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ABSTRACT (PODC 2022), we obtain a near-optimal O(n'~2/K)-round deter-

We consider the expander routing problem formulated by Ghaffari,
Kuhn, and Su (PODC 2017), where the goal is to route all the tokens
to their destinations given that each vertex is the source and the
destination of at most deg(v) tokens. They developed randomized

algorithms that solve this problem in poly(¢~!) - 20(Vlognloglogn)
rounds in the CONGEST model, where ¢ is the conductance of
the graph. In addition, as noted by Chang, Pettie, Saranurak, and
Zhang (JACM 2021), it is possible to obtain a preprocessing/query
tradeoff so that the routing queries can be answered faster at the
cost of more preprocessing time. The efficiency and flexibility of
the processing/query tradeoff of expander routing have led to
many other distributed algorithms in the CONGEST model, such
as subpolynomial-round minimum spanning tree algorithms in
expander graphs and near-optimal algorithms for k-clique enumer-
ation in general graphs.

As the routing algorithm of Ghaffari, Kuhn, and Su and the
subsequent improved algorithm by Ghaffari and Li (DISC 2018)
are both randomized, all the resulting applications are also ran-
domized. Recently, Chang and Saranurak (FOCS 2020) gave a de-
terministic algorithm that solves an expander routing instance in

zO(logz/3 n-log'/?

10g1) rounds. The deterministic algorithm is less
efficient and does not allow preprocessing/query tradeoffs, which
precludes the de-randomization of algorithms that require this fea-
ture, such as the aforementioned k-clique enumeration algorithm
in general graphs.

The main contribution of our work is a new deterministic
expander routing algorithm that not only matches the random-
ized bound of Ghaffari, Kuhn, and Su but also allows preprocess-
ing/query tradeoffs. Our algorithm solves a single instance of rout-

ing query in 20(Vlogn-loglogn) 15ynds. For instance, this allows
us to compute an MST in an expander graph in the same round
complexity deterministically, improving the previous state-of-the-
art 20(og”* nilog!*logn) oy algorithm achieves the following
preprocessing and query tradeoffs: For 0 < ¢ < 1, we can an-

O(1/€) i rounds at the cost of a

swer every routing query in log
(n9€€) +10g°1/€) p)-round preprocessing procedure. Combining

this with the approach of Censor-Hillel, Leitersdorf, and Vulakh
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ministic algorithm for k-clique enumeration in general graphs,
improving the previous state-of-the-art nl—2/k+o(1)

As a side result of independent interest, we demonstrate the
equivalence between expander routing and sorting in the sense that
they are reducible to each other up to a polylogarithmic factor in

round complexities in the CONGEST model.
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1 INTRODUCTION

The CONGEST model is a prominent model that captures both
the locality and the bandwidth in the study of distributed graph
algorithms. In this model, the underlying network is a graph G =
(V,E), where we let n = |V|, m = |E|, and A = the maximum
degree of G. Every vertex v hosts a processor with an unique ID €
[1, poly(n)]. The computation proceeds in synchronized rounds. In
each round, each vertex sends a distinct message of O(log n) bits
to each of its neighbors, receives messages from its neighbors, and
performs local computations. The complexity of an algorithm is
measured as the number of rounds.

In this work, we focus on networks with high conductance.
Throughout the paper, we say that a graph is a ¢-expander if its
conductance is at least ¢, and we informally say that a graph is an
expander if it has high conductance. Depending on the context, the
conductance of an expander can be Q(1), log_o(l) n, or n=o),

We consider the following routing problem in a ¢-expander G in
the CONGEST model. Suppose that each vertex v is the source and
the destination of at most deg(v) tokens. The goal is to route all the
tokens to their destinations. Ghaffari, Kuhn, and Su [16] developed
an algorithm that routes the tokens in poly(¢~1)-20(Vlognloglogn)
rounds. By using such a primitive, a minimum spanning tree (MST)
can be computed in poly(¢p~1) - 20(Vlognloglogn) roynds in the
CONGEST model, beating the Q(+/n/log n) lower bound of [28, 30]
in general graphs. Later, the 20(Vlogn-1oglogn) term in the running
time has been improved to 20(vogn) later by Ghaffari and Li [17].

Chang, Pettie, Saranurak, and Zhang [7] leveraged the expander

routing algorithms to general graphs by developing distributed
algorithms for expander decomposition. They showed the method
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can be used to obtain efficient algorithms for a series of problems. In
particular, they obtained CONGEST algorithms for triangle count-
ing, detection, and enumeration whose running times match the
triangle enumeration lower bound of [22] up to polylog(n) factors.
The approach is to decompose the input graph into disjoint ex-
panders, where only a small number of edges are crossing between
different expanders. Within each expander, the ease of routing
provided by these algorithms allows one to solve the problem effi-
ciently. They also noted that the algorithms of [16] can be tweaked
to have preprocessing/query tradeoffs and used this perk in ob-
taining the above optimal-round algorithms. In particular, if one
spends O(n€) time doing the preprocessing then each subsequent
routing instance can be answered in O(logo(l/ €) n) time. This is
particularly useful for algorithms that need a polynomial number of
queries, as each query can be answered in polylogarithmic rounds
if we spend a small-polynomial time for preprocessing.

One major issue left by [16, 17] was that their routing algo-
rithms are randomized. As a result, all the resulting applications
are randomized. In [8], they made progress by giving an deter-
ministic algorithm that solves a routing instance in poly(¢~!) -

2/3 . 1/3 . . .
20log™" n-log logn) which is suboptimal compared to the random-

ized bound of poly(¢~1) - 20(Vlogn-loglogn) \ore importantly, it
did not achieve processing/query tradeoffs as in [16]. Therefore, for
many applications of the deterministic expander routing, such as
the aforementioned results for triangle detection and triangle enu-

20(log2/3 n-log"/?log n)

meration, it induces an additional factor of
leaving a substantial gap between randomized and deterministic
algorithms.

1.1 Our Contribution

The main contribution of our paper is a deterministic expander
routing algorithm that matches the randomized bound of [16] with
preprocessing/routing tradeoffs.

THEOREM 1.1. Given a graph G = (V,E) be a ¢p-expander. Let
€ > 0 be a constant. There exists an algorithm that preprocesses
the graph in n°(€) + poly(¢~1) - (log n)©V/€) time such that each
subsequent routing instance can be solved inpoly(¢~1)-(log n)©(1/€)
rounds.

Here we see that a single routing instance can be solved in
time similar to the bounds obtained by [16] by setting € =

yloglogn/logn in Theorem 1.1.

COROLLARY 1.2. A single expander routing instance can be solved
in poly(¢ 1) - 20(Vlogn-loglogn) 1o, ds deterministically without
preprocessing.

Corollary 1.2 is an improvement over the previous determin-
istic expander routing algorithm of [8], which costs poly(¢~!) -
20(10g2/3 nlog!/* logn) rounds.

