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1 Introduction

In a recent paper [1] it was shown that Swampland criteria combined with experimental
observations, lead to a specific corner of the quantum gravity landscape. In particular
the smallness of the cosmological constant Λ, combined with the generalized Distance
Conjecture [2, 3], the Emergent String Conjecture [4] and observational data lead to the
prediction of exactly one mesoscopic dimension of radius in the micron range whose length
is set by the dark energy length scale Λ−1/4. In this scenario the matter fields arise from
branes localized in the mesoscopic dimension.

In this paper we study the cosmological aspects of this model. In particular we show
that a natural and unavoidable component of the dark sector is dark graviton: the spin
2 massive KK excitations of the graviton in the dark dimension. The basic setup is
more or less forced on us by the fact that we have one mesoscopic dimension and the
observed lack of light degrees of freedom in equilibrium with visible sector, as in the LED
scenarios [5]. Taken together, these lead us to assume that the Standard Model brane is in a
thermal state at some initial temperature Ti, while the bulk modes living in the mesoscopic
dimension remain essentially unexcited. As the Standard Model brane begins cooling off, its
universal coupling to dark gravitons leads to unavoidable KK graviton production.1 After
production, the massive dark graviton excitations decay predominantly to lighter gravitons
(as there are more channels available compared to SM brane modes) and quickly lower
their mass distribution, without losing much total mass due to relative smoothness of the
dark dimension (we assume structure vary not much smaller than ∼ 10−2l where l is the
length of the dark dimension). Using their decay we can estimate the evolution of dark

1This fact was already noted in [5], and precisely for this reason it was pointed out that KK gravitons
would have been an ideal candidate for the dark matter. But as they note the range of parameters that are
forced on LED scenarios to bring down the Planck mass to weak scale does not allow an accounting of dark
matter using KK graviton. This is unlike the dark dimension scenario which is motivated instead by the
dark energy hierarchy, and where the KK modes are a viable dark matter candidate.
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matter over the age of the universe leading surprisingly to no conflict with any experimental
observations. The dark gravitons get produced at a mass of about ∼ 1 − 50GeV and
the bulk of their mass shifts down to about 1–100 keV today. This leads to a particular
realization of the dynamical dark matter scenario proposed in [6].

It is already interesting that for some value of the initial temperature, this model is
compatible with observations. But we can do better. Using the dS Swampland conjecture
combined with the requirement that the internal dimensions should be sufficiently stabilized
compared to the dS scales (otherwise, the cosmology would not be four-dimensional), leads
us to the natural scale for the initial temperature:

Ti ∼ Mp

(
Λ

Md
p

) 1
2(d−1)

∼ 1GeV for d = 4,Λ ∼ 10−120M4
p . (1.1)

The dark gravitons of this mass scale will initially constitute the bulk of the dark
matter in our universe and begin decaying predominantly to lighter dark gravitons, without
losing much total mass. Remarkably this automatically gives the correct density of the
observed dark matter in our universe! In particular this scenario leads to the resolution of
the cosmological coincidence problem,2 where the matter/radiation equality temperature
coincides with the temperature where the dark energy begins to dominate. In particular
we do not need to appeal to Weinberg’s anthropic argument [7], which offers another
explanation of this coincidence. Weinberg’s argument is that the matter dominated era
should happen before dark energy takes over so that galaxies can form. The value of
the cosmological constant is chosen by avoiding any fine tuning on its value, other than
the requirement of structure formation, which requires Λ1/4 ≤ TMR. A flat prior leads
to Λ1/4 ∼ TMR. In other words, Weinberg’s argument directly connects the anthropic
principle to an explanation of this cosmological coincidence. By contrast in our setup the
cosmological coincidence is automatic and does not appeal to anthropics.

The idea that some components of the dark matter decay or get lighter at the Hubble
scale, as is the case in our scenario, may automatically lead to a reduction of the H0 tension,
as proposed in [8–10]. This is an interesting link worth further study.

The organization of this paper is as follows: in section 2 we spell out the basic idea of
this model, and derive general features of the dark dimension cosmology. More detailed
derivation is discussed in section 3. In section 4 we conclude the paper and present some
topics for future research.

