
Deterministic Expander Routing: Faster and More Versatile

Yi-Jun Chang
National University of Singapore

Singapore
cyijun@nus.edu.sg

Shang-En Huang
Boston College

Chestnut Hill, Massachusetts, USA
huangaul@bc.edu

Hsin-Hao Su
Boston College

Chestnut Hill, Massachusetts, USA
suhx@bc.edu

ABSTRACT

We consider the expander routing problem formulated by Gha�ari,

Kuhn, and Su (PODC 2017), where the goal is to route all the tokens

to their destinations given that each vertex is the source and the

destination of at most deg(E) tokens. They developed randomized

algorithms that solve this problem in poly(q−1) · 2$ (
√
log= log log=)

rounds in the CONGEST model, where q is the conductance of

the graph. In addition, as noted by Chang, Pettie, Saranurak, and

Zhang (JACM 2021), it is possible to obtain a preprocessing/query

tradeo� so that the routing queries can be answered faster at the

cost of more preprocessing time. The e�ciency and �exibility of

the processing/query tradeo� of expander routing have led to

many other distributed algorithms in the CONGEST model, such

as subpolynomial-round minimum spanning tree algorithms in

expander graphs and near-optimal algorithms for :-clique enumer-

ation in general graphs.

As the routing algorithm of Gha�ari, Kuhn, and Su and the

subsequent improved algorithm by Gha�ari and Li (DISC 2018)

are both randomized, all the resulting applications are also ran-

domized. Recently, Chang and Saranurak (FOCS 2020) gave a de-

terministic algorithm that solves an expander routing instance in

2$ (log2/3 = ·log1/3 log=) rounds. The deterministic algorithm is less

e�cient and does not allow preprocessing/query tradeo�s, which

precludes the de-randomization of algorithms that require this fea-

ture, such as the aforementioned :-clique enumeration algorithm

in general graphs.

The main contribution of our work is a new deterministic

expander routing algorithm that not only matches the random-

ized bound of Gha�ari, Kuhn, and Su but also allows preprocess-

ing/query tradeo�s. Our algorithm solves a single instance of rout-

ing query in 2$ (
√
log= ·log log=) rounds. For instance, this allows

us to compute an MST in an expander graph in the same round

complexity deterministically, improving the previous state-of-the-

art 2$ (log2/3 =·log1/3 log=) . Our algorithm achieves the following

preprocessing and query tradeo�s: For 0 < n < 1, we can an-

swer every routing query in log$ (1/n) = rounds at the cost of a

(=$ (n) + log$ (1/n) =)-round preprocessing procedure. Combining

this with the approach of Censor-Hillel, Leitersdorf, and Vulakh

PODC ’24, June 17–21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0668-4/24/06.
https://doi.org/10.1145/3662158.3662797

(PODC 2022), we obtain a near-optimal $̃ (=1−2/:)-round deter-

ministic algorithm for :-clique enumeration in general graphs,

improving the previous state-of-the-art =1−2/:+> (1) .
As a side result of independent interest, we demonstrate the

equivalence between expander routing and sorting in the sense that

they are reducible to each other up to a polylogarithmic factor in

round complexities in the CONGEST model.

CCS CONCEPTS

• Theory of computation → Distributed algorithms.

KEYWORDS

CONGEST, routing, MST, sorting, triangle detection

ACM Reference Format:

Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su. 2024. Deterministic Ex-

pander Routing: Faster and More Versatile. In ACM Symposium on Principles

of Distributed Computing (PODC ’24), June 17–21, 2024, Nantes, France. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3662158.3662797

1 INTRODUCTION

The CONGEST model is a prominent model that captures both

the locality and the bandwidth in the study of distributed graph

algorithms. In this model, the underlying network is a graph � =

(+ , �), where we let = = |+ |, < = |� |, and � = the maximum

degree of � . Every vertex E hosts a processor with an unique ID ∈
[1, poly(=)]. The computation proceeds in synchronized rounds. In

each round, each vertex sends a distinct message of $ (log=) bits
to each of its neighbors, receives messages from its neighbors, and

performs local computations. The complexity of an algorithm is

measured as the number of rounds.

In this work, we focus on networks with high conductance.

Throughout the paper, we say that a graph is a q-expander if its

conductance is at least q , and we informally say that a graph is an

expander if it has high conductance. Depending on the context, the

conductance of an expander can be ¬(1), log−$ (1) =, or =−> (1) .
We consider the following routing problem in a q-expander� in

the CONGEST model. Suppose that each vertex E is the source and

the destination of at most deg(E) tokens. The goal is to route all the
tokens to their destinations. Gha�ari, Kuhn, and Su [16] developed

an algorithm that routes the tokens in poly(q−1) ·2$ (
√
log= log log=)

rounds. By using such a primitive, a minimum spanning tree (MST)

can be computed in poly(q−1) · 2$ (
√
log= log log=) rounds in the

CONGESTmodel, beating the ¬(
√
=/log=) lower bound of [28, 30]

in general graphs. Later, the 2$ (
√
log=·log log=) term in the running

time has been improved to 2$ (
√
log=) later by Gha�ari and Li [17].

Chang, Pettie, Saranurak, and Zhang [7] leveraged the expander

routing algorithms to general graphs by developing distributed

algorithms for expander decomposition. They showed the method

194

This work is licensed under a Creative Commons Attribution International 4.0 License.

PODC ’24, June 17–21, 2024, Nantes, France Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su

can be used to obtain e�cient algorithms for a series of problems. In

particular, they obtained CONGEST algorithms for triangle count-

ing, detection, and enumeration whose running times match the

triangle enumeration lower bound of [22] up to polylog(=) factors.
The approach is to decompose the input graph into disjoint ex-

panders, where only a small number of edges are crossing between

di�erent expanders. Within each expander, the ease of routing

provided by these algorithms allows one to solve the problem e�-

ciently. They also noted that the algorithms of [16] can be tweaked

to have preprocessing/query tradeo�s and used this perk in ob-

taining the above optimal-round algorithms. In particular, if one

spends $ (=n) time doing the preprocessing then each subsequent

routing instance can be answered in $ (log$ (1/n) =) time. This is

particularly useful for algorithms that need a polynomial number of

queries, as each query can be answered in polylogarithmic rounds

if we spend a small-polynomial time for preprocessing.

One major issue left by [16, 17] was that their routing algo-

rithms are randomized. As a result, all the resulting applications

are randomized. In [8], they made progress by giving an deter-

ministic algorithm that solves a routing instance in poly(q−1) ·
2$ (log2/3 =·log1/3 log=) , which is suboptimal compared to the random-

ized bound of poly(q−1) · 2$ (
√
log=·log log=) . More importantly, it

did not achieve processing/query tradeo�s as in [16]. Therefore, for

many applications of the deterministic expander routing, such as

the aforementioned results for triangle detection and triangle enu-

meration, it induces an additional factor of 2$ (log2/3 = ·log1/3 log=) ,
leaving a substantial gap between randomized and deterministic

algorithms.

1.1 Our Contribution

The main contribution of our paper is a deterministic expander

routing algorithm that matches the randomized bound of [16] with

preprocessing/routing tradeo�s.

Theorem 1.1. Given a graph � = (+ , �) be a q-expander. Let

n > 0 be a constant. There exists an algorithm that preprocesses

the graph in =$ (n) + poly(q−1) · (log=)$ (1/n) time such that each

subsequent routing instance can be solved in poly(q−1)·(log=)$ (1/n)

rounds.

Here we see that a single routing instance can be solved in

time similar to the bounds obtained by [16] by setting n =√
log log=/log= in Theorem 1.1.

Corollary 1.2. A single expander routing instance can be solved

in poly(q−1) · 2$ (
√
log=·log log=) rounds deterministically without

preprocessing.

Corollary 1.2 is an improvement over the previous determin-

istic expander routing algorithm of [8], which costs poly(q−1) ·
2$ (log2/3 = log1/3 log=) rounds.

Expander routing is extremely useful as a fundamental commu-

nication primitive in designing distributed algorithms in expander

graphs. Expander routing has been used to design e�cient MST

and minimum cut algorithms [16], e�cient subgraph �nding al-

gorithms [7], and e�cient algorithms for sorting, top-: frequent

elements, and various data summarization tasks [31] in expander

graphs. Expander routing allows us to transform a large class of

work-e�cient PRAM algorithms into CONGEST algorithms with

small overhead [17]. Expander routing has also been utilized in

a smooth analysis for distributed MST [9] and to design sparsity-

aware algorithms for various shortest path computation tasks in

the CONGEST model [4].

Our improved expander routing algorithm immediately leads

to improved deterministic upper bounds for all of the aforemen-

tioned applications. In particular, our result implies that an MST of

an q-expander can be computed in poly(q−1) · 2$ (
√
log= log log=)

rounds deterministically, improving upon the previous determinis-

tic bound poly(q−1) · 2$ (log2/3 = log1/3 log=) [8] and nearly matching

the current randomized bound poly(q−1) · 2$ (
√
log=) [16, 17].

