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Abstract

A cactus representation of a graph, introduced by Dinitz et al. in 1976, is an edge sparsifier of O(n)
size that exactly captures all global minimum cuts of the graph. It is a central combinatorial object that
has been a key ingredient in almost all algorithms for the connectivity augmentation problems and for
maintaining minimum cuts under edge insertions (e.g. [Naor et al. SICOMP’97], [Cen et al. SODA’22],
[Henzinger ICALP’95]). This sparsifier was generalized to Steiner cactus for a vertex set T', which can
be seen as a vertex sparsifier of O(|T'|) size that captures all partitions of T corresponding to a T-Steiner
minimum cut, and also hypercactus, an analogous concept in hypergraphs. These generalizations further
extend the applications of cactus to the Steiner and hypergraph settings.

In a long line of work on fast constructions of cactus and its generalizations, a near-linear time
construction of cactus was shown by Karger and Panigrahi [SODA’09]. Unfortunately, their technique
based on tree packing inherently does not generalize. The state-of-the-art algorithms for Steiner cactus
and hypercactus are still slower than linear time by a factor of Q(|T|) [Dinitz and Vainshtein STOC’94]
and Q(n) [Chekuri and Xu SODA’17], respectively.

We show how to construct both Steiner cactus and hypercactus using polylogarithmic calls to max
flow, which gives the first almost-linear time algorithms of both problems. The constructions immediately
imply almost-linear-time connectivity augmentation algorithms in the Steiner and hypergraph settings,
as well as speed up the incremental algorithm for maintaining minimum cuts in hypergraphs by a factor
of n.

The key technique behind our result is a novel variant of the influential isolating mincut technique
[Li and Panigrahi FOCS’20, Abboud et al. STOC’21] which we called mazimal isolating mincuts. This
technique makes the isolating mincuts to be “more balanced” which, we believe, will likely be useful in
future applications.
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1 Introduction

In a weighted undirected G = (V| E) with n vertices and m edges, a global minimum cut (or mincut, for
short) is a cut with minimum weight separating some pair of vertices. More than 40 years ago, Dinitz et
al. [DKL76] showed that, even though G may have as many as (%) distinct mincuts, there exists a O(n)-size
data structure called a cactus representation or simply a cactus of G that captures all mincuts of G in a
strong way as follows.

A cactus of G is a tuple (H, ¢) where H is a graph with O(n) edges and ¢ : V(G) — V(H) is a mapping
such that, for any vertex set A C V, a mincut in G separates A and V' \ A iff a mincut in H separates
¢(A) and ¢(V \ A). Hence, H preserves all mincuts of G. Furthermore, H and its mincuts are highly-
structured: H is a cactus graph' with edge weights from {1,2} and its mincut contains either two edges
of weight 1 from the same cycle, or an edge of weight 2. Precisely by the ability of cactus to capture all
mincuts via extremely simple structure, cactus has become the key ingredient in almost all algorithms for
the connectivity augmentation problems [Gab91la, NGM97, BK00, CLP22] and for maintaining mincuts on
graphs undergoing edge insertions [Hen97, DW98, GHT18|. Cactus can also be viewed as one of the first
graph sparsifiers, predating other notions such as spanners [ADD 93|, cut sparsifiers [BK96|, and spectral
sparsifiers [ST11].

Steiner cactus and hypercactus. To capture Steiner mincuts which are more general than global
mincuts, a generalization of cactus called Steiner cactus was introduced by Dinitz and Vainshtein [DV94].2
Recall that, for any vertex set 7 C V, a T -Steiner mincut is a cut with minimum weight separating some
pair of vertices in 7. A T -Steiner cactus of G is a tuple (H, ¢) where H is a graph with O(]T]) edges and
¢ : T — V(H) is a mapping such that, for any A C T, a T-Steiner mincut in G separates A and T \ A
iff a mincut in H separates ¢(A4) and ¢(7 \ A). The graph H is also a cactus graph with the same simple
structure as in a normal cactus. Note that, when 7 =V, T-Steiner cactus of G is simply a cactus of G.

The notion of Steiner cactus can be placed nicely into a more modern concept of wvertex sparsifiers
(also called mimicking networks) [HKNRIS, Moi09, LM10, KR13, KR14]. The goal in this area is, given
a terminal set 7 C V, to construct a small graph H and a mapping ¢ such that, for every A C T,
mincutg(A, 7 \ A) = mincuty(¢p(A), ¢(T \ A)) where mincutg(X,Y) denotes the size of minimum cuts
separating the sets X and Y in G. Unfortunately, there is a lower bound of |E(H)| = Q(2/71) [KR13],
and perhaps the most prominent open problem in this area is, when (1 + €)-approximation is allowed,
whether the bound |E(H)| = poly(|T]) is possible. Interestingly, Steiner cactus implies that the linear
bound |E(H)| = O(|T]) is actually possible without any approximation when we restrict ourselves to the
sets A C T separated by some 7 -Steiner mincuts.

Another generalization of cactus is called hypercactus. Cheng [Che99] (and later [FJ99]) showed an
existence of hypercactus (H, ¢) where H is a hypergraph of linear size 3 . p ) e[ = O(n), yet, for every
set A C V, a mincut in G separates A and V' \ A iff a mincut in H separates ¢(A) and ¢(V \ A). Similar
to cactus, H is highly structured: each mincut in H contains either two size-2 edges of weight 1 from the
same cycle of size-2 edges, or a (hyper)edge of weight 2. This compact data structure is perhaps even more
surprising than cactus because the total size of a hypergraph can be exponential and a hypergraph may
contain exponentially many distinct mincuts.?

Both Steiner cactus and hypercactus naturally extend the reach of applications of cactus. Cole and
Hariharan [CHO3] used a Steiner cactus to speed up the algorithm for the wuniform survivable network
problem. They exploited the fact that Steiner cactus can be efficiently maintained under edge insertions
between terminals. Hypercactus were used for hypergraph connectivity augmentation algorithms [Che99|,
and incremental algorithms for hypergraph mincuts [GK19].

Fast Algorithms. Because of the elegance and utility of cactus and its generalization, a long line of
work has been devoted on fast algorithms for constructing them. Historically, cactus construction has been

TA cactus graph is a graph where each edge appears in at most one cycle.

2A Steiner cactus was introduced as a core structure inside a more involved structure called carcass [DV94, DN95, DV0O0].
The detailed proofs of the existence of Steiner cactus were given in [DN, Fle99, FF09]

3Consider a hypergraph G = (V, E) with a single hyperedge containing all vertices, every cut (S,V \ S) is a mincut. We
note that if we consider set of hyperedges across a mincut, there are at most O(n2) distinct sets.
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much more challenging than a more well-known problem of computing a single mincut (e.g. [Kar93, Kar00,
KW96, MWO00]), as we need to capture the structure of all mincuts.

Karzanov and Timofeev [KT86] outlined the first algorithm that constructs a cactus of a graph in ©(n?)
time. Their algorithm was parallelized by Naor and Vazirani [NV91| and refined by Nagamochi and Kameda
[NK94|. Later on, faster algorithms were developed [Gab9la, KS96, NNIOO, F1le99| where the latter two
algorithms ran in O(nm) time. Finally, the line of work culminated in a near-linear O(m)-time algorithm
by Karger and Panigrahi [KP09].4

The state-of-the-art constructions for Steiner cactus and hypercactus are significantly slower. Dinitz and
Vainshtein [DV94, DV00] showed how to compute a 7-Steiner cactus using ©(|7|) max flow calls, which is
Q(m|T]|) time. Cole et al. [CHO3] showed an O(m + Ag(T)n)-time algorithm on unweighted graphs where
Ac(T) denotes the value of T-Steiner mincut, but in general Ag(7T') may be big especially in weighted graphs.
To construct a hypercactus of a hypergraph with total size p = Zee £ |€e], the only algorithm with explicit
running time was by Chekuri and Xu [CX17], which takes O(pn + n?logn) time.

To summarize, the fastest constructions for Steiner cactus and hypercactus are still slower than linear
time by a factor of Q(|T|) and Q(n), respectively. This suggests a natural question of how fast one can
compute them.

1.1 Our Results We give a novel approach for constructing a cactus that generalizes to both Steiner
cactus and hypercactus using polylogarithmic calls to max-flows. Let MaxFlow(m) denote the running time
of solving max flow in a graph with m edges. Since MaxFlow(m) = m!'+t°(!) by [CKL"22|, we obtain the
first almost-linear time algorithms of both problems. The Steiner cactus algorithm is summarized below.

THEOREM 1.1. There is a randomized Monte-Carlo algorithm that, given an undirected weighted graph
G with m edges and a terminal set T C V, the algorithm computes a T -Steiner cactus of G in

O(MaxFlow(O(m))) time w.h.p.

On hypergraphs, we even obtain an algorithm for computing a Steiner hypercactus, which naturally
generalizes both a hypercactus and a Steiner cactus (see Definition 4.1 for the formal definition). The result
is summarized below.

THEOREM 1.2. There is a randomized Monte-Carlo algorithm that, given a weighted hypergraph G with total
sizep =3 .cp(q) lel and a terminal set T C 'V, compute a T -Steiner hypercactus of G in O(MaxFlow(O(p)))
time w.h.p.

It is implicit in [FJ99, CX17] that a Steiner hypercactus admits polynomial time algorithms, but their
construction requires at least n calls to max flows, which takes at least Q(pn) time. Even for the more special
problem of computing hypercactus, the best-known construction by [CX17] takes O(pn) time.® Theorem 1.2
gives the first almost-linear time construction.

As discussed above, a cactus and its generalizations are central objects in many algorithms. Conse-
quently, our almost-linear constructions immediately imply several applications. We defer the definition of
the problems and the proofs of these applications to Appendix E.

COROLLARY 1.1. There are randomized almost-linear time algorithms that can w.h.p. compute
e the optimal solution of the Steiner connectivity augmentation problem®, and
e the optimal value of the hypergraph +1-Steiner-connectivity augmentation problem.

Corollary 1.1 improved a polynomial algorithm for the hypergraph +1-connectivity by Cheng [Che99] by
speeding up it to almost-linear time and generalizing it to the Steiner version.

Lastly, we also improved the update time of the incremental algorithm for maintaining hypergraph
mincuts from O(An) [GK19] to of O(N).

4Throughout the paper, O(-) hides polylog(n) terms and 5() hides additional n°() terms.

5Their result is based on the MA-ordering technique, which does not work well with Steiner mincuts.

6Very recently, Cen et al. [CHLP23| independently showed an almost-linear time algorithm for the Steiner connectivity
augmentation problem.
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COROLLARY 1.2. There is an algorithm that, given an unweighted hypergraph G = (V,E) undergoing
hyperedge insertions, maintains a mincut in time O(\) amortized update time where A denotes the mincut
value at the end of the updates.

1.2 Techniques Below, we explain why the two most promising techniques in the literature fail to solve
our problems, which motivates our new algorithmic tool called mazimal isolating mincuts.

First Technical Barrier: Tree-packing Fails. Perhaps the most natural approach for devising fast
algorithms for both Steiner cactus and hypercactus is to extend the techniques of the only known near-linear
time algorithm by Karger and Panigrahi [KP09] for a normal cactus. However, their algorithm relied on the
tree packing technique [Gab91lb, Kar00], which requires solving the so-called 2-respecting mincuts problem.
Although they devised an ingenious way to deal with 2-respecting mincuts, at least quadratic time is likely
required for k-respecting mincuts for any k > 2.7

Now, in the Steiner and hypergraph settings, it turns out that one needs to compute 4-respecting and
O(log n)-respecting mincuts, respectively, because fast algorithms for tree packing in these settings have
worse quality by at least a factor of 2 [Meh88] and Q(logn) [CS07], respectively. Therefore, the tree-packing
approach seems futile to us.

The same technical barrier was previously illustrated on the problem of computing a single mincut.
Karger’s [Kar00] near-linear time global mincut algorithm was based on tree-packing, and it took 20 years
before almost-linear algorithms for Steiner mincut and hypergraph mincut [LP20, CQ21] were found using
a very different technique, called isolating mincuts.

Second Technical Barrier: Minimal Isolating Mincuts Fails. The isolating mincuts technique
was recently discovered by [LP20, AKT21|. They show that given a graph G = (V, E) and a terminal set
T C V, one can compute a t-mincut of 7 (i.e., a minimum cut separating ¢ from 7 \ t) for all ¢ € T using
logarithmic calls to max flow, instead of |7| many calls. In fact, they showed how to compute a minimal
t-mincut of 7 for all t € T, i.e., the unique mincut separating ¢ from 7 \ ¢ that is “closest” to t. These cuts are
called the minimal isolating mincuts of T. The technique instantly became very influential and found many
applications [AKT21, LNPT21, CQ21, LP21, MN21, CLP22, LNPS22, 1.PS22, AKT22, AKL"21], many of
which crucially exploit the minimal property of these isolating mincuts.

Unfortunately, minimal isolating mincuts are ineffective for constructing a cactus: it cannot even
distinguish a cycle from a clique! More precisely, consider a clique K and a cycle C' with n vertices. Scale
the weight edges so that the weighted degree of each node of the two graphs agrees. All mincuts of K consist
of n singletons cut, while all mincuts of C' contain all (g) arcs of C'. Now, for every vertex set 7, minimal
isolating mincuts of 7 in both K and C are always a collection of singleton cuts. That is, minimal isolating
mincuts alone fail to distinguish the mincut structures between the clique K and the cycle C.

Our New Tool: Maximal Isolating Mincuts. The above counter-example naturally suggests we
consider mazximal isolating mincuts. That is, given a terminal set 7, compute a maximal ¢-mincut of 7 for
all ¢ € T, which is the unique mincut separating ¢ from 7 \ ¢ that is “furthest” from t.

At first glance, maximal isolating mincuts seem unsuitable for almost-linear time algorithms because it
is not even clear whether these cuts admit a near-linear space representation. In contrast, minimal isolating
mincuts consist of disjoint vertex sets and so have linear size. For example, when 7 = {s,t}, it is easy to
see that the two maximal mincuts can overlap, and almost all vertices may be in both cuts. Therefore, it is
conceivable that maximal isolating mincuts of 7 requires Q(n|7|) space, quadratic in the worse case.

Perhaps surprisingly, we show that these cuts’ total size is linear and can also be computed using
polylogarithmic calls to max flow. We devote Section 3 to proving this structural result.

Let us reconsider the toy problem of “cycle vs. clique” above. Indeed, maximal isolating mincuts can
resolve this problem. Suppose we sample a terminal set 7 C V and then compute maximal isolating mincuts
7. While all the minimal isolating mincuts in the clique remain singleton cuts, some maximal isolating

7Abboud et al. [AKLT21] devised a new technique for dealing with k-respecting mincuts using logo(k) n calls to max flow.
The algorithm, however, is based on the isolating mincuts technique, which also fails to solve our problems. Furthermore, the
exponential dependency on k makes their technique futile for hypergraphs where k = O(logn).
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mincuts will be non-singleton cuts in the cycle. So, in this simple example, we can distinguish the two
graphs.

Cactus via Maximal Isolating Mincuts. It turns out that maximal isolating mincuts are powerful
enough to capture all mincuts. By highly exploiting their structure, we show in Section 4 how to construct
Steiner cactus using polylogarithmic maxflow calls. At a high level, our algorithm significantly improves the
divide-and-conquer approach by [CX17] with linear recursion depth to only logarithmic. To achieve this,
the high-level idea is, in the divide step, our maximal-isolating-cut-based approach can split the graph such
that every part has size smaller by a constant factor, except at most one part that we guarantee that no
more recursion is needed. (See Figure 2 for an illustration.) Hence, the recursion depth is logarithmic. In
contrast, the algorithm of [CX17] cannot certify this and might need to recurse on the biggest part for Q(n)
rounds.

First Challenge in Hypergraphs: Defining Maximal Isolating Mincuts Let us discuss the
technical challenges in generalizing our techniques to hypergraphs. First, it is tricky even to define the notion
of maximal isolating mincuts for hypergraphs. A natural extension is a partition of vertices (X, V \ X) that
separates a specified terminal ¢ € X N7 from other terminals such that |X| is maximized while the number
of boundary edges |0X| is minimized. However, the total output size of maximal isolating mincuts can be
quadratic under this definition. Hence, it is useless for almost-linear time algorithms. For example, consider
a hypergraph G = (V,{V'}) with only one single hyperedge containing all the vertices. Designate half of the
vertices as terminals, i.e., 7 C V and |T| = |V]|/2. In this case, every maximal isolating mincut has size
VI = |T]+1=Q(V]).

It turns out the “right” definition is the following tweak — we require that all mincuts (X,V \ X) the
algorithm is considering must be connected at the X side, that is, after removing the boundary edges 0.X, all
vertices in X must still be connected. Under this definition, in Section 5.1, we show that all nice structural
results we had on graphs transfer to hypergraphs. In particular, we can bound the total size of maximal
isolating mincuts to be linear. As a sanity check, all maximal isolating mincuts in the above example are
single vertices under the new definition, thereby the total output size becomes O(|V]).