2 Basic idea

Let us start with the basic setup: a quasi-dS space of dimension d with a small cosmological
constant Λ and n mesoscopic dimensions of length scale Λ−1/d. As discussed in [1], our
universe corresponds to the case of d = 4, n = 1 and Λ = 10−122 in Planck units, but for

2It is interesting to note that the dS Swampland conjectures also lead to the solution of the ‘Why
Now’ problem in cosmology, i.e., why do we live just at the time when dark energy has become dominant,
by relating the dS lifetime, which sets the scale for a typical time scale in dS, to Λ−1/2 (up to possible
logarithmic corrections).
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the discussions in this section it is instructive to keep d and n general. We would like to
study the cosmology in this setup, where the mesoscopic and microscopic dimensions are
stabilized and only the d-dimensional space-time is undergoing expansion. Moreover in this
scenario the light fields of the Standard Model, except for the graviton are localized on a
brane in the mesoscopic dimension.

Let Mmin denote the minimum of the masses of the moduli fields fixing the internal
geometry including that of the SM brane. To keep the extra dimensions from interfering
with the d-dimensional cosmology we must require that

T < Mmin (2.1)

We thus start the universe at a temperature for the SM fields satisfying (2.1). This, however,
is not enough to be compatible with observations: we will assume that only the SM brane
fields are in thermal equilibrium at this temperature, and that the bulk modes of the
mesoscopic dimensions are essentially unpopulated initially. If we have thermal equilibrium
between bulk fields and the fields on the brane near the BBN era, this would lead to too
many light fields (since the light KK modes of the bulk would be excited and as we will
see they would not have decayed by the Hubble time) which would be in contradiction in
the scenario where our universe has Neff ∼ 3 at the T ∼MeV. So we assume the initial
conditions are such that only the brane modes, i.e. the Standard Model fields are excited
and in equilibrium at temperature Ti > MeV, after which it starts cooling off.

Once this setup is fixed, so is its dynamics as we will see. There are two basic steps:
the production of dark gravitons, the KK modes in the bulk, as in [5]. And the second step
which is the decay of the dark gravitons, which predominantly reshuffles among the dark
graviton states3 without appreciably changing the total mass in the dark sector. This type
of situation has been considered in [6]. Thus to study the total energy density in the dark
sector, and if we are not interested in the details of the composition of the dark sector as
it evolves in time, we only need to focus on the first step, i.e., the production of the dark
gravitons, as we will do in this section. Here we will perform a rough estimate of the dark
matter energy density and in the next section we study this in more detail as well as the
composition of dark matter and how it evolves over time.

Due to the 5d equivalence principle, the bulk graviton hµν couples to the localized
brane modes universally as

1
M̂

(n+d−2)/2
p

∫
ddx hµν(x, z = 0)T µν(x), (2.2)

where M̂p is the n + d dimensional Planck scale and z denotes the mesoscopic dimension,
z = 0 being the position of the Standard Model brane and T µν the energy momentum
tensor for the fields on the brane. This interaction leads to the production of dark gravitons,
which are the KK excitations of the graviton in the mesoscopic dimensions, as the brane
cools off. Using dimensional analysis we learn (ignoring the expansion of the universe) that

3These decays can include decays to other KK towers in the bulk as well, which does not change our
conclusions as the amplitudes are basically the same.
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the rate at which the dark graviton energy density is produced when the brane modes are
at temperature T is given by (see also [5])

dρKK

dt

∣∣∣∣
production

∼ T n+2d−1

M̂n+d−2
p

. (2.3)

We will assume that the universe starts in a radiation-dominated era, as our own. During
this epoch, the energy density redshifts as a(t)−d in terms of the scale factor a(t), simply
due to the expansion of the universe, and so does the temperature. The bulk KK modes
that we produce essentially redshift as matter, since they are produced thermally and thus
the distribution of KK gravitons follow some sort of graybody spectrum, so the masses
that are populated are those with m ∼ T . Because the KK modes redshift as matter, it is
convenient to define y = ρKK/s, where s ∼ T d−1 scales as the entropy in the light modes.
This quantity removes the cosmological expansion effects and would be conserved in absence
of production/decay. We start the cosmology in d dimensions in the radiation dominated
era where T ∼ Mp(Mpt)−2/d, and learn that the total y generated until the final Tf is
insensitive to Tf and is dominated by the initial temperature:

y ∼ T
n+ d

2
i

M̂n+d−2
p M

1− d
2

p

(2.4)

This result is valid only if the total mass of the dark KK gravitons remains approximately
constant over time. We will be assuming this is the case, and we confirm this is the case in
the next section.