Corollary 1.3. An MST of an q-expander can be computed in

poly(q−1) · 2$ (
√
log= log log=) rounds deterministically.

Proof. Similar to the randomized MST algorithm in [16], it

was shown in [8] that an MST can be constructed using polyloga-

rithmic deterministic rounds and invocations of expander rout-

ing. Therefore, an MST of an q-expander can be computed in

poly(q−1) · 2$ (
√
log= log log=) rounds deterministically by imple-

menting the MST algorithm using the expander routing algorithm

of Corollary 1.2. □

Expander routing is also useful in designing distributed algo-

rithms in general graphs indirectly via the use of expander decom-

positions. An (n, q) expander decomposition of a graph removes

at most n fraction of the edges in such a way that each remain-

ing connected component induces a q-expander. In the CONGEST

model, this decomposition is commonly applied in a divide-and-

conquer approach, where e�cient expander routing algorithms are

employed to solve subproblems within q-expanders. This approach

has been particularly successful in the area of distributed subgraph

�nding [1–3, 5, 7, 8, 12, 23, 26]. A di�erent use of expander de-

compositions and routing is to establish barrier for proving lower

bounds in CONGEST [12].

Again, our improved deterministic expander routing algorithm

leads to improved bounds for the aforementioned applications. In

particular, we obtain a near-optimal $̃ (=1−2/:)-round deterministic

algorithm for :-clique enumeration in general graphs, improving

the previous deterministic upper bound =1−2/:+> (1) [5].

Corollary 1.4. There is a deterministic algorithm that list all

:-cliques in $̃ (=1−2/:) rounds deterministically.

Proof. By slightly modifying the algorithm of [5], we know that

all :-cliques can be listed using $̃ (=1−2/:) deterministic rounds

and invocations of expander routing on q-expanders with q =

1/polylog(=). The modi�cation needed is to alter the parameters

for the deterministic (n, q) expander decomposition in [5, Theorem

5]. Here we want to make q = 1/polylog(=).
As discussed in [8], the deterministic (n, q) expander decom-

position algorithm admits the following tradeo�: for any 1 g
W g

√
log log=/log=, there is a deterministic expander decom-

position algorithm with round complexity n−$ (1) · =$ (W) with

parameter q = n$ (1) log−$ (1/W) =. In the :-clique enumeration

195

Deterministic Expander Routing: Faster and More Versatile PODC ’24, June 17–21, 2024, Nantes, France

algorithm of [5], the parameter n is set to be some constant. By

selecting W to be a su�ciently large constant, we can ensure that

q = n$ (1) log−$ (1/W) = = 1/polylog(=) and the round complexity

n−$ (1) ·=$ (W) for constructing the decomposition is upper bounded

by $̃ (=1−2/:).
If we implement the :-clique enumeration algorithm with the

poly(q−1) · 2$ (
√
log= log log=) -round deterministic expander rout-

ing algorithm of [8], then the overall round complexity for :-clique

enumeration is $̃ (=1−2/:) ·2$ (
√
log= log log=)

= =1−2/:+> (1) . To im-

prove the upper bound to $̃ (=1−2/:), we use our new deterministic

expander routing algorithm. Speci�cally, by selecting n to be a su�-

ciently small constant in Theorem 1.1, we can ensure that each rout-

ing instance can be solved in poly(q−1) ·(log=)$ (1/n)
= polylog(=)

rounds and the cost =$ (n) + poly(q−1) · (log=)$ (1/n) of the pre-
processing step is upper bounded by $̃ (=1−2/:). □

Our algorithm is optimal up to a polylogarithmic factor, as the

upper bound $̃ (=1−2/:) for :-clique enumeration in Corollary 1.4

matches the ¬̃(=1−2/:) lower bound [13, 22]. Previously, such an

upper bound was only known to be achievable in the randomized

setting [1]. Moreover, for : = 4, our algorithm is tight even for

the easier :-clique detection problem, due to the ¬̃(
√
=) 4-clique

detection lower bound of [11].

Theorem 1.1 and Corollary 1.4 resolve an open question of

Censor-Hillel,1 which asks whether the cost of each instance of ex-

pander routing in the triangle enumeration algorithm can be made

both deterministic and has a polylogarithmic round complexity.

Corollary 1.4 yields a deterministic triangle enumeration algorithm

that is optimal up to a polylogarithmic factor.

1.2 Previous Results and Key Challenges

For ease of discussion, in this section, we assume that our input

graph has an $ (1) maximum degree and is an expander with con-

stant conductance.

Randomized Approach. We �rst summarize at a high level the

general idea of [16] and explain the di�culty of de-randomization.

Roughly speaking, the general idea is to partition the current base

graph - into : = =n parts -1, . . . , -: with roughly equal sizes.

For each part -8 , by using random walk techniques, they embed a

virtual Erdős–Renyi graph � (|-8 |, ?) onto it for ? = $ (log=/|-8 |),
where all the virtual edges correspond to a set of paths P with

polylog(=) congestion and dilation in - , where the congestion 2

is de�ned to be 2 = max4 |{% ∋ 4 | % ∈ P}| and the dilation 3

is de�ned to be 3 = max%∈P |% |. The quantity 2 + 3 is known as

the quality of P or the quality of the embedding, as one round

of communication in the virtual graph can be simulated within

$ (23) rounds in the base graph deterministically, and $̃ (2 + 3)
rounds with randomization [14, 27]. As Erdős–Renyi graphs are

good expanders, they may recurse on each -8 by viewing the base

graph as the virtual graph � (|-8 |, ?)) to further partition -8 into :

parts and embed a � (=, ?) on each of them. The hierarchy goes on

for $ (1/n) levels. Since each level only incurs a polylog(=) blow
up on the congestion and dilation. A set of paths of subgraphs

in any level with quality 2 + 3 corresponds to a set of paths in

1Open Problem 2.2 of https://arxiv.org/abs/2203.06597v3.

the original graph of quality (2 + 3) · log$ (1/n) =. With such a

hierarchy embedding structure, they showed a routing instance can

be routed using paths that consist of edges in the virtual graphs

across di�erent levels with quality log$ (1/n) =, which translates to

paths of quality (log$ (1/n) =)2 = log$ (1/n) = in the original graph.

Now we examine the deterministic routing algorithm of [8] and

address the reasons why it did not obtain the randomized bound

and the preprocessing/query tradeo�s.

Challenge I – Speed. At a high level, the deterministic routing

algorithm of [8] still follows the same recursive framework used

in the randomized algorithm of [16]. While a low-congestion and

low-dilation simultaneous embedding of virtual expanders into

-1, . . . , -: can be obtained easily by randomwalks, obtaining such a

simultaneous embedding of expanders is much more di�cult in the

deterministic setting. In [8], low-congestion and low-dilation simul-

taneous embedding of virtual expanders is computed recursively

using an approach similar to that of [10] based on the cut-matching

game of [24].

We give a brief and informal introduction to how the cut-

matching game works. The cut-matching game is a procedure that

returns a balanced sparse cut or a low-congestion and low-dilation

embedding of a virtual expander. The algorithm works by itera-

tively �nding a sparse cut of the virtual graph and then �nding a

low-congestion and low-dilation embedding of a large matching

between the two parts of the cut. If we cannot obtain a large match-

ing at some stage of the algorithm, then a balanced sparse cut can

be obtained. Otherwise, the virtual graph is guaranteed to be an

expander. In [8, 10], the implementation of the sparse cut algorithm

in the cut-matching game is done recursively with a recursive struc-

ture similar to that of [16] where recursion is applied to multiple

smaller instances.

Due to the recursive nature of the approach discussed above,

the deterministic simultaneous embedding of virtual expanders

in [8] has a much worse guarantee compared to the randomized ap-

proach of [16]: Speci�cally, within (=$ (n)+log$ (log(1/n)) =) rounds,
the expanders obtained have conductance of 1/(log$ (1/n) =). As
discussed earlier, to build the hierarchical structure needed to

solve the routing problem, one has to repeat the process of si-

multaneous embedding of virtual expanders recursively, and the

depth of recursion is $ (1/n). Since each level incurs a blow-up of

log$ (1/n) = factor on the routing quality, from the bottom to the

top, it introduces a log$ (1/n2) = blow-up in total, as opposed to

log$ (1/n) = in the randomized construction of [16]. By balancing

the terms (=$ (n) + log$ (log(1/n)) =) and log$ (1/n2) =, it turns out
setting n = (log log=/log=)1/3 yields the best possible bound of

2$ (log2/3 · log1/3 log=) , which is sub-optimal compared to the random-

ized algorithms of [16].