Second Challenge in Hypergraphs: Computing Hypercactus The second significant challenge
is because a hypercactus contains hyperedges of rank higher than two. Without very careful treatment,
our divide-and-conquer algorithms, including previous algorithms by [CX17], will split these higher-rank
hyperedges of rank r in the divide step into Q(r) pieces. Now, in the conquer step, the algorithm will need
to merge them back and each merging step requires at least linear time (in fact, one max flow call) because
we need to perform some test to know the topology of the gluing parts. This incurs the running time of
Q(pr) = Q(pn) where p is the total size of the hypergraph, which is too slow.

We completely bypass this difficulty showing that our divide-and-conquer algorithm simply never splits
these higher-rank hyperedges in a non-trivial way! This is done by again exploiting the “right” definition of
the maximal isolating mincuts described above. Compared with the algorithm by [CX17], our final algorithm
in Section 5.2 is arguably simpler as we do not perform the test related to higher-rank hyperedges and runs
in almost-linear time.

2 Preliminaries

Let G = (V, E,w) be an undirected, connected, and weighted graph with positive edge weights w : £ — R™.
A cut is a partition (X, V'\ X), when the context is clear we use X (or V'\ X) representing the cut (X, V\ X) for
brevity. For any subsets X,Y C V we define the value between X and Y to be C(X,Y) =3 c v ,cy w(u,v).
When Y = V'\ X we simply denote C(X,V \ X) by C(X). A nonempty subset X C V is said to be a (global)
mincut if C(X) = ming.gcscy C(S). The set of boundary edges incident to X is denoted by 0X. For two
disjoint subsets of vertices A and B, a cut (X,V \ X) separates A and B if X C Aand Y C B.

We say two subsets of vertices X and Y C V are crossing if all of X NY, X \Y, Y\ X, and V'\ (X UY)
are nonempty. The value function C satisfies submodularity and posi-modularity (see [NIO0]) on crossing
subsets.

LEMMA 2.1. ([NIOO]) Let X,Y C 'V be subsets that are crossing. Then,
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o (Submodularity) C(X)+C(Y)>C(X NY)+C(XUY), and
e (Posi-modularity) C(X)+C(Y)>C(X \Y)+C(Y \ X). O

Let X CV be any subset of vertices, we define the contracted graph G/X to be the graph obtained from
G by (1) contracting all vertices in X into one vertex, (2) replacing all multi-edges with a single edge with
the corresponding edge weight, and finally (3) removing all self-loops.

Steiner Mincuts and t-Isolating Cuts. Let 7 C V be a terminal vertex set of size at least 2. For
any proper subset A C 7, an A-cut of T is a cut that separates A and 7 \ A. An A-mincut of T is a
minimum valued A-cut of 7, denoted by the vertex set X 4. Conveniently, for any vertex t € 7 we define
a cut X; to be t-isolating mincut of T if Xy is a {t}-mincut of 7. A T -Steiner mincut is defined to be a
minimum valued A-mincut among all proper subsets A C 7. The value of a T-Steiner mincut on the graph
G is denoted as \g(T).

A-mincuts of 7 are not necessarily unique. Fortunately, with the submodularity and posi-modularity
mentioned in Lemma 2.1, these A-mincuts behave similarly to global mincuts in the sense that there is a
unique minimal and maximal A-mincut of 7.

DEFINITION 2.1. (MAXIMAL AND MINIMAL A-MINCUTS OF T) We say that an A-mincut Xa of T is
maximal (resp. minimal), if for any other A-mincut X'y of T, we have X4 O X'y (resp. Xa C X/y).

Isolating Mincuts. Given a graph G and a set of terminal vertex 7T, the isolating mincuts of T is
a collection of t-isolating mincuts that separates each single terminal vertex t € 7 from 7 \ {t}. Li and
Panigrahi [LP20] gave an algorithm that computes a minimal isolating cut efficiently.

THEOREM 2.1. ([LP20, IsoLATING CuT LEMMA|) Given a graph G = (V, E) and any terminal set T C
V, there is an algorithm that returns the minimal t-isolating mincuts for oll t € T in O(log|T] -
MaxFlow(2n,2m)) time.

The function MaxFlow(z,y) denotes the time needed for solving an st-maxflow instance with z vertices
and y edges. We assume that the function MaxFlow(z, y) is Q(z+y), is non-decreasing, and is superadditive.®

3 Maximal Isolating Mincuts

The maximal minimum isolating cut problem states that, given a graph G = (V, E) with n vertices and m
edges and a terminal set T, the goal is to obtain the maximal isolating mincut X, for each terminal v € T.
In this section, we give an efficient algorithm for solving the maximal isolating mincuts problem in almost
linear time, which summarizes as the following Theorem 3.1.

THEOREM 3.1. There exists an algorithm that, given an undirected weighted graph G = (V, E) and a terminal
set T CV, in O(log |T| - MaxFlow(3n,4m)) time computes the mazximal isolating mincut of all terminals
v € T with respect to T .

Key Insight. The crux of our maximal isolating mincut algorithm is an observation” to any set of three
pairwise crossing mincuts to three disjoint subsets of 7 — their intersection is always an empty set due to
only posi-modularity but not submodularity.

To formally prove this, we first state a standard fact about posi-modularity in Lemma 3.1 (see its proof
in Appendix A.1). Then, we state the key observation as the Pairwise Intersection Only Lemma below.

LEMMA 3.1. (DISJOINT & POSI-MODULARITY) Let A, B C T be two nonempty subsets of terminals with
ANB=10. Let X4 (resp. Xp) be an A-mincut (resp. B-mincut) of T. Then, X4 \ Xp is an A-mincut of
T, and Xp \ X4 is a B-mincut of T.

SAn integral function f(z,y) is said to be superadditive if for any z1,y1,z2,y2 € N we have f(x1 + z2,y1 + y2) >

f(z1,y1) + f(z2,y2). The function is non-decreasing if both f(z + 1,y) > f(z,y) and f(z,y + 1) > f(z,y) holds.
9A similar observation can also be found in Dinitz and Vainshtein [DV94, 3-Star Lemma].
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LEMMA 3.2. (PAIRWISE INTERSECTION ONLY) Given a graph G, let A, B,C C T be three disjoint nonempty

subsets of terminals. Let XA, Xp,Xc C V be any A-mincut, B-mincut, and C-mincut of T respectively.
Then XaNXpNXc =0.

Proof. The proof is only interesting whenever the intersection of any two mincuts is non-empty (i.e. crossing).
Thus, without loss of generality, we assume that X4 N Xpg # 0, Xp N Xc # 0, and X N X4 # 0.

Define Xy = (Xa \ XB) \ X¢, X5 = (X \ X¢) \ X4 and X = (X¢ \ Xa) \ Xp. These sets are
non-empty since A C X/, B C Xy, and C C X(.. By posi-modularity (Lemma 3.1) we know that X';, X,
and X, are also A-mincut, B-mincut, and C-mincut of 7 respectively, and thus

(%) (C(Xa) +C(Xp) +C(Xc)) — (C(X)y) +C(Xp) +C(Xg)) = 0.

(LHS)

Assume for contradiction that X := X, N XpgNXc # (. We now claim that there is no edge from X to
X4\ X. Note that with the assumption that G is connected, we have C(X,V \ X4) > 0. The claim implies
that

C(Xa) =C(Xa\X) - C(Xa\ X, X)+C(X,V\ X4) >C(Xa\X),

which contradicts the fact that X 4 is A-mincut.

We shall prove the claim by two steps: (1) every edge in the graph contributes to non-negative values
to the left-hand side (LHS) of (x). Therefore, any edge that contributes to a positive amount to LHS should
not exist in G by Equation (x). (2) For any boundary edge (u,v) € X with u € X and v ¢ X, we have
v ¢ Xa4UXpU X, which implies the claim.

1. We consider the cases that e contributes to how many terms of C(X’),C(X%) and C(X(). Since X,
X%, and X, are disjoint and an edge e incidents to two vertices, e contributes to at most two of the
three terms. There is nothing to prove if e contributes to 0 of them.

If e contributes to one of them, without loss of generality C(X’y). Then e contains some vertex in X/,
and also some vertex v in V' \ Xy = (V' \ X4) U Xp U X¢. Therefore v is in either V' \ X4, Xp or X¢,
hence also contributes to either C(X4),C(Xg) or C(X¢) respectively.

Otherwise e contributes to two of them, without loss of generality C(X’,) and C(X};), then e contains
some vertex u € X'y and v € X;. By the definition of X/, and X7, we have u € X4, u ¢ Xp, v € Xp,
v ¢ X 4. So e also contributes to C(X4) and C(Xp).

2. We prove (2) using (1) by showing that the contribution to LHS is positive if u € X and v €
(XaUXpBUXc)\X. Again we consider the cases that e contributes to how many terms of C(X",),C(X}),
and C(X(,). Note that e can not contribute to more than one of them since X’;, X%, and X(, are
disjoint and one of the endpoints u € X is in neither of them.

If e contributes to none of them, then we need to show that e contributes to at least one of
C(Xa4),C(Xp), and C(X¢). This claim is directly from the fact that X = X4 N XpNX¢c, u € X, and
ve X.

Otherwise, e contributes to one of them, without loss of generality C(X'y). By the definition of X,
we have v ¢ Xp and v ¢ Xc. Therefore e also contributes to C(Xp), and C(X¢).
0

Bounding the output size. Before we describe our algorithm, we emphasize that the total size of all
maximal v-isolating mincuts is O(n), as a consequence of Lemma 3.2:

LEMMA 3.3. Let G be a graph and T be a set of terminals. For each v € T, let X,, be any v-isolating mincut.
Then, 3y o7 | Xo| < 2n.
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Proof. Every vertex u € V belongs to at most two isolating mincuts. Suppose by contradiction that there
exist three terminal vertices v, vz, and v3 such that v € X,, N X,, N X,,. By Lemma 3.2 we know that

Xy, N Xy, N X,, =0, a contradiction. Hence, a counting argument shows that Y over | Xo| < 2n. O

We remark that for our purpose we apply Lemma 3.3 where X, is the maximal v-isloating mincut for
all v € T. Lemma 3.3 implies that the total output size is O(n). Thus, all maximal v-isolating mincuts can
be stored explicitly. Now, we are ready for introducing the algorithm.

A Divide and Conquer Algorithm. The existing algorithms [LP20, CQ21] for finding minimal
isolating mincuts use one-shot recursion by first computing O(log |7|) cuts on G. These cuts partition the
vertex set into O(|7]) subsets, and isolate every terminal from 7. The minimal ¢-isolating mincuts can then
be obtained within each part (and contracting everything outside the part). This does not work for us! The
most evident reason is that the maximal ¢-isolating mincuts may not be disjoint.

Instead of using one-shot recursion, we can also consider a divide and conquer algorithm that is equivalent
to the existing algorithms. The algorithm considers one cut at a time. Each cut splits the terminal set (and
the vertex set) into two parts, creating two subproblems. Each subproblem is obtained by contracting all
vertices on one side of the cut into a single vertex. The subsequent cuts are now affecting both subproblems,
splitting each subproblem into another two subproblems, and so on and so forth.

Our algorithm solves the maximal isolating mincut problem using a divide and conquer approach very
similar to the algorithm described above, but with a slight twist. In our algorithm, every subproblem is
derived from G via contractions, and there will be at most one contracted vertex in each subproblem. We
call such a special vertex p the pivot of a subproblem. Notice that p = null when the algorithm first enters
the recursion, as there is no contracted vertex. Throughout the execution, the algorithm recursively splits
the terminal set 7 \ {p} arbitrarily into two halves T \ {p} = AU B. Then, the algorithm computes X 4
(the maximal A-mincut of 7) and Xp (the maximal B-mincut of 7) by solving two s-Maximal st-Mincut
instances (which can be solved using one st-MaxFlow and a linear time post processing).

We observe (via submodularity, see Lemma 3.4) that for each terminal v € A, the maximal v-isolating
mincut X, must be fully contained in X4, i.e., X, € X4. Hence, in order to find out the maximal v-
isolating mincuts for all vertices v € A, it is safe to contract everything outside X 4 and recursively compute
maximal isolating mincuts on the contracted graph G4 := G/(V \ X4). Notice that the pivot p as well as
all terminal vertices in B are outside of X 4, so within the contracted graph G4 the contracted vertex pa
shall be considered as a terminal vertex in the subproblem.

Similarly, the algorithm contracts everything outside Xpg which leads to the pivot vertex pg, and
recursively computes maximal isolating mincuts on G/(V \ Xpg) too. This divide and conquer procedure
continues until the number of terminal vertices becomes a constant, where the maximal v-isolating mincut
can be computed for each vertex v € T individually using a max-flow. The algorithm is summarized in
Algorithm 1.

Analysis We now prove the correctness and the runtime. As mentioned above, the correctness of
Algorithm 1 depends on a standard fact on submodularity on two nesting subsets (for completeness see its
proof in Appendix A.2):

LEMMA 3.4. (NESTING & SUBMODULARITY) Let G be a graph and let T be the set of terminals. Consider
two nonempty subsets A and B of terminals such that A C B C T. Let X4 (resp. Xp) be any A-mincut
(resp. B-mincut) of T. Then, X4 N Xp is a A-mincut of T. Respectively, X U Xp is a B-mincut of T.

Consider the recursion tree throughout executing Algorithm 1. We say that a subproblem is a leaf if
Algorithm 1 is executed for the subproblem and thus no further recursions are invoked.

LEMMA 3.5. (CORRECTNESS) Fiz a terminal vertex v € T. There is a unique (leaf) subproblem where
the mazimal isolating mincut for v is computed. Let X, be the cut returned at Line 6 for vertex v. Then
X, = X, is the mazximal v-isolating mincut on the graph G.

Proof. Fix v € T. Since in each divide step, exactly one subproblem contains v so there will be exactly one
leaf subproblem where Line 6 is invoked for v. Clearly X, does not contain any contracted vertex (since the
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Algorithm 1 Maximal isolating mincuts.

1: procedure MaxIsoMINCUT(G, T)

2 Call MaxIsoMiNcuTWITHPIVOT(G, T, null).
3: end procedure

4: procedure MaxIsoMiNcUTWITHPIVOT(G, T, p)

5: if |T| <4 then > Base case.
6: Obtain the maximal v-isolating mincut X, for each v € T. > Use MaxFlow.
7: else

8: Partition 7\ {p} arbitrarily into two similarly sized sets AU B =T \ {p}.

9: Compute X 4, the maximal A-mincut of T. > Use MaxFlow.
10: Compute Xp, the maximal B-mincut of 7. > Use MaxFlow.
11: Let G4 + G/(V \ Xa) where V' \ X4 gets contracted to pa.

12: Let Gg < G/(V \ XB) where V \ Xp gets contracted to pp.
13: Invoke MaxISOMINCUTWITHPIVOT(G A4, AU {pa},pa).
14: Invoke MaxIsoMINCUTWITHPIVOT(GB, BU {pB}, pBR).

15: end if
16: end procedure

only contracted vertex in the subproblem is the pivot.) Now, to show that XU = X,, it suffices to show that
in each divide step, all vertices in X,, are not contracted. Indeed, by submodularity in Lemma 3.4, suppose
without loss of generality that v € A then we must have X,, C X 4 (otherwise X 4 is not a maximal isolating
mincut of A since X, U X4 is a larger-sized isolating mincut of A.) |

LEMMA 3.6. (RUNTIME) MAXISOMINCUT(G,T) runs in O(log |T| - MaxFlow(3n,4m)) time.

Proof. 1t suffices to bound the sum of graph sizes in all subproblems throughout the execution of Algorithm 1.
First of all, the maximum depth of the recursion tree is [log|7|] since in each recursive call the number of
non-pivot terminals is reduced to half. In addition, the number of subproblems in each recursion depth i is
at most min{2’, |7}

Now, we focus on a particular recursion depth i > 0. Let {(G;,7;,p;)} be all the subproblems whose
recursion depth is 2. We observe that all terminals except pivot go to exactly one subproblem so the subsets
T; :=T; \ {p;} are disjoint. Moreover, by Lines 11-12 we know that for each j, removing the pivot p; from
G it is exactly the maximal 7;-mincut of 7 on G.

Using the Pairwise Intersection Only Lemma (Lemma 3.2), we are able to conclude that every vertex
in the input graph G occurs in at most two subproblems at recursion depth ¢. Therefore, the total number
of vertices across all subproblems at depth i is >, [V(Gy)| < 2n + min{2%, |T|} < 2n + |T| < 3n. To
analyze the total number of edges across all subproblems at depth i, we notice that each edge has at least
one non-pivot endpoint. Thus, the total number of edges can be bounded by the sum of all vertex degrees
> |E(Gy)| < 4m.