As explained in [1], in the Dark Dimension scenario, the cosmological constant is related
to the mass scale of the tower of states (the KK scale) as

Λ ∼ md
KK ⇒ Vn = m−n

KK = Λ−n
d . (2.5)

Upon using Md−2
p = M̂n+d−2

p Vn = M̂n+d−2
p Λ−n

d we learn that

y ∼ T
n+ d

2
i

Λn
d M

d−2
2

p

, (2.6)

and y encodes the energy density of dark matter; we are particularly interested in the
temperature TMR where the contribution of dark matter and that of the thermal bath
living in the Standard Model brane become equal,4 the so-called matter-radiation equality
temperature:

TMR ∼ y, (2.7)

which heavily depends on the initial temperature Ti. The temperature of matter-radiation
equality is well determined from cosmological observations [11, 12] and we could use its
value to find the corresponding initial temperature Ti using (2.6):

TMR ∼ T
n+ d

2
i

Λn
d M

d−2
2

p

. (2.8)

4We are assuming here that most of the matter is made of dark matter, which is a good approximation.
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This is the standard way one could proceed in phenomenology. However, we will now see
that we can do better, and motivate the correct range for Ti using Swampland principles.

We do not wish to make any detailed assumptions about how the universe got to the
particular initial state where only the SM brane is thermal at temperature Ti. However, it
is natural to expect higher energy density in prior epochs, and in particular, that the bulk
moduli fields such as the radion and other moduli controlling the “width” and shape of the
SM brane in the mesoscopic and microscopic dimensions might have been excited. Some of
these fields decay to fields in the Standard Model brane via couplings

1
Mp

(d−2)/2

∫
ϕLd (2.9)

Where Mp denotes the d-dimensional Planck mass. In addition there are moduli fields that
couple to the dark sector but not directly to the SM brane. Since all these scalars affects
the size of the extra dimension and geometry of SM brane, whenever they are not stabilized
one may expect that the physics is effectively not four-dimensional.

These scalars will decay by dumping their energy to the standard model fields and
gravitons. The coupling to a single mode will be given by (2.9), so that a lower bound on
the decay rate of these scalars is5

Γdecay ∼
md−1

ϕ

Md−2
p

(2.10)

To have a meaningful four-dimensional phase, one should wait several inverse decay widths
Γ−1

decay. On the other hand the lifetime of dS is expected to be of order of the Hubble scale
(up to logarithimic corrections), based on both the dS Swampland conjecture [13–15] as well
as the TCC [16]. Taking both of these things together, the existence of a quasi-dS phase
means that the decay rate of the moduli fields should be bigger than the Hubble scale,

Γdecay > Mp ·
(

Λ
Md

p

)1/2

(2.11)

which leads to

mϕ > Mp

(
Λ

Md
p

) 1
2(d−1)

(2.12)

This implies that a safe initial temperature to have where the moduli field would have
decayed and settled to their minimum and that would not be further produced is

Ti ∼ Mp

(
Λ

Md
p

) 1
2(d−1)

< mϕ (2.13)

Plugging this value for initial temperature we find

y ∼ T
n+ d

2
i

Λn
d M

d−2
2

p

∼ Mp

(
Λ

Md
p

) d2−2nd+4n
4d(d−1)

(2.14)

5Note that unlike massive KK modes, the moduli fields, have effectively no KK momentum and ap-
proximate conservation of KK momentum in the mesoscopic dimension will not lead to additional KK
decay channels.
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Note that, as already mentioned y ∼ TMR, i.e., the temperature at which the dark
graviton density is equal to radiation density. If we assume that the bulk of the matter
is in dark graviton modes, requiring that this temperature is close to the temperature at
which dark energy dominates we would require

TMR ∼ Λ
1
d (2.15)

This leads to
d2 − 2nd + 4n = 4(d − 1) → n = d

2 − 1 (2.16)

In other words for n satisfying this relation, the matter radiation density equality tem-
perature is near the temperature where the dark energy dominates. This includes our
universe in the dark dimension setup where d = 4, n = 1! We have thus explained the
coincidence problem in the dark dimension scenario, with dark gravitons playing the role of
dark matter,6 and assuming that all of the inequalities above are saturated or at least set
the scale for Ti. Notice that saturation of the inequalities also predicts the existence of a
massive modulus at a scale near ∼ Λ1/6 ≈ 1GeV.

