeomorphism, and the map trop defined as in §1.2
for a torus of dimension n. In particular, an affinoid torus fibration induces an integral
affine structure on the base S; see [39, §4.1] for more details.

Corollary 7.2. For any i, the map trop : U; — 77 is an affinoid torus fibration. Moreover,
the induced integral affine structure on 77 agrees with the one constructed in §2.1.

Proof. By Lemma 7.1, trop
torus fibration, see for instance the proof of [53, Theorem 6.1]. Again by Lemma 7.1,

v, is homeomorphic to the retraction r; that is an affinoid

77 and 77 are isomorphic as integral affine manifolds, hence the integral affine structure
induced on 77 by the affinoid torus fibration trop is isomorphic to the one constructed
in§2.1. O

8. Solution to the non-Archimedean Monge—Ampére equation

Let L := O(d + 2)|x. We are now ready to prove Theorem A in the introduc-
tion. Namely, we show that the preceding method recovers the solution to the non-
Archimedean Monge-Ampeére equation [7], for a symmetric measure supported on the
skeleton.

8.1. Ezistence and uniqueness

As mentioned above, to any (global) continuous psh metric ¥ on L*" is associated
a measure MAya (¥) on X?". By [64] we have MAxa (U1) = MAna (Uo) iff Uy — ¥y is
a constant, whereas the main result of [7] (see also [10]) states that for any measure v
supported on Sk(X) C X", there exists ¥ such that MAya (¥) = v.

8.2. Comparing Monge—Ampére measures
Given ¢ € Qgym we want to compare the tropical Monge-Ampére measure vy, on B

with the non-Archimedean Monge-Ampeére measure of the continuous psh metric FS(¢))
on L via the embedding B = Sk(X) C X2,
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Theorem 8.1. Let 1 € Qeym be any symmelric c-convex function. Then the associated
continuous psh metric FS(¢) on L*" has Monge—Ampére measure MAxa (FS(¢)) = dl vy,
viewed as a measures on B ~ Sk(X) C X?".

To prove the theorem, we want to use Vilsmeier’s result in Lemma 6.1, but our torus
T is of the wrong dimension. Instead, we use the fact that X?* admits local affinoid torus
fibrations with bases that are open subsets of B ~ Sk(X), and that these fibrations are
compatible with the embedding of X into the toric variety Pt!, see §7.4.

Proof. We first consider the case when the measure v, gives full mass to the union of the
open d-dimensional simplices 77 of B. By Corollary 7.2, the tropicalization map gives a
affinoid torus fibration trop: U; — 77. For any i # j we have

FS() —log|x™| = (¢ —m;) o trop

on U;, by (6.2). Lemma 6.1 and Corollary 4.11 now give that MAna (FS(¢)) = dlvy
on 77 C U;. As MAna(FS(v)) and vy have mass d!|A| and |A|, respectively, we have
accounted for all the mass of MAxa (FS(¢)), so MAxa (FS(v)) = dlvy.

Now consider the general case. We can find a sequence (1,) of symmetric measures
on B of mass |A| converging weakly to vy and such that v, gives full mass to | J; 7. By
what precedes, there exists a unique ¥, € Qgym such that vy, = v, and f 5 Undv =0.
By compactness of Qqym/R we may assume that ), converges uniformly to a function
1 € Qgym. By continuity of the Fubini-Study operator, FS(i,,) converges uniformly to
FS(¢). It follows that the Monge-Ampere measures MAxa (FS(t),)) converge weakly to
MAna (FS(¢)). Since MAna (FS(¢y,)) = d' vy, for all n, we get MAnA(FS(¢)) = dl vy,
and we are done. O

8.8. Invariance under retraction

Let v be a symmetric positive measure of mass (d+2)?*1 on Sk(X). The results above
give a rather explicit description of the solution (which is unique, up to a constant) to
the non-Archimedean Monge-Ampeére equation MAna (1) = v on the Calabi—Yau variety
X C P91, For one thing, v is the restriction of a torus invariant metric on Opa+1(d+2).
Note that we are not assuming that X is invariant under any torus action.

Here we investigate further properties of the solution.

Corollary 8.2. Let v be any symmetric positive measure on Sk(X) of mass (d + 2)?*1,
and let ¥ be a continuous psh metric on L*", whose Monge—Ampére measure equals v.
Then ¥ is invariant under retraction to Sk(X), in the following sense: for any j # i,
the function ¥, ; == (¥ —log|x™|)|u, satisfies ¥; ; =¥, ;or;.
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Proof. By Theorem 5.2 there exists a function ¥ € Qgym such that vy = v, and by
Theorem 8.1 ¥ = FS(¢). By (6.2) we have FS(y) —log |[x™/| = (¢ — m;) o trop on T°".
By Lemma 7.1, we have trop = trop or; on U;, hence the claim follows. 0O

9. Applications to the SYZ conjecture

In this section we prove Corollary C, following the work of Li. As f is admissible, for
any t € C*,

Xt :={z20...2a41 + tfay2(2) =0} C ]P’g'*’1
is a smooth complex projective variety, which we view as a complex manifold. Set

o 1= WMCl(OPd-Fl (d + 2)|Xt)

We equip X; with the unique Ricci flat Kéhler metric in ay. Let 14 be the corresponding
smooth positive measure on Xy, and write (X¢, d;) for associated metric space.