Finally, in each subproblem (G’,7"), where the graph G’ has n’ vertices and m’ edges, the algorithm
computes the maximal A-mincut of 7 (denoted by X 4) and the maximal B-mincut of 7 (denoted by Xp)
by the following steps. First, the algorithm creates a flow graph Gj_, where the source vertex s is obtained
by merging all vertices in A and the sink vertex t is obtained by merging all vertices in B. This graph
has at most n’ vertices and at most m’ (undirected) edges since G’ is formed from the input graph G by a
sequence of contraction. Then, the algorithm finds any st-MaxFlow f within MaxFlow(n', m’) time. Finally,

the algorithm examines the residual graph Ggé;), in O(n’ +m’) time: X4 is exactly the set of vertices that
do not reach t and Xp is exactly the set of vertices that are not reachable from s.

Therefore, by summing up the runtime per recursion depth, we obtain an upper bound to the desired
total runtime O(log |7 |- MaxFlow(3n,4m)). 0

Proof of Theorem 5.1.. Theorem 3.1 follows directly by Algorithm 1, Lemma 3.5, and Lemma 3.6. a
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4 Steiner Cactus Construction

In this section, we apply the maximal isolating mincut algorithm from Section 3 to construct a a Steiner
cactus representation that succinctly represents all 7-mincuts on a given graph G with terminal set 7 using

O(|T1) space.

DEFINITION 4.1. (STEINER CACTUS, SEE ALSO [DV94, CX17]) Given a graph G and a terminal set T, a
T-Steiner cactus (H, @) is a weighted cactus graph H with a mapping ¢ : T — V(H) such that (1) edges
in a cycle have weights A\c(T)/2 and edges not in a cycle have weights A\g(T), (2) an A-mincut of T is a
T -Steiner mincut if and only if a global mincut on H separates ¢(A) and ¢(T \ A).

We say that a node v € V(H) in a cactus is non-empty if there exists a terminal ¢ where ¢(tf) = v. There
may exist empty nodes in H. Notice that cactus and Steiner cactus representations of a graph may not be
unique.!’ Our Steiner cactus algorithm is now summarized below as Theorem 4.1.

THEOREM 4.1. Let G be a graph with n vertices and m edges. Let T be a set of terminals. There exists a
randomized Monte Carlo algorithm such that, with probability 1 — 8n =19, the algorithm correctly computes a
T -Steiner cactus in O((log* n) - MaxFlow(3n, 4m + 8nlog|T|)) time.

4.1 Divide and Conquer Approach: Prior Works Chekuri and Xu’s algorithm [CX17] finds a linear-
sized hypercactus representation that represents all (global) mincuts on a hypergraph. This hypercactus
representation degenerates to a cactus representation on a normal graph and also in the Steiner setting. We
now briefly describe their framework in terms of constructing a 7 -Steiner cactus.

The main idea of Chekuri and Xu’s algorithm is to successively find 7 -splits — 7T -mincuts that have
at least two terminal vertices on both sides. After obtaining a T-split (X,V \ X), a simple refinement
conceptually decomposes the graph G into two graphs GG; and G, where each of them is obtained from a
copy of G with all vertices from one side (either X or V' \ X) are contracted. Notice that the contracted
vertices will be treated as terminals in the decomposed graphs, which we call anchor vertices.

DEFINITION 4.2. A split (or a T-split) of a terminal set T on a graph G is a T-mincut (X,V \ X) such
that both X and V' \ X have at least two terminal vertices, i.e., |T N X|,|T \ X| > 2.

DEFINITION 4.3. (SIMPLE REFINEMENT AND ANCHOR VERTEX) Fiz a graph G = (V,E) and a terminal
set T. We say that {(G1,7T1),(G2,7T2)} is a simple refinement of G if G1 and Ga are graphs obtained through
a T-split (X,V \ X) of G and a new anchor vertex'! a as follows.

e G1:=G/(V\X) such that V' \ X gets contracted to a.
o T1:=(TNX)U{a}.

o Gy :=G/X such that X gets contracted to a.

o To:=(TN(V\X)) U{a}.

Chekuri and Xu’s algorithm maintains a decomposition G = {(G;,7;)} (initialized with the input graph
{(G,T)}), iteratively finds a T;-split to any graph (G;,7;) € G, and replaces the graph G; with its simple
refinements. Since each simple refinement creates an anchor vertex that appears in both decomposed graphs,
at any time, the decomposition G admits a decomposition tree.

DEFINITION 4.4. (DECOMPOSITION) Fiz a graph G and a terminal set T. A decomposition G = {(G;, T;)}
is a collection of graphs and terminal vertices obtained by performing an arbitrary sequence of simple
refinements.

10See the work of Nagamochi and Kameda [NK94] for canonical cactus representations of a graph.

H1n [CX17] the authors called these vertices marker vertices.
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Finally, the algorithm halts when no splits exist in the current decomposition. In this case, the
decomposition is called a prime decomposition.

DEFINITION 4.5. (PRIME DECOMPOSITION) Fiz a graph G and a terminal set T. We say that a decompo-
sition G = {(G;,T;)} is prime if each graph G; does not contain a T;-split.

In Chekuri and Xu’s algorithm, they add a post-processing step turning a prime decomposition into a
canonical decomposition (see also [Che99, Cun83|), where every mincut of G can be found in exactly one
graph from the canonical decomposition. Indeed, it is possible for some 7-mincuts of G not being preserved
anymore in a prime decomposition. For example, if the algorithm decomposes a graph using a 7T -split, then
all the T-mincuts that cross with that split no longer exist in the simple refinement. The only guarantee
to any decomposition G = {(G;,T;)} is that every T;-mincut in G; corresponds to some 7-mincut in G
(by “expanding” the anchor vertices with the terminal vertices in 7). Fortunately, all 7-mincuts that the
algorithm has missed in one divide and conquer step belong to the same cycle on a cactus representation of
T. In Section 4.4 we show that even without the post-processing step, we are still able to efficiently glue the
cactus of decomposed graphs (via anchor vertices) such that a cycle on a cactus representation can still be
constructed. Thus, all 7T-mincuts are preserved.

However, iteratively finding splits and repeatedly invoking simple refinements have a worst case Q(m|T)
runtime, which is too slow. This worst case occurs when the splits used for simple refinements were
imbalanced. In the rest of the section, we resolve this issue via maximal isolating mincuts, obtaining an
algorithm for Steiner cactus in poly-logarithmic max-flow time.

4.2 Owur Divide and Conquer Framework via a Sequence of Splits Our divide and conquer
algorithm is based on the idea of Chekuri and Xu [CX17], where the goal is to output a prime decomposition
through a series of simple refinements. However, in each subproblem, instead of seeking one split at a time,
our algorithm uses multiple splits in G and generates a good decomposition (see Definition 4.6) with high
probability. The guarantee of a good decomposition leads to an O(log|7|) upper bound to the recursion
depth, achieving a poly-logarithmic max-flow runtime.

In the rest of this subsection, we formulate a divide and conquer framework (see Algorithm 2) for
computing a 7 -Steiner cactus. The implementation of this framework has to overcome two non-trivial
challenges, namely (1) computing a collection of splits that generates a good decomposition (Lemma 4.2)
and (2) merging the sub-cactus returned from the subproblems into a 7-Steiner cactus (Lemma 4.3). We
overcome both challenges using our maximal isolating mincut algorithm and describe the details in Section 4.3
and Section 4.4. By assuming Lemmas 4.2 and 4.3, we establish a proof to Theorem 4.1 at the end of this
subsection.

Preprocessing. To enable the power of the maximal isolating mincut algorithm, we rely on the following
two handy properties after preprocessing:

1. We may assume that we have already known the value of the Steiner mincut A\g (7).

2. We may assume that for any two terminal vertices v and v € T, there exists a T-Steiner mincut that
separates u and v.

These two assumptions can both be achieved using the isolating cut algorithm from Li and Panigrahi [L.P20].
The first assumption can be made directly via an almost-linear time algorithm [CQ21] that computes a
T-mincut and its value. The second assumption can be made by preprocessing the graph with a “\-
connected component algorithm” implicitly mentioned in Li and Panigrahi [LP21]. We summarize the
second preprocessing step below in Lemma 4.1 and prove them in Appendix B.1 for completeness.

LEMMA 4.1. (PREPROCESSING [LP21, RUN ONE STEP OF ALGORITHM 4|) Given a graph G and a termi-
nal set T, there exists an algorithm such that, with probability 1 — n='' the algorithm outputs a partition
of T such that Mu,v) = Ag(T) if and only if u and v belongs to different parts. This algorithm runs in
O(log? n - MaxFlow(2n, 2m)) time.
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Good Decomposition. Let us now consider decomposing the graph G using one or more splits at a
time in Chekuri and Xu’s algorithm. Suppose we have an ideal oracle that always finds a balanced T'-split
where both sides contain at least 1|77| terminal vertices in a graph G’ with terminal vertex set 7’. Then,
performing one simple refinement in each subproblem (G’,T’) suffices to bound the recursion depth by
O(log |T]). Unfortunately, such an exemplary oracle does not always exist. In an extreme scenario, consider
a graph G and a terminal set 7 whose Steiner cactus representation could be a star. Since all 7-mincuts are
trivial, there is even no split for 7. Fortunately, if there is no further split for 7 on G, then {(G,T)} itself
is already a prime decomposition so this is a base case in our divide and conquer algorithm. Motivated by
this, we define the good decomposition that suffices to bound the recursion depth as follows.

DEFINITION 4.6. (GOOD DECOMPOSITION) Given a graph G and a set of terminal vertices T, a decompo-
sition G = {(G;, T)} of G is said to be good with respect to T if G has the following property. Let T; be the
set of terminal vertices in G;. For all i except at most one special index i*, |T;| < %\’ﬂ + 1, and there exists
a Steiner cactus representation of T;= in Gy« that is a star.

Induced Decomposition from a Collection of Disjoint Splits. Consider a collection of 7T -splits
S = {X1,Xs,..., X} where the presented subsets in S are disjoint. The disjointness leads to a robust
procedure for performing lots of simple refinements to G using the 7-splits from S in any order. It is
straightforward to check that the resulting decomposition is unique up to relabeling the anchor vertices, and
we call the result the decomposition induced by S on G.

Now, we formally establish sufficient criteria that our maximal isolating mincut algorithm will achieve
with high probability.

DEFINITION 4.7. (GooD SPLIT COLLECTION) Given a graph G and a set of terminals T, we say that a
collection of T-splits S = {X;} is a good split collection if (1) for any i # j we have X; N X; =0, and (2)
the decomposition induced by S is a good decomposition.

With the above Definition 4.7, we are able to summarize and highlight the first step in the divide
and conquer framework in Lemma 4.2 (proved in Section 4.3). The entire divide and conquer algorithm is
presented in Algorithm 2.

LEMMA 4.2. Given a graph G = (V,E) and a set of terminals T, there exists a randomized Monte

Carlo algorithm such that, with probability 1 — n=1%, the algorithm returns a good split collection S in
O((log® n) - MaxFlow(3n,4m)) time.

Merging Cactus from Subproblems. The last piece for accomplishing the divide and conquer
algorithm is to merge the cactus returned from each subproblem. On the bright side, with the help of
anchor vertices, we do have the proximity of how two cactus should be combined. However, the merging
procedure is a bit subtle as we have to make sure that every 7-Steiner mincut is preserved in the combined
cactus. We summarize the correctness and the runtime guarantee here in Lemma 4.3 and establish the details
in Section 4.4.

LEMMA 4.3. Fiz a subproblem (G = (V,E),T) in Algorithm 2. Assume all splits generated from the
subproblems {(G;, T;)} derived from (G, T) are good, and each subproblem returns a correct T;-Steiner cactus
of G;. Then, the procedures TRIVIALCACTUS, STARCACTUS, and MERGECACTUS returns a ‘T -Steiner cactus
of G in O(log|T| - MaxFlow(2n,2m)) time.

Now, with Lemmas 4.2 and 4.3, we are able to prove the main Theorem 4.1 by completing the (relatively
trivial) implementation details of Line 9 and analyzing its runtime.

12Ty the hypergraph setting, we replace this procedure with STARORBRITTLECACTUS, see Section 5.4.
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Algorithm 2 A divide and conquer framework that computes a 7-Steiner cactus.

Require: a graph G = (V, E), a terminal set 7.
Ensure: a T-Steiner cactus of G.
1: procedure COMPUTESTEINERCACTUS(G, T)

2: if |7] < 3 then > Either a triangle or a path.
3: return TRIVIALCACTUS(G, T).

4: else

5: Obtain S, a good collection of T-splits on G. > See Lemma 4.2 and Section 4.3.
6: if S =0 then

7: return STARCACTUS(G, T).1? > There will be two types of stars, see Section 4.4.
8: end if

9: Compute the decomposition G = {(G;, T;)} induced by S over G.

10: Obtain H; - COMPUTESTEINERCACTUS(G;, 7;) for all i.

11: return MERGECACTUS(G, T, {H,}). > See Lemma 4.3 and Section 4.4.
12: end if

13: end procedure

Proof of Theorem 4.1. Let S = {X1, Xo,..., X;} be a good split collection returned from Line 5. To obtain
a decomposition G induced by S (Line 9), the algorithm first computes the induced subgraphs G[X;] for all
7 in linear time. Then, the algorithm simulates the simple refinement of X; by creating an anchor vertex a;
for each split X;, and for each edge (u,v) that across the split u € X; but v ¢ X;, the algorithm either adds
a new edge from (u,a;), or adds the weight to an existing edge (u,a;). Finally, the algorithm duplicates
the graph GG and contract each subset X; into a single anchor vertex a;, forming the last decomposed graph
(Ge41, Te+1)- The implementation of Line 9 takes linear time O(|V(G)| + |E(G)|) in total.

Runtime. Consider the recursion tree of subproblems from Algorithm 2. By definition of a good
decomposition, we know that the recursion depth satisfies the following recurrence relation: MaxDepth(k) =
MaxDepth(|3k| + 1) + 1 whenever k > 3 and MaxDepth(k) = 0 whenever k < 3. By solving the recurrence
relation we obtain MaxDepth(k) = O(log k).

Now, it suffices to bound the total subproblem sizes within the same recursion depth. We first claim that
the number of vertices that occur across all subproblems in the same recursion depth is at most 2n using a
potential method. For each subproblem (G, 7") we define an invariant potential ®(G,T) := |V(G)|+|T| —4.
Notice that in the case where at least one recursion step is performed we must have |7| > 3 and hence
(G, T)>0. If {(G1,T1),(G2,T2)} is a simple refinement of G, observe that

O(G1,Th) +P(Ga, T2) = (|V(G)| + [V(Go)) + (ITa| + | T2]) =8 = ([V(G)| +2) + (|T| +2) —8 = (G, T).

Thus, consider the induced decomposition {(G;,7;)} on a good split collection of size k, we know that

(G, T) = Zfill ®(G;,T;). Therefore, the sum of all potentials within the same recursion depth can be
upper bounded by the root problem’s potential. Since in every subproblem we have |T| > 3, we conclude
that the total number of vertices across all subproblems at any particular recursion depth (or any collection
of subproblems that are not related to each other) is at most ®(G,|T|) =n+ |T|—4 < 2n.

As a consequence, we also deduce that there are at most 4|7 | — 9 subproblems in the recursion tree,
by noticing that the recursion tree is a branching tree with at most 2|7| — 4 leaf subproblems (every leaf
subproblem contains at least one anchor vertex and every vertex in V(G) \ T occurs in exactly one leaf
subproblem.)

To bound the total number of edges across all subproblems within the same recursion depth, we observe
that after computing an induced decomposition from a good split collection, the total number of edges is
increased by at most Zle [V(G;)|] < 2n (notice that we charge the number of the newly generated edges
in the last decomposed graph (Gy41,7Te+1) to the edges across each split). Hence, we know that at any
recursion depth there are at most m + 2nlog|7| edges in total.

Finally, we add up the runtime needed per recursion depth. Fix any recursion depth, for each subproblem
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(G, T;), by Lemma 4.2 the runtime spent in Line 5 is at most O((log® n)-MaxFlow(3|V (G;)|, 4|E(G;)|)), the
runtime spent for Line 9 is linear in the graph size O(|V (G;)| + |E(G;)|), and by Lemma 4.3 merging cactus
takes O(log|7;| - MaxFlow(|V(G;)|, |E(G;)])) time. Hence, by denoting k = |7, the runtime of Algorithm 2
is

O(logk) - O((m+ 2nlogk) + (log®n) - MaxFlow(3n, 4(m + 2nlogk)))
—_——

recursion depth Line 9 Line 3, Line 5, Line 7, and Line 11
= O(mlogk + nlog® k 4 (log® n) - MaxFlow(3n, 4m + 8nlog k))
= O((log* n) - MaxFlow(3n, 4m + 8nlogk)).

Finally, note that we spent time for preprocessing the input graph by called Lemma 4.1 using O(log2 n -
MaxFlow(2n,2m)) time, but this is subsumed by the above bound.

Correctness. By Lemma 4.2, with probability 1 — n~!! the returned collection is good in Line 5.
Throughout execution there are at most 4|7 — 9 < 4n invocations to Lemma 4.2. Hence, with a union
bound we know that with probability 1 —4n =10 the collections of splits from all subproblems are good. Now,
by applying the union bound again to Lemma 4.3 we know that the returned cactus is a T-Steiner cactus of
G with probability at least 1 — 4n =10, Therefore, with another union bound we know that with probability
1 —8n~19 Algorithm 2 correctly outputs a 7-Steiner cactus. O

4.3 Computing a Good Split Collection In this subsection, we aim to prove Lemma 4.2. Specifically,
we propose Algorithm 3, and then we show that with probability at least 1 — n~1'!, a good split collection
can be computed in almost-linear time via O(log2 n) maximal isolating mincut algorithms.