Expander routing is extremely useful as a fundamental commu-
nication primitive in designing distributed algorithms in expander
graphs. Expander routing has been used to design efficient MST
and minimum cut algorithms [16], efficient subgraph finding al-
gorithms [7], and efficient algorithms for sorting, top-k frequent
elements, and various data summarization tasks [31] in expander
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graphs. Expander routing allows us to transform a large class of
work-efficient PRAM algorithms into CONGEST algorithms with
small overhead [17]. Expander routing has also been utilized in
a smooth analysis for distributed MST [9] and to design sparsity-
aware algorithms for various shortest path computation tasks in
the CONGEST model [4].

Our improved expander routing algorithm immediately leads
to improved deterministic upper bounds for all of the aforemen-
tioned applications. In particular, our result implies that an MST of
an ¢-expander can be computed in poly(¢~1) - 20(Vlegnloglogn)
rounds deterministically, improving upon the previous determinis-
tic bound poly(¢~1) - 20(log? 12 1ogn) [8] and nearly matching
the current randomized bound poly(¢~1!) - 20(iogn) [16, 17].

nlog

COROLLARY 1.3. An MST of an ¢-expander can be computed in
poly(¢~1) - 20(Vlognloglogn) oy ds deterministically.

ProoF. Similar to the randomized MST algorithm in [16], it
was shown in [8] that an MST can be constructed using polyloga-
rithmic deterministic rounds and invocations of expander rout-
ing. Therefore, an MST of an ¢-expander can be computed in
poly(¢~1) - 20(Vlognloglogn) rounds deterministically by imple-
menting the MST algorithm using the expander routing algorithm
of Corollary 1.2. O

Expander routing is also useful in designing distributed algo-
rithms in general graphs indirectly via the use of expander decom-
positions. An (e, ¢) expander decomposition of a graph removes
at most € fraction of the edges in such a way that each remain-
ing connected component induces a ¢-expander. In the CONGEST
model, this decomposition is commonly applied in a divide-and-
conquer approach, where efficient expander routing algorithms are
employed to solve subproblems within ¢-expanders. This approach
has been particularly successful in the area of distributed subgraph
finding [1-3, 5, 7, 8, 12, 23, 26]. A different use of expander de-
compositions and routing is to establish barrier for proving lower
bounds in CONGEST [12].

Again, our improved deterministic expander routing algorithm
leads to improved bounds for the aforementioned applications. In
particular, we obtain a near-optimal O(n'~2/%)-round deterministic
algorithm for k-clique enumeration in general graphs, improving
the previous deterministic upper bound nl-2/k+o(1) 5]

COROLLARY 1.4. There is a deterministic algorithm that list all
k-cliques in O(n=2/%Y rounds deterministically.

Proor. By slightly modifying the algorithm of [5], we know that
all k-cliques can be listed using O(n'~2/k) deterministic rounds
and invocations of expander routing on ¢-expanders with ¢ =
1/polylog(n). The modification needed is to alter the parameters
for the deterministic (e, ¢) expander decomposition in [5, Theorem
5]. Here we want to make ¢ = 1/polylog(n).

As discussed in [8], the deterministic (¢, ¢) expander decom-
position algorithm admits the following tradeoff: for any 1 >
vy = +/loglogn/logn, there is a deterministic expander decom-
position algorithm with round complexity e~ . nO() with
parameter ¢ = O log_o(l/”) n. In the k-clique enumeration



Deterministic Expander Routing: Faster and More Versatile

algorithm of [5], the parameter € is set to be some constant. By
selecting y to be a sufficiently large constant, we can ensure that
¢ = 9 10g=OW/¥) n = 1/polylog(n) and the round complexity
€0 .x0) for constructing the decomposition is upper bounded
by O(n!=2/k).

If we implement the k-clique enumeration algorithm with the
poly(¢~1) - 20(Vlognloglogn) 5,5 deterministic expander rout-
ing algorithm of [8], then the overall round complexity for k-clique
enumeration is O(n!~2/k) .20 (Vlognloglogn) _ p1-2/k+o(1) Tg jm-
prove the upper bound to O(n'~2/%), we use our new deterministic
expander routing algorithm. Specifically, by selecting € to be a suffi-
ciently small constant in Theorem 1.1, we can ensure that each rout-
ing instance can be solved in poly(¢~1)- (log n)0/e) = polylog(n)
rounds and the cost n©(€) + poly(¢~1) - (log n)O(/€) of the pre-
processing step is upper bounded by O(n!=2/k). ]

Our algorithm is optimal up to a polylogarithmic factor, as the
upper bound O(n'=%/%) for k-clique enumeration in Corollary 1.4
matches the Q(n'~2/%) lower bound [13, 22]. Previously, such an
upper bound was only known to be achievable in the randomized
setting [1]. Moreover, for k = 4, our algorithm is tight even for
the easier k-clique detection problem, due to the Q(+/n) 4-clique
detection lower bound of [11].

Theorem 1.1 and Corollary 1.4 resolve an open question of
Censor-Hillel,! which asks whether the cost of each instance of ex-
pander routing in the triangle enumeration algorithm can be made
both deterministic and has a polylogarithmic round complexity.
Corollary 1.4 yields a deterministic triangle enumeration algorithm
that is optimal up to a polylogarithmic factor.

1.2 Previous Results and Key Challenges

For ease of discussion, in this section, we assume that our input
graph has an O(1) maximum degree and is an expander with con-
stant conductance.

Randomized Approach. We first summarize at a high level the
general idea of [16] and explain the difficulty of de-randomization.
Roughly speaking, the general idea is to partition the current base
graph X into k = n€ parts Xj, ..., X} with roughly equal sizes.
For each part X;, by using random walk techniques, they embed a
virtual Erdés—Renyi graph G(|X;|, p) onto it for p = O(log n/|X;l),
where all the virtual edges correspond to a set of paths &2 with
polylog(n) congestion and dilation in X, where the congestion ¢
is defined to be ¢ = max. [{P > e | P € £?}| and the dilation d
is defined to be d = maxpe g |P|. The quantity ¢ + d is known as
the quality of & or the quality of the embedding, as one round
of communication in the virtual graph can be simulated within
O(cd) rounds in the base graph deterministically, and O(c + d)
rounds with randomization [14, 27]. As Erd6s—-Renyi graphs are
good expanders, they may recurse on each X; by viewing the base
graph as the virtual graph G(|X;|, p)) to further partition X; into k
parts and embed a G(n, p) on each of them. The hierarchy goes on
for O(1/e) levels. Since each level only incurs a polylog(n) blow
up on the congestion and dilation. A set of paths of subgraphs
in any level with quality ¢ + d corresponds to a set of paths in

10pen Problem 2.2 of https://arxiv.org/abs/2203.06597v3.
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the original graph of quality (¢ + d) - logo<1/ €) n. With such a
hierarchy embedding structure, they showed a routing instance can
be routed using paths that consist of edges in the virtual graphs
across different levels with quality logo(l/ €) n, which translates to
paths of quality (1og®(1/€) n)2 = 10g®(1/€) p in the original graph.

Now we examine the deterministic routing algorithm of [8] and
address the reasons why it did not obtain the randomized bound
and the preprocessing/query tradeoffs.