Challenge II – Preprocessing/Query Tradeo�s. In the random-

ized routing algorithm of [16], it is possible to obtain a prepro-

cessing/query tradeo�, where the preprocessing phase builds the

hierarchy of expander embeddings in (=$ (n) + log$ (log(1/n)) =)
rounds. Each routing query in the query phase can be done in

log$ (log(1/n)) = rounds. Very di�erent from the randomized ap-

proach, the deterministic routing algorithm of [8] still requires

196

PODC ’24, June 17–21, 2024, Nantes, France Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su

(=$ (n) + log$ (log(1/n2)) =) rounds for every routing query, so a

tradeo� between preprocessing and query cannot be achieved.

We brie�y explain why the disparity occurs. In the randomized

setting [16], the same collection of routing paths constructed in the

preprocessing step can be reused for all subsequent routing requests

that are oblivious to the randomness used in the preprocessing

step. Such an oblivious assumption can be made without loss of

generality by �rst using random walks to redistribute the messages

to be routed. In the deterministic setting [8], the paths for routing

the messages are recomputed from scratch for each routing request,

as we explain below.

Suppose the current base graph is- . Let-1 . . . -: be the children

of - in the hierarchy. We classify the tokens needed to be routed

)1 . . .): based on their destinations, where)8 is the set of tokens

whose destinations are in -8 . The routing task of the current level

of recursion is to route all the tokens)8 to -8 . Once such a task has

been achieved, we can just recurse in each -8 . The deterministic

algorithm of [8] resolves this task by iterating over all the$ (:2) -8 -
- 9 pairs sequentially. For each-8 -- 9 pair, they �nd a set of paths to

send the tokens)9 from-8 to- 9 with quality poly(:) ·2$ (
√
log=) by

adapting themaximal paths algorithm in [18], whichwere originally

used to compute matching and DFS in PRAM. As a result, there is

a poly(:) = =$ (n) dependency on the query complexity, which is

not needed in the randomized algorithm of [16].

1.3 Our Approach

We describe how we overcome the above two challenges as follows.

First, to get the bound that matches the randomized algorithm of

[16], we do a one-shot hierarchical decomposition.

One-Shot Hierarchical Decomposition. Instead of applying the

deterministic simultaneous expander embedding framework [8] as

a black box and recursing on each embedded expander to build the

embedding hierarchy, we observe that for the algorithm of [8] to

return such an embedding of expanders in one level, the algorithm

already builds some kind of a hierarchy of expander embedding

during the recursive construction. Therefore, a natural idea for

improving the deterministic routing algorithm of [8] is to run the

simultaneous expander embedding algorithm only once in the

base level and use the hierarchical decomposition constructed in

the algorithm to solve the routing problem in a way similar to that

of [8, 16]. To realize this idea, we need to overcome some technical

di�culties. In particular, here each level in the hierarchy not only

introduces a loss in the conductance guarantee but also a loss in

the number of vertices covered by the expander embedding, as the

hierarchical decomposition only embeds expanders on a constant

fraction of vertices in each level. One observation of why such an

approach is still plausible is that the depth of the hierarchy is$ (1/n),
so the expanders at the bottom level consist of 1/2$ (1/n) fraction
of the vertices. Therefore, it might be possible to �nd delegates in

those bottom-level expanders, which we will refer to as the best

nodes, for every vertex in the original graph in such a way that each

best node represents at most 2$ (1/n) vertices. This would incur at

most 2$ (1/n) blow up on the congestion. Moreover, the edges in

the virtual expanders in each level of the hierarchy correspond to

paths of quality at most polylog(=) in the parent level. The total

blow up on the quality is at most (log$ (1/n) =)2 = log$ (1/n) =. This
is in contrast with the algorithm of [8], which has a blow-up of

log$ (1/n2) =.
We de�ne additional tasks and reduce the original problem to

these tasks to implement the delegation idea. However, for the ease

of illustration in the introduction, let us assume for now a base

graph - is a partition into -1 . . . -: , where an expander can be

embedded into each -8 . Also, the hierarchy has been constructed

recursively on the expander of each -8 .

A Randomized, Meeting in the Middle Approach. Second, to

achieve a preprocessing/query tradeo�, given base graph - , we

need a routing algorithm that has no polynomial dependencies

on : that routes the tokens to the corresponding parts. We �rst

describe a randomized version of our approach and explain how

to de-randomize it: Perform lazy random walks simultaneously

for all the tokens together until they mix. For tokens destined to

-8 (call these tokens)8), they are now roughly equally distributed

across di�erent parts. Suppose that we call such a con�guration

the dispersed con�guration and the desired con�guration the �nal

con�guration. To route from the dispersed con�guration to the �nal

con�guration, we start with the �nal con�guration, transform it

into the dispersed con�guration by the same method, and reverse

the paths. The only problem left now is that the two dispersed

con�gurations can be di�erent, and we still need to match up)8
tokens with) ′

8 tokens for each 8 inside each part - 9 . Here, we can

then embed a sorting network into each - 9 to sort the tokens so

they are aligned to match up (see the Expander Sorting paragraph

at the end of the section).

De-randomization by Pre-embeddings of Shu�ers. Now the only

issue left is to remove the randomness needed in the process of rout-

ing tokens from any con�guration to a dispersed con�guration. The

cut-matching game, introduced by [25], is a potential deterministic

way to achieve a similar e�ect of random walks. Roughly speaking,

the goal of the game is to produce a shu�er, which consists of

matchings of virtual edges "1, "2, . . . , "_ such that the natural

random walk on the sequence of matchings converges to a nearly

uniform distribution from any initial distribution, where each"A

corresponds to a set of paths of low congestion and dilation (i.e. if

(D, E) ∈ "A then there is a D-E path in the set). The natural random

walk de�ned by "1, "2, . . . , "_ is a random walk such that for

A = 1, . . . , _, if the current vertex E is matched to D then we move to

D (through its corresponding path) with probability 1/2, and stay

at E with probability 1/2. If E is not matched, then it stays at E .

Once we have such a shu�er, we can distribute the tokens de-

terministically according to the behavior of a lazy random walk. In

particular, at each node D, consider if the number of)8 -tokens that

are on D is G8 . For A = 1 . . . , _, if D is matched to E in "A , we need

to send G8/2)8 -token from D to its mate E . Assuming the tokens are

splittable (to be fractional). In the end, every node would hold a

roughly equal amount of)8 tokens due to the mixing property of

the shu�er. This would lead to the dispersed con�guration.

Coarse-grained Shu�ers. However, the tokens are not splittable.

To this end, instead of building a shu�er on - , we build a shu�er

on . , where . is a multi-graph obtained from - by contracting

each -8 . By doing such a coarse-grained shu�ing, the rounding

197

Deterministic Expander Routing: Faster and More Versatile PODC ’24, June 17–21, 2024, Nantes, France

error due to the integrality of the tokens becomes negligible when

|-8 | k |. |.
Yet, directly running the cut-matching game on . will lead to

insu�cient bandwidth for token distribution. If - 9 is matched - 9 ′

by thematching player, thenwe need to send G8/2)8 -tokens from- 9

to- 9 ′ in the simulation of lazy randomwalk, where G8 is the number

of)8 -tokens on - 9 . Since each matched edge only corresponds to

one path and it can be the case that G8 = l (1), the bandwidth may

not be enough.

To resolve this, we implement the cut player on . and the match-

ing player on - to ensure the matching player �nds enough paths.

This will lead the algorithm to produce a shu�er consisting of

matchings of - along their path embeddings of low congestion

and dilation. The matchings of - can be naturally translated to

fractional matchings of . by normalization. We then simulate the

token distribution on . according to these fractional matchings,

using the path embeddings in - .

Routing to Shu�er Portals. Once the shu�ers are constructed,

it will be ready to process queries of routing instances. Recall that

paths that correspond to a matching of the shu�er will be used

to transport the tokens. The endpoint of such paths is known as

portals. To route the tokens according to the fractional matchings,

the main task is to send them to the corresponding portals so that

they can follow the paths to the corresponding parts. For example,

suppose there are G8)8 -tokens on - 9 for each 8 . If according to the

fractional matching, we need to send G8, 9 ′ tokens to - 9 ′ then we

need to route these G8, 9 ′ tokens to the portals in -8 . The routing

tasks stemming from processing a fractional matching now become

parallel instances of the routing task on each -8 . The cut-matching

games end in $ (log=) iterations. So the problem recurses into

$ (log=) of parallel routing instances of the next level. To load

balance the tokens over the portals, we again use the expander

sorting technique to resolve it without dependency on poly(:). As
a result, a query can be answered without dependency on poly(:).

Expander Sorting. One particular subroutine—deterministic ex-

pander sorting—serves as a core tool in our routing algorithm. It has

been used in, e.g., the aforementioned procedure for routing tokens

to shu�er portals as well as other procedures such as re-writing

token destinations and solving the problem within leaf components.