Algorithm Description. Algorithm 3 works as follows. The algorithm set up [log | 7|] different sample
rates, namely 271,272 ... 27 [og|TIl For each sample rate 2%, the algorithm samples each terminal vertex
with probability 27% and forms a set 7;. Then, the algorithm computes the maximal isolating mincuts for
the set 7;, and keeps the maximal v-isolating mincut of 7; if the cut is a 7-split and its value equals to
Aa(T) (i-e., keeps only the non-trivial T-Steiner mincuts.) To ensure a high probability result, we repeat
the whole sampling procedure another ©(logn) times. Let S be the collection of splits that the algorithm
has found so far.

Recall from Definition 4.7 that there are two cases where a split collection is considered to be good:
either we find a balanced split whose both sides have at least %|7—| terminals, or we find a collection of
disjoint sets where the contracted graph (obtained by contracting all these sets) does not contain a split
anymore.

Once obtaining the collection of splits S, the algorithm checks if there exists any balanced split by simply
checking the size of each set in S. If there is such a balanced split, returning the split itself is sufficient
(Line 11). Otherwise, every set in S now contains either less than 1|77 or more than 2|7 terminals. The
algorithm discards all sets containing more than %\T| terminals and then keeps the maximal subsets among
the splits in the collection.

In the case where no balanced split is found, the algorithm does an additional post-processing in Line 13-
15. The purpose of this post-processing is to obtain a set of disjoint 7 -splits that satisfy Definition 4.7.
Specifically, in Line 13 the algorithm get rid of all subsets with only one terminal. In Line 14 only maximal
subsets are kept and in Line 15 the disjointness of these subsets are enforced. This completes the description
of Algorithm 3.

To simplify the correctness proof, we introduce the notion of irredundant T-Steiner cactus.

DEFINITION 4.8. A T -Steiner cactus (H,®) of G is said to be irredundant, if for every edge e on H, the
contraction H/e is no longer a T -Steiner cactus of G.

We remark that the irredundant cactus is somewhat similar to the notion of a normal cactus defined in
the work of Nagamochi and Kameda [NK94|, except that we still allow tree edges in H.
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Algorithm 3 Computing a Good Split Collection
1: procedure GOODSPLITCOLLECTION(G, T, A := A\g(T))
2 Initialize S + 0.
3 repeat the following procedure [12 - 1024¢ - Inn] times do
4 fori=1,2,...,[log|T|] do
5: Sample each terminal vertex with probability 27¢, denote the set by 7;.
6
7
8
9

X «MaxIsoCut(G, T;).
S+ SU{X eX|C(X)=A}
end for

: end repeat
10: if there exists a balanced split X € S where [T N X[, |7\ X| > 1|7 then

11: return {X}. > A single balanced split.
12: else

13: S+—{X;eS|2<|XinT| < 1[TI}- > Keep only small T-splits.
14: S+ {X;, eS| X, ZXj foralli#j}. > Obtain only the maximal subsets.
15: For each X; € S, set X; = X; \ U;<; X;. > Enforce disjointness to the subsets.
16: return S.

17: end if

18: end procedure

Intuition of Correctness. The high probability correctness comes from case analysis to any 7T -Steiner
cactus of G. Let (H, ¢) be any irredundant T-Steiner cactus of G. Define a balanced edge-cut on H to be a
minimum edge cut of H (either one edge or two edges in a cycle) such that the number of terminals on both
sides is between %|7’] and %|7'|. Our analysis depends on whether or not a balanced edge-cut exists on H.

Case 1: Balanced Cuts Exist. In the first case where there is a balanced edge-cut, the correctness
relies on the sparsest sampling rate 2-°8 1711 In particular, we rely on a sampled terminal set 7/ = {u,v,r}
of exactly 3 vertices, where two corresponding nodes ¢(u) and ¢(v) are in the “larger side” of the cut and
the third corresponding node ¢(r) is in the “smaller side” of the cut. Then, it is possible to prove that with
constant probability, the maximal r-isolating cut of 7' contains the right amount of terminal vertices —
between 1|7 and 2|7 (the upper bound comes from Lemma 4.5). Thus, a balanced split will be found in S
with high probability because the sampling procedure with the sparsest sampling rate is repeated O(logn)
times. We formalize the first case here as Lemma 4.4, and give an illustration in Figure 1.

/ 10 (T N (maximal r-mincut of {r,u, 7)}))

exists a balanced edge-cut on H

Figure 1: When there is a balanced edge-cut on a 7-Steiner cactus H of G, a balanced T-split on G will be
found with high probability.

I3The existence of a balanced edge-cut on H is equivalent to the existence of a balanced split on G. However, we believe the

proof is easier to see through if we analyze the algorithm’s behavior on H.
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LEMMA 4.4. Let G be the graph with terminal set T and let (H,¢) be a T -Steiner cactus of G. Suppose
there is a balanced edge-cut on H. Then, with probability 1 — n=1 there is a balanced split in S returned
from Algorithm 3.

To prove Lemma 4.4, we introduce a helper lemma that shows the benefit of having assumption 2. That
is, if we have sampled two vertices v and v in the “large side” and sampled a single vertex r in the “smaller
side” of a balanced split, then the maximal r-isolating cut of {u, v, r} has to contain at most %\T| terminals.

LEMMA 4.5. Let G be the graph with a set T of terminals that satisfies Assumption 2. Let r € T be a
terminal such that any r-isolating mincut is a T-mincut. If we sample terminals u,v € T — {r} uniformly
at random, then with probability at least 1/4, any {u,v}-mincut of {u,v,r} has at least £|T| terminals.

Proof. Let (H,¢) be a T-Steiner cactus of G. Recall that Assumption 2 states that any two terminals
u,v € T can be separated by some 7T-mincut. This implies that ¢(u) # ¢(v) as all T-mincuts are preserved.
From the assumption that r-isolating mincut is a 7-mincut, we know that ¢(r) has degree 1 or has degree
2 within a cycle in H. Consider a specialized DFS traversal of H starting from ¢(r). Upon visiting a
vertex from a cycle edge, the DFS traversal always tends to choose any edge that leaves the cycle. Let
(r,v1,v2,...,v7—1) be the unique permutation of 7 where (¢(r), d(v1), #(v2),...,¢(vjr|=1)) is the order
(subsequence) of visited vertices by the DFS traversal, i.e. the pre-order. Notice that the DFS traversal
only returns to ¢(r) at the very end. Then for any two indices ¢ and j such that 1 <4 < j < |7 |, maximal
r-isolating mincut of {v;, v, } must not contain any vertices in {v;, v;41,...,v;} and hence the result follows
by counting the fraction of pairs (at least 1/4) whose position in the permutation differs by at least %|T|
0

Lemma 4.5 implies that with constant probability, the mincut of our concern is balanced. Now we are
ready to prove Lemma 4.4.

Proof of Lemma 4.4. Suppose there is a balanced edge-cut on H, i.e. a T-Steiner mincut (X,V \ X) where
1|T] <X NT| < 3|T]. Consider the phase that Algorithm 3 samples each terminal vertex with probability
2~ Mog[TI1 then with probability at least

TN L (o N\ 1y
2 4 2[log [T 9[log |T1]

> <1 - |’2r|> (1 - = 1))3 <2<|’r|1— 1))3
1

256e

>

there will be one sampled terminal r in X, and exactly two sampled terminals v and v in V' \ X. We denote
the event described above by €. When & happens, since (X,V \ X) is a T-Steiner mincut, we know that
the maximal r-mincut of {r, u,v} must contain entire X, hence containing at least %|’T\ terminals. Now we
will use Lemma 4.5 to prove that, conditioned on £, with probability at least 1/4, the maximal r-mincut of
{r,u,v} has at most 2|7 terminals.

Indeed, conditioned on event &£, the maximal r-mincut of {r, u, v} is disjoint to the minimal {u, v}-mincut
of {r,u,v} (otherwise it contradicts to Disjoint & Posi-modularity Lemma 3.1). Consider the graph G/X
with 7’ being the contracted terminal vertex. Let 7 := (7 \ X) U {r'} be the contracted terminal set. Since
X itself is a T-Steiner mincut, {7’} is a 7’'-Steiner mincut on G/X and hence the criteria of Lemma 4.5
are met. Therefore, by Lemma 4.5, with probability at least 1/4, the minimal {u,v}-mincut of {r,u,v} on
G contains at least £|77| > 1|T| terminals. This implies that the maximal r-mincut of {r,u,v} contains at
most 2|77 terminals.

As a consequence, we know that with probability 1/(1024e), a balanced split will be found in one
sampling procedure. With repeating the sampling procedure for [12-1024e-Inn] times, Algorithm 3 returns
a balanced split with probability at least 1 —n='2 > 1 — n~!! as desired. 0
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Case 2: No Balanced Cut. Now let us consider the second case where there is no balanced edge-cut.
An illustration for this case is provided in Figure 2. In this case, our algorithm should be able to obtain
lots of disjoint, T-splits such that, after contracting smaller sides of all these 7T -splits, the remaining graph
(which could still be large) is guaranteed to have a star shaped cactus representation. Not surprisingly, the
center of this star can be traced back (by undoing the contractions) to a centroid node on H, given the
non-presence of a balanced edge-cut.

Recall that H is an irredundant 7-Steiner cactus representation (H,¢) of G. A centroid v is a node
on H such that, every edge or cycle incident to v defines a T -Steiner mincut whose corresponding mincut
on H not containing v has at most 1|7 terminals. We will soon prove (in Lemma 4.7) that no balanced
edge-cut on H implies a unique centroid node v on H. This centroid node v naturally partitions 7\ ¢~ (v)
into sets of terminals 77 U T5 LI - - - LI T, where for each i, ¢(T;) belongs to the same connected component
in H —v. Moreover, since (H, ) is a cactus representation for G, we know that for each T; there exists
a T-Steiner mincut that separates 7; and 7 \ 7;. Let X/ be the maximal T;-mincut of 7, and define the
collection &’ = {X[}.

Fix a particular ¢ such that 1 < ¢ < k, and consider sampling each vertex in 7 at the sampling rate
2~ Mog|Till " We can then prove (in Lemma 4.8) that, with constant probability, exactly one terminal w € T;
is sampled, together with at least one terminal from any two other subsets (namely « € T; and y € T}, for
some j # j' # i # j) being sampled.

The following lemma ensures that X/ can be precisely discovered by our maximal isolating mincut
algorithm, illustrated in Figure 2(b).

LEMMA 4.6. Let v be a centroid node on H. Let w,x,y € T be three terminals such that ¢p(w), ¢(x), and ¢(y)
belongs to distinct connected components in H —v. Let X be the mazimal w-isolating mincut of {w,x,y},
then the corresponding cut of X in H must not contain v.

Proof. Let Y be a mincut on H that corresponds to X. Suppose by contradiction that Y contains v. But
since ¢(z), p(y) ¢ Y, the cut value of Y would be at least 2Ac(7), a contradiction to Y being a mincut of
H. a

Notice that by Lemma 4.6, whenever the algorithm seeks the maximal w-isolating mincut of this sampled
terminal set, the algorithm obtains exactly the set X/. Is the collection S’ serves for our purpose? Not really
— &’ may not be a good split collection (Definition 4.7). For example, some mincut X! € &’ may contain
exactly one terminal vertex — simply removing these mincuts is an easy fix. What’s worse, there could be
two mincuts X; and X that are not disjoint (e.g., Figure 2(a)). Fortunately, an additional post-processing
step can be further applied: whenever there exists X; N X} # 0 (say i > j), we prune the larger indexed
one by replacing X/ with X/ \ X}. By posi-modularity (Lemma 3.1), T; N T; = ) implies that X} is still a
Tj-mincut of 7. It is straightforward to check that at the end of the post-processing step we have obtained
a pruned set S .q = {X;} where X; = X\ U;<; X} and every X; contains at least two terminal vertices.

The post-processing steps mentioned above correspond to Line 15 of Algorithm 3. We prove as a corollary
of Lemma 4.8 (Corollary 4.1) that the collection S returned by Algorithm 3 is exactly the same as Sf ., .q
with high probability. At the end of the analysis, we prove in Lemma 4.10 that S .4 is actually a good
split collection.

Formalizing the Proof to Case 2. The rest of this subsection devotes to formalize the high-level idea
described above. Let G be the graph with terminal set 7 and let (H, ¢) be an irredundant 7-Steiner cactus
of G. Assume that there is no balanced edge-cut on H. We first show that there exists a unique centroid
node on H.

LEMMA 4.7. there exists a unique centroid node v on H whose all incident 1-edges and 2-edges from the
same cycle correspond to T -Steiner mincuts of at most %|T| terminals in the side not containing v.

Proof. The existence of such a centroid node can be proved as follows. We first replace each cactus cycle
on H with a star (adding an additional node that represents the cactus cycle), forming a tree H'. We note
that each edge on H’ still represents a mincut on H. It is well-known that any tree contains a centroid with
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Figure 2: An illustration of a cactus representation H. The colored regions correspond to &', which is a
collection of T-Steiner mincuts of G. (a) When there is no balanced edge-cut, there must be a centroid node
v on H. (b) If we sample three terminals w,z,y that are mapped into distinct connected components in
H — v, then the maximal w-mincut of {w,z,y} correspond to exactly the connected component of H — v
where w belongs to.

respect to any vertex weight. Let v be any centroid node on the tree H' when empty nodes have weight zero
and non-empty nodes have weight one. If v is a node on H, then by definition v is a centroid node on H.
Otherwise, if v is an additional node that represents a cactus cycle, then since each incident edge of v on
the tree H' corresponds to a mincut with at most i|T| terminals, one can obtain a balanced edge-cut on H
greedily along the cactus cycle represented by v, thereby a contradiction.

To show uniqueness, suppose by contradiction that there are two centroids u and v on H. Consider any
mincut on H that separates v and v. By the fact of being a centroid, the side of this mincut not containing
u (resp. mnot containing v) has at most ;|7 terminals. Howerver, this implies that the total number of
terminals is at most |77, a contradiction. O

Let Ty UTy U ... U Ty be the partition of terminal vertices of T \ ¢ ~!(v) where two terminal vertices x
and y belong to the same 7T; if and only if ¢(z) and ¢(y) are in the same connected component of H —v. For
each 4, let X/ be the maximal T;-mincut of 7 on G, and let 8’ = {X/} be the collection of all these mincuts.
We first establish the relation between the collection S8’ and the mincuts computed from the algorithm:

LEMMA 4.8. Let S be the collection of T -Steiner mincut right after the execution of Line 14. With probability
at least 1 —n=11,

1. for all X! € 8" such that | X, NT| > 2, we have X, € S.
2.8cs.
We first establish the following fact and a helper claim:

Fact 4.1. Let X be any T -Steiner mincut. Consider any corresponding edge-cut that separates $(XNT) and
®(T\X) on H. Suppose that the centroid v belongs to the ¢(X NT) side of the edge-cut, then | XNT| > 1|T].

Proof. Since (H, ¢) is a cactus representation of G, any minimum edge-cut of H must have one side whose
nodes are all within the same connected component of H —v!*. The condition that v belongs to the ¢(X NT)

T This sentence even holds when v is not a centroid.
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side implies that all nodes in ¢(7 \ X) belong to the same connected component of H — v. Now, using the
assumption that v is a centroid node, we know that |7\ X| < 1|7 and hence [ X NT| > 3|T| > 1|T]|. O

PROPOSITION 4.1. Fiz any X! € §', the maximal T;-mincut of T. For any T -Steiner mincut X < X! but
X NT; #0, we must have | X NT| > 1|T].

Proof of Proposition 4.1. Let Tx = X NT be the set of terminal vertices in X. Consider the corresponding
edge-cut on H that separates ¢(Tx) and ¢(T \ Tx ). The condition of the proposition implies that v belongs
to the ¢(T’x) side of the edge-cut. Using Fact 4.1 we obtain |Tx| > %|T]. O

Intuitively speaking, Proposition 4.1 validates Line 13-15 of Algorithm 3: any 7-Steiner mincut that
is either crossing or containing some X; € &’ will contain too many terminals and will be removed. As a
consequence, Line 13 protects X/ from being accidentally removed in Line 14 and being “chopped” in Line 15.
Now we formally prove Lemma 4.8.

Proof of Lemma /.8.
Part 1. Fix an X] € §’. We first notice that by Proposition 4.1, any 7-Steiner mincut X that is a
superset of X/ has more than ;|7 terminal vertices. Hence, such mincut X will be excluded by executing

Line 13 of the algorithm. Now it suffices to show that X/ will be found and appeared in S with high
probability.

