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Abstract—Recent work has shown that repetition coding
followed by interleaving induces signal structure that can be
exploited to separate multiple co-channel user transmissions,
without need for pilots or coordination/synchronization between
the users. This is accomplished via a statistical learning technique
known as canonical correlation analysis (CCA), which works
even when the channels are time-varying. Previous analysis has
established that it is possible to identify the user signals up
to complex scaling in the noiseless case. This letter goes one
important step further to show that CCA in fact yields the
linear MMSE estimate of the user signals up to complex scaling,
without using any explicit training. Instead, CCA relies only
on the repetition and interleaving structure. This is particularly
appealing in asynchronous ad-hoc and unlicensed setups, where
tight user coordination is not practical.

Index Terms—Multiuser interference, canonical correlation
analysis (CCA), repetition coding, minimum mean square error
(MMSE) estimation.

I. INTRODUCTION

As modern wireless systems move towards higher spectral
efficiencies with more aggressive frequency reuse, mitigating
interference becomes an increasingly important challenge and
opportunity at the same time. Whereas traditional thinking
posits that effective channel estimation for both the desired and
the interfering signals is necessary for effective interference
mitigation, recent work has shown that directly aiming to
extract a signal of interest may be feasible if one exploits the
freedom to design the sought transmission line code [1], [2].
Simple repetition coding at the transmitter and a multi-antenna
receiver can enable this when coupled with the right receive
processing. The latter is rather unconventional: rather than
using the repetition structure as a rudimentary error control or
spreading leading to very modest gain, the idea is to use the
repetition structure to build two matrices that share a common
one-dimensional subspace; the one spanned by the signal of
interest. This is the key idea and message in [1], which allows
recovering the signal of interest even under strong and time-
varying analog or digital interference, without any channel
estimation or any need for coordination with the interfering

Manuscript submitted 4 September 2023; accepted 20 September 2023.
This work was supported by NSF ECCS-2118002.

Mohamed Salah Ibrahim was with the Department of Electrical and Computer
Engineering, University of Virginia, Charlottesville, VA, 22904 USA (e-
mail: salah@virginia.edu); he is now with Interdigital Communications,
Conshohocken, PA 19428, USA.

Paris A. Karakasis, and Nicholas D. Sidiropoulos are with the Department of
Electrical and Computer Engineering, University of Virginia, Charlottesville,
VA, 22904 USA (email: karakasis@virginia.edu, nikos@virginia.edu).

co-channel transmitter. The approach even works with time-
varying channels and intermittent interference, and it comes
with rigorous identifiability guarantees.

When more than one co-channel transmitters wish to com-
municate using the above protocol, an additional step is
needed at each participating transmitter, where after repetition
a transmitter-specific pseudo-random interleaver is used to
scramble the symbols before transmission. At the receiver,
applying the inverse permutation corresponding to a transmit-
ter of interest reinstates the block-repetition structure, but the
remaining transmissions are simply double-scrambled. This
idea has been exploited in [2] to come up with multiuser uplink
decoders and downlink precoders that offer guaranteed signal
recovery / isolation respectively.

These claims are not only theoretically sound but also prac-
tically verified in a lab setting using software radios [1], [2].
The main theoretical claims of [1], [2] pin down what happens
in noiseless scenarios subject to potentially strong interference;
they also help explain why the approach is successful in high
signal to noise ratio (SNR) scenarios. Experimental results in
[1], [2] though indicate impressive performance across a wide
range of SNRs. This letter closes this gap in the analysis. It
shows that CCA in fact yields the linear MMSE estimate of the
user signals up to complex scaling, without using any explicit
training. This is particularly appealing in asynchronous ad-
hoc and unlicensed setups, where tight user coordination is
not practical.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

Consider a multiuser communication system comprising
K single-antenna transmitters and a receiver equipped with
M antennas. Note that a single receiver scenario is adopted
for ease of notation and simplicity of exposition; but the
proposed method is broadly applicable to cell-free and cellular
interference scenarios with potentially strong intra- and inter-
cell interference. Let the channel response vector between the
k-th user transmitter and the multi-antenna receiver be denoted
by h;, € CM and expressed as

hy, = oz, (1)

where z;, € CM is the vector representing the small scale
fading coefficients, while o, € Ry models large scale fading
(e.g., path loss). We assume that the receiver has no prior
information about the user channels or their statistics.

