
Cactus Representation of Minimum Cuts:
Derandomize and Speed up

Zhongtian He
Princeton University

Shang-En Huang∗

Boston College
Thatchaphol Saranurak†

University of Michigan

Abstract

Given an undirected weighted graph with n vertices and m edges, we give the first deterministic
m1+o(1)-time algorithm for constructing the cactus representation of all global minimum cuts. This
improves the current n2+o(1)-time state-of-the-art deterministic algorithm, which can be obtained by
combining ideas implicitly from three papers [22, 27, 12]. The known explicitly stated deterministic
algorithm has a runtime of Õ(mn) [9, 34]. Using our technique, we can even speed up the fastest
randomized algorithm of [23] whose running time is at least Ω(m log4 n) to O(m log3 n).

1 Introduction

The global minimum cut problem has been studied for decades. For an undirected, weighted graph
G = (V,E,w), the global mincut of G is a minimum weight subset of edges that disconnecting the graph by
removing them. Lots of beautiful works on this problem appeared in the last century [16, 18, 31, 32, 41],
and then a series of work utilizing randomization [21, 24] finally led to an near-linear time Monte Carlo
algorithm by Karger [22] in 1996.

It turns out that there is a cactus representation of all (possibly Θ(n2)) minimum cuts using an O(n)-
edge cactus graph introduced by [6] (see also [8]). The cactus representation of global mincuts has found
several algorithmic applications: it is a key subroutine for several edge connectivity augmentation algorithms
[10, 35, 3, 37] and also in several dynamic mincut algorithms [20, 17]. Many algorithms were designed to find
the cactus representation of minimum cuts. [25] outlined the first algorithm for constructing the cactus that
takes Θ(n3) time. Their algorithm was parallelized by [36] and refined by [33]. Later on, faster algorithms
were developed by [10, 24, 34] and [9] where the latter two algorithms running in Õ(mn) are the fastest
explicitly stated deterministic algorithms for computing cactus representation. Finally, [23] showed that the
cactus representation problem is near-linear time computable by randomized algorithms as well.

All these near-linear time algorithms mentioned so far have one drawback: they areMonte Carlo meaning
that they can err. It was a big open problem if there are near-linear (or almost-linear1) time deterministic
algorithms for computing global mincuts and even computing cactus. After a series of works [26, 19, 38]
and [28], Li recently showed an m1+o(1)-time deterministic algorithm for computing a global minimum cut
[27], by derandomizing the construction of the skeleton graph which is the single randomized procedure in
Karger’s near-linear time mincut algorithm [22].

A natural question is that, given that we can deterministically compute a global mincut, whether
we can also compute a cactus representation for all global mincuts as well. It turns out that Li’s

∗Supported by NSF Grant No. CCF-2008422.
†Supported by NSF CAREER grant 2238138.
1As a convention from the literature [22, 27], we say a function that is Õ(m) to be near-linear and m1+o(1) to be almost-linear.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1503

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

deterministic skeleton graph construction [27] applied to Karger and Panigrahi’s algorithm [23] is not
sufficient. Instead, one may replace the procedure of [23] by Gabow’s algorithm [12] together with Karger’s
dynamic programming technique [22], achieving a deterministic n2+o(1)-time. Recently, Kawarabayashi and
Thorup [26] and Lo, Schmidt, and Thorup [29] successfully showed how to construct cactus deterministically
in near-linear time, assuming simple graphs. Nonetheless, the general problem of whether such an algorithm
exists for general weighted graphs is still open.

In this work, we improve the quadratic n2+o(1)-time barrier by showing the first almost-linear
deterministic algorithm for computing the cactus representation of minimum cuts for undirected weighted
graph, which positively answers the open question raised by [23]2. Furthermore, using our technique, we
also speed up the best previous randomized algorithm [23] by a logrithmic factor.

Theorem 1.1. There are algorithms for computing cactus representation of all (global) minimum cuts in
an undirected weighted graph with the following guarantees

• Deterministic algorithm in m1+o(1) time.
• Randomized Monte-Carlo algorithm in O(m log3 n) time.

This is the first almost-linear time deterministic algorithm for computing cactus. Previously, the fastest
deterministic algorithm takes Ω(mn) by [12, 9, 34]. The mo(1) factor in our running time is solely from
the overhead of no(1) in the deterministic tree packing algorithm by Li [27]. If this factor was improved to
O(polylog(n)), our running time would be Õ(m) too.

By plugging a faster randomized tree packing [22] into our new approach, we obtain a randomized
algorithm that is even faster than the fastest known algorithm by [23] which takes time at least Ω(m log4 n).
We discuss this in more details in Section 3.4.

Application. Cactus construction has an immediate application to the +1-edge-connectivity augmenta-
tion problem defined as follows: given an undirected integer-weighted graph G = (V,E,w) where w : E → N,
compute an edge set E′ of the minimum size such that the minimum cut on G′ = (V,E ∪ E′) has value
λ(G)+ 1, where λ(G) is the value of the minimum cut of G. To solve this problem, one can simply compute
a cactus representation of G and then apply in O(n) time a DFS traversal algorithm from Naor, Gusfield,
and Martel on top of the cactus [35, Section 3]. Therefore, Theorem 1.1 gives immediately the first m1+o(1)-
time deterministic algorithm and a O(m log3 n)-time randomized algorithms for this problem, improving the
previous bound of Ω(m log4 n) implied by [23].3

1.1 Related Works

Deterministic Algorithms. For decades, significant effort has been devoted to devising deterministic
algorithms that is as fast as their randomized counterparts. Examples include the line of work on
deterministic minimum edge cut algorithms [26, 19, 38, 28, 27], deterministic minimum vertex cut algorithms
[11, 39], and deterministic Laplacian solvers and approximate max flow [5]. Each of these deterministic
algorithms usually deepens insight on the problems. Our result extends this line of research and reveals
deeper structural understanding on 2-respecting mincuts (defined later in Section 3.1).

Faster Randomized Global Mincut Algorithms. Recently, [14] and [30] gave faster randomized
algorithms for computing a single global minimum cut in an undirected weighted graph. Their algorithms run

2Actually, they asked if there exists an efficient algorithm to (deterministically) compute a certificate of a cactus
representation, which turns their Monte Carlo algorithm into a Las Vegas algorithm.

3We remark that if G is an unweighted graph, the +1-edge-connectivity augmentation problem can be solved in
O(m log2 n(log log n)2) time by [19, 29]. In addition, if the goal is to increase the edge connectivity to a particular quantity τ
in a weighted graph, this variant can also be solved in Õ(m) time by [4].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1504

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

in O(m log2 n) and O(m log2 n + n log6 n) respectively, which improved Karger’s long-standing O(m log3 n)
time algorithm. But their approaches are difficult to generalize to find all global mincuts. Our algorithm
leaves an O(log n) gap between finding one mincut with all mincuts in randomized setting, which is left for
future work.

2 Preliminaries

Let G = (V,E,w) be an undirected weighted graph, with n vertices and m nonnegatively weighted
edges. A cut (X,V \X) (or the cut induced by X, or simply denoted by X if the context is clear) is a proper
partition of V , and the edges across the cut are called cut edges. The weight of the cut is defined to be the
sum of all edge weights across the cut, denoted by C(X) := C(X,V \X). By extending the above notation
we define for any two (not necessarily disjoint) subsets X and Y , let C(X,Y) be the sum of weights of edges
with one endpoint being in X and another endpoint being in Y . Notice that an edge with both endpoints
in X ∩ Y will be counted twice.

Global Mincuts. The global minimum cut or simply mincut is a cut whose weight is the smallest
among all cuts. Throughout the paper we use λ to denote the weight of any global minimum cut. We also
assume that the value λ is already precomputed [27, 22, 14, 30].

Minimal Mincuts. Since a cut separates some vertices from any given vertex, throughout the paper,
we will designate an arbitrary but fixed root vertex r ∈ V . After fixing the root, we are able to characterize
the mincuts that separate a vertex or an edge from the root. The size of a cut (X,V \X) where r /∈ X is
then defined to be the number of vertices in X. Intuitively, for each vertex v (or an edge e = (u, v)), the
most relevant global mincut would be the one that minimizes the number of the vertices “on the v (or e)
side” of the cut. Thus, we have the following definition:

Definition 2.1. (Minimal mincuts) The minimal mincut of a vertex v is the mincut of the least size
separating v from r. If v is not separated from r by any mincut, then its minimal mincut is null. The
minimal mincut of an edge (u, v) is defined similarly except that the mincut must separate both u and v from
r.

2.1 Crossing Mincuts, Uniqueness of Minimal Mincuts The most important property of minimum
cuts along the history should be the submodularity of crossing cuts. Two cuts (X,V \X) and (Y, V \ Y) are
said to be crossing if each of X ∩ Y,X \ Y, Y \X, (V \X) ∩ (V \ Y) is non-empty. With submodularity one
can show that:

Lemma 2.1. ([6]) If (X,V \ X) and (Y, V \ Y) are crossing mincuts, then each of the cuts induced by
X ∩ Y , X \ Y , Y \X, and X ∪ Y are also mincuts. Furthermore, we have C(X ∩ Y, (V \X) ∩ (V \ Y)) =
C(X \ Y, Y \X) = 0.

With the crossing property above, we are able to deduce the uniqueness of the minimal mincut of a
vertex (or an edge). This uniqueness property plays an important role in many applications (closest mincut,
left-most mincuts, ...etc) as well as constructing a cactus representation of mincuts.

Lemma 2.2. ([23]) If a minimal mincut of a vertex or edge exists, then it is unique.

2.2 Cactus: Representation of all Global Mincuts Dinitz et al [6] showed that there exists a cactus
graph H (every edge belongs to at most one cycle) with O(n) edges that represents all global mincuts on
G. The representation has the following properties. Each vertex of G is mapped to a node on H. (This
mapping could be neither surjective or injective.) For every edge in H or two edges in the same cycle of H

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1505

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

that split all nodes in H into two parts, the corresponding partition of vertices in G forms a global mincut.
Conversely, for any global mincut in G one can also find a corresponding edge or a pair of edges in H that
represents this mincut.

Although the size of the cactus representation is O(n), it is highly nontrivial to compute such a
representation from G. Karger and Panigrahi [23] gave the first randomized Monte Carlo algorithm that
computes a cactus representation in Õ(m) time. Since there can be Ω(n2) many mincuts (in a cycle, for
example), we note that this cactus has to be computed without explicitly listing all mincuts.

3 The Framework of [23] and Our Improvement

Since our improvement is mainly based on the framework of Karger and Panigrahi [23], in this section
we introduce the framework and describe our contribution in details.