It is amusing to note that if we require d+n ≤ 11 (to embed in M-theory) and n to be inte-
ger,7 the only options for the coincidence to take place are (d, n) = {(8, 3), (6, 2), (4, 1), (2, 0)}.
More generally we have seen that if we start with the temperature (in Planck units) of
Ti ∼ Λ

1
2(d−1) the cosmological coincidence of the matter/radiation/dark energy densities will

automatically happen at T = Λ 1
d if n = d

2 − 1 with the bulk of the matter in dark graviton
with mass initially near Ti.

In the next section we expand upon this rough derivation and fill in some details for
the specific case of d = 4, n = 1 in our universe, where we will find Ti ∼ 4GeV.

3 Dark dimension cosmology: Production and abundance of KK gravitons

In this section we restrict our attention to the dark dimension scenario relevant for our
universe where d = 4, n = 1.

3.1 General derivation

In the previous section we showed how the dark dimension scenario naturally produces the
right abundance of dark matter ρDM, simply by starting the brane at an initial temperature
Ti (which saturates interesting Swampland inequalities) and letting it evaporate into the
bulk. But a successful dark matter model must get a few other things also right. In
addition to the correct dark matter density ρDM, the lifetime of the dark matter to decay
to standard model fields and in particular photons must be much larger than the current

6Note that for the matter/radiation equality to happen before the dominance of dark energy we must
have n ≥ d

2 − 1; on the other hand for massive gravitons to be the bulk of the matter in our scenario
requires TMR < Ti which leads to d

2 > n. Thus in our scenario, assuming n is an integer, the only option for
matter/radiation equality to happen before dark energy dominance is for the coincidence to also happens,
i.e. for n = d

2 − 1.
7Note that for odd d we can interpret the fractional values of n as an internal space with anisotropic

extra dimensions.
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age of the Universe. Moreover there are strong bounds on how much dark matter energy
density can change over time. Therefore, we must analyze the decays of KK gravitons. One
possible decay channel, forced on us by the production mechanism, is back to the SM brane.
The decay rate of a massive KK graviton of mass m to a massless (light) field is given by
dimensional analysis

ΓKK ∼ λ2 m3

M2
p

(3.1)

This sets the decay rates to the SM brane. This is comparable to the age of the Universe
for m ∼ 100MeV, so setting the temperature below this scale would seem to be fine.
However, [17] shows that most of the dark matter must have a lifetime of order ∼ 107 times
the age of the Universe, or otherwise its decays to photons would generate a much too large
CMB anisotropy. This translates to m ≲ 1MeV, dangerously close to BBN. But if we set
the initial temperature to be this low, we do not get the right dark matter abundance, as
shown in the calculation of the previous section.

Luckily, there are many additional decay channels available for the KK gravitons: intra-
tower decays, which is indeed a more dominant decay mode. In the absence of isometries
in the mesoscopic dimension, which is the generic expectation, the KK momentum of the
dark tower is not conserved. There will be decays where one dark graviton of KK quantum
n decays to two other ones, with quantum numbers n1 and n2. The decay rates for each
channel is expected again to be roughly given by (3.1). If the KK quantum violation can go
up to δn, the number of channels available is ∼ m

mKK
× δn. Taking into account the phase

space factor (which, since the decay is almost at threshold, is roughly the velocity of decay
products, ∼ (mKKδn/m)1/2 leads to

Γtot
d ∼ β2 m3

M2
p

m

mKK
× δn ×

√
mKKδn

m
∼ β2(δn)3/2 m7/2

M2
P m

1/2
KK

(3.2)

where δn is the maximal range of KK violation and β parametrizes our ignorance of decays
in the dark dimension (see also below eq. (3.15) for more details). This rate typically
overwhelms (3.1). The typical mass loss in the decay is δm ∝ mKKδn. We will find that to
be consistent with observation δn cannot be large and is in the range 1 ≤ δn ≤ 102. Note
that δn is equivalent to saying that the dark dimension is smooth and homogeneous at
scales smaller than (mKKδn)−1, and from this perspective it is reasonable that δn is not
too large.8

8The more refined version of (3.2) can be obtained along the lines of [18]: the violation in KK mode
number can be viewed as having the n-th mode of a dimensionless field gn in the dark dimension having a
vev of order one. Expanding the Einstein-Hilbert action with these vevs leads to a 4d term (suppressing the
tensorial structure)