The goal of expander sorting is to re-distribute all tokens among

the vertices such that, if we collect all the tokens from the vertex

with the smallest ID to the vertex with the largest ID, these tokens’

pre-de�ned keys are sorted in non-decreasing order. Su and Vu [31]

considered a slightly simpler version of the problem where each

vertex holds a unique ID from [1, =] and gave a randomized algo-

rithm for it. Here, the IDs can range from [1, poly(=)]. We gave

deterministic algorithms for expander sorting along the way and

developed several handy tools based on it. For example, gathering

and propagating information with custom grouping keys.

The Equivalence Between Routing and Sorting. As a side result,

we showed that expander routing and expander sorting tasks are

actually equivalent up to a polylogarithmic factor, in the sense that

if there is a CONGEST algorithm Ar>DC4 that solves the expander

routing problem in)route (=, q, !) rounds, then an expander sorting

instance can be solvedwithin$ (q−1 log=)+$ (log=) ·)route (=, q, !)

rounds. Conversely, if there is a CONGEST algorithm Asort that

solves the expander sorting problem in)sort (=, q, !) rounds, then an
expander routing instance can be solved within$ (1) ·)sort (=, q, 2!)
rounds. We prove the equivalence in the full version [6].

We believe that the equivalence result is of independent interest

and can contribute to the study of the complexity of distributed

graph problems in expander graphs. Much like the signi�cance

of network decomposition in the LOCAL model, expander routing

stands out as the only nontrivial technique in the design of dis-

tributed graph algorithms on expanders in the CONGEST model.

Akin to the theory of P-SLOCAL-completeness developed in [15],

an interesting research direction is to explore the possibility of

identifying a wide range of fundamental distributed problems on

expanders that are equivalent to expander routing.

Due to the page limit, the appendices and some proofs are de-

ferred to the full version of this paper [6].

2 PRELIMINARIES

Let = denote the number of vertices and � be the maximum de-

gree. Throughout the paper, we assume our graph has a constant

maximum degree, i.e., � = $ (1). A reduction from general graphs

to constant degree graphs can be found in the full version [6, Ap-

pendix E]. We state some de�nitions and some basic properties

here.

Conductance. Consider a graph � = (+ , �). Given a vertex set

subset (, de�ne vol(() =
∑

E∈(deg(E). Let X (() = {(D, E) | D ∈
(, E ∈ + \ (}. The conductance of a cut (and that of a graph � are

de�ned as follows.

¨(() = |X (() |
min(vol((), vol(+ \ ()) ¨(�) = min

(¦+
(≠∅ and (≠+

¨(()

Sparsity. The sparsity of a cut (and that of a graph� are de�ned

as follows.

«(() = |X (() |
min(|(|, |+ \ (|) «(�) = min

(¦+
(≠∅ and (≠+

«(()

We remark that the sparsity «(�) of a graph � is also commonly

known as edge expansion.

Diameter. Given a graph � = (+ , �). For D, E ∈ + , let dist� (D, E)
denote the distance between D and E in � . The diameter � is de-

�ned to be � (�) = maxD,E∈+ (�) dist� (D, E). The following upper
bound on the diameter can be obtained by a standard ball-growing

argument:

Fact 2.1. Let � be a graph with conductance q . The diameter

� (�) is upper bounded by $ (q−1 log=).

Expander Split. The expander split �⋄ of � = (+ , �) is con-

structed as follows:

• For each E ∈ + , create an expander graph -E with deg(E)
vertices with �(-E) = Θ(1) and ¨(-E) = Θ(1).

• For each E ∈ + , �x an arbitrary ranking of the edges incident

to E . Let AE (4) denotes the rank of 4 in E . For each edge

4 = DE ∈ �, add an edge between the AD (4)’th vertex of -D
and the AE (4)’th vertex of -E .

198

PODC ’24, June 17–21, 2024, Nantes, France Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su

The expander split will be used to obtain the reduction from general

graphs to constant degree graphs in [6, Appendix E]. A key property

is that «(�⋄) = Θ(¨(�)). The proof, as well as more properties on

expander split, can be found in [8, Appendix C].

Quality of Paths. Given a set of paths P . The quality of P ,& (P),
is de�ned to be the congestion + dilation of the set of paths. Notice

that the smaller this quantity is, the better quality we have. Such a

notion has been introduced in [20, 21], as there exist randomized

algorithms that route along each path simultaneously in $̃ (& (P))
rounds [14, 27]. In the deterministic setting, it is straightforward to

execute the routing in congestion × dilation f & (P)2 rounds by
spending congestion rounds per edge on the paths.

Fact 2.2. Let P be a set of precomputed routing paths. Sending

one token along every path % ∈ P simultaneously can be done in

deterministic & (P)2 rounds.

Embeddings. Given graphs �1, �2 with + (�1) ¦ + (�2), an em-

bedding of �1 into �2 is a function 5 : � (�1) → P (�2) that maps

the edges of �1 to P (�2), the set of all paths in �2. The quality of

the embedding & (5) is de�ned to be the quality of the set of paths⋃
4∈� (�1) 5 (4). As the vertex set of �1 is always a subset of+ (�2),

we sometimes specify �1 only by its edge set.

For the ease of composition, given an embedding 5 , we tweak it

so that it canmap paths in�1 to paths�2 by de�ning 5 (41, . . . , 4;) =
(5 (41), . . . , 5 (4;)) for (41, . . . , 4;) ∈ P (�1). Given an embedding 5

that embeds �1 onto �2 and an embedding 6 that embeds �2 onto

�3, (6 ◦ 5) is an embedding of �1 into �3.

Given embedding 5 that embeds �1 to �1 and embedding 6

that embeds �2 to �2 with + (�1) ∩ + (�2) = ∅, the embedding

(5 ∪ 6) : � (�1 ∪ �2) → P (�1 ∪�2) is de�ned to be

(5 ∪ 6) (4) =
{
5 (4) 4 ∈ � (�1)
6(4) 4 ∈ � (�2)

Matching Embedding. The following result, developed in [8, 19],

allows us to embed a matching between (and) , where (and)

are two disjoint subsets:

Lemma 2.3. Consider a graph � = (+ , �) with maximum de-

gree � = polylog(=) and a parameter 0 < k < 1. Given a set of

source vertices (and a set of sink vertices) with |(| f |) |, there is
a deterministic algorithm that �nds a cut � and an embedding 5"
of a matching " between (and) saturating (with the following

requirement in 2$ (
√
log=) · poly(1/k) rounds.

• Matching: The embedding 5" has quality $ (k−2) ·
polylog(=).

• Cut: Let (′ ¦ (and) ′ ¦) be the subsets that are not

matched by" . If (′ ≠ ∅, then � satis�es (′ ¦ � ,) ′ ¦ + \� ,
and «(�) f k ; otherwise � = ∅.

3 THE HIERARCHICAL DECOMPOSITION

Consider a constant degree graph � = (+ , �). Chang and Saranu-

rak [8] gave an algorithm that either �nds a balanced sparse cut �

with «(�) f k and |� | g |+ |/4 or �nds a subset of vertices, ¦ +

such that «(� [,]) g log−$ (1/n) = ·poly(k) with |, | g (2/3) · |+ |,
where 0 < n < 1 is a parameter that the running time depends on.

In the latter case, it also produces a hierarchical decomposition T ,

whose property we summarize in Property 3.1. We setk = «(�)/2
to force it to go into the latter case, as no cut � with «(�) f k/2
can be found.

Property 3.1. Each node of T is a vertex set - ¦ + . The root of

the tree is a vertex set, with |, | g (2/3) · |+ |. A node of) can

be either good or bad. The number of levels ℓ (T) in the hierarchy is

upper bounded by $ (1/n). Moreover:

(1) Let : = |+ (�) |n . If a node is good, then it is either terminal or

internal. A bad node or a terminal good node has no children.

A good internal node - consists of a number of good children

-1 . . . -C , where (2/3) ·: f C f : and they can be ordered so that

maxG∈-ğ
ID(G) f min~∈-ğ+1 ID(~) for 1 f 8 < C . Moreover, it

has the same number of bad children - ′
1 . . . -

′
C . Let -

∗
8 = -8 ∪- ′

8 .

We have - = - ∗
1 ∪ . . . ∪- ∗

C . There exists g = Θ(|- |/:) such that

for each 8 ,

1

3
· |- |
:

f |- ∗
8 | f 6 · |- |

:
and

2

3
(g − 1) f |- ∗

8 | f 2 · (g + 1)

(2) Let ? (-) denote the parent node of- . If a non-root node- is good

then it is also associated with a virtual graph �- with maximum

degree $ (log=) whose vertex set is - , and an embedding 5- that

embeds �- to �? (-) . The root - is associated with the virtual

graph �- = � [-] with 5- (4) = 4 .