3.1 2-Respecting Mincuts and Tree Packing Similar to most of the fastest exact minimum cut
algorithms [22, 23, 14, 30], our algorithm is based on computing global minimum cuts that 2-respect a
spanning tree. Let T be any spanning tree on G. A cut is said to be k-respecting T if the spanning tree T
contains at most k cut edges. A cut is said to strictly k-respect a spanning tree of a graph if the spanning
tree contains exactly k cut edges. Karger [22] first showed that there exists a collection T of O(log n)
spanning trees in G such that every global mincut 2-respects some spanning tree in T . Such collection T
is also called a tree packing. In the same paper Karger also gave a randomized Monte Carlo algorithm that
in O(m + n log3 n) time computes a tree packing with high probability.4 Recently, Li [27] gave the first
deterministic algorithm that computes a tree packing of size no(1) in m1+o(1) time.

Once a tree packing T is found, the task of searching for a global minimum cut can be reduced to checking
all global minimum cuts that 2-respect a spanning tree T ∈ T . We summarize these useful algorithms
computing tree packings in Theorem 3.1.

Theorem 3.1. Given an undirected weighted graph G, there are algorithms that compute a tree packing T
consisting of

• no(1) spanning trees by a deterministic algorithm in m1+o(1) time, or
• O(log n) spanning trees by a randomized Monte Carlo algorithm5 in O(m+ n log3 n) time,

such that each global mincut 2-respects some tree in T .

Karger and Panigrahi’s algorithm [23] reduces the cactus construction problem to computing the minimal
mincuts of all the vertices and edges. Besides designing an efficient algorithm which computes these minimal
mincuts, it is also important to store these minimal mincuts in a succinct way. Using Theorem 3.1, each
minimal mincut 2-respects some tree in T . As long as there is a way to represent a 2-respecting mincut on
a tree using O(log n) bits, each minimal mincut can be represented efficiently in a total of O(m log n) bits.
We refer to these representations as cut labels.

3.2 Cut Labels and Three Types of 2-Repecting Mincuts Fix a spanning tree T ∈ T with root r.
The set of descendants of a vertex v is in a spanning tree T is denoted by v↓T , and the set of strict descendants
of v is denoted by v⇓T , i.e. v

⇓
T = v↓T \ {v}. Similarly, the set of ancestors of v in T is denoted by v↑T , and we

define v⇑T = v↑T \ {v}. We may drop the subscript and simply denote the sets by v↓, v⇓, v↑, and v⇑ if there
is no confusion.

4Later on, Gawrychowski, Mozes and Weimann [14] give another time bound O(m log2 n), which is faster on sparse graphs,
but we do not exploit this new bound in our paper.

5success with high probability 1− n−Θ(1).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1506

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Consider any 2-respecting cut on T . This cut must intersect with at most two edges on T . In particular,
this cut can be either 1-respecting T or strictly 2-respecting T . In the case where there are two edges across
the cut on T , these two edges may or may not be on the same path from the root r to some vertex on T .
Hence, we can classify any 2-respecting cut as one of the following three types:

Type 1. The cut 1-respects T . In this case there exists a vertex v so that v↓T induces the cut.
Type 2-Comparable. The cut strictly 2-respects T , and the two tree edges across the cut belong to the

same path from the root r. Let v and w be the lower endpoints to the tree edges across the cut. Then,
we must have v ∈ w↓ or w ∈ v↓ and we say that v and w are comparable (denoted by v ∥ w). Moreover,
without loss of generality let w ∈ v↓, then this cut must be induced by v↓T \ w

↓
T . In this case we say

that w is the lower vertex and v is the upper vertex.
Type 2-Incomparable. The cut strictly 2-respects T , and the two tree edges across the cut belong to

different paths from r. Let v and w be the lower endpoints to the tree edges across the cut. Then we
must have v /∈ w↓ and w /∈ v↓. In this case we say that v and w are incomparable (denoted by v ⊥ w).
Again, this cut must be induced by v↓T ∪ w↓

T .

With the above classification of 2-respecting mincuts, one immediately sees that any minimal mincut of
a vertex (or an edge) can be represented by an O(log n)-bit cut label of the form (type, v, w, T). Once we
obtain cut labels of minimal mincuts for all vertices and all edges, a cactus representation can be constructed
efficiently:

Lemma 3.1. Given a graph G = (V,E), a tree packing T and the set of cut labels representing minimal
mincuts of each vertex v ∈ V and each edge e ∈ E, there exists a deterministic algorithm that computes a
cactus representation in O(mα(m,n) + n|T |) time, where α(m,n) is the inverse Ackermann function.

In [23], a similar statement was given. However, only an imprecise Õ(m) time bound was given and some
description of the algorithms and argument of the proofs were omitted (e.g., the proof to Lemma 3.12 in
[23] and the cases analysis on their last page). In this paper, we give a formal detailed proof of Lemma 3.1.
Since the technical contribution is mainly to complete (and simplify) the argument of [23] by incorporating
formal concepts from [12], we defer the proof to Appendix A.

3.3 Computing Cut Labels Efficiently With the help of Theorem 3.1 and Lemma 3.1, the task of
computing a cactus representation reduces to computing cut labels of the minimal mincuts for each vertex
and each edge. Since the number of trees in the tree packing T is small, it suffices to compute a minimal
2-respecting mincut candidate on each tree T for each vertex and each edge. That is, whenever the minimal
mincut of an edge or a vertex 2-respects T , the returned candidate must be this mincut.

Notice that for a particular vertex v (or an edge e), the candidate may not exist in every tree. Now, if we
are able to compute minimal 2-respecting mincut candidates in almost-linear time, we are able to compute
the cactus representation in almost-linear time as well:

Lemma 3.2. Suppose there is a deterministic algorithm that, given a spanning tree T , computes a label
for every vertex v and edge e representing its minimal 2-respects mincut candidate in ttree total time.
Then, to compute the cactus representation of a graph, there is a deterministic algorithm that runs
in ttree · no(1) + m1+o(1) time, and there is also a randomized Monte Carlo algorithm that runs in
O(ttree log n+m log2 n) time.

Proof. We first invoke Theorem 3.1 and obtain a tree packing T . Then, for each spanning tree T ∈ T , we
compute a cut label for every vertex v and edge e representing its minimal 2-respects mincut. Since every

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1507

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

mincut 2-respects one of the tree from T , one of the cut label of each vertex v and edge e corresponds to
its minimal mincut (and we can obtain it by comparing the weight and size in O(m) total time). In total,
this takes either ttree · no(1) +m1+o(1) time deterministically or O(ttree log n +m log2 n) time Monte-Carlo
randomized.

Given labels representing minimal mincuts of all vertices and edges, we obtain a cactus representation
in O(m log2 n) additional time by Lemma 3.1.

Computing Minimal 2-Respecting Mincut Candidates. The remaining task is to compute cut
labels of the minimal 2-respecting mincut candidates on every tree T ∈ T , for each vertex and each edge.
Karger and Panigrahi [23] provided a deterministic algorithm (see Lemma 3.3) for computing these cut labels
for vertices — they partially bypassed the challenge for computing cut labels of the edges via randomization.
However, there is a missing case in [23] when computing cut labels for vertices.

Regarding the gap in [23], we believe that the approach is not wrong, but the fix seems to require more
than changing some typos. The following Lemmas 3.3 and 3.4 summarizes the tasks for obtaining cut labels
to minimal 2-respecting mincut candidates for vertices and edges on a given tree T .

Lemma 3.3. ([23]) Given a spanning tree T , we can deterministically compute, for each vertex v, a cut label
representing a minimal 2-respecting mincut candidate of v in O(m log2 n) total time.

In this paper, we give a simpler and complete algorithm of Lemma 3.3 in Appendix B.

Lemma 3.4. (Key Lemma) Given a spanning tree T , we can deterministically compute, for each edge e, a
cut label representing a minimal 2-respecting mincut candidate of e in O(m log2 n) total time.

The algorithm and the proof to Lemma 3.3 will be in Appendix B. The rest of our paper is devoted to
proving Lemma 3.4. By plugging Lemmas 3.3 and 3.4 into Lemma 3.2, we can conclude Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 3.3 and 3.4, we have that ttree = O(m log2 n). Thus, by Lemma 3.2 we
obtain a deterministic algorithm computing a cactus respresentation in m1+o(1) time, and also a randomized
Monte Carlo algorithm that runs in O(m log3 n) time.

Toward the Proof of Lemma 3.4. We show a path to prove our key lemma. The goal is to find a
minimal 2-respecting mincut candidate for each edge e on a given tree T . Since there are three types of cuts
that 2-respects a tree T , it is natural to split the task into three subproblems, with each of them focusing
on Type 1 cuts, Type 2-Comparable cuts, and Type 2-Incomparable cuts respectively.

Minimal 1-respecting mincut candidate for vertices and edges Computing the minimal 1-
respecting mincut candidate for all vertices and edges is relatively simple, and can be derived from [22].
For the sake of completeness we include the proof below.

The following basic lemma from [22] can be implemented by dynamic program.

Lemma 3.5. (Lemma 5.1 in [22]) The values of all cuts that 1-respect a given spanning tree T can be
determined in O(m+ n) time.

In the second step, we show how to compute the minimal 1-respect mincut candidate for vertices.

Lemma 3.6. Given a graph G and a spanning tree T , there is an algorithm such that, in O(m + n) time
computes the minimal 1-respecting mincut candidates for all vertices.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1508

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof of Lemma 3.6.. First, we invoke Lemma 3.5 to compute the value of all the 1-respecting cut. By
comparing the value of each 1-respecting cut with the value of mincut λ, we can identify all the 1-respecting
mincuts. If the 1-respecting cut v↓ seperating u from r, then u must in the subtree of v. Therefore, we can
run a DFS and maintain the minimal 1-respecting mincut containing the current vertex u, which can be
done in linear time.

Finally, we get the minimal 1-respecting mincut candidate for all edges.

Lemma 3.7. Given a graph G and a spanning tree T , there is an algorithm such that, in O(m + n) time
computes the minimal 1-respecting mincut candidates for all edges.

Proof. Observe that a 1-respecting cut contains e = (u1, u2) if and only if it contains lcae = LCA(u1, u2).
By Lemma 3.6, we compute the minimal 1-respecting mincut for all the vertices in O(m + n) time. In
addition, computing lcae for all the edges can be done in linear time. Therefore, we get the minimal
1-respecting mincut candidate for all the edges in O(m+ n) time.

Therefore, the remaining challenges are finding a strictly comparable 2-respecting mincut candidate (see
Lemma 5.1) and a strictly incomparable 2-respecting mincut candidate (see Lemma 6.1) for each edge.

3.4 Technical Contribution

New Algorithm for Minimal 2-Respecting Mincuts. Lemma 3.4 is the key technical contribution.
We give the first deterministic algorithm for computing minimal mincuts for edges in almost-linear time,
which leads to the deterministic algorithm for computing cactus representation. With Lemma 3.4, we also
obtain an O(m log3 n) randomized algorithm for computing a cactus representation, while the previous fastest
(randomized) algorithm by [23] requires Ω(m log4 n) runtime (see Appendix C.)