1
Mp

∫
d4x gn h∗

k(∂hl)(∂hk−l−n)

The decay rate for a mass m KK mode to two of masses m1 and m2 = m − m1 − n mKK (assuming
m ≫ n mKK) yields

Γd ∝ β2

M2
P

(√
m1(m − m1)(m2 + m2

1 − mm1)2

m5/2

)
√

mKKn. (3.3)

The total decay rate of the mode of mass m is obtained by summing the above over all possible decay
channels, and goes as (3.2).
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Figure 1. Analytic formula for the dark matter as a function of time for the choice δn = 100 and
β = 20. The orange vertical shows the lifetime of the initial dark graviton distribution to decay into
lighter states of the dark tower. TMR denotes the matter/radiation equality temperature and T0 is
the temperature today. In section 3.2 we verify this behaviour by a more detailed analysis.

To sum up, even though the composition of the dark matter is changing and it is
getting reshuffled to lighter mass states, the total mass in the dark sector does not change
appreciably from when they were produced as we will shortly show. What we are finding
here is a specific realization of the dynamical dark matter scenario proposed in [6].

We can also estimate the typical dark matter mass as a function of time, simply by
noticing that at times larger than 1/Γtot

d , where Γtot
d is given by (3.2), dark matter heavier

than the corresponding m has decayed. Therefore we expect the typical dark matter mass
to be at the edge of range which is about to decay (which would be valid for t ≳ ti, with
ti = 1/Γtot

i , and Γtot
i the total decay rate at m ∼ Ti)

mDM ∼
(

M4
P mKK

(δn)3β4

) 1
7 1

t
2
7

. (3.4)

See figure 1 for how DM mass changes with time using this formula, for a sample value
of δn ∼ 102 and β ∼ 20. We can estimate the fractional rate of change in total mass of the
dark sector using the fact that each decay loses ∼ δn mKK in mass (ignoring the usual
−3H cosmological dilution):

1
ρDM

dρDM
dt

∼ −Γtot
d (mDM)δn mKK

mDM
∼ −H

δn mKK

mDM
, (3.5)

where we used the fact that Γtot
d and H are both proportional to 1/t. This is typically

small because in all epochs δn mKK
mDM

≪ 1 (the biggest value is achieved now, when mDM is
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the smallest). This confirms that the loss of mass in the dark sector is rather small and
all that happens is that the composition of the dark matter sector become lighter as the
time evolves.

We can also estimate the profile of the dark matter mass distribution. The number
density of the dark matter spans from mKK ∼ 1 eV to the upper range mDM

1 eV < m < mDM (3.6)

and its mass density is peaked near mDM. Moreover the mass density drops off after mDM
due to exponential suppression which goes as ∼ exp(−(m/mDM)7/2).

To be consistent with [17], we need that the lifetime of the decay of matter to the
photons is bigger than 107 − 108 times the life of the universe between the time of CMB
formation until the reionization. To get such a long lifetime, the mass of the dark matter
during that epoch should be bounded above by 10–1000 keV during this period. On the
other hand the mass of the dark matter from the time of matter/radiation equality till
today decreases (3.4) by a factor of (ttoday/tMR)2/7 ∼ 25, which means that

mDM(today) ∼ 1− 100 keV (3.7)

In principle this could have been an upper bound of the DM mass today. However, the
mass of the dark matter today cannot be much less that 1 keV because otherwise we would
be getting too rapid a decay of the dark matter density, using (3.5). So observations limit
us to a narrow allowed range. The question is whether this rather narrow range for the
allowed DM mass comes out naturally from our model. Indeed if we use (3.4) we see that
for β ∼ 20, δn ∼ 102 we get

mDM(TMR) ∼ 1 MeV, (3.8)

and
mDM(today) ∼ 50 keV. (3.9)

Thus, we have a well motivated dark matter candidate in the dark dimension scenario
which passes all the experimental checks.