9.1. Proof of Corollary C
We follow [40]. Let us identify

X ={20 2441 + tfay2(2) = 0}

with the associated (singular) d+ 1-dimensional complex analytic subspace of P41 x C.
The central fiber X, consists of the d + 2 coordinate hyperplanes H; = {z; = 0} in
P4t ~ P4 % {0}. For each i, let £ := (;,; H; C Xp. Then X is smooth at &;, and
we may find local holomorphic coordinates w;, j # ¢, at & such that t = wp - ... - wq.
If we pick small (disjoint) neighborhoods W; of &;, and set W := J, W;, then we have a
continuous map

Logy: W\ X — | J77 CB

defined by Logy = >_,; %nj on W,.

By [8] (see [40, §3.1]), most of the mass of X, lies in W for ¢ ~ 0. Indeed:
Lemma 9.1. We have lim;_,o v (X; N W) /1 (Xy) = 1.

Proof. Viewed as a scheme over C[[t], X is a minimal dlt model, whose skeleton Sk(X')
equals the essential skeleton Sk(X). If X were a semistable model, the lemma would
follow from [8]. Now, there exists a projective birational morphism 7: X’ — X such that
X'’ is an snc model of X, and such that 7 is an isomorphism over the regular part of
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X. It follows that the only d-dimensional simplices of Sk(X”) contained in Sk(X) are
associated to & := 771(§;), 0 < i < d. We can pick corresponding neighborhoods W/ of
&; such that #(W/) C W; for all i, and hence X, N W' C X, where W' = J, W/. By 8,
Theorem 3.4], we have lim;_,o 14 (X N W) /1 (X¢) = 1, and the result follows. O

Let ¢ € Qgym be such that v, equals Lebesgue measure on B ~ Sk(X). In particular,
the restriction of ¢ to a d-dimensional face 7 satisfies the real Monge-Ampere equation,
and is therefore smooth outside a small closed subset.

Let ¢ := 9° be the c-transform of v, viewed as a continuous convex function on A.

an whose restriction to X2" has

This defines a continuous psh metric on Opa+1(d + 2)
Monge-Ampeére measure equal to v, by Theorem 8.1.

The continuous convex function on A also defines a continuous psh metric on the
holomorphic line bundle O(d+2) on P4*+!. Approximating 1 by a smooth strictly convex
function, we can approximate this metric uniformly by a Kéhler metric on O(d + 2). As
in [40, Lemma 4.1], this leads to the existence, given £ > 0, of a Kéahler metric w; on
(X4, ay), such that, for any 4, w; has a local potential on W; N X; that differs from the
function ¢ o Log, by at most €.

As explained in [40, Lemma 4.2], we may, for small ¢ and €, by shrinking W (so that
Log (W N X;) is contained in the smooth locus of 1) find Lipschitz functions f; of C°-
norm on the order of €, smooth outside a set of measure 0, such that the (1, 1)-currents
Wyt = wy + dd° fy is positive on X; and approximate dd®(¢ o Log ) on the smooth locus
of f in W and the measure w?’t is close to the Calabi—Yau volume form v; on X; in total
variation. The proof then proceeds to get the CY convergence on W of the potentials of
the Calabi-Yau metrics on X; to 1poLog, and the resulting C°°-convergence and special
Lagrangian torus fibration on W in the same way as in §4.3 and §4.5 of [40].

9.2. Gromov—Hausdorff convergence
Consider the Fermat family
Xt = {Z()Zl e Zd+1 + t(Zg+2 + -+ Zgif)} C P(derl.

As above, we write (X3, d;) for the corresponding metric space.

Let ¢ € Qgym be a solution (unique, up to a constant) to the tropical Monge-Ampeére
equation vy, = v, where v is Lebesgue measure on B, see Theorem 5.2, and let ¥ be
the corresponding metric on the affine R-bundle A, see Remark 4.14. By the regularity
theory for the real Monge-Ampeére equation on R, there exists an open subset Ry C By
such that B\ Ry has (d — 1)-Hausdorff measure zero, and such that ¥ is smooth and
strictly convex over R,. The Hessian of ¥ on Ry then defines a metric on R, and we
let (Ry,dy) be the resulting metric space.

By diameter bounds proved in [44], (X¢,d:) converges in the sense of Gromov—
Hausdorff after passing to subsequence. By [41, Theorem 5.1], any subsequential limit of
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(Xt, d;) contain a dense subset locally isomorphic to the regular part of a Monge—Ampeére
metric on By. By the injectivity in Theorem B, the latter space is uniquely determined
as (Ry, dy).
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