Suppose - ∈ T is a good internal node. Let -1 . . . -C be the good

children of - . The embedding
⋃C

8=1 5-ğ
that embeds �-1

∪ . . . ∪
�-Ī

onto �- has quality polylog(=) · $ (k−1) in - if - is the

root, and polylog(=) otherwise.
In addition, for any good node- ,«(�-) = poly(k)·log−$ (1/n) =
if - is the root and «(�-) = ¬(1/logΘ(ℓ (T)−ℓ (-)) =) =

log−$ (1/n) = otherwise, where ℓ (-) is the level that - is at in the

hierarchy (the root has level 0).

(3) Suppose that - is a good internal node. For each �-ğ
, it can be

extended to a virtual graph �∗
8 of - ∗

8 by adding a matching"∗
8

between -8 and -
′
8 to �-ğ

such that each vertex in - ′
8 is matched.

This also implies |- ′
8 | f |-8 | and so

|-1 ∪ . . . ∪ -C | g |- |/2

Moreover, there exists an embedding 5"Ĕ
that embeds

⋃C
8=1"

∗
8

onto �- with quality polylog(=) if ℓ (-) g 1, and quality of

$ (k−1) · polylog(=) if ℓ (-) = 0.

Property 3.1(1) says that every part- ∗
8 has roughly the same size,

with up to a constant factor di�erence. Property 3.1(2) describes

the embedding inside each -8 . Property 3.1(3) describes the em-

bedding between -8 and -
′
8 . See Figure 1 for an illustration of the

decomposition.

Some properties listed above may not be explicitly stated in [8].

Thus, for the sake of completeness we will go over the construction

of [8] to verify these properties in the full version [6, Appendix A].

Theorem 3.2 ([8]). Let � be a constant degree q-expander and

: = =n be a parameter. Then, there exists a deterministic CONGEST

algorithm that computes a hierarchical decomposition T that satis�es

Property 3.1 in poly(q−1) · (=$ (n) + log$ (1/n) =) time.

De�nition 3.3. Let - ∈ T be a good node whose level is ℓ (-).
The �atten embedding 5 0

-
is an embedding that embeds �- to � ,

199

Deterministic Expander Routing: Faster and More Versatile PODC ’24, June 17–21, 2024, Nantes, France

�
2

�
3

�
4

�
5

�
1

�
′
1

�
2

�
′
2

�
3

�
′
3

�
4

�
′
4

�
5

�
′
5

�

�
1

Figure 1: An illustration of the hierarchical decomposition.

The gray dotted edges denote the expander embedding as de-

scribed in Property 3.1(2). For example, the gray dotted edges

inside-1 is the virtual graph�-1
. The base graph of the child

node with vertex set -1 is now �-1
. The black dotted edges

between -8 and - ′
8 form a matching embedding described in

Property 3.1(3).

de�ned as

5 0- = 5? (ℓ (Ĕ)) (-) ◦ . . . ◦ 5? (2) (-) ◦ 5? (-) ◦ 5-

Corollary 3.4. For each- ∈ T , let P- be any collection of paths

in - . Suppose that the quality of each P- is upper bounded by& . Let

P ′
=

⋃
- ∈T 5 0

-
(P-) be the �atten mapping of these paths to � . We

have that & (P ′) = & · poly(k−1) · log$ (1/n) =.

Proof. Let T8 = {- ∈ T | ℓ (-) = 8}. De�ne 5 8 =
⋃

- ∈Tğ 5-
to be the union of embedding from level-8 nodes to level-(8 − 1)
nodes. By Property 3.1(2), & (5 8) = polylog= if 8 > 1 and & (5 8) =
poly(k−1) · polylog= otherwise. Since

⋃
- ∈Tğ 5

0
-
(%-) = (5 1 ◦

. . . ◦ 5 8) (⋃- ∈Tğ P-), we have & (⋃- ∈Tğ 5
0
-
(P-)) = & ·$ (k−1) ·

log$ (8) =. Summing this over each 8 = 1, . . . ,$ (1/n), we conclude
that the quality of P ′ is at most & ·$ (k−1) · log$ (1/n) =. □

Embedding a Matching To Cover the Whole Graph. We note

that the root , ∈ T does not cover all the vertices in + . Us-

ing Lemma 2.3, we can pre-embed a matching between vertices of

+ \, and, with good quality so that tokens can be routed to the

hierarchy easily.

Lemma 3.5. Let, ∈ T be the root of the hierarchical decom-

position. There exists a CONGEST algorithm that �nds an embed-

ding 5"ĨĥĥĪ
of a matching "A>>C between + \, and, that satu-

rates + \, with & (5"ĨĥĥĪ
) = k−2 · log$ (1) = and the runtime is

2$ (
√
log=) · poly(k−1).

Proof. Note that |, | g (2/3) |+ | by Property 3.1. We set (=,

and) = + \, and so |(| < |) |. We then apply Lemma 2.3 with

k = «(�)/2 so that it returns a matching embedding with the

desired quality. □

Leaf Trimming. We will trim the leaves of T so that every leaf

node contains at least :4 = $ (=4n) vertices. This can be done level

by level from the last level. Each level takes$ (�′ +:4) · log$ (1/n) =

rounds, where �′
= log$ (1/n) = is a diameter upper bound of �-

of each - ∈ T in that level.

De�nition 3.6. Given - ∈ T , de�ne -14BC ¦ - to be the union

of the good leaf nodes in the subtree rooted at - .

De�nition 3.7. De�ne d14BC = max- ∈T |- |/|-14BC |.

Note that with Property 3.1, we have d14BC = 2$ (1/n) .

4 REDUCING TO INTERNAL ROUTING TASKS

We �rst consider the core setting of the expander routing problem,

where the input graph � is a constant degree expander of sparsity

k . The main task described below summarizes the routing task on

� :

De�nition 4.1 (Task 1). Let � be a constant degree k -

expander, where each vertex of � has a unique destination ID in

{1, 2, . . . , =$ (1) }. Let ! be a parameter that depicts the maximum

load. Suppose that each node in� holds at most ! tokens, and each

node is the destination of at most ! tokens. The goal is to route the

tokens to their destinations.

However, as the leaves (i.e., the best nodes) of our hierarchical

decomposition do not cover the whole graph, it would be di�cult to

solve Task 1 directly. Instead, we consider a routing problem where

all the destinations of the tokens are on the best nodes, speci�ed

by their ranks. We introduce Task 2 below:

De�nition 4.2 (Task 2). Let - be a good node in the hierarchical

decomposition T of the input constant degreek -expander� . Let !

be a parameter. Suppose that each node holds for at most ! tokens.

Each token I has a destination marker 8I and there are at most

!d14BC tokens for each destination marker 8I . The goal of the task is

to route all tokens with destination marker 8I to the 8I-th smallest

vertex among -14BC .

The reduction from Task 1 to Task 2 is in the full version [6]. Note

that asTask 2will be solved recursively, we de�ne the task on every

component - of the hierarchy T . We will now focus on solving

Task 2 by using the ideas discussed in the introduction. In the

following, We identify the key task for solving Task 2 recursively.

Let - ∈ T be an internal component and let - ∗
1 , -

∗
2 , . . . , -

∗
C

be the parts of - derived from Theorem 3.2. We note that with

broadcasts, it is possible for every vertex E ∈ - obtaining the

number of best vertices within all its parts during preprocessing

in $ ((: + � (�-)) · & (⋃- ′∈T 5 0 (�- ′))) = poly(k−1, :, log1/n =)
rounds for all - ∈ T in parallel. Furthermore, by Property 3.1(1),

the IDs of the vertices in -14BC are partitioned in the sorted order.

This allows the algorithm to rewrite the destination marks at the

beginning of handling a query on - : For any token I with desti-

nation mark 8I , the algorithm computes two values (9I , 8′I), where
9I ∈ {1, 2, . . . , C} is the index of the part containing the 8I-th small-

est best vertex, and 8′I = 8I −
∑

9< 9İ |-14BC ∩ - ∗
9 | is the next-level

destination mark.

Therefore, to solveTask 2 on- , it su�ces to �rst route all tokens

I to any vertex in the part - ∗
9İ
. Finally, for any part - ∗

9 = - 9 ∪ - ′
9 ,

through Property 3.1(3) we are able to route all tokens - ∗
9 to - 9

such that a next-level Task 2 can be called. We summarize this task

as follows.

200

PODC ’24, June 17–21, 2024, Nantes, France Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su

De�nition 4.3 (Task 3). Let - ∈ T be a non-leaf good node and

- ∗
1 , -

∗
2 , . . . , -

∗
C be its parts. Each vertex holds at most ! tokens for

some parameter !. For each token I there is a part mark 9I . Suppose

that for each 9 ∈ {1, 2, . . . , C} there are at most ! · |- ∗
9 | tokens having

the same part mark 9 . The task is accomplished whenever every

token I with a part mark 9I is located at a vertex in - ∗
9İ
and each

vertex holds at most 2! tokens.