In fact, our algorithm is more modular than the algorithm by Karger and Panigrahi [23] in the following
sense: their algorithm only computes minimal mincuts for only some random edges, but they show that this
set of edges is sufficient. It requires more intricate proof to show that these mincuts suffice for constructing
a correct cactus representation. The approach makes the overall framework less modular.

Structural Properties for 2-Respecting Mincuts. What enables us to achieve Lemma 3.4 are new
structural lemmas about 2-respecting mincuts. 2-respecting mincuts are not esoteric objects. In fact, fast
algorithms related to 2-respecting mincuts have been the only known pathway for obtaining global mincuts
in general weighted graphs in near-optimal complexity in many models of computation (sequential [22],
parallel [15], distributed [7], streaming and cut queries [30]. We are hopeful that these structural lemmas
are promising for these models too.

For example, when the minimal mincut of an edge e is a comparable 2-respecting cut, a non-trivial
observation is that the task is reduced to computing only the lower vertex le of the two vertices that define
the 2-respecting cut. This allows us to focus on just “half of the problem” and hence the algorithm can be
greatly simplified. Structural insights of Lemma 5.6, Corollary 5.1, and Lemma 5.7 allow us to design a DFS
procedure that obtains these lower vertices in just one pass. Lemma 6.4 plays a similarly important role
when the minimal mincut of an edge e is an incomparable 2-respecting cut.

A Full Detailed Proof to Cactus Construction. We also provide a not only comprehensive but
also simplified algorithm in Appendix A for constructing a cactus from the labels of minimal mincuts of
vertices and edges. Some correctness proofs in the last section of Karger and Panigrahi’s paper [23] were
missing, and unfortunately there was no full version. By revisiting the work of Gabow’s [12] and Karger
and Panigrahi’s [23], we believe Appendix A helps the readers and the community understand Karger and
Panigrahi’s algorithm with a much higher confidence.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1509

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Other Technical Contributions. Besides the key technical contribution and the simplified cactus
construction algorithm, we also introduce a new algorithm for computing minimal mincut of vertices, which
is simpler and fixes a gap in [23]. This algorithm serves as an alternative proof to Lemma 3.3 and is
described in Appendix B. Last but not least, we formalize the reduction to path using path decomposition
in Lemma 4.1, which allows us to focus on paths. This reduction simplifies the description of the algorithm,
makes the analysis more modular, and can become handy in other applications.

4 Useful Tools

Reduction to Paths via Path Decomposition. To facilitate our algorithm throughout the paper,
we utilize the reduction that reduces a problem on a tree to several problems on a collection of paths. Similar
techniques have been developed in order to solve problems related to minimum cuts that 2-respecting trees.
Two specific ways of decomposing a tree into paths were used: bough decomposition [22] and heavy path
decomposition [14, 2] (see also [30, 15] for more discussions).

It turns out that all we need is a balanced property for any decomposition of a tree into a collection of
paths. Let T be a tree rooted at r. An oriented path on T is a path P with the vertex closest to r being
an endpoint. A path decomposition P of T is a collection of oriented paths on T so that each vertex of T
belongs to exactly one path. We say that a path decomposition P is balanced if for any vertex v, the path
from the root of the tree to v intersects with O(log n) paths in P. Both bough decomposition and heavy
path decomposition of a tree are balanced, and can be computed in linear time.

With the balanced property, it is straightforward to see that there will be only an O(log n) overhead if
we are allowed to process each path P ∈ P with a runtime related to the size of the subtree rooted at the
highest vertex of P (e.g., perform a DFS). Specifically, given a path P , we define P ↓ to be the set of all
vertices with at least one ancestor in P . Let E(P ↓) be the set of edges incident to at least one vertex in P ↓

and let d(P ↓) =
∑

v∈P↓ deg(v) be the unweighted volume of the subtree. Lemma 4.1 below describes how
we will bound the total running time using a balanced path decomposition in this paper.

Lemma 4.1. If there exists an algorithm that preprocess G and a spanning tree T in tp time such that, for
any path P in a balanced path decomposition P of T , and a specific function g(e, P), computes g(e, P) for
all e ∈ E(P ↓) in total time O(d(P ↓) log n). Then, we can compute in tp + O(m log2 n) time g(e, P) for all
e ∈ E and for all P where e ∈ E(P ↓).

Proof. By the property of balanced path decomposition, for each edge e, there are at most O(log n) paths
P such that e ∈ E(P ↓). Therefore, we have

(4.1)
∑
P∈P

d(P ↓) = O(m log n) .

For each P ∈ P , since the algorithm computes g(e, P) values every e ∈ E(P ↓) in O(d(P ↓)) time. We can
compute g(e, P) for all e ∈ E and all P where e ∈ E(P ↓) in total time O(

∑
P∈P d(P ↓) log n) = O(m log2 n).

Adding the preprocessing time tp, the algorithm runs in tp +O(m log2 n) time.

The usages of Lemma 4.1 in this paper are quite similar in the taste: suppose we would like to compute
some information (e.g., a minimal incomparable 2-respecting mincut candidate) of an edge g(e), and realizes
that g(e) can be computed efficiently from the set {g(e, P)} where e ∈ P ↓ (e.g., a minimal 2-respecting
mincut candidate with one crossing edge on P). Then by applying Lemma 4.1 we can focus on computing
g(e, P) values for each specific path P ∈ P . We apply Lemma 4.1 in many cases in Section 5, Section 6, and
Appendix B.

The path decomposition P we use throughout in this paper will be assumed to be balanced.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1510

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Data Structures on Trees. The second tool that are extensively used are dynamic tree data structures
(and top-tree data structures). These data structures maintain values associated with vertices, with the list
of operations supported in Lemma 4.2.

Lemma 4.2. There exists a data structure over a dynamic forest of n vertices, supporting the following
operations in the worst case O(log n) time:

• Link(v, w): where v, w are in different trees, links these trees by adding the edge (v, w) to our dynamic
forest.

• Cut(e): remove edge e from our dynamic forest.
• AddPath(u, x): add x to the value of every vertices on the path from u to the root.
• MinPath↓(u): return argmin of the value of vertex on the path from u to the root, and break tie by
finding the deepest one.

• MinPath↑(u): the same as MinPath↓(u), but break tie by finding the highest one.

All these operations can be supported with a dynamic tree [40]. Besides, we need the following operations,
which can be implemented using top-tree [1].

• MinTree↓(u): returns a vertex v with minimum value in the tree T that contains u, breaking tie by
finding the one with the smallest subtree size |v↓|.

• MinTree↑(u): the same as MinTree↓(u), but break tie by finding the one with the largest subtree size
|v↓|.

• MinNonPath(v, w): where v, w are in the same tree T , return the vertex u with the minimum value
such that u ∈ T but u is not in the path between v and w.

Proof. The operations Link(v, w), Cut(e) and AddPath(u, x) are basic primitives of dynamic tree [40]. To
implement MinPath↑(u) and MinPath↓(u), we just need to show how to break tie, since finding the argmin
along the path is also a primitive. WLOG we consider implementing MinPath↑(u). In the preprocessing
step, we add −ϵ|u↓| to the value of vertex u where ϵ << 1/n. Then for the values of two vertices equals
before, they will become difference since the two vertices are comparable for they are on the path from u
to the root, and the value of the higher one will become smaller. By reversing the sign the same approach
works for MinPath↓(u).

Since MinTree(u) is a primitive of top-tree 6, we can use the same approach as above to break tie.
Finally MinNonPath(v, w) can be implemented by the MaxNonPath primitive of a top-tree, which appears in
the proof of Theorem 4 in [1].

5 Comparable 2-respecting Minimal Mincuts of Edges

In this section, we present the algorithm computing the minimal mincut of edge when it is a comparable
2-respecting mincut of T . Henceforth, for every edge e ∈ E we call T the right tree for e if the minimal
mincut of e is a comparable 2-respecting mincut of T . (In this case we also call e a right edge in T .) In
particular, we can represent this minimal mincut using a vertex pair (ue, le) on the tree, indicating that
u↓
e \ l↓e is the comparable 2-respecting mincut we found for the edge e. For convenience, for any comparable
2-respecting mincut w↓ \ v↓, we call v the lower vertex and w the upper vertex in the cut w↓ \ v↓.

6Theorem 4 in [1].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1511

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 5.1 summarizes the algorithm that computes such a vertex pair (ue, le) for every edge e on any
given spanning tree T ∈ T in O(m log2 n) time. Notice that when we analyze the correctness of the algorithm
on a spanning tree T , it suffices to focus on the edges where T is the right tree. In the case that T is not the
right tree for an edge e, it could be that the returned vertex pair (ue, le) be either some arbitrary mincut or
it could be (null, null).

Lemma 5.1. There is an algorithm that, given a graph G = (V,E) and a spanning tree T ∈ T , in total time
O(m log2 n) computes, for every edge e ∈ E, a vertex pair (ue, le) where ue, le ∈ V ∪{null} with the following
guarantee: if T is the right tree for e, then u↓

e \ l↓e is the minimal mincut of e.

Our algorithm is divided into two main steps. In the first step the lower veritces le are computed. Then
based on le, in the second step the algorithm finds their correponding upper vertices ue.

It turns out that the second step becomes simpler once we have computed the lower vertices le for all edge
e. This reduction is presented in Section 5.1. Surprisingly, there is a deterministic algorithm that guarantees
to find lower vertices le for each right edge e efficiently. We present the most important structural property
supplemented with the algorithm in Section 5.2.

5.1 Reduction to Computing Lower Vertices Fix a spanning tree T ∈ T and suppose that we have
already obtained all lower vertices le ∈ V ∪ {null} for each edge. Lemma 5.2 states that there exists an
efficient algorithm that guarantees to find corresponding upper vertices ue for all right edges on T .

Lemma 5.2. (Reduction to lower vertices) There is an algorithm that, given a graph G = (V,E), a
spanning tree T , and a lower vertex le ∈ V ∪ {null} for every edge e ∈ E, in time O(m log2 n) computes an
upper vertex ue ∈ V ∪{null} for every edge e ∈ E with the following guarantee: If T is the right tree for e and
le is the lower vertex of the minimal mincut of edge e, then ue is the upper vertex of the minimal mincut.

Intuitively, for any lower vertex le of e = (u1, u2), if we obtain the list of comparable partners who form
comparable 2-respecting mincuts with le, then the upper vertex we are looking for must be the lowest ancestor
of LCA(le,LCA(u1, u2)) which appears in the list. However, obtaining the list is inefficient. Fortunately,
based on the path decomposition, we can maintain all such candidates of upper vertices on-the-fly and answer
all the queries using a dynamic data structure. Specifically, whenever the algorithm processes a vertex v
on a path P ∈ P , this data structure finds all upper vertices for all edges in Qv = {e ∈ E | le = v},
which is summarized in Lemma 5.3. Hence, by applying a very similar path decomposition framework as in
Lemma 4.1, we can compute all upper vertices efficiently, which is summarized in Lemma 5.4.