All users are assumed to be communicating over the same
time-frequency resource blocks, potentially in asynchronous
and intermittent fashion. Let x;, € C” represent the k-th user’s



transmitted signal, where k € [K] := {1,--- , K} and N is the
number of transmitted symbols. Without loss of generality, we
assume that E[|xx(n)|?] = 1, Vk € [K] and n € [N]. The user
signals can be either analog or digital, and different waveforms
can be used across different users. The discrete-time baseband
model of the received signal at the receiver, Y € CM*N can
be written as

K
Y =) pehixi + W, )
k=1

where pr, € R, denotes the allocated power of the k-th
user, Vk € [K]. We shall henceforth absorb ,/py in hy, for
simplicity. The matrix W € CM*N represents the additive
white Gaussian noise term with i.i.d. entries with zero mean
and variance o? each. Note that the received signals are
taken to be synchronous in the above equation, but this is
only for simplicity of exposition. The received signals can be
asynchronous, and the proposed method will still work, as long
as it is possible to synchronize with the signal of the user(s) of
interest. This can be accomplished by exploiting the induced
signal structure; see [2] for details.

Given the received signal Y, the goal is to decode the
K user signals {x;}# ;. Traditional methods rely on first
estimating the channels associated with the different user
transmissions, {hy}/ | followed by designing the equalizer
as a function of the estimated channels to recover the signals
of interest. The linear minimum mean square error (MMSE,
for short) equalizer is the widely adopted equalization tech-
nique in actual wireless communication systems, owing to its
ability to mitigate both interference and noise impacts, but
also its relative simplicity of implementation. After letting
H := [hy, .- ,hg] € CM*K represent the channel matrix
associated with the K user channels, it can be shown that the
MMSE equalizer, given by

WuMsE = HH(HHH + 0'2]:)_1 S (CKXM, 3)

minimizes the mean squared error between the transmitted sig-
nal X := [xq,... ,xK]T and the equalized signal Wyvsg'Y.

As it can be seen, the performance of the MMSE equalizer
depends on the quality of the channel and noise power
estimates. Hence, any degradation in the channel estimates
along with any under/over-estimation of the noise power may
impact the detection performance. In practice, accurate chan-
nel estimates can be acquired using orthogonal pilot sequences
of length L,,. The pilot sequence length L,, is a key parameter,
as large values may hurt the overall spectral efficiency and can
even degrade the channel estimates in the case of time-varying
channels; short values may also degrade the channel estimates
due to insufficient averaging, while also render the so-called
pilot contamination [3] problem more severe.

In what follows, we briefly summarize a novel commu-
nication paradigm, originally proposed in [2], which relies
on repeating the user data followed by interleaving prior to
transmission, and applying CCA at the receiver to recover the
user signals. In [2], it was shown that the receiver can uniquely
unravel the user transmissions under ideal conditions. Herein,
we show that the proposed framework can be used to directly
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Fig. 1: (a) Traditional pilot-based TDD data structure. (b)
Proposed pilot-free TDD data structure

find the MMSE equalizer without first performing channel or
noise estimation.

III. CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis (CCA) falls under the um-
brella of linear dimensionality reduction techniques and aims
at finding linear relationships between two zero-mean' random
vectors y(!) € CM and y® € CM2 via their second order
statistics (auto-correlation and cross-correlation). Consider the

case of two datasets, YO := [y{" ... y(J] e cMixN
and Y®? = [yf),~-- ,yg\?)} € CMzxN_ that emerge af-

ter collecting N joint realizations of y(!) and y(®). Then,
simply put, CCA seeks to find two vectors q() € CM:
and q® € CM2, known as canonical vectors, that extract
two maximally correlated random variables from individual
linear combinations of random vectors y(!) and y(?). From a
mathematical point of view, the CCA problem can be posed
as [4], [5]

max Re{q<1>HY(1>Y(2)Hq(2>}
q(l) 7q(2)

st. q?'YOYO g =1 je{1,2), @

where the two scaling constraints in (4) are used to make the
problem well-defined and avoid any trivial solutions.