In the following sections, we introduce tools and aim to give

algorithms for Task 3.

5 CORE TOOLS: SHUFFLER AND EXPANDER
SORTING

As mentioned in Section 1.3, Task 3 is solved by routing all tokens

into a dispersed con�guration. The tokens are routed through a shuf-

�er. In Section 5.1, we describe an algorithm that constructs such

a shu�er. Our algorithm implements Räcke, Shah, and Täubig’s

cut-matching game [29] but with a twist in order to be constructed

e�ciently. The e�ciency comes from the fact that we already have

the precomputed hierarchical decomposition T . To process queries

using the constructed shu�er, it is necessary to route the tokens

to speci�ed shu�er portals. This can be implemented by expander

sorting procedures. In Section 5.2 we introduce the expander sort-

ing and convenient procedures that can be applied to solving Task

3.

5.1 Shu�ler

In this subsection, we de�ne shu�ers and the algorithm for con-

structing them during the preprocessing time. Consider a good

node - ∈ T with |- | g =4n . Let - ∗
1 . . . -

∗
C be a partition of - ,

where - ∗
8 = -8 ∪ - ′

8 as de�ned in Property 3.1.

Cut-Matching Game and Shu�er. To achieve this, we run a vari-

ant of cut-matching game [25]. The cut-matching game consists of

a cut player and a matching player, and they alternatively pick a

cut and add a matching to an initially empty graph. In our variant,

the cut-matching game is “played” on the cluster graph . , which

is the multigraph by contracting each of the C parts of - . In each

iteration @ of the cut-matching game, the cut player �rst obtains a

cut on . , which implies a cut on - .

Then, the matching player �nds an embedding 5"ħ

Ĕ
of a

virtual matching "
@
-

on - , which we will show how to

transform to a natural fractional matching on . . The se-

quence of all computed matchings and embeddings M- :=

(("1
-
, 5"1

Ĕ
), ("2

-
, 5"2

Ĕ
), . . . , ("_

-
, 5"ą

Ĕ
)) is then called the shu�er.

Now, we formally de�ne the aforementioned terms.

De�nition 5.1. Let . denote the cluster graph obtained by con-

tracting each - ∗
8 in �- . The set of vertices + (.) = {E1, E2, . . . , EC }

has exactly |. | = C vertices where E8 corresponds to the vertex

contracted from - ∗
8 . Given a subset (¦ + (.), let (- denote the

corresponding vertex set ∪8:Eğ ∈(- ∗
8 in - .

A fractional matching " = {GDE} of a graph . is a mapping that

maps each unordered pair {D, E} ∈
(+ (.)

2

)
to a real number GDE ∈

[0, 1] such that for all D ∈ + (.), the fractional degree is at most

one:
∑

E GDE f 1. Given a matching "- in - , the corresponding

natural fractional matching" = {GDE} (D,E) ∈(Ē (ĕ)
2) is . of de�ned

to be:

GDE =
|{(0, 1) ∈ "- | 0 ∈ - ∗

D , 1 ∈ - ∗
E }|

=′
, where =′ = 6|- |/:.

De�nition 5.2. Given any fractional matching" = {GDE} on . ,

we de�ne a C × C matrix '" with

'" [8, 9] :=
{
1
2 + 1

2 · (1 − ∑
:≠8 GEğ Eġ) if 8 = 9 ,

1
2 · GEğ EĠ if 8 ≠ 9 .

Let ("1, . . . , "8) be a sequence of fractional matchings. If the con-

text is clear, we omit the sequence and denote by '8 the product of

matrices '"ğ · · ·'"2'"1 . For any vertex ~ ∈ + (.), let '8 [~] be the
row vector in '8 that corresponds to the vertex ~. For 0, 1 ∈ + (.),
the 1-th entry of '8 [0] can be interpreted as the probability of a ran-

dom walk that starts from 1 and ends up at 0. It is straightforward

to verify that all entries of '8 [~] adds up to 1 for all ~ ∈ + (.).
Let 1 be the all-one vector, and for brevity, we denote 1

|ĕ |
:= 1

|. | 1.
The following de�nition sets up a potential function for the cut-

matching game. Let ∥ · ∥ to be the standard 2-norm function for a

vector.

De�nition 5.3 ([25]). Let . be a cluster graph de�ned in Def-

inition 5.1 and let ("1, . . . , "8 , . . .) be a sequence of fractional

matchings on . . We de�ne the potential function Π(8) :=∑
~∈. (+) ∥'8 [~] − 1

|ĕ |
∥2.

De�nition 5.4 (Shu�er). Given - ∈ T , a shu�er of

- consists of a sequence of _ matching embeddings

M- := (("1
-
, 5"1

Ĕ
), ("2

-
, 5"2

Ĕ
), . . . , ("_

-
, 5"ą

Ĕ
)) on - such

that if ("1, . . . , "
_) is the corresponding fractional matching of

("1
-
, . . . , "_

-
) in . , the random walk induced by it nearly mixes,

as characterized by the following bound on the potential function:

∑

~∈+ (.)

'8 [~] −
1

|ĕ |

2

f 1

9=3

In addition, for each 8 , 1 f 8 f _, the embedding 5"ğ
Ĕ
has quality

log$ (1/n) = in - for non-root - , and poly(k (�)−1) log$ (1/n) = if

- is the root. The quality of the shu�er, which essentially has the

same order of magnitude as the quality of each embedding 5"ğ
Ĕ
, is

de�ned to be

& (M-) := &

(
_⋃

8=1

5"ğ
Ĕ
("8

-)
)

.

We prove the following lemma in [6, Appendix B].

Lemma 5.5. There exists an CONGEST algorithm such that, given

a good node- ∈ T , computes a shu�er of- in poly(k−1, :, log1/n =)
rounds. Moreover, the shu�er has _ = $ (log=) matching embeddings

with quality & (M-) = poly(k−1, log1/n =).

5.2 Distributed Expander Sorting

In this subsection, we introduce several primitives that are recur-

sively dependent on the internal routing tasks (i.e.,Task 2 andTask

3). Perhaps, the most interesting side-product result we obtain is a

deterministic sorting algorithm on an expander graph, described

as follows.

201

Deterministic Expander Routing: Faster and More Versatile PODC ’24, June 17–21, 2024, Nantes, France

Theorem 5.6 (Deterministic Expander Sort). Let- ∗
= -∪- ′

be a virtual graph such that - is a good node in the hierarchical

decomposition T of ak -sparsity expander and there is an embedded

- ′-matching 5" from - ′ to - with a �attened quality & (5 0
"
) =

poly(k−1, log1/n =). Suppose that each node holds at most ! tokens,

and each token I has a (not necessarily unique) key :I . Then, there

exists a CONGEST algorithm such that, when the algorithm stops,

for any two tokens G and ~ on two di�erent vertices D and E with

ID(D) < ID(E), we have :G f :~ . Moreover, each vertex holds at most

! tokens. The preprocessing time satis�es the following recurrence

relations:

)
pre
sort (|-

∗ |) = 2& (5 0"ĨĥĥĪ
)2 +) pre

sort (|- |)

)
pre
sort (|- |) =





)
pre
2 (|- |) +$ (log=) ·)2 (|- |, 1)

+ poly(k−1, :, log1/n =) if - is non-leaf,

poly(k−1, :, log1/n =) if - is a leaf.

The query time satis�es the following recurrence relations:

)sort (|- ∗ |, !) = 2& (5 0"ĨĥĥĪ
)2 +) pre

sort (|- |)

)sort (|- |, !) =




)3 (|- |, !) + !d14BC ·& (IAKS)2 + ! ·& (5 0"Ĕ
)2

+)sort (6|- |/:, !) if - is non-leaf,

! · poly(k−1, log1/n =) if - is a leaf component.

Solving the recurrence relation requires solving the recurrence

relations for Task 2 and Task 3, which we defer to the full version

of our paper [6].

Applications. The distributed expander sort can be used for the

following useful primitives, including token ranking, local propaga-

tion, local serialization, and local aggregation. The term local here

refers to the �exibility of setting an arbitrary grouping key, such

that the described tasks are performed on each group of tokens

independently but simultaneously. We state the results here and

provide detailed proofs in the full version [6, Appendix C].

Theorem 5.7 (Token Ranking). In $ ()sort (|- ∗ |, !)) rounds,

each token receives a rank AI which equals the number of distinct

keys that are strictly less than :I .

Lemma 5.8 (Local Propagation). Suppose that each token has

a key :I , a unique tag DI , and a variable EI . In $ ()sort (|- ∗ |, !))
rounds, each token’s variable is rewritten as EI∗ where I∗ =

argminG {DG | :G = :I }.

Corollary 5.9 (Local Serialization). In $ ()sort (|- ∗ |, !))
rounds, each token receives a distinct value SIDI ∈
{0, 1, . . . ,Count (:I) − 1} among all tokens with the same key.