Challenge I — Speed. At a high level, the deterministic routing
algorithm of [8] still follows the same recursive framework used
in the randomized algorithm of [16]. While a low-congestion and
low-dilation simultaneous embedding of virtual expanders into
X1, ..., X can be obtained easily by random walks, obtaining such a
simultaneous embedding of expanders is much more difficult in the
deterministic setting. In [8], low-congestion and low-dilation simul-
taneous embedding of virtual expanders is computed recursively
using an approach similar to that of [10] based on the cut-matching
game of [24].

We give a brief and informal introduction to how the cut-
matching game works. The cut-matching game is a procedure that
returns a balanced sparse cut or a low-congestion and low-dilation
embedding of a virtual expander. The algorithm works by itera-
tively finding a sparse cut of the virtual graph and then finding a
low-congestion and low-dilation embedding of a large matching
between the two parts of the cut. If we cannot obtain a large match-
ing at some stage of the algorithm, then a balanced sparse cut can
be obtained. Otherwise, the virtual graph is guaranteed to be an
expander. In [8, 10], the implementation of the sparse cut algorithm
in the cut-matching game is done recursively with a recursive struc-
ture similar to that of [16] where recursion is applied to multiple
smaller instances.

Due to the recursive nature of the approach discussed above,
the deterministic simultaneous embedding of virtual expanders
in [8] has a much worse guarantee compared to the randomized ap-
proach of [16]: Specifically, within (n©(€) +10g®1°8(1/€)) n) rounds,
the expanders obtained have conductance of 1/ (logo(l/ €) n). As
discussed earlier, to build the hierarchical structure needed to
solve the routing problem, one has to repeat the process of si-
multaneous embedding of virtual expanders recursively, and the
depth of recursion is O(1/¢€). Since each level incurs a blow-up of
logo(l/ €) n factor on the routing quality, from the bottom to the

top, it introduces a log®(!/ €)

O(1/e)

n blow-up in total, as opposed to
log n in the randomized construction of [16]. By balancing
the terms (n°(€) +1og®(108(1/€)) py and logo(l/ez) n, it turns out
setting € = (loglogn/logn)!/? yields the best possible bound of
20 (log®* -log'* log ) , which is sub-optimal compared to the random-
ized algorithms of [16].

Challenge II — Preprocessing/Query Tradeoffs. In the random-
ized routing algorithm of [16], it is possible to obtain a prepro-
cessing/query tradeoff, where the preprocessing phase builds the
hierarchy of expander embeddings in (n©(€) + log@og(1/€)) p)
rounds. Each routing query in the query phase can be done in
logo(k’g(l/ €)) n rounds. Very different from the randomized ap-
proach, the deterministic routing algorithm of [8] still requires
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(n©e) 4 logo(bg(l/ez)) n) rounds for every routing query, so a
tradeoff between preprocessing and query cannot be achieved.

We briefly explain why the disparity occurs. In the randomized
setting [16], the same collection of routing paths constructed in the
preprocessing step can be reused for all subsequent routing requests
that are oblivious to the randomness used in the preprocessing
step. Such an oblivious assumption can be made without loss of
generality by first using random walks to redistribute the messages
to be routed. In the deterministic setting [8], the paths for routing
the messages are recomputed from scratch for each routing request,
as we explain below.

Suppose the current base graph is X. Let X7 . . . Xi. be the children
of X in the hierarchy. We classify the tokens needed to be routed
Ti ... Ty based on their destinations, where T; is the set of tokens
whose destinations are in X;. The routing task of the current level
of recursion is to route all the tokens T; to X;. Once such a task has
been achieved, we can just recurse in each X;. The deterministic
algorithm of [8] resolves this task by iterating over all the O(k?) X;-
X pairs sequentially. For each X;-X pair, they find a set of paths to

send the tokens T from X; to X; with quality poly(k) 20 (\logn) by
adapting the maximal paths algorithm in [18], which were originally
used to compute matching and DFS in PRAM. As a result, there is
a poly(k) = n°(€) dependency on the query complexity, which is
not needed in the randomized algorithm of [16].

1.3 Our Approach

We describe how we overcome the above two challenges as follows.
First, to get the bound that matches the randomized algorithm of
[16], we do a one-shot hierarchical decomposition.

One-Shot Hierarchical Decomposition. Instead of applying the
deterministic simultaneous expander embedding framework [8] as
a black box and recursing on each embedded expander to build the
embedding hierarchy, we observe that for the algorithm of [8] to
return such an embedding of expanders in one level, the algorithm
already builds some kind of a hierarchy of expander embedding
during the recursive construction. Therefore, a natural idea for
improving the deterministic routing algorithm of [8] is to run the
simultaneous expander embedding algorithm only once in the
base level and use the hierarchical decomposition constructed in
the algorithm to solve the routing problem in a way similar to that
of [8, 16]. To realize this idea, we need to overcome some technical
difficulties. In particular, here each level in the hierarchy not only
introduces a loss in the conductance guarantee but also a loss in
the number of vertices covered by the expander embedding, as the
hierarchical decomposition only embeds expanders on a constant
fraction of vertices in each level. One observation of why such an
approach is still plausible is that the depth of the hierarchy is O(1/e¢),
so the expanders at the bottom level consist of 1/ 20(1/€) fraction
of the vertices. Therefore, it might be possible to find delegates in
those bottom-level expanders, which we will refer to as the best
nodes, for every vertex in the original graph in such a way that each
best node represents at most 20(1/€) yertices. This would incur at
most 20(1/€) plow up on the congestion. Moreover, the edges in
the virtual expanders in each level of the hierarchy correspond to
paths of quality at most polylog(n) in the parent level. The total
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blow up on the quality is at most (log®1/€) n)2 = 10g®(1/€) n. This
is in contrast with the algorithm of [8], which has a blow-up of
logo(l/ez) n.

We define additional tasks and reduce the original problem to
these tasks to implement the delegation idea. However, for the ease
of illustration in the introduction, let us assume for now a base
graph X is a partition into X7 ... X, where an expander can be
embedded into each X;. Also, the hierarchy has been constructed
recursively on the expander of each Xj.

A Randomized, Meeting in the Middle Approach. Second, to
achieve a preprocessing/query tradeoff, given base graph X, we
need a routing algorithm that has no polynomial dependencies
on k that routes the tokens to the corresponding parts. We first
describe a randomized version of our approach and explain how
to de-randomize it: Perform lazy random walks simultaneously
for all the tokens together until they mix. For tokens destined to
Xi (call these tokens T;), they are now roughly equally distributed
across different parts. Suppose that we call such a configuration
the dispersed configuration and the desired configuration the final
configuration. To route from the dispersed configuration to the final
configuration, we start with the final configuration, transform it
into the dispersed configuration by the same method, and reverse
the paths. The only problem left now is that the two dispersed
configurations can be different, and we still need to match up T;
tokens with Ti’ tokens for each i inside each part X ;. Here, we can
then embed a sorting network into each Xj to sort the tokens so
they are aligned to match up (see the Expander Sorting paragraph
at the end of the section).