3.2 A numerical approach

We will now show that the estimates above are quite accurate, by solving in detail for the
abundances of the different particles in the tower, taking into account production from
the SM brane, their decay to degrees of freedom on the SM brane, as well as the intra-KK
tower decays. This is achieved by means of a Boltzmann equation (see e.g. [19]). We begin
by considering a tower of equally spaced dark gravitons, indexed by an integer l, and with
mass ml = l mKK . We denote by nl the physical number density of species l. There is a
natural dilution of nl due to the fact that the universe expands. Since

ṅl + 3Hnl =
1
a3

d(a3nl)
dt

= T 3 d

dt

(
nl

T 3

)
, (3.10)

– 9 –
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where in the last step we neglected the time derivative of g∗(T ), the number of relativistic9

degrees of freedom. To remove this expansion term, we write everything in terms of Yl = nl
T 3 ,

which does not dilute. The equation of evolution of Yl is then

Ẏl = ΓSM,l − (Γl,SM + Γtot
l )Yl + 2

∑
l′>l

Γl′→(l,l′−l) Yl′ , (3.11)

where the different decay rates in the above equation are as follows:

• ΓSM,l is the production rate of dark gravitons per unit volume in mode l via collisions
on the SM brane. These can be computed from the universal coupling of matter fields
to the bulk gravitons (2.2) upon expanding in the KK graviton modes

hµν(x, z) =
∑

l

hl
µν(x)ϕl(z)

(where the l = 0 term is the massless graviton), and leading to

∼ 1
Mp

∑
l

∫
d4x hl

µν(x)T µν(x). (3.12)

The contribution to the production rate of KK gravitons from massless particles at
temperature T was computed using this interaction in [20]:

ΓSM,l =
λ2Tm5

KK

128π3M2
P

K1(lmKK/T ) l5, (3.13)

where K1 is a Bessel function of the first kind, T is the temperature of the SM brane,
and we introduced the factor λ in order to account for the number of degrees of freedom
of the SM brane, as well as for the overlap between the bulk graviton wavefunctions
and the SM brane. We need to include the appropriate (spin dependant) contribution
of every SM particle with a mass below the initial temperature (T ∼ 4GeV). In
principle, λ2 depends on time but the production is only relevant at temperatures
close to the initial temperature. For the plots, we consider as massless all particles up
to the tau lepton which gives an estimate λ2 ∼ 56.

• Γl,SM is the decay rate of bulk gravitons back to the SM brane. Again, following [20],
we have

Γl,SM = λ̃2m3
KK

80πM2
P

l3, (3.14)

where λ̃ similarly takes into account all the available decay channels and is a function
of time. However, we find that this decay channel is irrelevant for determining the
dark matter distribution and its total abundance and any O(1) choice of λ̃ does not
change our results. On the hand, dark matter decays to photons provide strong
constraints [17, 21] (see also [22] for a review of bounds on decaying DM) and in that
case the appropriate choice is λ̃2 ∼ 1.

9At this level of precision, we also neglect the difference between the entropy degrees of freedom and the
relativistic degrees of freedom.
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• Γl′→(l,l′−l) is the fundamental quantity controlling the decays within the dark tower,
which we computed in (3.3). It is the decay width for the particle at level l′ to decay
to particles at levels l and l′ − l (where we have assumed that the violation of KK
momentum is small). In terms of l, it reads, after summing over the possible KK
momentum decay channels,

Γl′→l =
1024
85π

β2 m3
KK

M2
P

√
l(l′ − l)(l2 − ll′ + (l′)2)2

(l′)5/2 (δn)3/2 (3.15)

We have introduced a factor of β to parametrize our ignorance about the dark
dimension decays. It absorbs the expectation value of the vevs of the KK modes
parametrizing inhomogeneities in the dark dimension, as well as the triple overlaps
between KK modes and the number of towers available to decay. Here we have called
the dark graviton the dark matter, but it should be understood that there could
easily be other light modes in the bulk which lead to new decay channels and dark
matter components. In particular we do expect dark fermions to propagate in the
bulk playing the role of sterile neutrinos, as discussed in [1]. The existence of these
other components of KK modes does not affect the total abundance of DM mass as
they just distribute among each other, as they decay from one to another. We expect
all decay KK channels to be captured by the above formula. In particular when we
say dark graviton is the dark matter, we mean also possibly including these additional
KK towers. The existence of these channels leads us to expect that perhaps β > 1.

Finally, there is a factor of 2 in the term multiplying Γl′→l,l′−l in (3.11). This is due
to the fact that a particle at level l can appear as either of the two decay products at
the particle at level l′; the contribution is therefore doubled.