Here Count (:I) refers to the number of tokens with key :I .

Corollary 5.10 (Local Aggregation). In $ ()sort (|- ∗ |, !))
rounds, each token I learns the value Count (:I).

6 SOLVING TASK 2 AND TASK 3 USING
SHUFFLERS

In this section, we aim to describe our algorithms for solving Task

2 and Task 3.

Algorithm for Task 2. The algorithm routes the tokens to the

corresponding parts, sends the tokens to vertices along the match-

ing toward the good node, and then recurse on the good nodes.

For details on solving Task 2 concerning leaf components, we refer

readers to the full version [6].

Algorithm for Task 3. To solve Task 3, we use another meet-in-

the-middle idea. Suppose that we are able to disperse all tokens

with the same part mark as even as possible. Then, the algorithm

may apply the same procedure on the instance where 2! dummy

tokens are created with part mark 9 on each vertex at - ∗
9 . Once

these dummy tokens are dispersed and meet the real token of the

same part mark, a desired routing is found and each dummy token

brings at most one real tokens to the goal.

De�nition 6.1. Let - ∈ T be a non-leaf good node with C parts

- ∗
1 , -

∗
2 , . . . , -

∗
C . We say that a con�guration is a dispersed con�gu-

ration, if for all 8, 9 ∈ {1, 2, . . . , C}, the number of tokens on vertices

of - ∗
8 having part mark 9I = 9 , denoted as |)8, 9 |, satis�es

0.9
9

C
− 0.1

|- |
C2

f |)8, 9 | f 1.1
9

C
+ 0.1

|- |
C2

,

where # 9 is the total number of tokens whose part mark equals 9 .

We say that a con�guration is a �nal con�guration, if every token

with part mark 9I = 9 is located on a vertex in - ∗
9 .

Notice that the condition of Task 3 requires that the number

of real tokens with any part mark 9 is at most ! · |- ∗
9 |. The total

number of dummy tokens generated from part 9 is 2! · |- ∗
9 |. With

the above de�nition De�nition 6.1, if both real tokens and dummy

tokens are routed to a dispersed con�guration, we will show that on

each part - ∗
8 and for each part mark 9 the total number of dummy

tokens is guaranteed to be outnumbered than the number of real

tokens of the same part mark.

Suppose that we have already applied the above idea where

the real tokens and the dummy tokens are routed into dispersed

con�gurations. There is a caveat: these tokens may be located at

di�erent vertices within the same part - ∗
8 and they do not meet

each other. Therefore, to complete the route, we will have to match

the real tokens and the dummy tokens of the same part mark within

each - ∗
8 .

In Section 6.1 and Section 6.2 we show how to transform an ar-

bitrary con�guration to a dispersed con�guration recursively. Due

to the page limit, the rest part of the analysis — including merging

two dispersed con�gurations, solving the leaf case of Task 2 and

round complexity analysis — are deferred to the full version [6].

6.1 Arbitrary Con�guration to the Dispersed
Con�guration

Let M- := (("1
-
, 5"1

Ĕ
), ("2

-
, 5"2

Ĕ
), . . . , ("_

-
, 5"ą

Ĕ
)) be the shu�er

of - , where _ = $ (log=). Let ("1, . . . , "_) be the sequence of

corresponding natural fraction matching in . to the sequence of

matching ("1
-
, "2

-
, . . . , "_

-
). Recall from De�nition 5.4 that the

random walk '"ą . . . '"1 converges to nearly uniform distribution

from any initial distribution.Wewill distribute the tokens according

to the fraction matching iteration by iteration. That is, in iteration

@, we will distribute the tokens according to �"ħ .

202

PODC ’24, June 17–21, 2024, Nantes, France Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su

Consider a fractional matching " in an iteration B . Let)8,; be

the); tokens at -
∗
8 . In each iteration, the goal is the following: For

each 8, 9, ; , we send +(<8 9/2) |)8,; |, tokens in)8,; from - ∗
8 to - ∗

9 . To

achieve this, we will need to �rst route the +(<8 9/2) |)8,; |, tokens
to the portals %8, 9 , where %8, 9 ¦ - ∗

8 is de�ned as %8, 9 = {G ∈ - ∗
8 |

(G,~) ∈ "
@
-
for some ~ ∈ - ∗

9 }.
In Section 6.2, we describe how such a task of routing the tokens

to the portals can be done recursively. Once the tokens are routed

to the portals, they can follow the path embedding corresponding

to the virtual matching edge to arrive in - ∗
9 . The following lemma

shows that a dispersed con�guration is achieved after doing the

token distribution according to ("1, . . . , "_).

Lemma 6.2. Let ("1, . . . , "_) be the sequence of natural frac-
tional matching in . that corresponds to the sequence of matching

in M- . For @ = 1 . . . _, suppose that during iteration @, we send

+(<8 9/2) |)@−1
8,;

|, tokens in)@−1
8,;

from- ∗
8 to- ∗

9 for each 1 f 8, 9, ; f C ,

where)
@−1
8,;

is set of tokens in - ∗
8 destined to part ; at the end of iter-

ation @ − 1. Then, a dispersed con�guration is achieved at the end.

We defer the proof to the full version [6].

The following corollary is useful to control the number of tokens

in each part, which can be useful for deriving the �nal recurrence.

Due to its similar �avor, we state it here:

Corollary 6.3. Let #max be the maximum number of tokens

within any part at the beginning of the routing. For any @ such that

1 f @ f _, the total number of tokens within the part - ∗
8 after

sending the tokens along fraction matchings "1, "2, . . . , "@ is at

most #max + C2@.

Proof. This can be done by an induction on @. Let #
@
8 be the

number of tokens within the part- ∗
8 after iteration@ and let#

@
max =

max8 {#@
8 }. Then, for all 8 we have #

0
8 f #max.

We notice that each "@ is a fraction matching. If the tokens

are fractional as well then the total amount of tokens does not

change. However, due to the fact that tokens are integral, we have

to carefully upper bound the total number of tokens:

#
@
8 f

(
#
@−1
8 −

C∑

9=1

C∑

;=1

⌊
1

2
<8, 9 |)@−1

8,;
|
⌋

︸ ︷︷ ︸
tokens sent away

)
+

C∑

9=1

C∑

;=1

⌊
1

2
< 9,8 |)@−1

9,;
|
⌋

︸ ︷︷ ︸
tokens received

f
(
1

2
#
@−1
8 + C2

)
+ 1

2
#
@−1
max

f #
@−1
max + C2 . □

6.2 Routing the Tokens to the Portals

Consider a particular part - ∗
8 and a particular fraction matching

"@ . In this subsection, we describe a subroutine that routes all

tokens on - ∗
8 to designated portals %8, 9 . The goal of this subroutine

is that for all ; and for all tokens with the same speci�c part mark ; ,

there will be exactly +(<8, 9/2) |)8,; |, tokens being routed to vertices
in %8, 9 . Moreover, the tokens routed to %8, 9 should be load-balanced.

Tie-Breaking The Tokens via Serialization. Wewould need two tie-

breaking operations here: �rst, for any ; , each token with the part

mark ; learns the portal group index 9 (or no-op). This can be done

by invoking (1) a local aggregation procedure (Corollary 5.10) that

obtains the value |)8,; | and (2) a local serialization procedure (Corol-

lary 5.9) that gives each token a serial number in {0, 1, . . . , |)8,; | −1}.
With the serial number and the total count, we can now assign

locally the portal index 9 for each token.

To enforce the load-balancedness requirement, the second tie-

breaking must be made such that each node in %8, 9 receives roughly

the same number of tokens. This can be done by applying two

additional serialization steps. The �rst local serialization procedure,

using the portal index 9 as the key, assigns each token I that goes

to the same portal group %8, 9 a serial number SIDI . Using the size

|%8, 9 | that is preprocessed and stored at each vertex in - ∗
8 , each

token I obtains an index j (I) := SIDI mod |%8, 9 |. The second local

serialization procedure can actually be preprocessed — it assigns

each portal vertex in %8, 9 a serial number.

We remark that all local aggregation and local serialization pro-

cedures described above are actually running over the virtual graph

of the corresponding part - ∗
8 . This avoids cyclic dependency of

invoking token ranking, expander sorting, and Task 3.

Now, the problem of routing the tokens to the portals reduces

to the following “Task 2 style” task. In this task, each token has

a portal group index 9 and an index j (I). The goal is to route all

tokens on - ∗
8 to the j (I)-th vertex within %8, 9 .

Meet-In-The-Middle Again. The above task can be solved using

the meet-in-the-middle trick and running expander sorting (Theo-

rem 5.6) twice within - ∗
8 . In the �rst expander sorting, we assign

for each token a key :I := (9, j (I)) and sort the tokens within - ∗
8 .