De-randomization by Pre-embeddings of Shufflers. Now the only
issue left is to remove the randomness needed in the process of rout-
ing tokens from any configuration to a dispersed configuration. The
cut-matching game, introduced by [25], is a potential deterministic
way to achieve a similar effect of random walks. Roughly speaking,
the goal of the game is to produce a shuffler, which consists of
matchings of virtual edges M M2, .. .,M’1 such that the natural
random walk on the sequence of matchings converges to a nearly
uniform distribution from any initial distribution, where each M"
corresponds to a set of paths of low congestion and dilation (i.e. if
(u,v) € M" then there is a u-v path in the set). The natural random
walk defined by M 1m2 . M?* is a random walk such that for
r=1,...,A, if the current vertex v is matched to u then we move to
u (through its corresponding path) with probability 1/2, and stay
at v with probability 1/2. If v is not matched, then it stays at v.

Once we have such a shuffler, we can distribute the tokens de-
terministically according to the behavior of a lazy random walk. In
particular, at each node u, consider if the number of T;-tokens that
areonuis x;. Forr = 1..., A, if u is matched to v in M", we need
to send x;/2 T;-token from u to its mate v. Assuming the tokens are
splittable (to be fractional). In the end, every node would hold a
roughly equal amount of T; tokens due to the mixing property of
the shuffler. This would lead to the dispersed configuration.

Coarse-grained Shufflers. However, the tokens are not splittable.
To this end, instead of building a shuffler on X, we build a shuffler
on Y, where Y is a multi-graph obtained from X by contracting
each X;. By doing such a coarse-grained shuffling, the rounding
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error due to the integrality of the tokens becomes negligible when
|X;i| > |Y].

Yet, directly running the cut-matching game on Y will lead to
insufficient bandwidth for token distribution. If X is matched X/
by the matching player, then we need to send x; /2 Tj-tokens from X
to X in the simulation of lazy random walk, where x; is the number
of T;-tokens on Xj. Since each matched edge only corresponds to
one path and it can be the case that x; = (1), the bandwidth may
not be enough.

To resolve this, we implement the cut player on Y and the match-
ing player on X to ensure the matching player finds enough paths.
This will lead the algorithm to produce a shuffler consisting of
matchings of X along their path embeddings of low congestion
and dilation. The matchings of X can be naturally translated to
fractional matchings of Y by normalization. We then simulate the
token distribution on Y according to these fractional matchings,
using the path embeddings in X.

Routing to Shuffler Portals. Once the shufflers are constructed,
it will be ready to process queries of routing instances. Recall that
paths that correspond to a matching of the shuffler will be used
to transport the tokens. The endpoint of such paths is known as
portals. To route the tokens according to the fractional matchings,
the main task is to send them to the corresponding portals so that
they can follow the paths to the corresponding parts. For example,
suppose there are x; Tj-tokens on X for each i. If according to the
fractional matching, we need to send x; j tokens to X then we
need to route these x; j tokens to the portals in X;. The routing
tasks stemming from processing a fractional matching now become
parallel instances of the routing task on each X;. The cut-matching
games end in O(logn) iterations. So the problem recurses into
O(log n) of parallel routing instances of the next level. To load
balance the tokens over the portals, we again use the expander
sorting technique to resolve it without dependency on poly(k). As
aresult, a query can be answered without dependency on poly (k).

Expander Sorting. One particular subroutine—deterministic ex-
pander sorting—serves as a core tool in our routing algorithm. It has
been used in, e.g., the aforementioned procedure for routing tokens
to shuffler portals as well as other procedures such as re-writing
token destinations and solving the problem within leaf components.

The goal of expander sorting is to re-distribute all tokens among
the vertices such that, if we collect all the tokens from the vertex
with the smallest ID to the vertex with the largest ID, these tokens’
pre-defined keys are sorted in non-decreasing order. Su and Vu [31]
considered a slightly simpler version of the problem where each
vertex holds a unique ID from [1, n] and gave a randomized algo-
rithm for it. Here, the IDs can range from [1, poly(n)]. We gave
deterministic algorithms for expander sorting along the way and
developed several handy tools based on it. For example, gathering
and propagating information with custom grouping keys.

The Equivalence Between Routing and Sorting. As a side result,
we showed that expander routing and expander sorting tasks are
actually equivalent up to a polylogarithmic factor, in the sense that
if there is a CONGEST algorithm Ayoy¢e that solves the expander
routing problem in Tyoute (1, ¢, L) rounds, then an expander sorting
instance can be solved within O(¢7_1 log n)+0(log n)-Troute (n, ¢, L)

198

PODC ’24, June 17-21, 2024, Nantes, France

rounds. Conversely, if there is a CONGEST algorithm Aot that
solves the expander sorting problem in Tsort (1, ¢, L) rounds, then an
expander routing instance can be solved within O(1) - Tsort (n, ¢, 2L)
rounds. We prove the equivalence in the full version [6].

We believe that the equivalence result is of independent interest
and can contribute to the study of the complexity of distributed
graph problems in expander graphs. Much like the significance
of network decomposition in the LOCAL model, expander routing
stands out as the only nontrivial technique in the design of dis-
tributed graph algorithms on expanders in the CONGEST model.
Akin to the theory of P-SLOCAL-completeness developed in [15],
an interesting research direction is to explore the possibility of
identifying a wide range of fundamental distributed problems on
expanders that are equivalent to expander routing.

Due to the page limit, the appendices and some proofs are de-
ferred to the full version of this paper [6].

2 PRELIMINARIES

Let n denote the number of vertices and A be the maximum de-
gree. Throughout the paper, we assume our graph has a constant
maximum degree, i.e., A = O(1). A reduction from general graphs
to constant degree graphs can be found in the full version [6, Ap-
pendix E]. We state some definitions and some basic properties
here.

Conductance. Consider a graph G = (V, E). Given a vertex set
subset S, define vol(S) = Y ,cs deg(v). Let 6(S) = {(w,0) | u €
S,v € V'\ S}. The conductance of a cut S and that of a graph G are
defined as follows.

16(5)]
min(vol(S), vol(V '\ S))

®(S) = ®(G)=  min

@(S)
50 and S#V

Sparsity. The sparsity of a cut S and that of a graph G are defined
as follows.

16(S)I

¥ = Smas v D

¥(G) = ¥(S)

min
ScvV
S+0 and S#V

We remark that the sparsity ¥(G) of a graph G is also commonly
known as edge expansion.

Diameter. Given a graph G = (V,E). For u,v € V, let distg(u, v)
denote the distance between u and v in G. The diameter D is de-
fined to be D(G) = max,, ye v (G) distg (4, v). The following upper
bound on the diameter can be obtained by a standard ball-growing
argument:

Fact 2.1. Let G be a graph with conductance ¢. The diameter
D(G) is upper bounded by O(¢ ™' log n).

Expander Split. The expander split G® of G = (V,E) is con-
structed as follows:

e For each v € V, create an expander graph X, with deg(v)
vertices with A(Xy) = ©(1) and ®(X,) = ©(1).

e Foreachv € V, fix an arbitrary ranking of the edges incident
to v. Let ry(e) denotes the rank of e in v. For each edge
e = uv € E, add an edge between the r, (e)’th vertex of X;,
and the r,(e)’th vertex of X,.
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The expander split will be used to obtain the reduction from general
graphs to constant degree graphs in [6, Appendix E]. A key property
is that ¥(G°®) = ©(®(G)). The proof, as well as more properties on
expander split, can be found in [8, Appendix C].