One appealing feature of CCA that makes it a favorable
tool in practice is that solving problem (4) admits a simple
algebraic solution via eigendecomposition [5]. Upon defining
»@ .= %Y(i)Y(i)H, as the sample auto-correlation of the
random vector y(*), and () := %Y(i)Y(j)H, as the sample
cross-correlation of the two random vectors y(* and y) for
1,7 € {1,2} and i # j, solving (4) is tantamount to solving
the generalized eigenvalue problem

2(12)2(2)712(21)(1(1) _ AZ(l)q(l). (5)

It can be easily verified that the largest eigenvalue, \*,
represents the square of the correlation coefficient

* * *~H H *
o@D, q®") i= Re{g V" YDYD ¢y = VA%, (6)

Once the optimal q()" and \* are obtained from solving (5),
the optimal q(®" can be obtained via direct substitution using

q(Q)* 1

= \/)\72(2)712(21)(1(1)*. (7)

I'This assumption comes without loss of generality as their means, or sample
based estimates of them, can be always subtracted as a pre-processing step.



Following its probabilistic interpretation [5], CCA has
demonstrated promising performance in solving various prob-
lems in wireless communications and signal processing, in-
cluding direction-of-arrival estimation [6], equalization [7],
spectrum sharing [1], and distributed blind source separa-
tion [8]. Taking a step away from statistical and probabilistic
viewpoints on CCA, the authors of [9] came up with a novel
algebraic interpretation of CCA as a method that can discover
a common subspace between two data matrix views under
a linear generative model. It was demonstrated that if the
two views have a single common component plus linearly
independent “private” components for each view, applying
CCA to those views will recover the common component up
to a global complex scaling ambiguity. In a communications
context, the scaling ambiguity can be resolved using one or
few pilot symbols. In what follows, we will use this viewpoint
to show that CCA in fact yields the MMSE equalizer (up to
scaling) without channel or noise power estimation.

IV. MAIN RESULT
A. Data Repetition

In this section, we explain how CCA can be exploited in
order to solve the problem described in Section II. Recall that
traditional equalization techniques require transmitting pilot
sequences to first estimate the user channels, as shown in
Fig. 1a, and then designing the equalizers as a function of the
estimated channel to recover the desired signals. Our proposed
CCA-based equalization framework is fundamentally different
from conventional equalization techniques, in the sense that it
does not require any pilot transmission for channel estimation.
The proposed framework consists of two steps: repeating the
data at the transmitter, as shown in Fig. 1b, and then leveraging
the repetition at the receiver to derive the CCA-based equaliz-
ers needed for recovering the desired signals. Following data
repetition, we assume that each user permutes its repeated data
using a unique (i.e., user-specific) code (e.g., derived from the
user or hardware ID). This simple permutation step is needed
to ensure a single common component when constructing the
two user-specific data views at the receiver. Having a one-
dimensional common subspace has two important advantages.
It provides more flexibility on the transmitted user waveforms
(which could in fact be analog), and also, it reduces the
receiver complexity considerably — see [2].

Let %, € Cl¢ denote the common signal associated with
the k-th user, where L, represents the length of the common
signal, and “c” refers to common. Thus, the transmitted signal
X, appearing in (2), can be expressed as

. ®)

where ITj; is the k-th user permutation matrix, and it is
assumed to be known at the base station (BS), Vk € [K].
Notice that the block repetition structure, on the right of
(8), can be recovered for a specific user, k, only when the
corresponding permutation matrix, I, is used by the BS. As
for the transmitted signals of all the other users, # k, applying
II; will keep them randomly permuted, since the permutation
matrices are distinct across the different users. In other words,

xp, = T [x x )"

the matrix l'IjTl'I;c will be equal to identity only if j = k,
otherwise, it will be a different permutation matrix for every
j # k. Assuming that the BS applies the permutation matrix
associated with the k-th user and upon constructing the k-
th user views, the baseband equivalent model of the received
signal of the i-th view, can be expressed as

K
Y = bl + > )T+ Wi )
4 ik
where Y,(:) € CMxLa js the received signal associated
with the i-th view of the k-th user, for ¢ € {1,2}, and is
obtained as follows. First, the received signal Y € CM*2La
is multiplied by the k-th user permutation matrix IT; to obtain
Y’f' := Y X II, and then the first view of Y, denoted as
Ykz), is constructed as Yg[:, 1 : Ly] while the second view of
Y., denoted as Y,(f), is constructed as Yi[:, Lqg + 1 : 2L4].
The term W,(;) € CM>*La represents the resulting noise term
associated with the k-th user signal in its ¢-th view, while the
term xgzk) denotes the interleaved signal x; of the j-th user
in the i-th view of the k-th user, i.e., upon getting further
permuted by applying the k-th user’s permutation matrix.
Recall that the power allocation terms are absorbed in the
respective channel vectors.
When the channel coherence time is of order Lg, we
may permute each L, block separately (i.e., use two shorter
interleavers). As a result, the model of (9) becomes

K
¥ = nxG ¢ 3RO W
J#k

(10)

where h&i) € CM now denotes the channel coefficients of the
u-th user in the ¢-th view. Our CCA based framework can deal
with this more general model as well.