Consider sampling terminal vertices with probability p := 2~ 1°gI7ill | By Lemma 4.6, it suffices to lower
bound the probability of the event where (1) no other terminals in 7; is sampled and (2) some terminals are
sampled from at least two other sets. The following analysis further restricts condition (2): we first form a
partition 7\ ¢~ (v) = T; UQ; U Q2 and compute the probability that at least one terminal from each of Q,
and Q2 are sampled.

Indeed, since each part has a size at most %|T|, by a straightforward greedy algorithm, it is possible to
group all the parts except 7} into two large sets, whose sizes are between 1|7 and 2|T|*. Let Q1 and Q3 be
such two sets. We have T\ ¢~ 1(v) = T; U Q1 U Q2. Now it suffices to prove that with constant probability,
exactly one terminal is sampled from 7T; and at least one terminal is sampled from each of @}; and (2. By a
standard probability argument, we know that sampling exactly one terminal from 7; has a probability of at
least 1/(2e). For each j € {1,2}, sampling at least one terminal from @; has a probability at least:

Q]
) > 1—e V2

Hence, the success probability per sampling at the particular scale is at least

1 (1- 6*1/2)2 > 0.02

2e
By repeating the sampling procedure at least [12-(1/0.02) - Inn] times, we know that Algorithm 3 obtains a
T-Steiner mincut that separates T; and T \ T; with probability 1 —n~!2. By applying another union bound
over all i we obtain the success probability 1 —|T|n"!2 > 1 —n~1! as desired.

Part 2. To show that S C &', assume by contradiction that there is X € S but X ¢ &’. By Line 7
of Algorithm 3, we know that X is a 7T-Steiner mincut. By Line 13, we know that 2 < [ X NT| < 1|T].
Using Fact 4.1, we know that there must exist a part 7; such that X N7 C T;. This implies that X C X7.
However, from Part 1 we knew that with probability 1 — n=12, X! € S. According to Line 14, X will be
removed from S so X ¢ S, a contradiction. 0

(10,1 = 1171 = IT3) - (1-p) ¥ 51— (1‘2m|

Recall that S .4 is defined by, first removing all X/ € &" where |X; N T| = 1, and then replace each
X with X; = X\ U;j<; X]. Since these steps are identical to Line 13 and Line 15 of Algorithm 3, we obtain
the following corollary.

T5The greedy strategy iteratively merges each subset to the smaller pile of two. In the end, the difference between the two

piles’ sizes is at most %\TL Since the sum of the two sizes is at least %\TL the smaller pile must have at least %|’7—| elements.
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COROLLARY 4.1. Suppose that Lemma 4.8 holds. Then, after the execution of Line 15, S = S’

pruned -’

Proof. The post-processing that defines S’

bruned 1S exactly the same as Line 15. a

Once we prove that with high probability, the returned collection S from Algorithm 3 is the same as
Sruned» We can put all our effort now proving that S| .4 is exactly what we want for the divide-and-conquer

algorithm. That is, we aim to show that S] .4 is a good split collection.

PROPOSITION 4.2. Each X; € S] .4 s a T-split.

Proof. First, X; is a T-Steiner mincut by the definition X; = X\ U;j<;X} and by posi-modularity
(Lemma 3.1). Moreover, since each X; contains at least two terminal vertices so X; is a 7 -split. a0

LEMMA 4.9. Consider a particular pruned mincut X; € S;/nunod' Then, the mincut on H that separates
(X NT) with ¢(T \ X;) is incident to v. That is, after the contraction of all X;, the contracted graph has
a cactus that is a star shape with > 4 leaves.

Proof. This is straightforward to check using the fact that H is irredundant. To bound the number of leaves,
we first deduce that |7| > 5 — this is because at least one split is found and there is no balanced split.
Moreover, using Assumption 2, there can be at most one terminal being the center of the star. Since each
split contains strictly less than i|7'\ terminals, we conclude that the star shape has at least 4 leaves. 0

LEMMA 4.10. S/ .q i @ good split collection.

prune

Proof. It suffices to check that ) .4 = {X;} satisfies Definition 4.7. By Proposition 4.2, we know that all
X; are indeed T-splits. Furthermore, by the construction of X; we know that for any ¢ # j, X; N X; = 0.
Thus, condition (1) of Definition 4.7 is satisfied.

Now, since all T-Steiner mincuts in S, ,,.q are disjoint, the decomposition {(G;, T;)} induced by S is well-
defined. Without loss of generality we may apply simple refinements to G in the order of X1, Xo,..., X.
Let (G1,T1),--.,(Gri1, Tps1) be the decomposed graphs'®. By Lemma 4.9, we know that there exists a
cactus representation that is a star shape for the very last graph (Ggy1, Ti+1). Therefore, by Definition 4.6,
{(G;,Ti)} is a good decomposition. This implies that condition (2) of Definition 4.7 holds and S is a good

split collection. 0

Proof of Lemma 4.2. The correctness of Lemma 4.2 follows from Lemma 4.4 and Lemma 4.10. To analyze
the runtime, we first note that Algorithm 3 involves O(log2 n) maximal isolating mincut computations, which
contributes a total of O((log® n)-MaxFlow(3n,4m)) time by Theorem 3.1. Moreover, by Lemma 3.3 we know
that the total size of subsets after Line 9 is at most O(nlog®n).

It is not hard to see that each of the remaining steps can be implemented in time linear to the total size
of the found mincuts, which is O(nlog®n): in Line 10 it suffices to scan through every subset in S and count
the number of terminals; similar analysis holds for Line 13. To implement Line 14, it suffices to scan through
all the subsets X; € S and mark the size of |X;| at each terminal vertex u € 7 N X;. For each terminal
vertex u, we simply select the largest sized X; that contains u and get rid of all the others. This step also
take O(n log? n) time. In Line 15, the algorithm initializes a boolean array A and iterates through each set
X1, Xo,...,X. For each set X;, the algorithm checks for each vertex u € X; whether or not u has been
set in A. If set, the algorithm discard u from X;. Otherwise, the algorithm marks Afu] < true and keeps u
in the set. Thus, it takes only a linear scan for Line 15. In conclusion, the total runtime of Algorithm 3 is
O((log® n) - MaxFlow(3n, 4m)). a

4.4 Returning a Correct Cactus In this section, we prove Lemma 4.3. In particular, we will implement
the procedures TRIVIALCACTUS(G,T), STARCACTUS(G,T), and MERGECACTUS(G, T,{H;}). Then, we
will prove the correctness and analyze the runtime. In this section, we assume that all the other divide and
conquer steps (especially a good split collection is returned from Line 5 of Algorithm 2) are correct.

I6Note that for 1 < i < k, we must have T; 2 Ty: T; contains exactly one more anchor vertex.
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Hollow 3-Stars vs 3-Cycle. A hollow 3-star is an induced subgraph on H that has 4 nodes where
an empty node connects to exactly 3 other nodes. Nagamochi and Kameda [NK94] pointed out that if we
replace this hollow 3-star induced subgraph with a 3-cycle (thereby removing the center empty node) from
H, the resulting graph preserves the same set of mincuts on H.

To ensure a correct cactus being returned, we implement the procedures of Algorithm 2 with the following
invariant:

INVARIANT 4.1. Let (H,¢) be the T-Steiner cactus returned by any subproblem (G,T). Then H is
wrredundant, and does not contain a hollow 3-star as an induced subgraph.

Now, we start proving Lemma 4.3.

(Line 3) Trivial Cactus. Since 7| < 3, by computing the mincut for every partition of 7 we
obtain a 7-Steiner cactus in O(MaxFlow(n,m)) time. Notice that a returned cactus can be chosen to
satisify Invariant 4.1 as there are only O(1) ways to construct such a cactus.

(Line 7) Star Cactus. In this case, there is no 7-split that is a T-Steiner mincut. Since |7| > 4 when
Line 7 is reached in Algorithm 2, we claim that there exists a star shaped T-Steiner cactus of G.

FAcT 4.2. Let G be a graph and T be a set of terminals with |T| > 4. Suppose that every T -Steiner mincut
is trivial (i.e., a t-isolating mincut of T for some t € T ). Then, there exists (H, ), a T-Steiner cactus of
G such that H is a star graph.

Proof. Let A C T be the subset of terminals ¢ whose ¢-isolating mincut is a 7-Steiner mincut. Construct H
as a star graph with A being the set of leaves. The rest vertices in 7 \ A (possibly empty) are mapped to
the center of H. Then H preserves all T-Steiner mincuts. 0

With the assumption 2, we know that there is at most one terminal vertex ¢t whose t-isolating mincut of
T is not a T-Steiner mincut. Hence, after invoking one Isolating Cut Lemma (Theorem 2.1) and checking
the isolating mincut values, the STARCACTUS procedure is able to return a 7T-Steiner cactus of G in
O(log |T| - MaxFlow(2n,2m)) time. By assumption 2 and 7| > 4, no hollow 3-star can be formed and
thus Invariant 4.1 holds.

(Line 11, Case 1.) Merging from a Balanced Split. There are two cases when Line 11 is reached,
depending on whether a balanced split is found or not. Suppose that a balanced split is found so the good
split collection contains exactly one 7-split |S| = 1.

The MERGECACTUS procedure relies on the following useful observation.

Fact 4.3. Let (G, T) be a subproblem and lett € T be an anchor vertex generated in some ancestor problems.
Let (H, ¢) be any irredundant T -Steiner cactus of G. Then, the node ¢(t) on H has either degree 1 (a leaf),
or degree 2 but in a cycle.

Proof. Since t is an anchor vertex, {t} is a T-Steiner mincut of G. Hence, there exists a mincut on H that
separates ¢(t) with ¢(7 \ {t}). Since H is irredundant, the ¢(¢)-side of the mincut must be a single node
(i.e., ¢(t) itself), and the statement follows. O

Now, let us assume that the balanced split in a good split collection S decomposes the graph G into two
subproblems (G1,7;) and (Ga,Tz2), with a shared anchor vertex a € 71 N Ta. Let (Hy,¢1) and (Hz, ¢2) be
the cactus returned from the two subproblems respectively.

Using Fact 4.3, there are only constantly many situations to be handled:

Leaf-Leaf Case. If both anchor nodes ¢1(a) and ¢2(a) have degree 1, say edge (z,¢1(a)) in H; and edge
(¢p2(a),y) in Ho, then the procedure forms the merged cactus by simply connecting H; and Hy with
an edge (z,y) and then delete the anchor nodes ¢;(a) and ¢2(a). Notice that Invariant 4.1 holds
since (z,y) cannot be further contracted, and this operation does not produce a hollow 3-star, simply
because |T| > 4.
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Leaf-Cycle Case. If the anchor vertex a has degree 1 in one of the cactus and degree 2 in the other, without
loss of generality, edge (¢1(a),x) in Hy, edge (¢2(a),y) and (p2(a), z) in He. Then the procedure simply
connects H; and Hy with edges (z,y) and (z, z) and then deletes the anchor nodes ¢1(a) and ¢z(a).
Invariant 4.1 holds here too.

Cycle-Cycle Case. The last case is nontrivial. Now both anchor nodes ¢;(a) and ¢2(a) have degree 2, say
edges (¢1(a),z1) and (¢1(a),y1) in Hy and edges (¢2(a),xz2) and (¢2(a),y2) in H;. We need to take
care of the relation between these two cycles, as in this case there may be missing 7T -Steiner mincuts.
There will be three possible outcomes in the merged cactus, and the algorithm has to identify the
correct formulation.

1. The two cycles are separated from each other in the cactus, and there is an empty node in the
middle.

2. They form one larger cycle together, concatenated by edges (r1,22) and (y1,y2).
3. They form one larger cycle together, concatenated by edges (z1,y2) and (y1,x2).

Test via Max-Flows. Fortunately, it is possible to distinguish the three cases mentioned above. All we
need to do is to obtain the mincut values between terminal sets {z1, z2} and {y1,y2}, and between terminal
sets {x1,y2} and {z2, y1 } respectively. This can be done by running st-mincut oracles on G with the terminal
sets {z1,22} (or {x1,y2}) contracted to s and {y1,y2} (or {2, y1} respectively) contracted to ¢. If none of
them equals to the known value A\g(7), then it is the case (1). Otherwise, {z1, 22} or {x1,y2} is a T-Steiner
mincut corresponding to case (2) and (3) respectively. This can be done in O(MaxFlow(n, m)) time.

Correctness. Here we briefly prove that the combined cactus is indeed a 7T-Steiner cactus of G. Let H’
be some irredundant 7-Steiner cactus of G. Let § = {X} and let @ € 71 N T3 be the anchor vertex. Since H’
is irredundant, there is a unique mincut on H’ that separates ¢(X N'T) and ¢(7 \ X). It is straightforward
to check that if X corresponds to a 1-edge-cut of H’, then every mincut in G is preserved in the subproblems
already. If X corresponds to a 2-edge-cut on H', then at least one anchor node ¢1(a) or ¢2(a) must be in
a cycle in the returned cactus. In this case, the above procedure recovers the cycle correctly. Invariant 4.1
holds for the cycle-cycle case too as no new star can be formed.

(Line 11, Case 2.) Merging When There Is No Balanced Split. The other case when invoking
Line 11 is that no balanced split exists and thus a good split collection with one or more splits is returned.
Suppose that |S| = ¢ > 1 and the graph is decomposed into ¢ 4+ 1 subproblems {(G;,7;)}, with the last
subgraph (Gy41,7r+1) containing all the anchor vertices generated in this recursion step. By Lemma 4.9
and the algorithm, the returned cactus from the subproblem (Gy11, Te1+1) must be a star graph of at least 4
leaves. Let Hcepter be this star graph.

The algorithm attaches each cactus H; from other subproblems (G;, 7;) to the star graph Hcenter via the
Leaf-Leaf Case or the Leaf-Cycle Case. Since no tests are required, this step can be done in linear time
O(IV(G)|+ |E(GQ)|). The correctness argument is the same as the balanced-split case since we can view this
process as sequentially merging two cactus at a time. For the same reason, Invariant 4.1 holds too.

Conclusion in Runtime. We conclude that the bottleneck of the runtime happens whenever the
algorithm invokes the STARCACTUS procedure, which invokes one isolating cut algorithm and runs in
O(log |T| - MaxFlow(2n,2m)) time. All other operations require at most one max flow procedure so
MERGECACTUS takes up to O(MaxFlow(n,m)) time.

5 Steiner Hypercactus Construction

In this section, we generalize our algorithms in Sections 3 and 4 to hypergraphs; we give an almost-linear
time construction of a Steiner hypercactus representation that succinctly represents all Steiner hyperedge
mincuts. This is the first almost-linear time algorithm even for normal hypercactus representation.
Preliminaries on (Steiner) Hypercactus Representation. A hypergraph G = (V, E) consists of
a vertex set V and a hyperedge set E where each edge e is a subset of vertices. Let n = |V|,m = |E| and
P = .cplel. Given a subset of vertices X C V, the induced subhypergraph G[X] is defined by removing all
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outside vertices V' \ X and all the incident edges, i.e. G[X]| = (X, Ex) where Ex ={e € E |Vv € e,v € X }.
Let 7 C V be a terminal vertex set. A T-Steiner cut is a cut of G that separates 7. A T-Steiner mincut is
a minimum valued 7-Steiner cut.

A hypercactus is a hypergraph that satisfies the following properties:

e H is connected.
e Every rank-2 edge on H is in at most one cycle, and this cycle must contain only rank-2 edges.

e For every hyperedge of rank r > 2, removing this hyperedge partitions H into ezxactly r connected
components, where each connected component is also a hypercactus.

Fleiner and Jordan [FJ99] showed that there exists a hypercactus graph H that represents all T-Steiner
hyperedge mincuts.

DEFINITION 5.1. (STEINER HYPERCACTUS, SEE ALSO [F'J99]) Given a hypergraph G and a terminal set
T, a T-Steiner hypercactus (H, ¢) is a weighted hypercactus graph H with a mapping ¢ : T — V(H) such
that (1) edges in a cycle have weights A\a(T)/2 and edges or hyperedges have weights A\q(T), and (2) an
A-mincut of T is a T-Steiner mincut if and only if a global mincut on H separates ¢p(A) and ¢(T \ A).

Our Result. Our main result is an algorithm for constructing Steiner hypercactus for any hypergraphs
using polylogarithmic maxflow calls.

THEOREM 5.1. Let G be a hypergraph with n vertices, m edges and p total volume of edges. Let T be a set
of terminals. There exists a randomized Monte Carlo algorithm such that, with probability 1 — 8n =10, the
algorithm correctly computes a T -Steiner hypercactus in O(log* n) - MaxFlow(O(n 4+ m), O(p + nlog|T]))
time.

The rest of the section is organized as follows. In Section 5.1, we show that by carefully modifying
a definition of A-cuts in a subtle way, we can generalize our maximal isolating mincuts algorithm from
Section 3 to hypergraphs. Then, we present our divide-and-conquer algorithm for constructing Steiner
cactus in Section 5.2, generalizing our algorithm in Section 4.

5.1 Maximal Isolating Mincuts on Hypergraphs To overcome the first challenge to fast algorithms
for computing maximal isolating mincuts in hypergraphs as discussed in Section 1.2, we carefully give a
new definition of A-cuts of 7 in Definition 5.2 with additional connectivity constraint. Then, we give a
generalization of Theorem 3.1 in Theorem 5.2.