Quality of Paths. Given a set of paths P. The quality of P, Q(P),
is defined to be the congestion + dilation of the set of paths. Notice
that the smaller this quantity is, the better quality we have. Such a
notion has been introduced in [20, 21], as there exist randomized
algorithms that route along each path simultaneously in O(Q(P))
rounds [14, 27]. In the deterministic setting, it is straightforward to
execute the routing in congestion x dilation < Q(P)? rounds by
spending congestion rounds per edge on the paths.

FacT 2.2. Let P be a set of precomputed routing paths. Sending
one token along every path P € P simultaneously can be done in
deterministic Q(P)? rounds.

Embeddings. Given graphs Hy, Hy with V(H;) C V(H2), an em-
bedding of Hj into Hj is a function f : E(H;) — £?(H;) that maps
the edges of H to &?(Hy), the set of all paths in Hy. The quality of
the embedding Q(f) is defined to be the quality of the set of paths
UeeE(m,) f(e)- As the vertex set of H is always a subset of V/(Ha),
we sometimes specify Hy only by its edge set.

For the ease of composition, given an embedding f, we tweak it
so that it can map paths in Hj to paths Hy by defining f(eq, ..., e;) =
(f(e1),...,f(e)) for (eq,...,e) € P(Hi). Given an embedding f
that embeds H; onto Hy and an embedding g that embeds Hy onto
Hs, (g o f) is an embedding of H; into Hs.

Given embedding f that embeds H; to G; and embedding g
that embeds Hy to Gz with V(H;) N V(Hz) = 0, the embedding
(fUg) : E(H1 UHy) > Z(G1 UGy) is defined to be

fe)
g(e)

Matching Embedding. The following result, developed in [8, 19],
allows us to embed a matching between S and T, where S and T
are two disjoint subsets:

e c E(H])

<ng><e>:{ b

LEMMA 2.3. Consider a graph G = (V,E) with maximum de-
gree A = polylog(n) and a parameter 0 < y < 1. Given a set of
source vertices S and a set of sink vertices T with |S| < |T|, there is
a deterministic algorithm that finds a cut C and an embedding fy
of a matching M between S and T saturating S with the following
requirement in 20(Vlogn) - poly(1/y) rounds.

e Matching: The embedding fy has quality O(y~%) -
polylog(n).

e Cut: Let S C S and T" C T be the subsets that are not
matched by M. IfS” # 0, then C satisfies S’ CC, T’ CV\C,
and ¥(C) < y; otherwise C = 0.

3 THE HIERARCHICAL DECOMPOSITION

Consider a constant degree graph G = (V, E). Chang and Saranu-
rak [8] gave an algorithm that either finds a balanced sparse cut C
with ¥(C) < ¢ and |C| > |V|/4 or finds a subset of vertices W C V
such that ¥(G[W]) > Iog_o(l/e) n-poly(y) with [W| > (2/3)-|V],
where 0 < € < 1 is a parameter that the running time depends on.
In the latter case, it also produces a hierarchical decomposition 7,
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whose property we summarize in Property 3.1. We set y = ¥(G)/2
to force it to go into the latter case, as no cut C with ¥(C) < ¢//2
can be found.

PROPERTY 3.1. Each node of T is a vertex set X C V. The root of
the tree is a vertex set W with |W| > (2/3) - |V|. A node of T can
be either good or bad. The number of levels £(T") in the hierarchy is
upper bounded by O(1/¢). Moreover:

(1) Let k = |V(G)|¢. If a node is good, then it is either terminal or
internal. A bad node or a terminal good node has no children.
A good internal node X consists of a number of good children
X1 ...Xs, where (2/3) -k < t < k and they can be ordered so that
maxyex; ID(x) < minyex,,, ID(y) for 1 < i < t. Moreover, it
has the same number of bad children X] ... X]. Let X} = X; UX].
We have X = X[ U...UX]. There exists T = ©(|X|/k) such that

for each i,
1 |X] X 2 *
§~TS|X;”|S6-T and g(r—l)SlXi|S2~(T+1)

(2) Let p(X) denote the parent node of X. If a non-root node X is good
then it is also associated with a virtual graph Hx with maximum
degree O(log n) whose vertex set is X, and an embedding fx that
embeds Hx to Hy(x). The root X is associated with the virtual
graph Hx = G[X] with fx(e) =e.

Suppose X € T is a good internal node. Let X1 ... Xy be the good
children of X. The embedding U;?:l fx, that embeds Hy, U ... U
Hyx, onto Hx has quality polylog(n) - O(¢ 1) in X if X is the
root, and polylog(n) otherwise.

In addition, for any good node X, ¥ (Hx ) = poly(l//)-log_o(l/e) n
if X is the root and ¥(Hy) Q(l/logg(l(T)_[(X)) n) =
log_o(l/e) n otherwise, where £(X) is the level that X is at in the
hierarchy (the root has level 0).

(3) Suppose that X is a good internal node. For each Hy,, it can be
extended to a virtual graph H of X[ by adding a matching M;
between X; and Xl.’ to Hy; such that each vertex in Xi’ is matched.
This also implies |X[| < |X;| and so

X1 U...UX:| > [X]/2

Moreover, there exists an embedding fur,. that embeds Ule M
onto Hy with quality polylog(n) if £(X) > 1, and quality of
O(y~1) - polylog(n) if £(X) = 0.

Property 3.1(1) says that every part X} has roughly the same size,
with up to a constant factor difference. Property 3.1(2) describes
the embedding inside each X;. Property 3.1(3) describes the em-
bedding between X; and X/ . See Figure 1 for an illustration of the
decomposition.

Some properties listed above may not be explicitly stated in [8].
Thus, for the sake of completeness we will go over the construction
of [8] to verify these properties in the full version [6, Appendix A].

THEOREM 3.2 ([8]). Let G be a constant degree ¢-expander and
k = n€ be a parameter. Then, there exists a deterministic CONGEST
algorithm that computes a hierarchical decomposition T that satisfies
Property 3.1 inpoly(¢ 1) - (n9(€) +10g°(1/€) n) time.