B. CCA based Equalization

Looking at the two views in (10), it is clear that there is
only one shared/common component associated with the k-th
user signal, X.;. This renders the algebraic interpretation of
CCA applicable to the two constructed views in (10). In other
words, it can be shown that by solving the CCA problem
in (4) given the two views associated with the k-th user in
(10), in the noise-free case and under mild linear independence
conditions, the common signal x.; can be identified up to a
global complex scaling ambiguity that can be easily resolved
using one pilot symbol (see Theorem 1 in [9]).

In this work, we aim at going a further step forward to
investigate what the CCA canonical vectors or equalizers
{q(i)}izl’Q represent. Interestingly, it turns out that the re-
sulting CCA equalizer is the MMSE solution given in (3),
without going through channel and noise estimation. In other
words, the traditional approach using the data structure in Fig.
la with training symbols/pilots transmitted first, followed by
estimating the different user channels, and then designing and
applying the MMSE equalizer on the transmitted data, can be
replaced by the proposed data structure in Fig. 1b — repeating
and interleaving the user data followed by applying CCA at
the receiver. What is more, the CCA approach has distinct
advantages, as we will see.



To show this, let us define ka) € CLaXK a5 the matrix
holding the common signal x.; along with the other K — 1
randomly permuted signals {xglk)} in its columns, Vk € [K],
j # k,and i € {1,2}. Moreover, let H® ¢ CM*K hold
the channel vectors hq(f ) of (10) in its columns. Then, given
the two constructed data views in (10), consider the following
CCA problem

min Y a - Y2 TP, (11a)
{qg)}i=1,2
st. MYy OHGD — e (12} (11b)

We have the following result regarding the optimal CCA

equalizers q,(cl)* and qf)

Theorem 1. In the presence of interference and noise, if
the different user transmissions are uncorrelated, the matrices
Xglk) € CLexK gnd HY e CM*K are full column rank,
and problem (11) is solved using the ensemble (instead of
the sample) auto- anz*i cross-correlation matrices, then the
optimal solutions qg) of problem (11) are scaled versions
of the corresponding MMSE equalizers, as they are given by

i) i ) H _ i
ay’" = wHOHO" + 0?1~ h, (12)
where 7y, € Cg is a nonzero complex scaling factor.
Proof. The proof is relegated to Appendix A. O

Remark 1. If sample correlation matrices are used in place of
the ensemble ones, the (standard) assumption that the different
user transmissions are uncorrelated implies that the sample
correlation matrices will converge to the ensemble ones, hence
the result will hold asymptotically for large enough L.

Remark 2. We can see that in the case where the channel
coefficients of all the users are constant during the transmis-
sions of their whole packets, i.e. HY = H®) = H, also the
CCA based pairs of equalizers will be equal for each user and
they will match the corresponding MMSE equalizers, namely

ql(;) = qf) = 'yk(HHH + 021)_1hk, for a v, € Cyp.

V. SIMULATION RESULTS

To support the proposed theoretical claim, we simulate a
scenario with a single cell of radius 100 meters and a BS
equipped with M = 16 antennas located at its center. We use
1000 different user drops, each with K = 10 users and 100
Monte Carlo (MC) trials for each user, where the UE transmit
signals, noise matrix, and small-scale fading coefficients are
generated randomly in each MC trial, according to the model
described in [2]. The carrier frequency is set to 2.4 GHz,
the user transmit power to 23 dBm, and the noise power to
—80 dBm. This makes the resulting SNR range approximately
between 3 dB and 40 dB. We consider the MMSE equalizers
based on perfect channel and noise power information, but
also the ones based on estimated channels using orthogonal
pilot sequences of length 64 each.

We varied the user packet length L; from 32 to 1024,
with QPSK signal transmissions for all users. Figure 2a and
Figure 2b show the mean and cell-edge, i.e., 5%, symbol
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Fig. 2: Performance comparison between CCA and MMSE.

error rate (SER) performance, respectively. Since CCA uses
packet repetition, the desired signal can be obtained either
from the first view or the second view or more efficiently
by combining/averaging out the outcome from both views.
It can be seen that the CCA single-view based estimates
approach the MMSE equalizer with perfect channel knowl-
edge (black curve) asymptotically when L, exceeds 128.
Furthermore, CCA with averaging out the output from the
two views (blue curve) considerably outperforms the MMSE
performance when T exceeds 128. This primarily comes from
the combining gain obtained from sending the user data twice.