DEFINITION 5.2. Let G = (V, E) be a hypergraph and T C V. For any proper subset of terminals AC T, a
cut X is A-cut of T if it satisfies the following conditions:

e The cut (X,V \ X) separates A and T \ A, with A C X.

o After removing the boundary edges 0X, for any u € X, there exists a path from u to some vertex
v € A. That is, (G/A)[X] is connected.

We use the same terminology for related concepts. An A-mincut of 7 is a minimum valued A-cut of T,
denoted as X 4. For any vertex ¢t € T, a cut X is t-isolating mincut of T if X, is a {¢t}-mincut of 7. We
say that an A-mincut X4 of 7 is mazimal (resp. minimal), if for any other A-mincut X', of 7, we have
XA 2 X:4 (resp. XA g X;l)

By crucially exploiting Definition 5.2, we are able to generalize the maximal isolating mincuts algorithm
from Theorem 3.1 to hypergraphs.

THEOREM 5.2. There ezists an algorithm that, given an undirected weighted hypergraph G = (V,E) and a
terminal set T C V., in O(log |T|)-MaxFlow(O(n+m),O(p)) time computes the mazimal v-isolating mincuts
of T for all terminals v € T.
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The new definition of A-cuts leads to some inconveniences. For example, an A-mincut of 7 may not be
a (7T \ A)-mincut of 7 in a hypergraph. Also, suppose X 4 and Xp are A-mincut and B-mincut, respectively,
where A C B. In normal graphs, X4 N Xp would be an A-mincut by Lemma 3.4, but in hypergraphs
X4 N Xp might not be A-mincut with respect to our definition because (G/A)[Xa N Xp] might not be
connected. Anyhow, this inconvenience is easy to deal with.

The technical reason why we need to work with this new definition is that it allows us to show the
hypergraph version of the Pairwise Intersection Only Lemma 3.2, which is the key to efficiency. Given this
lemma, we verify that all ideas in Section 3 indeed generalize to hypergraphs and prove Theorem 5.2 in
Appendix C. We need to reprove everything since we are working with the new basic definition.

5.2 Our Divide and Conquer Framework In this section, we finally give an almost-linear time
construction for Steiner hypercactus, based on the maximal isolating mincut algorithms for hypergraphs
from Section 5.1. Let us describe our algorithm.

Preprocessing. First, we preprocess the hypergraphs in the same way that we did for normal graphs.
After preprocessing in O(log? n) - MaxFlow(O(n +m), O(p)) time, we may assume that for any two terminal
vertices there is a 7-Steiner mincut that separates them (see Lemma B.1.)

Modified Algorithm 2. Our main divide-and-conquer algorithm for Steiner hypercactus is based on
the same framework as Section 4.2. Recall that a hypergraph consisting of a single (weighted) hyperedge
containing all vertices is called a brittle. We modify Algorithm 2 to make it compute a T-Steiner hypercactus
as follows.

1. In Line 5, we called Algorithm 3 to return a good split collection. In Line 6 of Algorithm 3, we now
use the maximal isolating mincut algorithm on hypergraphs (Theorem 5.2) instead.

2. The hypercactus returned from the STARCACTUS procedure — the procedure now may return a brittle
instead of a star so we now call it STARORBRITTLECACTUS, which will be discussed in Section 5.4.

3. The implementation of MERGECACTUS is changed and will be specified in Section 5.4.

Key Property: Never Split Higher-rank Hyperedges. As discussed in Section 1.2, the second
challenge to efficiently compute a Steiner hypercactus representation is because a hypercactus contains
hyperedges of rank more than two. Splitting these higher-rank hyperedges leads to slow run time. Our key
observation is that the Modified Algorithm 2 never splits these hyperedges in a non-trivial way (proved at
the end of the section).

LEMMA 5.1. Consider any T -Steiner hypercactus (H, ¢). Let e be an hyperedge on H of rank > 3. Then, the
Modified Algorithm 2 above never finds a split such that e gets decomposed to at least two smaller hyperedges
with rank > 3 in at least two subproblems.

Therefore, the algorithm never splits higher-rank hyperedges in a hypercactus. This motivates us
to define a good decomposition for hypergraphs in almost the same way as defined for normal graphs
(Definition 4.6), except that we treat brittles as a base case similar to stars.

DEFINITION 5.3. (GOOD DECOMPOSITION FOR HYPERGRAPHS) Given a hypergraph G and a set of termi-
nal vertices T, a decomposition G = {(G;,T;)} of G is said to be good with respect to T if G has the
following property. Let T; be the set of terminal vertices in G;. For all i except at most one special index i*,
|Ti| < 3|T| + 1, and there exists a Steiner cactus representation of T+ in G+ that is a star or a brittle.

Now, the definition of a good split collection on a hypergraph is the same as Definition 4.7 on normal
graph. Similar to Section 4, there are two main steps in the analysis of the algorithms.
First, Lemma 5.2 summarizes the result that computes a good split collection on hypergraphs.

LEMMA 5.2. Given a hypergraph G = (V,E) and a set of terminals T, there exists a randomized Monte
Carlo algorithm such that, with probability 1 — n=1%, the algorithm returns a good split collection S in
O(log® n) - MaxFlow(O(n 4+ m), O(p)) time.
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Second, Lemma 5.3 summarizes the result for returning a correct hypercactus.

LEMMA 5.3. Fiz a subproblem (G = (V, E), T) in Algorithm 2. Assume all splits generated from the subprob-
lems {(G;,T;)} derived from (G,T) are good, and each subproblem returns a correct T;-Steiner hypercactus
of Gij. Then, with probability 1 — n~'1, the procedures TRIVIALCACTUS, STARORBRITTLECACTUS, and
MERGECACTUS returns a T -Steiner hypercactus of G in O(log|T|) - MaxFlow(O(n + m), O(p)) time. The
randomization comes only from the almost-linear time maz-flow algorithm.

With Lemma 5.2 and Lemma 5.3, we can prove our main result Theorem 5.1. Since the proof goes in very
similar way to the analogous theorem for normal graphs (Theorem 4.1), we defer the proof to Appendix D.
Now, we proceed to prove Lemma 5.2 and Lemma 5.3 in respective subsections.

5.3 Computing a Good Split Collection Now we aim to prove Lemma 5.2 using the same approach
as in Section 4.3. Specifically, we show that Algorithm 3 also works for hypergraph.

Recall that H denotes a hypercactus. Motivated by Lemma 5.1, we observe that our algorithm never
decomposes a rank > 4 hyperedge on H into two smaller hyperedges of rank > 3. This leads us to consider
singular hyperedge cut only. Define a singular hyperedge cut (Q,V(H) \ Q) of H if there exists hyperedge
e € H such that |Q Ne| = 1.

We call a mincut of H accessible if it is a singular hyperedge cut, or all edges across the boundary are
normal edges (either one edge or two edges in a cycle). Note that with Lemma 5.1, all T-Steiner mincuts
returned from Algorithm 2 correspond to accessible mincuts on H. Define a balanced edge-cut on hypercactus
H to be an accessible mincut of H such that the number of terminals on both sides is between %\T| and
%|T\. Again, to show correctness of Algorithm 3, our analysis depends on whether or not a balanced edge-cut
exists on H.

Case 1: Balanced Cuts Exist. In the first case where there is a balanced edge-cut, The proof is
exactly the same as normal graph, except that we need to plug in a hypergraph version of Lemma 4.5.

LEMMA 5.4. Let G be the hypergraph with a set T of terminals that satisfies Assumption 2. Let r € T be a
terminal such that any r-isolating mincut is a T-mincut. If we sample terminals u,v € T — {r} uniformly at
random, then with probability at least 1/4, mazimal {r}-isolating mincut of T' = {u,v,r} has at most 5|T]|
terminals.

Proof. Let (H, ¢) be a T-Steiner hypercactus of G. By Assumption 2 every vertex v € T will be mapped to
different vertices in H. From the assumption that r-isolating mincut is a 7-mincut, we know that ¢(r) is a leaf
node on H, i.e. either has degree 1 (may connected to a normal edge or a hyperedge) or has degree 2 within a
cycle in H. Consider a specialized DFS traversal of H starting from ¢(r): where upon visiting a vertex from
an cycle edge, the DFS traversal always tends to choose any edge that leaves the cycle; upon first visiting
a vertex from a specific hyperedge, the DFS traversal will visit the other veritces in the hyperedge with
arbitrary order. Let (r,v1,vs,...,v7—1) be the a permutation of 7 where (¢(7), ¢(v1), d(v2), ..., ¢(vjr|-1))
is the order (subsequence) of visited vertices by the DFS traversal, i.e. the pre-order. Then for any two
indices ¢ and j such that 1 <i < j < |T|, we will show that maximal r-isolating mincut of {v;,v;,r} must

not contain any vertices in {v;,v;41,...,v;} by Lemma 5.1 and hence the result follows by counting the
fraction of pairs (at least 1/4) whose position in the permutation differs by at least |77.
It remains to show that maximal r-isolating mincut of {v;, v;,r} is disjoint with {v;, vi41,...,v;}. There

are three cases of the maximal r-isolating mincut cutting the hypercactus: (1) on a normal edge (2) on
cycle edges (3) on a hyperedge. The former two cases are identical to the normal graph. For the third
case, Lemma 5.1 implies that the maximal r-isolating mincut X, contains either 1 or |e| — 1 vertices of this
hyperedge e (not 0 or all the vertices since it cuts through this hyperedge). If X, contains one node w in this
hyperedge, then u is the first one visited by the DFS traversal starting from root r. Therefore in this case,
all the nodes in subtree rooted at u are not contained in X, except u, while the subtree contains the entire

set {vi, Viy1,...,v;}, and hence imples the claim. If X, contains all nodes in this hyperedge except one node
u, then the subtree rooted at u are not contained in X,., and again implies that the set {v;, viy1,...,v;} is
disjoint with X,. a

1489 Copyright © 2024 by SIAM

Unauthorized reproduction of this article is prohibited



Downloaded 04/29/25 to 136.167.50.138 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

LEMMA 5.5. Let G be the hypergraph with terminal set T and let (H,¢) be a T-Steiner hypercactus of G.
Suppose there is a balanced edge-cut on H. Then, with probability 1 — n='' there is a balanced split in S
returned from Algorithm 8.

Proof Sketch.. By plugging in Lemma 5.4 into the proof of Lemma 4.4, we get the proof of Lemma 5.5. a

Case 2: No Balanced Cuts. In the second case there is no balanced edge-cut. Note that the
definition of irredundant 7-Steiner hypercactus H is the same as Definition 4.8, since one can never contract
a hyperedge in H without losing Steiner mincuts.

LEMMA 5.6. Let G be a hypergraph with terminal set T and let (H,¢$) be an irredundant T -Steiner
hypercactus of G. Suppose there is no balanced edge-cut on H, then with probability 1 — n='' the following
statements holds:

1. Fither (1) there exists a unique centroid node v on H whose all incident 1-edges and 2-edges from the
same cycle corresponds to T -Steiner mincuts of at most %|T| terminals, or (2) there exists a unique
hyperedge e on H such that each connected component in H — e corresponds to T -Steiner mincuts of
at most L|T| terminals.

2. Define S e i the same way as in Section 4.3. Let S = {X;} be the returned collection of T-Steiner
mincuts from Algorithm 3. Then S = S ,cq- (Recall that S .4 contains all T-Steiner mincuts for
each component T; described in part 1 as long as it contains at least 2 terminals).

3. Moreover, the mincut on H that separates ¢(X;) with the rest vertices is incident to v. That is, after
the contraction of all X;, the contracted graph has a hypercactus that is a star shape with > 4 leaves

or a brittle containing > 4 nodes.

4. S is a good split collection.

Proof.
Part 1. For each hyperedge e € H, replace e by a node v and a bunch of normal edges {(u,v) | u € e},
and denote this cactus as H'. Then the uniqueness of centriod of H' follows the same proof as Lemma 4.7.

There is no balanced edge-cut on H, then by the definition of balanced edge-cut there must be a centroid
node v on H’ such that by removing v the cactus H' shattered into connected components. Then centroid
node v mapped to a node or a hyperedge in H, corresponds to (1) and (2) respectively.

Part 2. Let {7;} be the partition of all terminal vertices (possibly excluding v if v is non-empty)
within each connected components. Then by the assumption where no balanced cut exists, we have
ULy = T\ {v},V4,|T;| < 3|T|. Similar to Lemma 4.6 (but now the “centroid” v could be either a node
or a hyperedge), if three terminal vertices w,x,y are sampled such that ¢(w), #(z), and ¢(y) belongs to
three distinct connected component in H — v, then the maximal w-mincut of {w,z,y} (denoted as X,,) has
a corresponding mincut in H that is exactly the connected component W of ¢(w) in H — v.

It is straightforward to check from definition that any A-mincut of 7 will be corresponding to an
accessible mincut on H. By Lemma 5.1, our algorithm finds X,,, and it does not contain any vertex outside
oL,

Now, again by Lemma 5.1, the algorithm always finds accessible mincuts. Note that Fact 4.1 and
Proposition 4.1 work for accessible mincuts. Thus, the algorithm ensures that X, stays maximal in Line 14.

The rest analysis about lower bounding the probability is the same as Lemma 4.8. Hence, with desired
probability the returned collection S contains all desired T-Steiner mincuts.

Part 3. By Part 2, S =S ,.q- This is straightforward to check using the fact that H is irredundant.
The star case is proved in Lemma 4.9. To bound the number of nodes in the brittle, recall that each split
contains strictly less than 1|7 terminals, so we conclude that the brittle has at least 5 nodes.

Part 4. By Part 2, § = § 4. If case (1) in Part 1 is true (i.e., there exists a unique centroid node
on H), then the arguments follow exactly the same as in normal graph. Otherwise, there exists a unique
hyperedge e on H such that each connected component in H — e corresponds to 7 -Steiner mincuts of at
most ;|7 terminals. By Line 15 in Algorithm 3, condition (1) of Definition 4.7 is satisfied.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

1490



Downloaded 04/29/25 to 136.167.50.138 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

Now, since all 7-Steiner mincuts in S are disjoint, the decomposition {(G;,7;)} induced by S is well-
defined. Without loss of generality we may apply simple refinements to G in the order of X1, Xo,..., X.
With this ordering, for each 1 < i < k, we have |T;| < [T N X;|+1 < 1|T| + 1. Moreover, by Part 3, we
know that there exists a cactus representation that is a brittle shape for the very last graph (Ggi1, Tk+1)-
Thus, by Definition 5.3, {(G;,T;)} is a good decomposition. This implies that condition (2) Definition 4.7
holds and S is a good split collection. 0

Proof of Lemma 5.2. The correctness of Lemma 5.2 follows from Lemma 5.5 and Lemma 5.6. It is
straightforward to check (with the proof of Lemma 4.2) that the runtime of Modified Algorithm 3 is
O(log® n) - MaxFlow (O(n + m), O(p)). O

5.4 Returning a Correct Hypercactus In this subsection, we prove Lemma 5.3. In particular, we
implement the procedures TRIVIALCACTUS(G, T'), MERGECACTUS(G, T, {H;}), and STARORBRITTLECAC-
TUS(G, T). The first procedure is exactly the same as stated in Section 4.4.

To ensure a correct hypercactus is returned, we implement the procedures of Algorithm 2 with the
following invariant:

INVARIANT 5.1. Let (H, ) be the T-Steiner hypercactus returned by any subproblem (G,T). Then H is
wrredundant and does not contain a hollow 3-star as an induced subgraph.

Star or Brittle Cactus. In this case, there is no 7-split that is an accessible 7-Steiner mincut. Since
|7 > 4 when Line 7 is reached in Algorithm 2, we claim that there exists a star or brittle shaped 7-Steiner
hypercactus of G.

Fact 5.1. Let G be a hypergraph and T be a set of terminals with |T| > 4. Suppose that every accessible
T -Steiner mincut is trivial (i.e., a t-isolating mincut of T for some t € T ). Then, there exists (H,®), a
T -Steiner hypercactus of G such that H is a star graph or a brittle.

This fact follows from the definition of accessible mincut. Let A C 7 be arbitrary subset with size
|A] = 2. To distinguish the star case and brittle case, we simply test the mincut value between A and
T \ A, which can be done in O(MaxFlow(n + m,p)) time. And contructing the star cactus is the same
as Section 4.4. The STARORBRITTLECACTUS procedure is able to return a 7-Steiner hypercactus of G in
O(log |T]) - MaxFlow(O(n + m),O(p)) time. By assumption 2 and |7| > 4, no hollow 3-star can be formed
and thus Invariant 5.1 holds.

(Line 11, Case 1.) Merge from a Balanced Split. There are two cases when Line 11 is reached,
depending on whether a balanced split is found or not. Suppose that a balanced split is found so the good
split collection contains exactly one 7-split |S| = 1.

The MERGECACTUS procedure rely on the following useful observation, which can be proved in the same
way as Fact 4.3.