Lemma 5.3. Let P be a path decomposition of T . We can preprocess the graph G and the spanning tree T
in O(m log n) time so that, given any path P ∈ P, we can compute the upper vertex ue for Lemma 5.2 for
every edge e ∈

∪
v∈P Qv in O(d(P ↓) log n+

∑
v∈P |Qv| log n) time.

Lemma 5.4. (A variant of path decomposition) Let g be a function of e ∈ E. If there exists an
algorithm that preprocess G and a spanning tree T in tp time such that, for any path P in a balanced path
decomposition P of T , any partition of subset of E′ ⊆ E into {Qv}v∈V , computes g(e) for all e ∈

∪
v∈P Qv

in total time O((d(P ↓)+
∑

v∈P |Qv|) log n), then we can compute in tp+O(m log2 n) time g(e) for all e ∈ E′.

Proof. For each P ∈ P , the algorithm computes g(e) values for all e ∈
∪

v∈P Qv in total time
O((d(P ↓) +

∑
v∈P |Qv|) log n). Since

∪
v∈V Qv = E′ and

∪
P∈P P = V , we can compute g(e) for all e ∈ E′

by running the algorithm on every path P ∈ P . Summing up over P ∈ P , we can compute g(e) for all e ∈ E′

in total time O(
∑

P∈P(d(P
↓)+

∑
v∈P |Qv|) log n) = O(m log2 n+m log n) = O(m log2 n) by Equation (4.1).

Adding the preprocessing time tp, the algorithm runs in tp +O(m log2 n) time.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1512

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

By plugging in Lemma 5.3 to Lemma 5.4, we obtain Lemma 5.2.

Proof of Lemma 5.2. First, for each edge e with le = null, we set ue = null. Then, we partition the
set of the remaining edges into {Qv}v∈V such that Qv contains all the edges e with the lower vertex
le = v. By Lemma 5.3, there exists an algorithm that preprocess G and tree T in O(m log n) time such
that, given a path P in a path decomposition P, compute ue for every edge e ∈

∪
v∈P Qv in total time

O((d(P ↓) +
∑

v∈P |Qv|) log n). Since it satisfies the condition of Lemma 5.4, we can compute the upper
vertex ue for every edge in O(m log2 n) time.

Now we describe an algorithm that achieves Lemma 5.3.

Proof of Lemma 5.3. Fix a spanning tree T ∈ T . For any vertex v ∈ V and its ancestor w ∈ v⇑, the weight
of the comparable cut w↓ \ v↓ is given by:

(5.2) C(w↓ \ v↓) = C(w↓)− C(v↓) + 2(C(v↓, w↓)− C(v↓, v↓)) .

Suppose v is the lower vertex of the minimal mincut of e. Then by factoring out the terms only related
to v, it suffices to compute the following comparable precut values for all w ∈ v⇑.

Definition 5.1. (Comparable precut value) The comparable precut value of v at w, is defined by

C∥v (w) := C(w↓) + 2C(v↓, w↓) .

Note that the value is only defined for w ∈ v⇑. We say that w is a comparable partner or just a partner of
v if w is a minimizer of comparable precut value at v.

To see the high level idea, we first show how to compute the upper vertex ue for every edge e ∈ Qv

assuming that the comparable precut value of v at w has already been computed for every w ∈ v⇑. Suppose
e = (u1, u2) ∈ Qv is a right edge on T . Let lcae denote LCA(u1, u2). The minimal mincut of e must contain
the vertex xe = LCA(v, lcae) since the minimal mincut is a comparable 2-respecting mincut in T with the
lower vertex le = v. As the minimal mincut u↓

e \ l↓e of edge e is the mincut satisfying the condition above
with the minimal size, we have that ue must be the lowest partner of v such that ue ∈ x↑

e, which can be
found using MinPath↓(xe) (see Figure 1). Below we show how to remove the assumption that comparable
precut values of v at all w ∈ v⇑ have been precomputed.

Given a path P = (v1, v2, . . . , vk) from the path decomposition with v1 being the deepest vertex, our
algorithm will process vi starting from i = 1, 2, . . . , k. We will maintain the invariant that once we process
the vertex vi the values C∥vi(w) for all w ∈ v⇑i can be accessed via val[w].

Next we show how to maintain the invariant. In the preprocessing step before the path P was given, we
set val[w] = C(w↓) for each vertex w and create a dynamic tree on T (Lemma 4.2), which can be done in
O(m log n) time.7 Now we start from the deepest vertex v1, the algorithm needs to add 2C(v↓1 , w↓) to each
val[w] so that val[w] = C∥v1(w). For each edge (u, u′) where u ∈ v↓1 , we invoke AddPath(u′, 2C(u, u′)) so that
two times the weight of the edge (u, u′) is added to val[w] for each w ∈ u′↑. The total time to recover the
invariant is O(d(v↓1) log n).

After obtaining C∥v1(w) values, for every e ∈ Qv1 , we first compute xe = LCA(v1, lcae) and then compute
ũe = MinPath↓(xe). Finally, we check if ũe is a partner of v1. If so, then we know that the upper vertex

7We first compute lcae = LCA(u1, u2) for each edge e = (u1, u2) in linear time [13]. Then it suffices for obtaining
val[w] = C(w↓) by invoking AddPath(u1, w(e)), AddPath(u2, w(e)), and AddPath(lcae,−2w(e)) for every edge e in O(m logn)
total time.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1513

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

xe

v = le (assume already computed)

ue = MinPath↓(xe)

lcae

u1 u2e

a mincut
u↓
e \ l↓e

Figure 1: High level idea: once the lower vertex of an edge le has found, we may locate the upper vertex ue

along the path via a MinPath↓ query.

ue = ũe because MinPath↓(xe) the lowest ancestor of xe that is a partner of v1 if there exists some partners.
For running time, by Lemma 4.2, this requires O(log n) time for each e ∈ Qv1 . So the total time for finding
the upper vertices ue such that their corresponding lower vertex is le = v1 is O(|Qv1 | log n) time. Therefore,
the whole process on vertex v1 can be done in O(d(v↓1) log n+ |Qv1 | log n) time.

Then, the algorithm scans through the rest of vertices v2, v3, · · · vk on the path one by one. Suppose the
algorithm reaches vi now. The algorithm is similar to what we did at v1. With the invariant after processing
vi−1, it suffices to add 2C(v↓i \ v

↓
i−1, w) to val[w] for each w ∈ v↑i by invoking AddPath(u′, 2C(u, u′)) for each

edge (u, u′) where u ∈ v↓i \ v
↓
i−1. (These edges can be found in O(d(v↓i \ v

↓
i−1)) time using a DFS from vi

without searching the subtree rooted at vi−1.) Therefore, in O(d(v↓i \v
↓
i−1) log n) time, val[w] are updated to

C∥vi(w) for all w ∈ v⇑i , and then the algorithm uses MinPath↓(xe) to find ue for all e ∈ Qvi in O(|Qvi | log n)
time.

After finishing all the process on the path P , we need to roll back to the initial state val[w] = C(w↓)
in order to process other paths. Therefore, the algorithm computing ue for every e ∈

∪
v∈P Qv takes

O(d(P ↓) log n+
∑

v∈P |Qv| log n) time in total, which proves Lemma 5.3.

5.2 Computing the Lower Vertex for each Edge In the rest of this section, we show how to compute
the lower vertex for each edge. Fix a tree T ∈ T . If the minimal mincut of edge e is a comparable 2-respecting
mincut of T , then the algorithm will find the lower vertex le for e. Lemma 5.5 summarizes the algorithm:

Lemma 5.5. There is an algorithm that, given a graph G = (V,E) and a spanning tree T , in O(m log2 n)

time computes a vertex l̂e for every edge e, such that if e is a right edge in T where the minimal mincut of
e is u↓

e \ l↓e , then l̂e = le.

The algorithm described in Lemma 5.5 consists of two parts. In the first part the algorithm computes
the highest partner H(v) (defined below) for each vertex v ∈ V as a preprocessing step. Then in the second
part we apply a specialized depth first search that obtains le values for all e ∈ E.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1514

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

5.2.1 Computing Highest Partner of each Vertex Fix a spanning tree T ∈ T . For each vertex v,
we denote HT (v) the highest (comparable) partner of v. If there is no comparable 2-respecting mincut with
lower vertex v, then HT (v) := null. When there is no confusion, we shall drop the subscript T and simply
denote it by H(v). The goal for the algorithm is to compute H(v) for all v ∈ V .

We will use the reduction to path from Lemma 4.1. For any P ∈ P , define g(e, P) = H(v) if v ∈ P and
e is the tree edge with v being the lower vertex, otherwise g(e, P) = null.

Given a path P = (v1, v2, . . . , vk) ∈ P with v1 being the deepest vertex, the algorithm computes the
highest partner for each vi ∈ P as follows. Similar to the proof of Lemma 5.3, the algorithm processes the
vertices in the order v1, v2, . . . , vk. A dynamic tree on T is used and val[w] is maintained such that after
processing vi we obtain precut values val[w] = C∥vi(w) for all w ∈ v↑i . Then, using a dynamic tree query
MinPath↑(vi) the algorithm obtains a highest vertex w with the minimum precut value C∥vi(w). Finally, we
are able to assign g(e, P) = w (where e is the tree edge with vi being the lower vertex, i.e., H(vi) = w) if
the cut w↓ \ v↓ is indeed a mincut. According to Equation (5.2), checking whether λ = C(w↓ \ v↓) can be
done in constant time as long as the value C(v↓) + 2C(v↓, v↓) is precomputed.

From the discussion above, we have an algorithm that, given a path P , computes g(e, P) for all e ∈ E(P ↓)
in O(d(P ↓) log n) time. The preprocessing step is the same with the one in Lemma 5.3, which can be done in
O(m log n) time. By plugging in the path decomposition Lemma 4.1, we obtain an algorithm that computes
H(v) of all vertices v ∈ V in O(m log2 n) total time.

5.2.2 Main Algorithm for Computing Lower Vertices In this subsection we state the main algorithm
for Lemma 5.5. Recall that the goal is, for every right edge e in T , we want to compute its lower vertex le.
Recall that when we say that le is a lower vertex, we means that there exists some ue where u↓

e \ l↓e forms
a minimal mincut of some right edge e. For convenience, we denote vw as the set of vertices on the path
between any two vertices v and w on T . For any right edge e, let P̂e = uele be its canonical path. For any
e = (u1, u2), let lcae = LCA(u1, u2).

Motivation: high-level approach and the key structural lemma. At the highest level, the
description of our algorithm is as follows. We will perform a post-order traversal on the tree T (i.e. if
a is an ancestor of b then a is visited after b). When we visit u, we will be able to compute some lower
vertices le of edges e where le is below u (i.e. le ∈ u⇓). At the end, we make sure that we have computed all
lower vertices le of all the right edges e in T . To specify our algorithm in more details, we start with this
definition.