In the second expander sorting, for each portal vertex of %8, 9 with

a serial index B , we create a certain number, say f 9,B , of dummy

tokens all with the same key :I := (9, B). The number of dummy

tokens for (9, B) will be exactly the same as the number of actual

tokens that will be sent to this vertex. We also add dummy tokens

such that every vertex reaches the same maximum load of ! tokens.

These two expander sortings should now give a perfect match be-

tween the actual tokens and the dummy tokens. Thus, by reverting

the routes of dummy tokens, each dummy token brings one actual

token to the desired destination.

Obtaining the value f 9,B is again can be done by running a local

aggregation (Corollary 5.10) over the instance where besides actual

tokens, each portal vertex also creates one dummy token of the

same key. After running the local aggregation, this token learns

the total count f 9,B + 1 and goes back to the actual portal vertex.

ACKNOWLEDGMENTS

Yi-Jun Chang is supported by the NUS Presidential Young Pro-

fessorship startup grant. Shang-En Huang and Hsin-Hao Su are

supported by NSF CCF-2008422. The authors thank the anonymous

reviewers for their helpful comments.

REFERENCES
[1] Keren Censor-Hillel, Yi-Jun Chang, François Le Gall, and Dean Leitersdorf. 2021.

Tight distributed listing of cliques. In Proceedings of the 2021 ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). SIAM, 2878–2891.

[2] Keren Censor-Hillel, Orr Fischer, François Le Gall, Dean Leitersdorf, and Rotem
Oshman. 2022. Quantum Distributed Algorithms for Detection of Cliques. In
Proceedings of the 13th Innovations in Theoretical Computer Science Conference
(ITCS) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 215), Mark

203

Deterministic Expander Routing: Faster and More Versatile PODC ’24, June 17–21, 2024, Nantes, France

Braverman (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 35:1–35:25. https://doi.org/10.4230/LIPIcs.ITCS.2022.35

[3] Keren Censor-Hillel, François Le Gall, and Dean Leitersdorf. 2020. On distributed
listing of cliques. In Proceedings of the 39th Symposium on Principles of Distributed
Computing (PODC). 474–482.

[4] Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. 2021. On
sparsity awareness in distributed computations. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures. 151–161.

[5] Keren Censor-Hillel, Dean Leitersdorf, and David Vulakh. 2022. Determinis-
tic near-optimal distributed listing of cliques. In Proceedings of the 2022 ACM
Symposium on Principles of Distributed Computing (PODC). 271–280.

[6] Yi-Jun Chang, Shang-En Huang, and Hsin-Hao Su. 2024. Deterministic Expander
Routing: Faster and More Versatile. https://doi.org/10.48550/arXiv.2405.03908
arXiv:2405.03908 [cs.DC] arXiv:2405.03908. Full version of this paper..

[7] Yi-Jun Chang, Seth Pettie, Thatchaphol Saranurak, and Hengjie Zhang. 2021.
Near-optimal Distributed Triangle Enumeration via Expander Decompositions.
J. ACM 68, 3 (2021).

[8] Yi-Jun Chang and Thatchaphol Saranurak. 2020. Deterministic Distributed Ex-
pander Decomposition and Routing with Applications in Distributed Deran-
domization. In Proceedings of the 61st Annual IEEE Symposium on Foundations of
Computer Science (FOCS).

[9] Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham. 2020.
Distributed MST: A smoothed analysis. In Proceedings of the 21st International
Conference on Distributed Computing and Networking. 1–10.

[10] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. 2020. A deterministic algorithm for balanced cut with
applications to dynamic connectivity, �ows, and beyond. In Proceedings of the 61st
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 1158–1167.

[11] Artur Czumaj and Christian Konrad. 2020. Detecting cliques in CONGEST
networks. Distributed Computing 33, 6 (2020), 533–543.

[12] Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman. 2022.
Sublinear-time distributed algorithms for detecting small cliques and even cycles.
Distributed Computing (2022), 1–28.

[13] Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. 2018. Possibilities
and impossibilities for distributed subgraph detection. In Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures. 153–162.

[14] Mohsen Gha�ari. 2015. Near-Optimal Scheduling of Distributed Algorithms. In
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing
(PODC). ACM, 3–12.

[15] Mohsen Gha�ari, Fabian Kuhn, and Yannic Maus. 2017. On the complexity of
local distributed graph problems. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC). 784–797.

[16] Mohsen Gha�ari, Fabian Kuhn, and Hsin-Hao Su. 2017. Distributed MST and
Routing in Almost Mixing Time. In Proceedings of the ACM Symposium on Princi-
ples of Distributed Computing (PODC). ACM, 131–140.

[17] Mohsen Gha�ari and Jason Li. 2018. New Distributed Algorithms in Almost
Mixing Time via Transformations from Parallel Algorithms. In 32nd International
Symposium on Distributed Computing (DISC) (LIPIcs, Vol. 121). 31:1–31:16.

[18] Andrew V. Goldberg, Serge A. Plotkin, and Pravin M. Vaidya. 1993. Sublinear-
Time Parallel Algorithms for Matching and Related Problems. J. Algor. 14, 2

(1993), 180–213.
[19] Bernhard Haeupler, D. Ellis Hershkowitz, and Thatchaphol Saranurak. 2023. Max-

imum Length-Constrained Flows and Disjoint Paths: Distributed, Deterministic,
and Fast. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC).
1371–1383.

[20] Bernhard Haeupler, Harald Räcke, and Mohsen Gha�ari. 2022. Hop-constrained
expander decompositions, oblivious routing, and distributed universal optimal-
ity. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2022). 1325–1338. https://doi.org/10.1145/3519935.3520026

[21] Bernhard Haeupler, David Wajc, and Goran Zuzic. 2021. Universally-optimal
distributed algorithms for known topologies. In STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing. 1166–1179. https://doi.org/10.1145/
3406325.3451081

[22] Taisuke Izumi and François Le Gall. 2017. Triangle Finding and Listing in CON-
GEST Networks. In Proceedings of the 37th ACM Symposium on Principles of Dis-
tributed Computing (PODC). 381–389. https://doi.org/10.1145/3087801.3087811

[23] Taisuke Izumi, François Le Gall, and FrédéricMagniez. 2020. QuantumDistributed
Algorithm for Triangle Finding in the CONGEST Model. In Proceedings of the
37th International Symposium on Theoretical Aspects of Computer Science (STACS).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[24] Rohit Khandekar, Subhash Khot, Lorenzo Orecchia, and Nisheeth K Vishnoi.
2007. On a cut-matching game for the sparsest cut problem. Technical Report
UCB/EECS-2007-177. Univ. California, Berkeley.

[25] Rohit Khandekar, Satish Rao, and Umesh Vazirani. 2009. Graph partitioning
using single commodity �ows. J. ACM 56, 4, Article 19 (jul 2009), 15 pages.

[26] François Le Gall and Masayuki Miyamoto. 2021. Lower Bounds for Induced Cycle
Detection in Distributed Computing. In Proceedings of the 32nd International
Symposium on Algorithms and Computation (ISAAC) (Leibniz International Pro-
ceedings in Informatics (LIPIcs), Vol. 212), Hee-Kap Ahn and Kunihiko Sadakane
(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
58:1–58:19. https://doi.org/10.4230/LIPIcs.ISAAC.2021.58

[27] Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. 1994. Packet Routing
and Job-Shop Scheduling in O(Congestion + Dilation) Steps. Comb. 14, 2 (1994),
167–186.

[28] David Peleg and Vitaly Rubinovich. 2000. A Near-Tight Lower Bound on the
Time Complexity of Distributed Minimum-Weight Spanning Tree Construction.
SIAM J. Comput. 30, 5 (2000), 1427–1442.

[29] Harald Räcke, Chintan Shah, and Hanjo Täubig. 2014. Computing Cut-Based Hier-
archical Decompositions in Almost Linear Time. In Proc. ACM-SIAM Symposium
on Discrete Algorithms (SODA). 227–238.

[30] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2012. Distributed
Veri�cation and Hardness of Distributed Approximation. SIAM J. Comput. 41, 5
(2012), 1235–1265.

[31] Hsin-Hao Su and Hoa T. Vu. 2019. Distributed Data Summarization in Well-
Connected Networks. In 33rd International Symposium on Distributed Com-
puting (DISC 2019) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 146), Jukka Suomela (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 33:1–33:16. https://doi.org/10.4230/LIPIcs.DISC.2019.33

204

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Previous Results and Key Challenges
	1.3 Our Approach

	2 Preliminaries
	3 The Hierarchical Decomposition
	4 Reducing to Internal Routing Tasks
	5 Core Tools: Shuffler and Expander Sorting
	5.1 Shuffler
	5.2 Distributed Expander Sorting

	6 Solving Task 2 and Task 3 using Shufflers
	6.1 Arbitrary Configuration to the Dispersed Configuration
	6.2 Routing the Tokens to the Portals

	Acknowledgments
	References