FAcT 5.2. Let (G, T) be a subproblem and lett € T be an anchor vertex generated in some ancestor problems.
Let (H, ¢) be any irredundant T -Steiner hypercactus of G. Then, the node ¢(t) on H has either degree 1, or
degree 2 but in a cycle.

Now, let us assume that the balanced split in a good split collection S decomposes the graph G into
two subproblems (G, 71) and (G2, 72), with a shared anchor vertex a € 71 N T2. Let (Hy, ¢1) and (Ha, ¢2)
be the cactus returned from the two subproblems respectively. Using Fact 4.3, there are only a constant
situations to be handled, depending on whether ¢;(a) and ¢o(a) are leaves (connected to a normal edge),
degree 1 nodes on brittle, or on cycle. The Leaf-Leaf Case, the Leaf-Cycle Case, and the Cycle-Cycle
Case are implemented in Section 4.4. In addition, we only need to handle the following cases. Note that
Invariant 5.1 still holds after these operations.

Brittle-Brittle Case. If both anchor nodes ¢1(a) and ¢2(a) have degree 1 and connected to hyperedges
in both G; and Gs, then we simply make a to be a normal node on hypercactus, and connect G; and Gs
via a.
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Leaf-Brittle Case. If both anchor nodes ¢;(a) and ¢2(a) have degree 1, while one connected to a
normal edge and the other connected to a hyperedge, say (z, ¢1(a)) and hyperedge e where ¢o(b) € e, then
the procedure simply delete anchor vertex a and replace hyperedge e by hyperedge (e U {z}) \ {a}, which
connects Hy and Hs.

Cycle-Brittle Case. If one anchor node connects to a cycle and the other connects to a hyperedge,
say (z,¢1(a)), (y, #1(a)) and hyperedge e where ¢2(b) € e, then we simply make a to be a normal node on
hypercactus, and connect G; and G5 via a.

(Line 11, Case 2.) Merging When There Is No Balanced Split. The other case when invoking
Line 11 is that no balanced split exists and thus a good split collection with one or more splits were
returned. Suppose that |S| = ¢ > 1 and the graph is decomposed into ¢ 4+ 1 subproblems {(G;,7;)},
with the last subgraph (Gyy1, Te+1) containing all the anchor vertices generated in this recursion step. By
part 3 of Lemma 5.6 and the algorithm, the returned cactus from the subproblem (Gyy1, 7741) must be a
star graph of at least 4 leaves, or a brittle. Let Hcepnger be this graph.

The algorithm attaches each cactus H; from other subproblems (G;, 7T;) to the center graph Heepter via
Leaf-Leaf Case, Leaf-Cycle Case, and Leaf-Brittle Case if H e, is a star graph; or via Leaf-Brittle
Case, Cycle-Brittle Case, and Brittle-Brittle Case if Hiyter is @ brittle. Since no tests are required,
this step can be done in linear time O(|V(G)| + |E(G)|). The correctness argument is the same as the
balanced-split case, since we can view this process as sequentially merging two cactus at a time. With the
same reason, Invariant 5.1 holds too.

5.5 Proof of Lemma 5.1 In this section, we prove Lemma 5.1, the structural lemma that was crucial
for our algorithm. First, we shows that, although a hyperedge of rank r on a hypercactus implies 2" mincuts
on G, almost all of these mincuts on G have the same set of boundary edges.

LEMMA 5.7. Let G = (V, E) be hypergraph and T be a terminal vertex set with |T| > 4. Suppose that there
exists a brittle hypergraph H that is a T -Steiner hypercactus of G. That is, for every proper subset A C T,
there exists a T-Steiner mincut that separates A and T \ A. Then, there exists a unique set of hyperedges
E’ C E such that, whenever |A| < |T| — 2, E’ is the set of boundary hyperedges to the mazimal A-mincut
XA of T, ie BN =0X4.

Proof. 1t suffices to prove that: 0X, = 0X4 for all a € A C T such that |A| < |T|—2, where X, (resp. X4)
is the maximal a-isolating (resp. A-) mincut of 7. We shall first prove a simpler statement 0X, = 90X, for
alla,beT.

For any a,b,c € T, suppose Xqp, Xoc and X are the maximal {a,b}-mincut, maximal {a, c}-mincut
and maximal 7 \ {b, c}-mincut of T respectively. By assumption, C(Xap) = C(Xac) = C(X3;) = Aa(T).

Let Zo = Xap N Xae N Xim, Z = (Xap \ Xae) \ Xz Ze = (Xae \ Xap) \ Xp= and Zop- = (Xp=\ Xap) \ Xoe.
Then C(Z,) = C(Zy) = C(Z.) = C(Z;) = Aa(T') by submodularity and posi-modularity (Lemma 2.1). Next
we use the proof method similar to Lemma C.5. That is, the following invariant equality always holds.

(C(Xap) + C(Xac) + C(Xp)) = (C(Zp) +C(Ze) +C(Z55,)) = 0.

abe

(LHS)

Using the same argument with the proof of Lemma C.5, we have

1. For any hyperedge e, the total contribution of the weight e to the LHS of the equality is non-negative.

2. For any hyperedge e connecting X, such that e contributes 0 to the LHS of the equality, either e
contributes to none of C(Xg), C(X4e) and C(X3,) , or e contributes to all of C(Z), C(Z.), and C(Z).

Let X, be the maximal a-isolating mincut of 7. First observe that X, C Z,, otherwise contradicts to
maximality of either X, X, or X7 by Nesting & Submodularity Lemma C.1. So X, must be the connected
component in G[Z,] connected to a, by the definition of maximal {a}-mincut of 7. Therefore 0X, = 0Z,.
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For any edge e in 0Z,, it always contributes to either C(X4s), C(X4c) or C(X3;). By property 2, it will
also contributes to all of C(Z), C(Z.), and C(Z_;), furthermore by the equality, contributes to all of C(X,s),
C(X4e) and C(X3;). Combining with the fact that C(X,p) = C(Za) = Ag(T'), we have 0Xy, = 0Z, = 0X,.

Since a, b are arbitrary terminals in 7, we also have 90Xy, = 90X}, by swapping a and b in the argument
above. Therefore, for any a,b € T, 0X, = 0X}, and the statement follows.

After replacing b by A\ {a} and using the same argument, we have 90X, = 0X 4 for alla € A C T such
that |[A] < |T|— 2. 0

LEMMA 5.8. Consider a T -Steiner hypercactus (H, ¢) of G. Let T' C T be a subset of T with |T'| > 2. Let
e be a hyperedge on H with rank > 3. Then for all t € T’ such that the maximal t-isolating mincut Xy of T’
is a T'-Steiner mincut, any corresponding mincut that separates ¢(XeN'T) and ¢(T \ Xt) on H includes 0,
1, le] = 1, or |e| nodes in e.

Proof. For any u € e, let r(u) = ¢~1(v) be a terminal vertex in G where v is some arbitrary fixed node in the
connected component of H connected to u when removing e. There exists such v with non-empty pre-image
by the definition of hypercactus. Let Ty = {r(u) | u € e}, the hypercactus of Tj is a brittle.

Suppose a contradiction there exists X; to be a maximal t-isolating mincut of 77, and mincut
(Q,V(H)\Q) on H that separates ¢(X;NT) and ¢(7T \ X;), such that 2 < |QNe| < |e|—2. Let v € e be the
node in the same connected component with ¢(¢) when removing e from H. Define 7 = (Tp \ {r(v)}) U {t}.
Then, the hypercactus representation of 7 is also a brittle. Let A = {r(u) | u € (Q Ne)\ {v}} U {t} which is
a subset of 7. Observe that the hyperedge e on H itself must be the only mincut that separates ¢(X4N7T)
and ¢(T \ Xa) (resp. separates Q and V(H) \ Q). So, for consider any two vertices a,b such that their
mapped vertices on H are in the same connected component of H — e, we have a € X 4 if and only if b € X 4.
Respectively, a € X; if and only if b € X;.

Now we have A C X, since r(u) € A implies that u € (Q Ne) so there is some a € X; such that ¢(a) is
in the same component of H — e with w, further implies that r7(u) € X;.

Now we claim that X; = X 4. First, X; does not contain other terminals in 7A'\A7 s0 X; C X4 (otherwise,
X: U X4 is a larger sized (connected) A-mincut of 7 by submodularity). On the other hand, since A C X;
and that X 4 does not contain any terminal in (77 \ {¢}) (otherwise, X4 contains a terminal a € T\ {¢},
let u € e be the node in the same connected component with ¢(a) in H — e. Then, r(u) € A C X;, which
further implies that a € X, contradicting to the fact that X; separates a and ¢.) By the same submodularity
argument we have X4 C X;.

There exists w be a vertex in A other than ¢, since |A| > 2. By Lemma 5.7 (J4] < |e| —2 = |T] — 2),
0X 4 = 0X,, where X, is the maximal w-isolating mincut of T, 50 0X; = 0X4 = 0Xy. 0Xu separates w
and ¢ by definition, and 0X; = 0X,,, contradicts to ¢ and w are connected in G[X]. 0

Lemma 5.8 directly implies Lemma 5.1, since the splits used in the Modified Algorithm 2 are maximal
isolating mincuts of some terminal sets 7' C T.

6 Conclusion and Open Problems

We develop a new approach based on maximal isolating cuts for computing the cactus representation of
all mincuts that gives the first almost-linear time algorithms for computing Steiner hypercactus, which
generalizes both Steiner cactus and hypercactus, each of which generalizes the standard cactus for global
edge mincuts.

A natural question is whether our framework works with even more generalized settings than hypergraph
connectivity, such as element connectivity. Let U C V be a set of terminals. An element mincut between
s and ¢ is the smallest mixed cut C C (F U (V — U)) whose removal disconnects s and ¢. There exists
a hypercactus representation that captures all global element mincuts as well [FJ99] (in the same sense
as Steiner cactus captures all Steiner mincuts). Given our result, one can also hope that it admits an
almost-linear time construction.

However, element cuts do not fall into the setting of symmetric submodular set functions. Instead,
they are captured by a more general notion of bisubmodular set functions (see, e.g., [CQ21]). To make our
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approach works, it seems we need to generalize the notion of posi-modularity for bisubmodular set functions,
but it is unclear how to come up with the right definition. More concretely, what is the usable version of the
Pairwise Insertion Only Lemma (Lemma 3.2) for element cuts?

Since cactus representation exists for arbitrary symmetric submodular set functions [FJ99], it is also
interesting whether there are algorithms with small query complexity for cactus construction. Our algorithm
carefully decomposes graphs into small pieces and works on each of them separately so that the total running
time is almost-linear. This approach that works on small pieces in parallel does not seem to work with the
setting for arbitrary symmetric submodular set functions where we count the number of queries.
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A Omitted Proofs from Section 3

A.1 Proof of Lemma 3.1 If X, U Xp =V, then it implies that C(X4) =C(V \ Xa) =C(Xp \ Xa) >
C(Xp)=C(Xa\ Xp) > C(X4) since the complement of X4 is a B-cut of 7 and the complement of Xp is
an A-cut of 7. Suppose that X4 U Xp C V. By posi-modularity we have

C(Xa) +C(XB)>C(Xa\XB)+C(Xp\ Xa).

Since A and B are disjoint, X 4\ X p is an A-cut and X5\ X4 is a B-cut. Hence, we have C(X4\Xpg) >
and C(Xp \ Xa) > C(Xp). Combining with the posi-modularity we have C(X4) = C(Xa \ Xp) and
C(Xp)=C(Xp\ Xa) as desired.

|

A.2 Proof of Lemma 3.4 By the submodularity of cut value function in Lemma 2.1,
C(Xa)+C(Xp) >C(XanNXp)+C(XaUXp) .

Since both X4 and X4 N Xp are A-cuts and X4 is A-mincut, we have C(X4) < C(X4 N Xp). Similarly,
both Xp and X4 U Xp are B-cuts and Xp is B-mincut implies C(Xp) < C(X4 U Xp). Combining with
the submodularity, we have C(X4) = C(X4 N Xp) and C(Xp) = C(X4 U Xp). Therefore, X4 N Xp is a
A-mincut of 7, and X4 U Xp is a B-mincut of 7.

O
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B Omitted Proofs from Section 4

B.1 Proof of Lemma B.1 We show how to perform preprocessing in hypergraph, which implies
Lemma 4.1 as a corollary for normal graph.

LEMMA B.1. (PREPROCESSING) Given a hypergraph G and a terminal set T, there exists an algorithm such
that, with probability 1 — n=' the algorithm outputs a partition of T such that X(u,v) = Ag(T) if and only
if u and v belongs to different parts. This algorithm runs in O(log® n) - MaxFlow(O(n +m), O(p)) time.

Proof. The algorithm is exactly the same as invoking one step in Algorithm 4 (CUTTHRESHOLDSTEP
with post-processing) in [LP21] with the slightest modification. The algorithm works as follows. The
algorithm first computes Ag(7), the value of T-Steiner mincut on G using Chekuri and Quanrud’s
algorithm [CQ21]. Then, the algorithm samples each terminal vertex with different sampling rates 27
for all i = 0,1,2,...,2-M°gITIl For each sampled vertex set 7; from the sampling rate 2%, the algorithm
computes the minimal isolating mincut using the Isolating Cut Lemma [LP20], and keeps only the mincut
having the same value as Ag(7). Repeat the sampling procedure for O(logn) times for ensuring that with
high probability, every vertex v obtains a minimal 7-Steiner mincut that contains v, as long as the size of
this mincut is at most |7|/2. Let Tiarge be the set of all terminal vertices that does not obtain such a mincut.
Then these T-Steiner mincuts together with Tiarge is a partition of 7 that we are looking for. d

C Proof of Maximal Isolating Mincuts on Hypergraphs

In this section, we prove Theorem 5.2. First, we verify that The Nesting & Submodularity property also
holds in hypergraphs, and leads to the uniqueness of maximal and minimal A-mincuts of 7 in a hypergraph.

LEMMA C.1. (NESTING & SUBMODULARITY ON HYPERGRAPH) Let G be a hypergraph and let T be the
set of terminals. Consider two nonempty subsets A and B of terminals such that A C B C T. Let X4
(resp. Xp) to be any A-mincuts (resp. B-mincuts) of T. Then, C(Xa N Xp) = C(Xa). Respectively,
C(XaUXp)=C(Xp), and X4 U Xp is a B-mincut of T. O

The difference of Lemma C.1 with Lemma 3.4 in a normal graph is that we cannot say X N Xp is
A-mincut of 7 but only their cut values are the same, since (G/A)[X4 N Xp] may not be connected and
hence violates Definition 5.2.

The proof of Nesting & Submodularity Lemma is almost identical as in proof of Lemma 3.4 since the
cut value function C also preserves submodularity in hypergraph, except that we need to argue X4 U Xp
is a B-mincut of 7 which is straightforward to verify that (G/B)[X4 U Xp]| is connected. Fortunately,
Definition 5.2 does not affect the desired properties of maximal and minimal A-mincuts.

LEMMA C.2. For any A C T, there exists a unique mazximal (resp. minimal) A-mincut of T .

Proof. Suppose by contradiction X4 and X', are two different maximal A-mincuts of 7. By Nesting &
Submodularity Lemma C.1, X4 U X/, is also a A-mincut of 7, contradicting the maximality of X4 and X/j.

Suppose by contradiction X4 and X/, are two different minimal A-mincuts of 7. Again by Nesting
& Submodularity Lemma C.1, we have C(X4 N X/) = C(X4). Suppose 74 is the vertex contracted from
A in (G/A)[Xa N X]. Let Y be the connected component in (G/A)[X4 N X/] connected to ra, and
X =YUA\{ra} which is the corresponding set of vertices in G. Then the boundary edges 0X C 9(XaNX").
Therefore, C(X) < C(Xa N X)) = C(X4) implies that X is a also a A-mincuts of 7, contradicting the
minimality of X4 and X/,. |

The reason that we want (G/A)[X 4] to be connected in A-mincut of T is because this definition leads to
Pairwise Intersection Only Lemma on hypergraphs. Recall that the proof of Lemma 3.2 in a normal graph
aims to show that there is no edge between X = X4 NXpN X and X4\ X, contradicts to the connectivity
of (G/A)[X4]. The proof for hypergraph is a bit different, since there may exist a hyperedge connecting
X and X4 \ X. Fortunately, we will show that these hyperedges can only be cut edges of X4 and hence
removed by Definition 5.2 when we analyze the connectivity of (G/A)[X a].
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The Disjoint & Posi-modularity property also holds in a hypergraph, and serves as the key to prove
Pairwise Intersection Only Lemma on hypergraph. We need the definition of relaxed A-mincut before
showing the Disjoint & Posi-modularity for hypergraph.

DEFINITION C.1. Let G = (V, E) be a hypergraph and T C V. For any proper subset of terminals A C T,
a cut X is a relaxed A-cut of T if it satisfies the first conditions of A-cut in Definition 5.2, i.e., the cut
(X, V\ X) separates A and T \ A, with A C X. A relaxed A-mincut of T is a minimum valued relaxed
A-cut of T.