Definition 3.3. Let X € T be a good node whose level is £(X).
The flatten embedding f)g is an embedding that embeds Hy to G,
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Figure 1: An illustration of the hierarchical decomposition.
The gray dotted edges denote the expander embedding as de-
scribed in Property 3.1(2). For example, the gray dotted edges
inside X is the virtual graph Hy, . The base graph of the child
node with vertex set X; is now Hy,. The black dotted edges
between X; and X/ form a matching embedding described in
Property 3.1(3).

defined as
f;? =]§,(f(X)>(x) °... °];,<2>(x) ° fp(x) © fx

COROLLARY 3.4. ForeachX € T, let Px be any collection of paths
in X. Suppose that the quality of each Px is upper bounded by Q. Let
P =Uxer f)g(PX) be the flatten mapping of these paths to G. We

have that Q(P’) =Q - poly(lpfl) .10g0(1/e) n

Proor. Let 7; = {X € T | £(X) = i}. Define f' = Uxe7; fx
to be the union of embedding from level-i nodes to level-(i — 1)
nodes. By Property 3.1(2), Q(f?) = polylogn if i > 1 and Q(f*) =
poly(y~1) - polylog n otherwise. Since UxeT; f)g(PX) = (flo
-0 fH(UxeT; Px), we have Q(UxeT; fR(Px)) = Q-0 1) -
logo(i) n. Summing this over each i = 1,...,0(1/¢), we conclude
that the quality of P’ is at most Q - O(y™!) - log@1/€) p. m]

Embedding a Matching To Cover the Whole Graph. We note
that the root W € 7T does not cover all the vertices in V. Us-
ing Lemma 2.3, we can pre-embed a matching between vertices of
V \ W and W with good quality so that tokens can be routed to the
hierarchy easily.

LEmMA 3.5. Let W € T be the root of the hierarchical decom-
position. There exists a CONGEST algorithm that finds an embed-
ding fum,,,, of a matching Myroor between V\ W and W that satu-
rates V.\ W with Q(fm,..,) = 2. logo(l) n and the runtime is

20(\/Iog n) . poly(l//_l).

Proor. Note that |[W| > (2/3)|V| by Property 3.1. We set S = W
and T =V \ W and so |S| < |T|. We then apply Lemma 2.3 with
Y = ¥(G)/2 so that it returns a matching embedding with the
desired quality. O

Leaf Trimming. We will trim the leaves of 7 so that every leaf
node contains at least k* = O(n*€) vertices. This can be done level
by level from the last level. Each level takes O(D’ + k%) -1og®(1/€)
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rounds, where D’ = logo(l/e)
of each X € 7T in that level.

n is a diameter upper bound of Hy

Definition 3.6. Given X € T, define Xj,; € X to be the union
of the good leaf nodes in the subtree rooted at X.

Definition 3.7. Define ppes; = maxye7 |X|/1Xpest |-

Note that with Property 3.1, we have ppeq; = 20(1/e),

4 REDUCING TO INTERNAL ROUTING TASKS

We first consider the core setting of the expander routing problem,
where the input graph G is a constant degree expander of sparsity
. The main task described below summarizes the routing task on
G:

Definition 4.1 (Task 1). Let G be a constant degree y-
expander, where each vertex of G has a unique destination ID in
{1,2,..., noM }. Let L be a parameter that depicts the maximum
load. Suppose that each node in G holds at most L tokens, and each
node is the destination of at most L tokens. The goal is to route the
tokens to their destinations.

However, as the leaves (i.e., the best nodes) of our hierarchical
decomposition do not cover the whole graph, it would be difficult to
solve Task 1 directly. Instead, we consider a routing problem where
all the destinations of the tokens are on the best nodes, specified
by their ranks. We introduce Task 2 below:

Definition 4.2 (Task 2). Let X be a good node in the hierarchical
decomposition T of the input constant degree y/-expander G. Let L
be a parameter. Suppose that each node holds for at most L tokens.
Each token z has a destination marker i, and there are at most
Lppess tokens for each destination marker i,. The goal of the task is
to route all tokens with destination marker i, to the i,-th smallest
vertex among Xpes;.

The reduction from Task 1 to Task 2 is in the full version [6]. Note
that as Task 2 will be solved recursively, we define the task on every
component X of the hierarchy 7. We will now focus on solving
Task 2 by using the ideas discussed in the introduction. In the
following, We identify the key task for solving Task 2 recursively.

Let X € 7T be an internal component and let X*,X;, Xy
be the parts of X derived from Theorem 3.2. We note that with
broadcasts, it is possible for every vertex v € X obtaining the
number of best vertices within all its parts during preprocessing
in O((k + D(Hx)) - Q(Uxre7 f(Hx"))) = poly(y ", k,log!/* n)
rounds for all X € 7 in parallel. Furthermore, by Property 3.1(1),
the IDs of the vertices in X}, are partitioned in the sorted order.
This allows the algorithm to rewrite the destination marks at the
beginning of handling a query on X: For any token z with desti-
nation mark iz, the algorithm computes two values (jz, i%,), where
Jz € {1,2,...,t} is the index of the part containing the i -th small-
est best vertex, and iy = iz — ;<. [Xpess N XJ’.‘| is the next-level
destination mark.

Therefore, to solve Task 2 on X, it suffices to first route all tokens
z to any vertex in the part X;‘Z. Finally, for any part XJ”.‘ =X; U X]'.,
through Property 3.1(3) we are able to route all tokens X; to Xj
such that a next-level Task 2 can be called. We summarize this task
as follows.
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Definition 4.3 (Task 3). Let X € T be a non-leaf good node and
X1, X5, ..., X[ beits parts. Each vertex holds at most L tokens for
some parameter L. For each token z there is a part mark j,. Suppose
that foreach j € {1,2,...,t} there are at most L- |XJ’.‘| tokens having
the same part mark j. The task is accomplished whenever every
token z with a part mark j; is located at a vertex in XJ’.‘Z and each
vertex holds at most 2L tokens.

In the following sections, we introduce tools and aim to give
algorithms for Task 3.

5 CORE TOOLS: SHUFFLER AND EXPANDER
SORTING

As mentioned in Section 1.3, Task 3 is solved by routing all tokens
into a dispersed configuration. The tokens are routed through a shuf-
fler. In Section 5.1, we describe an algorithm that constructs such
a shuffler. Our algorithm implements Récke, Shah, and Tédubig’s
cut-matching game [29] but with a twist in order to be constructed
efficiently. The efficiency comes from the fact that we already have
the precomputed hierarchical decomposition 7. To process queries
using the constructed shuffler, it is necessary to route the tokens
to specified shuffler portals. This can be implemented by expander
sorting procedures. In Section 5.2 we introduce the expander sort-
ing and convenient procedures that can be applied to solving Task
3.

5.1 Shuffler

In this subsection, we define shufflers and the algorithm for con-
structing them during the preprocessing time. Consider a good
node X € 7 with |X| > n*. Let X{ ... X/ be a partition of X,
where X/ = X; U X/ as defined in Property 3.1.

Cut-Matching Game and Shuffler. To achieve this, we run a vari-
ant of cut-matching game [25]. The cut-matching game consists of
a cut player and a matching player, and they alternatively pick a
cut and add a matching to an initially empty graph. In our variant,
the cut-matching game is “played” on the cluster graph Y, which
is the multigraph by contracting each of the t parts of X. In each
iteration q of the cut-matching game, the cut player first obtains a
cut on Y, which implies a cut on X.

Then, the matching player finds an embedding fo( of a

virtual matching M}q( on X, which we will show how to
transform to a natural fractional matching on Y. The se-
quence of all computed matchings and embeddings #Zx :=

1 2 A :
((MX,fM)l(), (M ,fM)z(), . (MX’fMj()) is then called the shuffler.
Now, we formally define the aforementioned terms.