Definition 5.1. (Valid lower vertices below u) We call a vertex v a valid lower vertex below u if
v ∈ u⇓ and H(v) ∈ u↑. Let Lu denote the set of all valid lower vertices below u.

In other words, v ∈ Lu if there exists a comparable 2-respecting mincut containing u with the lower vertex
v. Since H(le) must be an ancestor of ue, we have following:

Fact 5.1. For every right edge e, le ∈ Lu for any u ∈ P̂e \ {le}.

Suppose that, magically, there is a data structure that, given a vertex u, can return the set Lu of all
valid lower vertices below u. One idea would be that whenever the post-order traversal visits u, we query
the data structure with u. Then, whenever u ∈ P̂e \ {le}, then le would be reported. However, there is an
obvious issue in this approach: the total size of Lu over all u is simply too large to be reported quickly.

Therefore, we should consider a small subset of Lu that still contains le. Which subset of Lu satisfies
this? Intuitively, since u↓

e \ l↓e is a minimal mincut, le should be “as high as possible” (and ue should be “as
low as possible”). This motivates the following definition: for any vertex set S, the set of top vertices of S,
denoted by top(S), contains all vertices v ∈ S where there is no other v′ ∈ S ∩ v⇑ strictly above v. It makes

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1515

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

sense to hope that top(Lu) = {le} for any u ∈ P̂e \ {le}. This would be perfect because, not only that the
output size is small, the data structure even identifies le for us. Unfortunately, this cannot be true. For
example, let xe = LCA(le, lcae), for any u ∈ lexe \ {le, xe} strictly between le and xe, top(Lu) might not
contain le because there might exist another mincut u′↓ \ l′↓ such that le, l′, u, u′, xe are ancestors of each
other in this order and so le /∈ top(Lu) because of l′. Similarly, for any u ∈ uexe \ {ue, xe} strictly between
ue and xe, top(Lu) might not contain le as well (see Figure 2). So we could only hope to guarantee that
top(Lu) = {le} when u = xe.

xe

le

ue

lcae

u1 u2

H(le)

Ye

e

top(Lxe
\ Ye) must be {le}

top(Lu′) may not contain le

Figure 2: Querying xe must find le. Querying at other vertices might not find le.

Surprisingly, something very close to the above wishful claim is actually true:

Lemma 5.6. (Pinpoint the lower vertex) Suppose e = (u1, u2) is a right edge whose minimal mincut
is u↓

e \ l↓e . For vertex xe = LCA(le, lcae), we have top(Lxe
\ Ye) = {le}, where Ye := u1u2 ∪ xelcae is the

avoiding set of e.

Before showing the proof, let us discuss the purpose of Lemma 5.6. It helps us pinpoint the lower vertex
le because it says that, the lower vertex le is exactly the unique top vertex of Lxe \ Ye, the set of valid
lower vertices below xe excluding Ye. Note that it is very natural to exclude Ye because, for any right edge
e = (u1, u2), le cannot be on Ye, otherwise u↓

e \ l↓e would not contain e.

Proof of Lemma 5.6. Suppose for contradiction that top(Lxe \ Ye) ̸= {le}. First, observe that top(Lxe \ Ye)
is not empty since the set Lxe

\Ye contains the vertex le. Now we arbitrarily select a vertex l′ ∈ top(Lxe
\Ye)

different from le. By the definition of valid lower vertex below xe, there exists u′ ∈ x↑
e that u′↓ \ l′↓ forms a

mincut. Since l′ ∈ Lxe
\ Ye and u′ ∈ x↑

e, the mincut u′↓ \ l′↓ also contains edge e.

Next we consider the relative position of these two mincuts u↓
e \ l↓e and u′↓ \ l′↓. Since l′ is a top vertex

of Lxe
\ Ye, we have l′ /∈ l↓e . So there are only two cases: u′↓ \ l′↓ ⊂ u↓

e \ l↓e or these two mincuts cross with
each other. For the first case, u′↓ \ l′↓ is a smaller mincut containing e, contradicts to minimality. For the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1516

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

second case, by the crossing property of mincuts (Lemma 2.1), the intersection of these two mincuts is a
smaller mincut containing e, again contradicts to the minimality of u↓

e \ l↓e .

Let Ye,u := u1u2 ∪ ulcae. Note that Ye = Ye,xe
. Recall that our plan is to perform a post-order

traversal. By Lemma 5.6, whenever we arrives at u = xe and query top(Lu \Ye,u), the lower vertex le would
be returned for us and we are done for e. But we do not know xe. Then, from which vertex u should we
query top(Lu \ Ye,u) for finding le? Since we know that at least xe ∈ lca↑

e, we can query for finding le when
u ∈ lca↑

e. Now, the corollary below will be helpful because it says that for all u ∈ xelcae, whenever we
query for finding le, we will actually see nothing before the traversal actually reaches xe.

Corollary 5.1. For any vertex u ∈ xelcae \ {xe}, we have top(Lu \ Ye,u) = ∅.

Proof. Suppose for contradiction that there exists vertex u ∈ xelcae \ {xe} such that top(Lu \ Ye,u) ̸= ∅.
Since le /∈ u↓, the set top(Lu \ Ye,u) contains other vertex l′ different from le. Since top(Lxe

\ Ye) = {le} by
Lemma 5.6, H(l′) ∈ x↓

e. But this implies that H(l′)↓ \ l′↓ is a mincut containing e with smaller size than
u↓
e \ l↓e , contradicts to minimality.

Equipped with this insight, now we are ready to move our attention on how to implement our high-level
approach efficiently.

Implementation. There are two main challenges in implementing the above high-level approach.

1. (Efficiency of queries): For any fixed vertex u, how can we return top(Lu \ Ye,u) quickly given an
edge e as a query? Furthermore, as we perform a post-order traversal, the vertex u is not fixed. We
need a dynamic data structure where u can be updated too.

2. (The number of queries): For any fixed edge e, if we query for top(Lu \ Ye,u) on all u or even just
on all ancestors of lcae, then the total number of queries would be already super linear in m. We will
exploit a structural lemma (Lemma 5.7) to reduce the number of queries.

In order to describe our algorithm and address how do we cope with both challenges, we first describe an
algorithm that solves a simpler case when xe = lcae. That is, if we have a data structure that supports the
queries to top(Lxe

\Ye) then all lower vertices will be found by Lemma 5.6. After we describe the algorithm
that solves the simpler case, we generalize the algorithm and solve both challenges in the general case.

Simple Case: lcae is always on the path P̂e. Let us assume here that, for every right edge e, lcae is
on the path P̂e. Equivalently, xe = lcae. Even with this assumption, we will need to deal with the first
challenge above. We will remove this assumption in the next part.

We perform a post-order traversal on T . Suppose that u is the current vertex. There are two main tasks:
(1) we will show how to maintain all the valid lower vertices below u, (2) we will show how to find the lower
vertex le for every right edge e with lcae = u via queries to the top-tree data structure.

To help solving the first task, we will exploit top-tree as follows. The top-tree we are maintaining is
always a subgraph (forest) of T , and each vertex is associated with a value that satisfying the following
invariant. Suppose the current vertex is u. For each vertex v ∈ u↓, if v is a valid lower vertex below u, the
value of v in the top-tree should be depthv (the depth of v in T). Otherwise, if v is not a valid lower vertex
below u, the value of v is ∞.

Now we solve the first task. The algorithm will maintain the invariant while running the post-order
traversal. Initially, the top-tree is the same as the spanning tree with a super large value∞≫ n assigned to
each vertex. When the traversal reaches u, the algorithm will do the following updates on the top-tree. First,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1517

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

the algorithm checks for each child v of u: if H(v) ̸= null, then assign value depthv to vertex v, otherwise
leave the value of v unchanged (which is ∞). Second, for any vertex v ∈ u↓ such that H(v) is a child of
u, the algorithm assigns ∞ to v. These vertices can be preprocessed once H(v) is found. Furthermore, we
can safely assign ∞ to v because that v will no longer be a valid lower vertex below u or below any vertex
reached later in the post-order traversal. Since for each vertex v the value of v is changed at most twice in
the algorithm, by Lemma 4.2 the top-tree can be maintained in O(n log n) total time.

Now we solve the second task. We show how to use the top-tree to find le for each edge e = (u1, u2)
where lcae = u upon the reaching u in the post-order traversal. Recall that by Lemma 5.6, the lower vertex
le is the unique vertex in top(Lxe \Ye) = top(Lu \u1u2). It implies that le is the unique vertex with smallest
value among all vertices in u↓ \ u1u2 stored in the top-tree. Therefore, we first apply Cut(u, parent(u)) to
separate the subtree rooted at u. Then the lower vertex can be found by le = MinNonPath(u1, u2). Finally,
we apply Link(u, parent(u)) to restore the tree. See Figure 3 for an illustration.

xe = lcae = u

parent(u)

le

ue

u1 u2e

MinNonPath(u1, u2)

Figure 3: Simple Case: le can be found by MinNonPath(u1, u2) after separating the subtree rooted at
u = lcae.

General Case: lcae may not be on the path P̂e. In the general case, we no longer have the assumption
lcae ∈ P̂e. By Lemma 5.6 and Corollary 5.1, for each right edge e, it is natural to consider climbing
up the tree from lcae toward xe. The first time where the algorithm climbs up to a vertex u such that
top(Lu \ Ye,u) ̸= ∅ implies that u = xe. However, the time cost of performing such multiple queries per edge
is unacceptable.

To deal with the challenge, we establish a key observation (Lemma 5.7) that leads to the following
“packaging” idea. Initially every edge e is individually packed and is assigned to the vertex lcae. Upon
reaching a vertex v in the post-order traversal, the data structure checks for each package whether or not
a lower vertex can be assigned. If a lower vertex l is found, then all edges e in the same package get the
same lower vertex le = l. Otherwise, all packages will be combined into one large package and sent to the
parent of v. Our key observation states that, for all right edges e so that v ∈ P̂⇔

e := P̂ ↓
e \ (P̂e ∪ l↓e), these

right edges will be in the combined package and they all have the same minimal mincut. In particular, their
lower vertices will be the same (see Figure 4).

Lemma 5.7. Fix vertex v. For all right edges e1, e2 where their endpoints are in v↓ and v ∈ P̂⇔
e1 ∩ P̂⇔

e2 (i.e.
le1 , le2 ̸∈ v↓ and ue1 , ue2 ∈ v⇑), we have that P̂e1 = P̂e2 .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1518

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

P̂e1

v

P̂⇔
e1

e1 e2

Figure 4: An illustration to Lemma 5.7: if the algorithm arrives at vertex v but has not found any lower
vertex for e1 and e2 yet, then P̂e1 = P̂e2 .