LEMMA C.3. Let G = (V, E) be a hypergraph and T C V. For any proper subset of terminals A C T, the
value of A-mincut equals the value of relaxed A-mincut.

Proof. The “>” direction is straightforward. For the other direction the proof is similar to the uniqueness of
minimal A-mincut. We suppose a contradiction that there exists a relaxed A-mincut X4 such that C(X4) is
strictly smaller than the value of A-mincut. Suppose 74 is the vertex contracted from A in (G/A)[X 4N X/,].
Let Y be the connected component in (G/A)[X4 N X;] connected to 74, and X =Y U A\ {ra} which is
the corresponding set of vertices in G. Then the boundary edges 0X C 9(X4). Therefore, C(X) < C(Xa)
which is smaller than the value of A-mincut, contradicting the definition of A-mincut. a

The proof of Disjoint & Posi-modularity Lemma is the same as the normal graph since the cut value
function C also preserves posi-modularity in a hypergraph.

LEMMA C.4. (D1sJOINT & POSI-MODULARITY) Let A, B C T be two nonempty subsets of terminals with
ANB=0. Let X4 (resp. Xg) be an relaxed A-mincut (resp. relaxed B-mincut) of T. Then, X4\ Xp is a
relazed A-mincut of T, and Xp \ X4 is a relazed B-mincut of T . O

LEMMA C.5. (PAIRWISE INTERSECTION ONLY ON HYPERGRAPH) Given a hypergraph G, let A, B,C C T
be three disjoint nonempty subsets of terminals. Let X4, Xp, Xc CV be any A-mincut of T, B-mincut of
T, and C-mincut of T respectively. Then X4 N XpNXc = 0.

Proof. The proof is only interesting whenever the intersection of any two isolating mincuts is non-empty (i.e.
crossing). Thus, without loss of generality, we assume that X4 N Xpg # 0, Xp N Xc # 0, and Xo N X4 # 0.

Define X/, = (Xa \ XB) \ X¢, X5 = (X \ X¢) \ X4 and X = (X¢ \ Xa) \ Xp. These sets are
non-empty since A C X', B C Xj, and C' C X/,. By posi-modularity (Lemma C.4) we know that X', (resp.
X5 and X() is relaxed A-mincuts (resp. B and C).

Assume for contradiction that X := X4 N Xp N X¢c # . We now aim to prove that there is no path
from X to X', in the induced graph (G/A)[X 4], which leads to a contradiction to Definition 5.2. Similar as
the proof for the normal graph, we consider the equality

(C(Xa) +C(Xp) +C(Xc)) = (C(X)y) +C(Xp) +C(X)) =0
(LHS)

Note that X', (resp. X and X(,) is relaxed A-mincut (resp. B and C) while X4 (resp. Xp and X¢) is
A-mincut (resp. B and C), the equality still holds since Lemma C.3.
Next, it suffices to prove the following combinatorial property.

1. For any hyperedge e, the total contribution of the weight e to the LHS of the equality is non-negative.

2. For any hyperedge e connecting X such that e contributes 0 to the LHS of the equality, either e
contributes to none of C(X4),C(Xp) and C(X¢), or e contributes to all of C(X"),C(X}) and C(X(,).

To see why it is sufficient, by first property, no hyperedge contributes positive to LHS of the equality. And
by the second property, only these two kinds of hyperedges can be connecting to X. For the first case, e
contributes to none of C(X4),C(Xp) and C(X¢) means that e only contains vertex in X. For the second
case, e is not in the induced graph (G/A)[X 4] by definition of induced subhypergraph and hence X is not
connected with X 4 \ X in the induced graph, contradicts to the connectivity assumption in Definition 5.2.
It remains to prove the two properties.
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1. We further consider the cases that e contributes to how many terms of C(X),C(Xp) and C(X¢).
There is nothing to prove if e contributes to none of them.

If e contributes to one of them, without loss of generality C(X’;), then e contains some vertex in X/,
and also some vertex v in V' \ Xy = (V' \ X4) U Xp U X¢. Therefore v is in either V' \ X4, Xp or X¢,
hence also contributes to either C(X4),C(Xpg) or C(X¢) respectively.

If e contributes to two of them, without loss of generality C(X’;) and C(X}), then e contains some
vertex in X’y and in Xj. So e also contributes to C(X4) and C(Xp).

Otherwise e contributes to all the three terms C(X;),C(X%) and C(X(,), then it is direct to see that
e also contributes to C(X4),C(Xp) and C(X¢).

2. Similar to the proof of the first property, we consider the cases that e contributes to how many terms
of C(X,),C(X%) and C(X(,). This time e must contain some vertex in X.

If e contributes to none of them, the it also contributes to none of C(X 4),C(Xp) and C(X¢) since the
total contribution is 0, which satisfies the claim.

If e contributes to one of them, without loss of generality C(X",), then e contains some vertex in X,.
Since e also contains vertex in X, it contributes to both C(X ) and C(X¢), which gives a positive total
contribution to LHS. So this case cannot happen.

If e contributes to two of them, without loss of generality C(Xy) and C(X), then e contains some
vertex in X’y and in X;. Since e also contains vertex in X, it contributes to all of C(X 4),C(Xp) and
C(X¢), which also gives a positive total contribution to LHS. So this case cannot happen.

Otherwise e contributes to all the three terms C(X;),C(X}%) and C(X(), which satisfies the claim.
0

Bounding the output size. The total size of all maximal v-isolating mincuts on hypergraph is also
O(n), as a consequence of Lemma C.5. This results and its proof is the same as normal graph:

LEMMA C.6. Let G be a hypergraph and T be a set of terminals. For each v € T, let X,, be the maximal
v-isolating mincut. Then, Y | Xo| < 2n. O

A Divide and Conquer Algorithm. The maximal isolating mincut algorithm is exactly the same as
Algorithm 1, and we shall reduce computing the max-flow and s-minimal (resp. maximal) s-t mincut on
hypergraph to compute the max-flow on normal graph.

Compute s-Maximal st-Mincut on a Hypergraph via Max-Flow. Given a hypergraph G =
(V,E), a source s and a sink ¢, the hypergraph can also be viewed as a bipartite graph G' = (U, V', E')
such that U’ =V, V' = E and (u,e) € E’ iff u € e. The flow network in the hypergraph G can be viewed as
flow network in the bipartite graph G’, with vertex capacity on e € V’'. So we can compute the max-flow of
G via computing the vertex capacity max-flow of graph G’.

The s-maximal s-t mincut can be obtained by a post-processing of max-flow. The algorithm first
computes the s-t maxflow, and then examines the residue flow graph G;l(({‘z,: the s-minimal s-t mincut is
the set of vertices in U reachable from s, and the s-maximal s-f mincut can be obtained by first computing
X C U to be the set of vertices not reachable to ¢, then find the connected component of the induced
subhypergraph G[X] connected by s.

The correctness proof of Algorithm 1 follows the same proof of Lemma 3.5, by replacing the Nesting &
Submodularity Lemma using the hypergraph version Lemma C.1.

LEMMA C.7. (CORRECTNESS) Fiz a terminal vertex v € T. There is a unique (leaf) subproblem where the
mazimal isolating mincut for v is computed. Let X, be the cut returned at Line 6 of Algorithm 1 for vertex
v. Then X, = X, is the mazimal v-isolating mincut on the hypergraph G. O

LEMMA C.8. (RUNTIME) MAXISOMINCUT(G,T) runs in time O(log |T]) - MaxFlow(O(n +m),O(p)) time
on hypergraph G.
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Proof. It suffices to bound the sum of graph sizes in all subproblems throughout the execution of Algorithm 1.
First of all, the maximum depth of the recursion tree is [log |T|] since in each recursive call the number of
non-pivot terminals is reduced to half. In addition, the number of subproblems in each recursion depth i is
at most 2¢ <|T].

Now, we focus on a particular recursion depth ¢ > 0. Let {(G;,7;,7;)} (r; denote the pivot vertex in
hypergraph to avoid ambiguity) be all the subproblems whose recursion depth is i. We observe that all
terminals except pivot never goes to two subproblems so the subsets 7;-’ :=T; \ {r;} are disjoint. Moreover,
by Lines 11-12 we know that for each j, removing the pivot 7; from G; it is exactly the maximal 7}’—mincut
of T on G.

Using the Pairwise Intersection Only Lemma on Hypergraph (Lemma C.5), we are able to conclude that
every vertex in the input graph G occurs in at most two subproblems at recursion depth i. Therefore, the
total number of vertices across all subproblems at depth 7 is Zj [V(G;)] <2n+2" <2n+|T| < 3n.

Next we bound the total volume of edges across all subproblems at depth 1.

ST =)0 Y. HuecelueV(G)}

J e€E(Gy) j e€E(Gy)

<3 Y 2fueelueV(GH)\{r}}

J EGE(G]')

<2 Y 2d(u)

ueV(G)

=4p .

The last inequality is because every vertex in the input graph G occurs in at most two subproblems at
recursion depth i.

Therefore, in each subproblem (G’,7’), where the graph G’ has n’ vertices and m’ edges with total
volume p’, the algorithm computes maximal A-mincut (and B-mincut) of 7 in MaxFlow(O(n' +m’), O(p’))
time. By summing up the runtime per recursion depth, we obtain an upper bound to the desired total
runtime O(log|T|) - MaxFlow(O(n + m), O(p)). O

Proof of Theorem 5.2.. Theorem 5.2 follows directly by Algorithm 1, Lemma C.7, and Lemma C.8. a

D Omitted Proofs from Section 5.2

D.1 Proof from Theorem 5.1 The proof is almost the same as Theorem 4.1, except that we need to
bound the total volume of hyperedges instead of only the number of normal edges.

Runtime. To analyze the total volume of edges and hyperedges across all subproblems within the same
recursion depth, we bound normal edges and hyperedges separately.

For normal edges (rank-2 edges), the argument is the same as Theorem 4.1. after computing an
induced decomposition from a good split collection, the total number of edges is increased by at most
Zle |[V(G;)| < 2n (notice that we charge the number of the newly generated edges in the last decomposed
graph (Gys1, Te+1) to the edges across each split). Hence, we know that at any recursion depth there are at
most m + 2nlog |T| edges in total. Here n refers to the total number of vertices in the input graph, and m
refers to the total number of vertices in the input graph.

For hyperedges of rank larger than 2, we use a potential method similar to the vertices number analysis
of Theorem 4.1. Let E' = {e € E,|e| > 3} to be the set of hyperedges and py; := > .5 |e| to be the total
volume of hyperedges. Define ®(G) := 3pj; — 6|E'(G)|. By definition py, > 3|E(G)| > 0, so ®(G) > 0.
Consider the induced decomposition {(G;,7;)} on a good split collection of size k. By definition of simple
refinements, we know that ®(G,T) = Zf;l ®(Gi, T;). Therefore, the sum of all potentials within the same
recursion depth can be upper bounded by the root problem’s potential. Since the total volume of any
subproblem py,, < 3p, — 6|E’(G’)| = ®(G’) by definition, we conclude that the total volume of hyperedges
across all subproblems at any particular recursion depth (or any collection of subproblems that are not

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

1500



Downloaded 04/29/25 to 136.167.50.138 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

related to each other) is at most ®(G) < 3p. Here p refers to the total volume of hyperedges in the input
graph.

Finally, we add up the runtime needed per recursion depth. Fix any recursion depth, for each
subproblem (G, T;), by Lemma 5.2 the runtime spent in Line 5 is at most O((log® n) - MaxFlow (O(|V (G;)|+
|E(G;)]), O(pa;,)), the runtime spent for Line 9 is linear in the graph size O(|V (G})|+pg, ), and by Lemma 5.3
merging hypercactus takes O(log|7;| - MaxFlow (O(|V (G;)| + |E(Gy)|), O(pg,)) time. Hence, combining all
the subproblems together and using the bound of total volume of edges, the runtime of Algorithm 2 is
O(log* n) - MaxFlow(O(n +m), O(p + nlog |T)).

Correctness. By Lemma 5.2, with probability 1 — n~!! the returned collection is good in Line 5. By
the same analysis in the proof of Theorem 4.1, we know that there are at most 4|7 subproblems. Hence
the algorithm makes at most 4|7 invocations to Lemma 5.2. With a union bound, we know that with
probability 1 — 4n~19 the collections of splits from all subproblems are good. Now, by applying the union
bound again to Lemma 5.3 we know that the returned hypercactus is a T-Steiner hypercactus of G with
probability at least 1 —4n 10, Therefore, with another union bound we know that with probability 1 —8n =19
Algorithm 2 correctly output a T-Steiner hypercactus. (]

E Applications

E.1 Steiner Connectivity Edge Augmentation Problem Given an unweighted undirected graph G,
a terminal set 7, and a target edge connectivity 7. The goal of the Steiner connectivity edge augmentation
problem is to find a set of edges to G whose addition makes the value of a 7-Steiner mincut to be at least 7.

In this subsection, we briefly describe how to solve the Steiner connectivity edge augmentation problem,
i.e., proving the first part of Corollary 1.1.

Corollary 1.1. There are randomized almost-linear time algorithms that can w.h.p. compute
e the optimal solution of the Steiner connectivity augmentation problem.

Cen et al. [CLP22] gives an algorithm that solves the edge connectivity augmentation problem, which is
a special case to the Steiner connectivity edge augmentation problem with 7 = V. Their algorithm utilizes
Isolating Cut Lemma [LP20] and constructs a special hierarchy of vertex subsets called extreme set tree.
With the extreme set tree, the algorithm follows the framework of Benczir and Karger [BK00| that solves
the degree-constrained edge connectivity problem (DECA) given an extreme set tree. The framework [CLP22,
Section 3| consists of 3 phases:

1. Using external augmentation, transform the degree constraints 5(v) to tight degree constraints b(v) for
allveV.

2. Repeatedly add an augmentation chain to increase connectivity to at least 7 — 1.

3. Add a matching defined on the T-Steiner cactus if the connectivity does not reach 7.

Notice that the first two phases can be easily constructed in the Steiner case. The third phase requires a
computation of a T-Steiner cactus of G. By our new Steiner cactus algorithm (Theorem 1.1), we are able to
obtain an almost-linear time algorithm for DECA, and hence solving the Steiner connectivity augmentation
problem.

E.2 Hypergraph -+1-Steiner-Connectivity Augmentation Problem Given a hypergraph G =
(V, E) and a terminal set 7 C V, the goal of the hypergraph +1-Steiner-connectivity augmentation problem
is to compute a minimum sized set E’ of rank-2 edges such that Agup/ (T) > Aa(T) + 1. The optimal value
is defined to be the minimum possible |E’|. In this subsection we briefly describe the proof to the second
part of Corollary 1.1.

Corollary 1.1. There are randomized almost-linear time algorithms that can w.h.p. compute
o the optimal value of the hypergraph +1-Steiner-connectivity augmentation problem.

Cheng [Che99] provides a formula for computing the optimal value of the hypergraph +1-connectivity
augmentation problem, the value can be computed in linear time once we obtain a cactus (for all global
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mincuts) of G. Below, we describe Cheng’s result in the Steiner setting, thus solving the hypergraph +1-
Steiner-connectivity augmentation problem:

THEOREM E.1. ([CHE99]) Given G be a hypergraph and T be a terminal sets, let H be the irredundant
T -Steiner hypercactus of G. Let ag(T) be the size of the largest hyperedge in H, and Bg(T) be the number
of degree 1 nodes in H. Then the optimal value of +1-Steiner-connectivity augmentation is

s {1, [ 220

Therefore, with our new Steiner hypercactus algorithm (Theorem 1.2), the optimal value of the
hypergraph +1-Steiner-connecitivty augmentation problem can be solved in almost-linear time.

E.3 Incremental Algorithm for Hypergraph Mincuts Given a sequence of (unweighted) hyperedges
inserting to an initially empty hypergraph G, the incremental hypergraph mincut problem requires the data
structure to correctly maintain the A\(G) subject to this sequence of insertions.

Gupta and Karmakar [GK19] gives an algorithm that solves the incremental hypergraph mincut problem
in O(An) amortized update time. In this subsection, we show that our hypergraph cactus algorithm
(Theorem 1.2) can be used for substituting the cactus construction step and thus improving the amortized
update time to the algorithm.

Corollary 1.2. There is an algorithm that, given an unweighted hypergraph G = (V, E) undergoing hyperedge
insertions, maintains a mincut in time O(X) amortized update time where A denotes the mincut value at the
end of the updates.

The algorithm by Gupta and Karmakar [GK19] proceeds in phases. A new phase starts whenever A\(G)
increases. Within a phase, they spend Teactus + O(n + 3, |e]) time where the sum is over all edges inserted
in this phase. By using previous hypercactus construction of Chekuri and Xu’s algorithm [CX17], they
obtained an O(\(G)n) amortized update time where A\(G) denotes the mincut value after all the updates.
Now, if we use our almost-linear time construction, the time per phase is 6(p) where p is the total size of
the hypergraph at the end of the phase. After A\(G) phases, the total update time is then (3(p)\(G)), which

~

implies O(A(G)) amortized update time.
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