Definition 5.1. Let Y denote the cluster graph obtained by con-
tracting each Xl.* in Hy. The set of vertices V(Y) = {0v1,02,...,0:}
has exactly |Y| = t vertices where v; corresponds to the vertex
contracted from X}. Given a subset S C V(Y), let Sx denote the
corresponding vertex set Uy, esX; in X.

A fractional matching M = {xy,} of a graph Y is a mapping that
maps each unordered pair {u,v} € (V(ZY)) to a real number xy, €
[0, 1] such that for all u € V(Y), the fractional degree is at most

one: ), Xyp < 1. Given a matching My in X, the corresponding
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natural fractional matching M = {xm,}(u eV is Y of defined
d 2
to be:
{(a.b) € My | a e Xgb e X3}
Definition 5.2. Given any fractional matching M = {x,,} on Y,
we define a t X t matrix Rys with

, where n’ = 6|X|/k.

uov

+%'(1_Zk¢ixvil)k) lfl:],

Ruli,j] ::{ ifi#j

D= D=

: inZ)j

Let (M1, ..., M?) be a sequence of fractional matchings. If the con-
text is clear, we omit the sequence and denote by R; the product of
matrices Ry - - - Ryp2Rp 1. For any vertex y € V(Y), let R;[y] be the
row vector in R; that corresponds to the vertex y. For a,b € V(Y),
the b-th entry of R;[a] can be interpreted as the probability of a ran-
dom walk that starts from b and ends up at a. It is straightforward
to verify that all entries of R;[y] adds up to 1 for ally € V(Y).
ﬁ = ﬁ 1.
The following definition sets up a potential function for the cut-
matching game. Let || - || to be the standard 2-norm function for a

vector.

Definition 5.3 ([25]). Let Y be a cluster graph defined in Def-
inition 5.1 and let (M',...,M! ...) be a sequence of fractional
matchings on Y. We define the potential function II(i) :=

Zyey(v) IRi[y] - |17|||2-

Definition 5.4 (Shuffler). Given X € 7T, a shuffler of
X consists of a sequence of A matching embeddings

— 1 2 A
My = ((MX,fM)I(), (M ,fM)z(), e (MX’fMj()) on X such
that if (M, .. .,M’l) is the corresponding fractional matching of

Let 1 be the all-one vector, and for brevity, we denote

(M L M)}é) in Y, the random walk induced by it nearly mixes,
as characterized by the following bound on the potential function:
2
1 1
O R
VT Y] 9n

In addition, for each i, 1 < i < A, the embedding fM;< has quality
1og®1/€) i in X for non-root X, and poly(¢/(G) 1) log®(1/€) n if
X is the root. The quality of the shuffler, which essentially has the
same order of magnitude as the quality of each embedding fM),{ ,is
defined to be

A
Q(Mx) = Q (U fur, (M;;>) :
i=1

We prove the following lemma in [6, Appendix B].

LEMMA 5.5. There exists an CONGEST algorithm such that, given
agoodnodeX € T, computes a shuffler of X inpoly (1, k,log!/€ n)
rounds. Moreover, the shuffler has A = O(log n) matching embeddings
with quality Q(.#x) = poly(y~1,1og"/€ n).

5.2 Distributed Expander Sorting

In this subsection, we introduce several primitives that are recur-
sively dependent on the internal routing tasks (i.e., Task 2 and Task
3). Perhaps, the most interesting side-product result we obtain is a
deterministic sorting algorithm on an expander graph, described
as follows.
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THEOREM 5.6 (DETERMINISTIC EXPANDER SORT). Let X* = XUX’
be a virtual graph such that X is a good node in the hierarchical
decomposition T of a y-sparsity expander and there is an embedded
X’-matching fyr from X’ to X with a flattened quality Q(f]&)
poly(y~1, logl/E n). Suppose that each node holds at most L tokens,
and each token z has a (not necessarily unique) key k. Then, there
exists a CONGEST algorithm such that, when the algorithm stops,
for any two tokens x and y on two different vertices u and v with
ID(u) < ID(v), we haveky < ky. Moreover, each vertex holds at most
L tokens. The preprocessing time satisfies the following recurrence
relations:

TR (X)) = 20(f5, )+ TES(IX])

7"(1X]) + O(log n) - T(IX|, 1)
+poly(y 1, k, log"/€ n) ifX is non-leaf;
poly(y ™1 k,log"/€ n) if X is a leaf.

pre
Tsort

IX1) =

The query time satisfies the following recurrence relations:
Toort (IX*I,L) = 2Q(fy; . )+ THS(IX])

T3(IX1, L) + Lppest - Q(Zaks)* + L - Q(fyy,)°
+ Tsort (61X |/k, L) if X is non-leaf,

L -poly(y~1, logl/e n) if X is a leaf component.

Tsort (1X], L) =

Solving the recurrence relation requires solving the recurrence
relations for Task 2 and Task 3, which we defer to the full version
of our paper [6].

Applications. The distributed expander sort can be used for the
following useful primitives, including token ranking, local propaga-
tion, local serialization, and local aggregation. The term local here
refers to the flexibility of setting an arbitrary grouping key, such
that the described tasks are performed on each group of tokens
independently but simultaneously. We state the results here and
provide detailed proofs in the full version [6, Appendix C].

THEOREM 5.7 (TOKEN RANKING). In O(Tyort(JX*|,L)) rounds,
each token receives a rank r; which equals the number of distinct
keys that are strictly less than k.

LEMMA 5.8 (LocAL PROPAGATION). Suppose that each token has
a key k;, a unique tag uz, and a variable v;. In O(Tsort(|X*|, L))
rounds, each token’s variable is rewritten as v, where z*
argmin, {uy | kx = kz}.

COROLLARY 5.9 (LocAL SERIALIZATION). In O(Tsort(|X*|,L))
rounds, each token receives a distinct value SID, €
{0,1,..., Count(k;) — 1} among all tokens with the same key.
Here Count(k;) refers to the number of tokens with key k.

COROLLARY 5.10 (LocAL AGGREGATION). In O(Tsort(|X*|,L))
rounds, each token z learns the value Count(k;).

6 SOLVING TASK 2 AND TASK 3 USING
SHUFFLERS

In this section, we aim to describe our algorithms for solving Task
2 and Task 3.
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Algorithm for Task 2. The algorithm routes the tokens to the
corresponding parts, sends the tokens to vertices along the match-
ing toward the good node, and then recurse on the good nodes.
For details on solving Task 2 concerning leaf components, we refer
readers to the full version [6].

Algorithm for Task 3. To solve Task 3, we use another meet-in-
the-middle idea. Suppose that we are able to disperse all tokens
with the same part mark as even as possible. Then, the algorithm
may apply the same procedure on the instance where 2L dummy
tokens are created with part mark j on each vertex at X’;. Once
these dummy tokens are dispersed and meet the real token of the
same part mark, a desired routing is found and each dummy token
brings at most one real tokens to the goal.