Proof. First, we show that the minimal mincut of e1 also contains e2, and vice versa. Since v ∈ P̂⇔
e1 , the

minimal mincut of e1 contains the whole subtree v↓. Since both the endpoints of e2 are in v↓, the minimal
mincut of e1 contains e2. Symmetrically, the arguments also hold if we swap e1 and e2. By Lemma 2.2, the
minimal mincut of e1 and e2 are the same and hence P̂e1 = P̂e2 .

Now we implement the algorithm in the general case via top-tree. When the traversal reaches vertex u,
there are several packages at u. For the single edge packages that are directly created in preprocessing, the
same procedure from simple case works: we cut off the subtree rooted at u and query MinNonPath for each
of these edges. For any combined package that was delivered from a child v, since there is no valid lower
vertex found in v↓, we claim that it suffices to check top(Lu \ v↓).

To see why, first observe that le /∈ Lv because le is never in Ye,v and we also know that le /∈ top(Lv \Ye,v)
(since e is forwarded from v). Now, suppose that le ∈ top(Lu). We claim that le actually is in top(Lu \ v↓).
This is because if le ∈ v↓, then le ∈ Lv. But we already concluded above that le /∈ Lv. This completes
the claim that if le ∈ top(Lu), then le ∈ top(Lu \ v↓). Now, by Lemma 5.6, if le ∈ top(Lu), then
{le} ⊆ top(Lu \ v↓) ⊆ top(Lu \ Ye,u) = {le}. Therefore, top(Lu \ v↓) = {le}.

Therefore, the algorithm separates the subtree induced from u↓\v↓ by cutting off the edges (u, parent(u))
and (v, u). Then top(Lu \ v↓) is obtained by querying MinTree↑(u). If MinTree↑(u) returns a vertex l with
a value not equal to ∞, then all edges within the package from v has their lower vertex assigned to l by
Lemma 5.7. After processing all packages at u, the algorithm combines all edges where their lower vertices
are not found yet into one package, which can be efficiently implemented with a linked list. Back to a
high-level explanation, observe that although there can be many edges in the package from v forwarded to
its parent u that we want to query. We only need to query once for each package. This is how we resolve
the second implementation challenge about the number of queries.

To analyze the runtime, we notice that the number of top-tree queries made is linear to the total
number of packages that has ever created, which is O(n+m) top-tree queries. Therefore, the algorithm for
computing le for every edge e can be done in O(m log n) total time. However, from Section 5.2.1 we know
that preprocessing H(v) values takes O(m log2 n) time. Hence, the total time computing lower vertices for
each edge takes O(m log2 n) time, which proves Lemma 5.5.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1519

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

6 Incomparable 2-respecting Minimal Mincuts of Edges

In this section, we present the algorithm computing the minimal mincut of edge when it is a incomparable
2-respecting mincut of T . Similar to the comparable case, for every edge e ∈ E we call T the right tree for
e if the minimal mincut of e is a incomparable 2-respecting mincut of T . (In this case we also call e a right
edge in T .)

Lemma 6.1. There is an algorithm that, given a graph G = (V,E) and a spanning tree T ∈ T , in total
time O(m log2 n) computes, for every edge e ∈ E, an unordered vertex pair g(e) = (ve, we) or null where
ve, we ∈ V with the following guarantee: if T is the right tree for e, then v↓e ∪w↓

e is the minimal mincut of e.

Let e = (u1, u2) be a right edge in T whose minimal mincut is v↓∪w↓ where v ̸= w. To prove Lemma 6.1,
there are two main cases to consider: (1) the endpoints are in different subtrees: u1 ∈ v↓ and u2 ∈ w↓, or
(2) both endpoints are in the same subtree, e.g. both u1, u2 ∈ v↓.

For the first case, we solve it based on the main lemma below. We will devote to most of this section
for proving it.

Lemma 6.2. Let P be a path decomposition of T . There is an algorithm that preprocesses G = (V,E) and
spanning tree T in O(m log n) time so that, given any path P ∈ P, in time O(d(P ↓) log n) the algorithm
computes, for every edge e = (u1, u2) such that e ∈ E(P ↓), an unordered vertex pair g(e, P) = (v, w) or null
with the following guarantee:

Suppose v↓∪w↓ is the incomparable minimal mincut for e such that u1 ∈ v↓ and u2 ∈ w↓. Let Pv, Pw ∈ P
be the paths that contains v and w respectively. Then, either g(e, Pv) = (v, w) or g(e, Pw) = (v, w).

For the second case, observe that LCA(u1, u2) ∈ v↓ since u1, u2 ∈ v↓. Therefore, the minimal mincut
of the right edge e is also the minimal incomparable 2-respecting mincut of vertex LCA(u1, u2), which can
be computed efficiently using Lemma 6.3. The proof of Lemma 6.3 is deferred to Appendix B, since it also
serves as a building block of Lemma 3.3.

Lemma 6.3. There is an algorithm that, given a spanning tree T of G = (V,E), in total time O(m log2 n)
computes, for every vertex u ∈ V the minimal incomparable 2-respecting mincut candidate f(u) = (vu, wu)
or null with the following guarantee:

If there exists an incomparable 2-respecting cut that separating u from root r, then f(u) ̸= null and
v↓u ∪ w↓

u is such a mincut with smallest size.

Now we prove Lemma 6.1 using Lemmas 6.2 and 6.3:

Proof of Lemma 6.1. Suppose v↓ ∪ w↓ is the minimal mincut for a right edge e = (u1, u2). Depending on
whether the endpoints of e are in the same subtree (rooted in either v or w), or in the different subtrees, we
consider the following two cases:

Case 1: (different subtrees) WLOG, assume u1 ∈ v↓ and u2 ∈ w↓. Given a balanced path decomposition
P, for each path P ∈ P , the algorithm in Lemma 6.2 computes a candidate vertex pair g(e, P) = (v′, w′)
or null for every edge e = (u1, u2) such that e ∈ E(P ↓). Plugging in the path decomposition framework
Lemma 4.1, we can compute g(e, P) for all edge e = (u1, u2) ∈ E and all P ∈ P such that e ∈ E(P ↓)
in O(m log2 n) time.
Next, for each edge e, the algorithm compares the size of all candidate mincuts g(e, P) for each path
P such that e ∈ E(P ↓) and select the smallest one to be (ve, we). This step takes O(log n) time for

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1520

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

each edge e since there are at most O(log n) paths P such that e ∈ E(P ↓) by the balanced property
of P. Since Lemma 6.2 guarantees that either g(e, Pv) or g(e, Pw) equals to (v, w), our algorithm find
the minimal mincut of e.
The total time for this case is O(m log2 n) +O(m log n) = O(m log2 n).

Case 2: (same subtree) WLOG, assume u1, u2 ∈ v↓. This implies LCA(u1, u2) ∈ v↓. Therefore, the
minimal mincut of e will also be the minimal incomparable 2-respecting mincut of LCA(u1, u2), which
has been computed via the algorithm from Lemma 6.3 in O(m log2 n) time.

Since it takes O(m log2 n) time for both cases, the whole algorithm runs in O(m log2 n) total time.

The rest of the section is devoted for proving Lemma 6.2. In Section 6.1 we introduce several essential
concepts that allow us to describe and prove the algorithm in a precise way. In Section 6.2 we describe the
high-level idea to the algorithm that finds all incomparable minimal 2-respecting mincut candidate for each
edge, and in Section 6.3 we complete the implementation details. Finally in Section 6.4 and Section 6.5 we
prove the correctness of the algorithm and analyze the runtime, concluding the proof of Lemma 6.2.

6.1 Minimum v-Precuts and P -Outer Minimum v-Precuts Fix a spanning tree T ∈ T . Our
algorithm for Lemma 6.2 requires implementation on efficiently identifying incomparable 2-respecting
mincuts v↓∪w↓ with one vertex v on the path P ∈ P . In this section we first recall the concepts of minprecut
values from [22] and then we introduce outer minprecut values that help us to describe the algorithm with
clarity.

Observe that for any pair of incomparable vertices v ⊥ w, the weight of the cut induced by v↓ ∪w↓ can
be expressed as

C(v↓ ∪ w↓) = C(v↓) + C(w↓)− 2C(v↓, w↓) .

Suppose v↓ is one part (the other part is w↓) of the minimal incomparable 2-respecting mincut of e.
Then by factoring out the terms only related to v, it suffices to compute the following incomparable precut
values for all w ⊥ v.

Definition 6.1. (Incomparable precut value) The incomparable precut value of v at w, is defined by

C⊥v (w) := C(w↓)− 2C(v↓, w↓) .

Note that the value is only defined in the incomparable scenario w ⊥ v.

The incomparable precut values are defined analogously to the comparable precut values. Actually, they
share the same functionality in the sense that given a vertex v, an algorithm can be designed to find a partner
w such that v and w together idetifies a incomparable (resp. comparable) 2-respecting mincut v↓∪w↓ (resp.
w↓ \ v↓). Such partner should be a minimizer of the minpercut value defined below.

Definition 6.2. The incomparable minprecut value of v, is defined by

C⊥v := min{C⊥v (w) | w ⊥ v} .

A vertex w is called an incomparable mincut partner of v if v↓ ∪ w↓ is a mincut. For brevity, we will
omit the word “comparable/incomparable” and simply call C⊥v (w) as precut value of v (at w) and call w a
mincut partner of v if the context is clear. Besides, we call w a minprecut partner of v if C⊥v (w) = C⊥v . Note
that a mincut partner must be a minprecut partner, but it may not be correct conversely.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1521

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Given a path P ∈ P , our algorithm will maintain the minprecut value of the current vertex v when
climbing up the path P . It turns out that if we further exclude all the candidates of partner within P ↓,
the algorithm can maintain minprecut values and partners of v in a more efficient way, which leads to the
following definitions.

Definition 6.3. We call w an outer vertex of path P if w ̸∈ P ↓.

The outer minprecut value is defined similar to the minprecut value except that only the outer vertices
are taken in consideration.

Definition 6.4. The P -outer minprecut value of v is defined as the minprecut value of v such that the
minprecut partner w is an outer vertex of v. Specifically,

C⊥v,P = min{C⊥v (w) | w /∈ P ↓, w ⊥ v}

We call w a P -outer minprecut partner of v if w is an outer vertex of P and C⊥v,P (w) = C⊥v,P . Now we
are ready to describe the algorithm.

6.2 Algorithm Description Now, we are ready to describe the algorithm for Lemma 6.2.

The high-level description of the algorithm is as follow: Given a path P = (v1, v2 · · · , vk) ∈ P with v1
being the deepest vertex, our algorithm visits vi in the order of i = 1, 2, . . . , k. At iteration i, the algorithm
visits vi and maintains the invariant such that the values C⊥vi(w) for all P -outer vertex w can be accessed
via val[w], and the P -outer minprecut value C⊥vi,P is stored in val∗.