VI. DISCUSSION AND CONCLUSIONS

The proposed framework provides a lot of flexibility from
a system perspective, making it practically appealing. For
instance, traditional training-based estimation of the multiuser
MMSE equalizer requires the use of orthogonal pilot se-
quences. Our proposed framework requires a far less restrictive
condition: the user repetition patterns merely need to be
distinct, and this can be easily achieved using different user
permutation codes. Thus the proposed framework can be more
bandwidth-efficient and is immune to so-called pilot contam-
ination. Another key advantage of the proposed framework is
that it does not require user coordination (e.g., for training) or



synchronization. Users can come in and drop out at will, and
their channels can vary on a per-packet basis. In fact, not all
users need to employ the proposed repetition and interleaving
protocol. We may have some “incumbent” users transmitting
(possibly analog) signals, and one or more ‘“secondary” users
that employ the proposed protocol. Our claim then applies on
the latter users only.

Another key strength of the proposed framework is its
robustness to potentially strong intermittent interference from
other systems, including from other cells in cellular scenarios.
As we have shown, CCA yields the MMSE solution that is
naturally accounting for all interference on a per-packet basis.
On the other hand, traditional training-based MMSE solutions
only learn the channels of users within the cell and average out
interference from other systems or cells. They cannot account
for potentially harmful intermittent interference, unless they
perform training on a per-packet basis, which is hard when
packets are short and the number of users is large.

APPENDIX A
PROOF OF THEOREM 1

Let y( R

described by (10). Moreover, let x; (&)
that consists of random variables ;v( k) , for j # k, expressing
the transmitted symbols of the j-th user in the i-th view of the
k-th user, and w k) be the random vector of the additive white
Gaussian noise, in the i-th view, consisting of i.i.d. random
variables with zero mean and variance o2. Finally, let x.y
denote a random variable, the realizations of which form the
repeated signal associated with the k-th user, x..

Then, the sample auto-correlation matrix of y,(f) is given by

be a random vector, the realizations of which are
be the random vector

1 N
7Y](€’L)Y](€Z)H

(&) _
X = I

13)

As Lj; — oo, ES) converges to the auto-correlation matrix

R, =By, | =HOHO" 1%L 4

where we have used that

H
Lk Tk Lck ()"
E||%k| k] | =1, B[]
[XS)} LM A |

:O7

and E[w, @) () ] = o®Ly. Similarly, the sample cross-
correlat10n matnx ES] ) can be expressed as
ij L ()G
= = —yOy®” (15)
Lq

for i,j € {1,2} and i # j. Again, as Ly — oo, we have that
EEC” ) approaches the cross-correlation matrix

[ 7 e
Ry,(:), ) —E[ (1) (J) ]:hé)hg) , (16)

where we have used that

H
E xck mck o 1 0
x,(;) x,(f) 10 Og-—1

and the uncorrelatedless of the pairs of random vectors

1T . .
(w0 W), (frone <0 W), and ([, x2] " wi?)

Next, we consider the formulation of CCA in (5), as
an eigenvalue problem, but in terms of the ensemble auto-
correlation and cross-correlation matrices, i.e.,

R;;})Ryg)yy;ﬂR;é)Ry£_7,>7y$)q5:') —xq? A
Let " o
—nf" (HOHO" +01) B’ >0 (8
and

B,(j” = R;l(})Ryii))y}(cj)R;}(jj)Ry}(Cj)’yl(ci)
_ R BENOINCE )
— ) (H@H(“ + 021) by by

after substituting the derived expressions for the correlation
matrices and pulling the scalar term () to the left. Because
of (16), matrices B;” ) and B,(j Y are rank one, while their
unique nonzero eigenvalues are positive, equal, and given by

Amax (BE7) = Tr (B{”)
_ L ,0)

=Tr (BP”) = Anax (BY”).

As a result, it can be shown that (17), which can be rewritten
as

is equivalent to y,(c)h(l) q(i) = u(l)q(i), where y,(f) =

HOHO" + 521) 1hlE) It can now be easily verified that

the solution of (17) is given by

q =y = 7l HOHO" £ 2, @1

where v is a complex scaling factor.
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