Definition 6.1. Let X € T be a non-leaf good node with ¢ parts
X{, X5, ..., X]. We say that a configuration is a dispersed configu-
ration, if for all i, j € {1,2,...,t}, the number of tokens on vertices
of X} having part mark j, = j, denoted as |T; j|, satisfies

1X]
t2

Nj Nj X1
0.9— -0.1 < Tl £ 11—+ 01—,
P > t t
where Nj is the total number of tokens whose part mark equals j.
We say that a configuration is a final configuration, if every token

with part mark j, = j is located on a vertex in Xj’f.

Notice that the condition of Task 3 requires that the number
of real tokens with any part mark j is at most L - |X]*| The total
number of dummy tokens generated from part j is 2L - |X}k |. With
the above definition Definition 6.1, if both real tokens and dummy
tokens are routed to a dispersed configuration, we will show that on
each part X} and for each part mark j the total number of dummy
tokens is guaranteed to be outnumbered than the number of real
tokens of the same part mark.

Suppose that we have already applied the above idea where
the real tokens and the dummy tokens are routed into dispersed
configurations. There is a caveat: these tokens may be located at
different vertices within the same part X} and they do not meet
each other. Therefore, to complete the route, we will have to match
the real tokens and the dummy tokens of the same part mark within
each X'

In Section 6.1 and Section 6.2 we show how to transform an ar-
bitrary configuration to a dispersed configuration recursively. Due
to the page limit, the rest part of the analysis — including merging
two dispersed configurations, solving the leaf case of Task 2 and
round complexity analysis — are deferred to the full version [6].

6.1 Arbitrary Configuration to the Dispersed
Configuration

Let . #x = (ML, fur)- (M2, f ) (M2, fip)) be the shuffler

of X, where A = O(logn). Let (M, .. .,M*) be the sequence of
corresponding natural fraction matching in Y to the sequence of
matching (M1 ,M)2<, el M)A(). Recall from Definition 5.4 that the
random walk Rypa ... Ry converges to nearly uniform distribution
from any initial distribution. We will distribute the tokens according
to the fraction matching iteration by iteration. That is, in iteration
q, we will distribute the tokens according to Fpgq.
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Consider a fractional matching M in an iteration s. Let T;; be
the T; tokens at X". In each iteration, the goal is the following: For
each i, j,1, we send | (m;;/2)|T;;|] tokens in T; ; from X} to X;.‘. To
achieve this, we will need to first route the | (m;;/2)|T;;|] tokens
to the portals P; j, where P; j C X is defined as P; j = {x € X[ |
(x,y) € M)q( for some y € XJ*}

In Section 6.2, we describe how such a task of routing the tokens
to the portals can be done recursively. Once the tokens are routed
to the portals, they can follow the path embedding corresponding
to the virtual matching edge to arrive in X7. The following lemma
shows that a dispersed configuration is achieved after doing the
token distribution according to (M 1o, M’l).

LemMA 6.2. Let (M',...,M*) be the sequence of natural frac-
tional matching in Y that corresponds to the sequence of matching
in Mx. For q = 1...A, suppose that during iteration q, we send
I-(mij/z)nfl_l” tokens in Ez_lfromX;‘ toXJ’.‘foreachl <ijl<t,
where Tgl—l is set of tokens in Xl.* destined to part | at the end of iter-
ation q — 1. Then, a dispersed configuration is achieved at the end.

We defer the proof to the full version [6].

The following corollary is useful to control the number of tokens
in each part, which can be useful for deriving the final recurrence.
Due to its similar flavor, we state it here:

COROLLARY 6.3. Let Nmax be the maximum number of tokens
within any part at the beginning of the routing. For any q such that
1 < q < A, the total number of tokens within the part X' after
sending the tokens along fraction matchings M*, M2, ..., M9 is at
most Nmax + tzq.

Proor. This can be done by an induction on g. Let N;] be the
number of tokens within the part X after iteration g and let NI, =
maxi{Niq }. Then, for all i we have Nl.0 < Nmax.

We notice that each M9 is a fraction matching. If the tokens
are fractional as well then the total amount of tokens does not
change. However, due to the fact that tokens are integral, we have
to carefully upper bound the total number of tokens:

t t
1 q—] 1 q—l
$ 5 ) S5 i |

t t
N9 < (N.q-l _
1 1
j=11=1 Jj=11=1

tokens sent away tokens received

1 - 1 _
q-1 2 q-1
< (ENI +t )+§Nmax
<NILig2

6.2 Routing the Tokens to the Portals

Consider a particular part X} and a particular fraction matching
M4, In this subsection, we describe a subroutine that routes all
tokens on X" to designated portals P; ;. The goal of this subroutine
is that for all [ and for all tokens with the same specific part mark /,
there will be exactly | (m;,;j/2)|T;;|] tokens being routed to vertices
in P; j. Moreover, the tokens routed to P; j should be load-balanced.

Tie-Breaking The Tokens via Serialization. We would need two tie-
breaking operations here: first, for any I, each token with the part

203

Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su

mark [ learns the portal group index j (or no-op). This can be done
by invoking (1) a local aggregation procedure (Corollary 5.10) that
obtains the value |T; ;| and (2) a local serialization procedure (Corol-
lary 5.9) that gives each token a serial numberin {0,1,...,|T;;| - 1}.
With the serial number and the total count, we can now assign
locally the portal index j for each token.

To enforce the load-balancedness requirement, the second tie-
breaking must be made such that each node in P; j receives roughly
the same number of tokens. This can be done by applying two
additional serialization steps. The first local serialization procedure,
using the portal index j as the key, assigns each token z that goes
to the same portal group P; ; a serial number SID,. Using the size
|P;,j| that is preprocessed and stored at each vertex in X', each
token z obtains an index y(z) := SID, mod |P; j|. The second local
serialization procedure can actually be preprocessed — it assigns
each portal vertex in P; j a serial number.

We remark that all local aggregation and local serialization pro-
cedures described above are actually running over the virtual graph
of the corresponding part X}'. This avoids cyclic dependency of
invoking token ranking, expander sorting, and Task 3.

Now, the problem of routing the tokens to the portals reduces
to the following “Task 2 style” task. In this task, each token has
a portal group index j and an index y(z). The goal is to route all
tokens on X} to the y(2)-th vertex within P; ;.

Meet-In-The-Middle Again. The above task can be solved using
the meet-in-the-middle trick and running expander sorting (Theo-
rem 5.6) twice within X} In the first expander sorting, we assign
for each token a key k; := (j, x(2)) and sort the tokens within X'.
In the second expander sorting, for each portal vertex of P; j with
a serial index s, we create a certain number, say ¢}, of dummy
tokens all with the same key k, := (j, s). The number of dummy
tokens for (j, s) will be exactly the same as the number of actual
tokens that will be sent to this vertex. We also add dummy tokens
such that every vertex reaches the same maximum load of L tokens.
These two expander sortings should now give a perfect match be-
tween the actual tokens and the dummy tokens. Thus, by reverting
the routes of dummy tokens, each dummy token brings one actual
token to the desired destination.

Obtaining the value o is again can be done by running a local
aggregation (Corollary 5.10) over the instance where besides actual
tokens, each portal vertex also creates one dummy token of the
same key. After running the local aggregation, this token learns
the total count ;s + 1 and goes back to the actual portal vertex.
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