Whenever the algorithm reaches the vertex vi, it first calls a subroutine called LocalUpdate(vi) that
will recover the invariant on val[w]. Once the invariant holds, if vi has a P -outer mincut partner w, then
any edge e = (u1, u2) where u1 ∈ v↓i and u2 ∈ w↓ which has not been assigned a minimal mincut candidate
yet should obtain an incomparable 2-respecting mincut (vi, w′) for some specific choice of w′ ∈ w↓ as the
minimal mincut candidate g(e, P).

To implement this high-level plan, our algorithm will maintain a set Ê ⊆ E(v↓i) that contains all edge e
whose g(e, P) values is not assigned yet, and a witness set W of vertices that will be helpful for extracting
the correct minimal mincut candidates. We summarize the invariant for W as follows, and we defer the
proof to the end of Section 6.4.

Lemma 6.4. (Invariant for W and Ê) The witness set W and the edge set Ê satisfies the following
invariant whenever the algorithm returns from LocalUpdate(vi) when visiting vi ∈ P :

(1) W is always a subset of P -outer minprecut partners of the current visiting vertex vi.

(2) Any edge e = (u1, u2) ∈ Ê satisfies that u1 ∈ v↓i and u2 /∈ P ↓.

(3) (Correctness Guarantee): for any edge e = (u1, u2) ∈ Ê such that u1 ∈ v↓i , if there exists a P -outer
mincut partner of vi that is an ancestor of u2, then there exists a witness w ∈ W that is an ancestor
of u2.

Use W to find incomparable minimal 2-respecting mincuts for edges. Following this property,
we are able to present the algorithm to find incomparable minimal 2-respecting mincuts for edges using
W and Ê. The algorithm visits v1, v2, . . . , vk along the path. Whenever the algorithm visits vi, all edges
e = (u1, u2) such that u1 ∈ v↓i \ v

↓
i−1 and u2 /∈ P ↓ shall be added to Ê (let v↓0 = ∅ for convenience).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1522

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

In order to obtain correct results, after vi is visited, the algorithm should identify a mincut candidate
g(e, P) := (ve,P , we,P) for all right edges e ∈ Ê with ve,P = vi. One way to achieve this is to scan through
all edges in Ê and use MinPath↓ queries on a dynamic tree to find we,P (whenever ve,P = vi we will find
we,P correctly). However, the amount of edges whose ve,P = vi could be a tiny fraction in Ê.

Using the correctness guarantee from Lemma 6.4, we will be able to identify all edges whose ve,P = vi
without spending any time on any other edges: all we need to do is to extract the subset of Ê whose outer
endpoints are descendants of any w ∈W .Interestingly, the task of finding all descendant outer endpoints can
be reduced to a dynamic range query problem, which can be solved efficiently using a standard binary search
tree. We discuss the implementation details in Section 6.3 and also in AssignMinCut(vi) (see Algorithm 3).

Now it comes down to efficiently maintain the witness set W .

Maintaining the set W . The algorithm maintains the set W as following:

• In the beginning of iteration i, if the minprecut value of vi is the same of the minprecut value of vi−1,
we keep the set W . Otherwise reset W to be empty.

• For each newly added edge e = (u1, u2) where u1 ∈ v↓i \ v
↓
i−1, u2 /∈ P ↓, we find the highest ancestor of

u2 which is a P -outer minprecut partner of vi, and add it to W .
• For the current vertex vi, if it has some P -outer mincut partners, reset W to be empty in the end of
this iteration.

We summarize and implement the procedure that maintains W , together with maintaining the precut
values as we move from the vertex vi−1 to vi into the algorithm LocalUpdate(vi). The high level
implementation of the entire algorithm is summarized in Algorithm 1.

Algorithm 1 Computing incomparable 2-respecting minimal mincuts of edges
1: Initialize the witness set W ← ∅, Ê ← ∅, and val∗ =∞.
2: for each i = 1, 2, . . . , k do ▷ The i-th iteration handles vi.
3: Call LocalUpdate(vi). ▷ Algorithm 2: update W , Ê, and val∗.
4: Call AssignMinCut(vi). ▷ Algorithm 3.
5: if C⊥(v↓i) + val∗ = λ then
6: Reset W ← ∅.
7: end if
8: end for

6.3 Implementation There are two steps that we need to provide a detailed implementation: maintaining
the set W (implementing LocalUpdate(vi)), and using W to compute the minimal 2-repsecting mincut
candidates of all edges via range queries (implementing AssignMinCut(vi)).

Implementing LocalUpdate and Preprocessing. We use a dynamic tree (Lemma 4.2) to maintain
the precut values of the current vertex vi while climbing up the path P . We maintain the invariant that once
we process the vertex vi the values C⊥vi(w) for all w ⊥ vi, w /∈ P ↓ can be accessed via val[w] . Recall that
C⊥vi(w) = C(w

↓)− 2C(v↓i , w↓). In the preprocessing step before the path P was given, we set val[w] = C(w↓)
for each vertex w and create the dynamic tree on T , which can be done using the same preprocessing step
of comparable case in footnote 7. After that, we initialize the minprecut value val∗ to be the minimum of
val[w] over all the P -outer vertices, which can be done using the following dynamic tree operations. We
first apply Cut(vn, parent(vn)) to separate the subtree P ↓. Then we apply AddPath(parent(vn),∞) to set
the value of all the ancestor of vn to be ∞, since they are not incomparable vertices of any vertex vi ∈ P .
Now we use MinTree↑(parent(vn)) to find w which is argmin of val[w] over all the P -outer vertices, and set
val∗ = val[w]. Finally, we apply Link(vn, parent(vn)) to restore the tree.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1523

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Given the path P , the algorithm scans through the vertices v1, v2, · · · vk on the path one by one. Suppose
the algorithm reaches vi now. With the invariant after processing vi−1 (the invariant for v0 is val[w] = C(w↓)),
it suffices to substract 2C(v↓i \ v

↓
i−1, w) to val[w] for each w ⊥ vi, w /∈ P ↓ by invoking AddPath(u,−2C(v, u))

for each edge (v, u) where v ∈ v↓i \ v
↓
i−1, u /∈ P . (These edges can be found in O(d(v↓i \ v

↓
i−1)) time using a

DFS from vi without searching the subtree rooted at vi−1.) Therefore, in O(d(v↓i \ v
↓
i−1) log n) time, val[w]

are updated to C⊥vi(w) for all P -outer vertex w ⊥ vi.

While the algorithm updates the precut value as stated above, it also updates the minprecut value val∗,
set W and set Ê. The algorithm scans through the edges (v, u) where v ∈ v↓i \ v

↓
i−1, u /∈ P and invokes

MinPath↑(u) to find the vertex w with the minimum precut value, and break tie by finding the highest one.
Then we update the minprecut value val∗. If val∗ changes, we resetW to be empty. Finally, if val[w] = val∗,
we insert w to the set W . These steps for maintaining the set W are equivalent to the high-level description
in Section 6.2.

Notice that in Algorithm 2 we explicitly use a global binary search tree data structure (BST) representing
the set Ê. Thus, there will be some steps (line 3) involving BST that will be used for finding the mincut
candidates, which is described in the next paragraph.

Algorithm 2 LocalUpdate(vi)
1: Call AddPath(vi,∞).
2: for each edge e = (v, u) such that v ∈ v↓i \ v

↓
i−1, u /∈ P ↓ do

3: Call InsertBST(pre_order[u], e). ▷ Insert e to Ê.
4: Call AddPath(u,−2C(v, u)).
5: Call w ← MinPath↑(u).
6: if val[w] < val∗ then
7: val∗ ← val[w].
8: Reset W ← ∅.
9: end if

10: if val[w] = val∗ then
11: Insert w into W .
12: end if
13: end for

Computing minimal mincut candidates of edges from W . First, we clarify the global data
structures in the algorithm. While climbing up the path P , we use a binary search tree (BST) to store
all the edges in Ê, with the key equals to the pre-order indices of the outer endpoints. Note that there will
be only one global BST in our algorithm. The BST supports the following primitives.

• InsertBST(x, e), store edge e = (u1, u2) (u1 ∈ P ↓, u2 /∈ P ↓) into the BST with key x. In our algorithm,
we will always set x to be pre_order[u2], i.e., the pre-order index of vertex u2.

• ExtractBST(w↓), extract all the edges with endpoints in w↓, i.e. the edges with index in the interval
corresponds to w↓.

We use the BST to store the edges that have not found their minimal mincut candidates yet. When
the algorithm reaches vi on the path, it inserts all edges e = (v, u) with v in v↓i \ v

↓
i−1 and u /∈ P ↓ to

the BST, with the key pre_order[u]. This step is implemented in line 3 of Algorithm 2. To compute the
minimal mincut candidates of edges using W , we first check whether there exists a mincut partner of vi
(line 1 in Algorithm 3). If there exists, we perform the range query using BST to extract all the edges with
endpoint u ∈ w↓ for each w ∈ W , which is implemented in Algorithm 3. Finally, for each extracted edge

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1524

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

with endpoint u ∈ w↓, we find w′ to be the lowest ancestor such that w′ is the mincut partner of vi, and set
g(e, P) = (vi, w

′).

Algorithm 3 AssignMinCut(vi)

1: if C(v↓i) + val∗ = λ then
2: for each w ∈W do
3: for each e = (v, u)← ExtractBST(w′↓) do
4: w′ ← MinPath↓(u).
5: Set g(e, P) = (vi, w

′).
6: end for
7: end for
8: end if

6.4 Correctness First, we show a basic property of path decomposition and outer vertex that will be
useful for analyzing the algorithm.

Lemma 6.5. For any spanning tree T , any path decompostion P, and any vertices v and w so that v ⊥ w,
let Pv ̸= Pw ∈ P be the paths that contains v and w respectively. Then either v is a Pw-outer vertex or w is
a Pv-outer vertex.

Proof. Observe that either Pv ∩ P ↓
w = ∅ or Pw ∩ P ↓

v = ∅, which implies the lemma.

For any right edge e = (u1, u2), suppose the minimal mincut of e is v↓e ∪w↓
e where u1 ∈ v↓e and u2 ∈ w↓

e .
By Lemma 6.5, without loss of generality, suppose w is a Pv-outer vertex where Pv is the path containing v.
The main property for the correctness of the algorithm can be summarized in Corollary 6.1, which can be
derived from maintaining the invariant of W (Lemma 6.4).

Corollary 6.1. For a path P ∈ P and an edge e = (u1, u2) with u1 ∈ P ↓ and u2 /∈ P ↓, let vi be the deepest
vertex in P that has an outer mincut partner w where u1 ∈ v↓i and u2 ∈ w↓. Then, there exists an ancestor
of w in W when returned from LocalUpdate(vi) at iteration i in Algorithm 1.

Proof. It suffices to show that e ∈ Ê at iteration i after returning from LocalUpdate(vi). Then the lemma
is implied by the correctness guarantee of Lemma 6.4.