• Finally, Γtot
l is the sum of (3.15) over all decay channels:

Γtot
l =

∑
l′

Γl→l′ =
1024
85π

β2 m3
KK

M2
P

(δn)3/2∑
l′<l

√
l′(l − l′)(l2 − ll′ + (l′)2)2

(l)5/2

= β2 m3
KK

M2
P

(δn)3/2 l
7
2 . (3.16)

In figures 2, 3 and 4 we present the results of numerically solving (3.11), for the choice
of parameters β = 20, δn = 100, Ti = 4GeV. In the figures we find the mass distribution of
dark matter at different times. The initial distribution produced by collisions on the brane
is shown in figure 2. The position of the peak is above the initial temperature by a factor of
∼ 5 which is the maximum of the product of a polynomial and the modified Bessel function
K1 as functions of m

Ti
. The reason for this is that modes a bit more massive than Ti, even

though they are not fully produced, are the dominant ones in the energy density, since
their mass is higher. At times very close to the initial temperature we can neglect all of the
decay terms in the Boltzmann equation. Changing variables from time to temperature and
neglecting the term coming from derivatives of the number of relativistic degrees of freedom
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Figure 2. Distribution of the energy density of dark matter as a function of the mass of the KK
modes at a temperature T ∼ 1GeV far enough below the initial temperature Ti ∼ 4GeV so that
production by photons has had time to take place, but close enough so that decays are negligible.
We normalize by the total dark matter energy density, so the integral under the curve is one.

we can solve the equation to find that the contribution of a mode of mass ml is given by

dρdm
ρr

∣∣∣∣
Tf

= λ2 315
√
10m2dm

64π6Tf MpmKK

∫ m
Tf

m
Ti

u3K1(u)du

g
3/2
⋆ (u)

. (3.17)

We have checked that this curve nicely matches our numerical solution. Integrating
over the mass we find an expression for the dark matter energy density over the energy
density in the radiation:

ρDM
ρr

∣∣∣∣
Tf

= λ2 1890
√
10

π6Tf MpmKK

∫ Tf

Ti

T 2dT

g
3/2
⋆ (T )

(3.18)

Taking into account the contribution from baryonic matter and using the data from [12],
this ratio should be equal to ∼ 0.6 for Tf ∼ 0.8 eV. This fixes the initial temperature to
about 4GeV, which matches the numerical result.

In figure 3 we plot the distribution of DM graviton energy density at a temperature of
1 eV divided by the radiation energy density. We chose the particular value of the initial
temperature so that the integral gives 1. We find that most of the dark matter particles
have a mass around 1 MeV, in agreement with our previous formula (3.8). Using (3.14)
we find that the lifetime to photons is τγ ∼ 1024 s. This illustrates the point that dark
gravitons satisfy stability bounds on the lifetime of dark matter. They are constantly
decaying (but their decays essentially conserve mass) and by the time we reach matter
domination their lifetime to decay back into the brane is large enough to be consistent
with current bounds [17]. We have checked that production of photons is negligible at all
times. More concretely, we checked that the fraction of energy which is being transferred
back into the brane is always negligible. We also checked that the total fraction of energy
lost in the decays (which is a dominant effect with respect to energy lost by decaying back
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Figure 3. Distribution of the energy density of dark matter as a function of the mass of the KK
modes at a temperature T ∼ 1 eV, which is the matter/radiation equality temperature. We divide by
the radiation energy density, and since we evaluate at equality, the integral under the curve is one.
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Figure 4. Distribution of the energy density of dark matter as a function of the mass of the KK
modes at a temperature T ∼ 0.2 meV, which is the temperature today. We divide by the total dark
matter energy density so the integral under the curve is one.

into the brane) is less than 1 per cent. We verified that after production the total dark
matter energy density falls exactly as T 3, as it should. Finally, in figure 4 we show the
distribution at the present time. We can see that the analytic estimate (3.9) agrees well
with the numerical computation. We remark that these plots correspond to a particular
choice δn and β. As explained above, these parameters can be physically motivated only up
to an order one factor. Thus, for example, the position of the peak could also change up to
an order one factor. For this reason we can conclude that the mass of dark matter today
lies roughly between 1–100 keV.
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4 Concluding remarks

In this note we have shown how the dark dimension cosmology provides a natural, viable
dark matter candidate, in the form of dark gravitons or other towers of bulk fields, produced
thermally by the hot brane where the SM fields reside. The dark matter is prevented from
substantially decaying back to SM fields because its mass distribution quickly shifts to lower
values by the large number of available KK modes of lighter mass, leading to a small decay
rate to the SM fields which scales as m3

DM.
We have seen that there is a natural explanation of the coincidence problem in our

setup without appealing to anthropics, but instead using the Swampland conditions that
the mass of moduli should be heavier than Hubble scale for a quasi-dS cosmology which
sets the initial temperature for cosmology. Of course one aspect of the dark dimension
scenario is that Λ ≪ M4

p . This may require an anthropic explanation, such as requiring
a large entropy for us to exist. Indeed the entropy in our setup at the matter/radiation
equality is of the order of S ∼ (Λ/M4

p )−3/4 and thus large entropy requires small Λ.
The most pressing question is how to probe this scenario and distinguish it from other

dark matter candidates. Of course one prediction of our setup is that a direct detection
experiments of DM would not succeed, as the DM interacts only gravitationally and would
be too weak to detect. Conversely, dark gravitons couple to matter much in the same way
as the ordinary graviton does, and so they can be detected in principle by gravitational
wave detectors. Although the characteristic frequencies are a factor of 108 larger than the
ones that can currently be explored by LIGO, it may be possible to detect high-frequency
gravitational waves in different ways (see, e.g. [23]).

As for specific novel aspects of our model, one possibility that should be explored
further is whether the decay of dark matter can lead to a natural explanation of the H0
tension (see e.g. [9, 10, 24]), in particular our situation is rather similar to that of [10] where
the dark matter (also viewed as part of a tower) loses mass due to its coupling to a rolling
scalar field. However there are also some differences here, as we have no rolling scalars. It
would be interesting to study whether the H0 tension gets reduced in our setup.

We have argued that to obtain a cosmologically successful setting with a quasi-dS space
with cosmological constant Λ the mass of the moduli of internal fields should be larger than
Λ

1
2(d−1) = Λ 1

6 ∼ GeV for d = 4. This sets the initial temperature for the cosmology which in
turn translates to the correct dark matter abundance. So this is the analog of the “WIMP
miracle” in our setting. Turning this around it also suggests that perhaps the weak scale
of the standard model is also set by this scale, and in particular, up to order one factors
⟨H⟩ ∼ Λ 1

6 . Indeed a similar relation was noted in [1] where the lack of hierarchy in the
neutrino sector led to this relation between the Higgs vev and the dark energy. It would be
interesting to explore the generality of this connection between the dark energy scale and
the moduli field, as well as the Higgs vev. This connects the issue of electroweak hierarchy
to that of dark energy. Thus in the dark dimension scenario, we are having various mass
scales all pegged to Λ, namely the Hubble scale, Λ 1

2 , the KK scale Λ 1
d , the Higgs and moduli

scale, Λ
1

2(d−1) and the higher dimensional Planck scale Λ
n

d(n+d−2) (where n is the number of
mesoscopic dimensions).
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It is interesting to note that, if we assume that dark matter is coupled only gravitationally
to our sector, as in our scenario, the experimental bounds on their decay to photons [17]
imply that their mass should be no higher than 1–100 keV. This also gives further evidence
to the lower bound on the exponent for the distance conjecture argued in [1] to be α > 1/4.
If the exponent were lower it would have made the KK tower too massive to support such a
light dark matter. In particular this gives an experimental bound that the lower end of the
exponent in the distance conjecture should be α > 1/(4.5), providing further experimental
support for the bound argued in [1].

Finally, we would like to note the work of [25] which explored the possibility of dark
matter being primordial black holes in the dark dimension scenario. Although our proposal
here is different, it is worth remarking that there are some relations between the two. Namely
it is found in [25] that the viable range for the primordial black holes to constitute all of
dark matter, lead to 5-dimensional black holes whose masses are in the range 1014g − 1021g

corresponding to radii in the range of R ∼ (10−4 − 1)µm. In principle these PBH’s can be
made of KK modes with mode numbers ranging n ∼ 1− 104 leading to the KK masses in
the range 1 eV < m < 10 keV rather close to the range of dark graviton tower we are finding.
Indeed this coincidence can be partially explained by the fact the decay rate of an object of
mass m to SM brane fields is identical (modulo phase space factors) in both approaches.
This is a manifestation of the fact that, for many purposes, a black hole can be replaced by
a gas of gravitons in a box [26]. The two scenarios can be related if the dark gravitons that
we have studied coalesce and form primordial black holes of the corresponding scale. It is
worth investigating whether this actually happens.
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