Since vi is the deepest vertex in P that has an outer mincut partner w where u2 ∈ w↓, the edge e has
not obtained its mincut candidate g(e, P) yet, hence e ∈ Ê.

Using Corollary 6.1, we are able to prove that all minimal incomparable 2-respecting mincut candidate
can be correctly found:

Proof of the correctness of Lemma 6.2. For any right edge e = (u1, u2), suppose the minimal mincut of e is
v↓ ∪ w↓ where u1 ∈ v↓ and u2 ∈ w↓. By Lemma 6.5, WLOG, suppose w is a Pv-outer vertex where Pv is
the path containing v. First, we show that there doesn’t exist any mincut v′↓ ∪ w′↓ containing e such that
v′ ∈ v⇓. Otherwise, the intersection of v′↓∪w′↓ and v↓∪w↓ will be a smaller mincut containing e, contradicts
to minimality.

Let P = Pv for brevity. By the argument above, v is the deepest vertex in P that has an outer mincut
partner w where u1 ∈ v↓i and u2 ∈ w↓. Then by Corollary 6.1, there exists w′ to be an ancestor of w such
that w′ ∈ W at the iteration of v in Algorithm 1. Therefore, the algorithm will extract the edge e since
u1 ∈ v↓ and u2 ∈ w′↓. Then the algorithm finds w as it is the lowest ancestor of u2 and also a P -outer
mincut partner of v. Finally, the algorithm sets g(e, P) = (v, w) as desired.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1525

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Finally, we prove that the invariant for W and Ê holds.

Proof of Lemma 6.4. The first and second invariants are directly from the algorithm.

Now we prove the third invariant correctness guarantee. Consider when the algorithm returns from
LocalUpdate(vi). For any edge e = (u1, u2) ∈ Ê where u2 /∈ P ↓ such that there exists a P -outer mincut
partner of vi that is an ancestor of u2, let w be the lowest P -outer mincut partner of vi that is an ancestor
of u2, then we prove that w ∈W .

Observe that val∗ is non-increasing over the time. Let j be the largest index such that C⊥vj ,P (w) ̸=
C⊥vj−1,P

(w). Since w is a mincut partner of vi, we deduce that w is inserted to W in LocalUpdate(vj)
and val∗ doesn’t change during the iterations (j, i], which implies that W is incremental in the following
iterations. Therefore, w remains in W when the algorithm returns from LocalUpdate(vi).

6.5 Runtime Analysis

Proof of the running time of Lemma 6.2. First, for the preprocessing step stated in the beginning of
Section 6.3, it takes O(m log n) time to initialize val[w] = C(w↓) for every vertex w and create the dynamic
tree on T . After given a path P , it takes constant dynamic tree operations to initialize val∗.

In iteration i of Algorithm 1, we show that the cost of the subroutines LocalUpdate(vi) is in
O(d(v↓i \ v

↓
i−1) log n) time. And we show that the total time processing AssignMinCut(vi) is O(d(P ↓) log n)

for the whole path P . Therefore, we deduce that the total time processing a path P is within O(d(P ↓) log n)
time.

In Algorithm 2 LocalUpdate(vi), for each edge e with one endpoint in v↓i \ v↓i−1, the algorithm
invoke constant time dynamic tree operations and BST operations. Therefore, the total time cost is
O(d(v↓i \ v

↓
i−1) log n).

In Algorithm 3 AssignMinCut(vi), it only goes into the if clause when there exists some mincut partner
of vi. Then the time cost will be O(pi + qi log n) where pi is the size of set W and qi is the number of edges
extracted from the BST in iteration i. SinceW is reset to be empty each time when the if-clause is executed,
and by line 11 in Algorithm 2 each edge in E(P ↓) causes at most one insertion toW , hence

∑
i pi is bounded

by O(d(P ↓)). Furthermore, each edge got inserted and deleted at most once in Ê so
∑

i qi is bounded by
O(d(P ↓)).

Therefore, the algorithm preprocesses G = (V,E) and spanning tree T in O(m log n) time, and processes
each path P in O(d(P ↓) log n) time.

7 Putting Everything Together: Proof of Lemma 3.4

Finally, we show that given a spanning tree T , we can combine the results in Sections 5 and 6 to get the
minimal 2-respecting mincut of every edge e in O(m log2 n) total time. As the discussion below Lemma 3.4,
the mincut can be classified into three types.

Type 1. By Lemma 3.7, the algorithm computes the minimal 1-respecting mincut candidate for every edge
e.

Type 2-Comparable. By Lemma 5.1, the algorithm computes the minimal comparable 2-respecting
mincut candidates for every edge e.

Type 2-Incomparable. By Lemma 6.1, the algorithm computes the minimal incomparable 2-respecting
mincut candidates for every edge e.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1526

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

For each edge e, we get three minimal mincut candidates as above. If all of the three candidates are
null, then the minimal 2-respecting mincut of e respects to T is null. Otherwise, the minimal 2-respecting
mincut of e respects to T is the mincut with the smallest size among the minimal mincut candidates.

Since the algorithm for each case runs in O(m log2 n) time and the comparing time is constant for each
edge, the whole algorithm runs in O(m log2 n) total time, concluding Lemma 3.4.

Acknowledgment

We thank David Karger and Debmalya Panigrahi for their clarification related to [23].

References

[1] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining information in fully
dynamic trees with top trees. Acm Transactions on Algorithms (talg), 1(2):243–264, 2005. 9

[2] Nalin Bhardwaj, Antonio Molina Lovett, and Bryce Sandlund. A simple algorithm for minimum cuts in near-
linear time. In Susanne Albers, editor, 17th Scandinavian Symposium and Workshops on Algorithm Theory,
SWAT 2020, June 22-24, 2020, Tórshavn, Faroe Islands, volume 162 of LIPIcs, pages 12:1–12:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 8

[3] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Augmenting edge connectivity via isolating cuts. In Proceedings
of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3237–3252. SIAM, 2022. 1

[4] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Edge connectivity augmentation in near-linear time. In
Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pages 137–150. ACM, 2022. 2

[5] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Saranurak. A
deterministic algorithm for balanced cut with applications to dynamic connectivity, flows, and beyond. In
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 1158–1167. IEEE,
2020. 2

[6] Efim A. Dinits, Alexander V. Karzanov, and Micael V. Lomonosov. On the structure of a family of minimum
weighted cuts in a graph. Studies in Discrete Optimization, pages 209–306, 1976. 1, 3

[7] Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Distributed weighted min-cut in
nearly-optimal time. In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1144–1153, 2021. 7

[8] Tamás Fleiner and András Frank. A quick proof for the cactus representation of mincuts. EGRES Quick-Proofs
Series, 3, 2009. 1

[9] Lisa Fleischer. Building chain and cactus representations of all minimum cuts from hao–orlin in the same
asymptotic run time. Journal of Algorithms, 33(1):51–72, 1999. 1, 2

[10] Harold N Gabow. Applications of a poset representation to edge connectivity and graph rigidity. In [1991]
Proceedings 32nd Annual Symposium of Foundations of Computer Science, pages 812–821. IEEE Computer
Society, 1991. 1

[11] Harold N Gabow. Using expander graphs to find vertex connectivity. Journal of the ACM (JACM), 53(5):800–
844, 2006. 2

[12] Harold N Gabow. The minset-poset approach to representations of graph connectivity. ACM Transactions on
Algorithms (TALG), 12(2):1–73, 2016. 1, 2, 5, 7, 27, 29, 30, 31, 32

[13] Harold N Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint set union.
Journal of computer and system sciences, 30(2):209–221, 1985. 11

[14] Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in O(m log2 n) time. In 47th International
Colloquium on Automata, Languages, and Programming, ICALP, 2020. 2, 3, 4, 8

[15] Barbara Geissmann and Lukas Gianinazzi. Parallel minimum cuts in near-linear work and low depth. ACM
Trans. Parallel Comput., 8(2):8:1–8:20, 2021. 7, 8

[16] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society for Industrial and
Applied Mathematics, 9(4):551–570, 1961. 1

[17] Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut in polylogarithmic
amortized update time. ACM Transactions on Algorithms (TALG), 14(2):1–21, 2018. 1

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1527

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

[18] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a graph. In Proceedings of
the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms (SODA), 1992. 1

[19] Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge connectivity. SIAM Journal
on Computing, 49(1):1–36, 2020. 1, 2

[20] Monika Rauch Henzinger. Approximating minimum cuts under insertions. In International Colloquium on
Automata, Languages, and Programming, pages 280–291. Springer, 1995. 1

[21] David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm. In SODA,
volume 93, pages 21–30. Citeseer, 1993. 1

[22] David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM), 47(1):46–76, 2000. 1, 2, 3,
4, 6, 7, 8, 19

[23] David R Karger and Debmalya Panigrahi. A near-linear time algorithm for constructing a cactus representation
of minimum cuts. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
246–255. SIAM, 2009. 1, 2, 3, 4, 5, 6, 7, 8, 25, 27, 28, 35, 36, 37, 39

[24] David R Karger and Clifford Stein. A new approach to the minimum cut problem. Journal of the ACM (JACM),
43(4):601–640, 1996. 1

[25] Alexander V Karzanov and Eugeniy A Timofeev. Efficient algorithm for finding all minimal edge cuts of a
nonoriented graph. Cybernetics, 22(2):156–162, 1986. 1

[26] Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear time. J. ACM,
66(1):4:1–4:50, 2018. 1, 2

[27] Jason Li. Deterministic mincut in almost-linear time. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 384–395, 2021. 1, 2, 3, 4

[28] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 85–92. IEEE, 2020. 1, 2

[29] On-Hei Lo, Jens Schmidt, and Mikkel Thorup. Compact cactus representations of all non-trivial min-cuts.
Discrete Applied Mathematics, 303, 04 2020. 2

[30] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query, and streaming
algorithms. Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, 2020. 2, 3, 4,
7, 8

[31] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs and capacitated graphs.
SIAM Journal on Discrete Mathematics, 5(1):54–66, 1992. 1

[32] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning
subgraph of ak-connected graph. Algorithmica, 7(1):583–596, 1992. 1

[33] Hiroshi Nagamochi and Tiko Kameda. Canonical cactus representation for minimum cuts. Japan Journal of
Industrial and Applied Mathematics, 11:343–361, 1994. 1

[34] Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide Ibaraki. A fast algorithm for cactus representations of
minimum cuts. Japan journal of industrial and applied mathematics, 17(2):245–264, 2000. 1, 2

[35] Dalit Naor, Dan Gusfield, and Charles Martel. A fast algorithm for optimally increasing the edge connectivity.
SIAM Journal on Computing, 26(4):1139–1165, 1997. 1, 2

[36] Dalit Naor and Vijay V Vazirani. Representing and enumerating edge connectivity cuts in rnc. In Workshop
on Algorithms and Data Structures, pages 273–285. Springer, 1991. 1

[37] R Ravi, Weizhong Zhang, and Michael Zlatin. Approximation algorithms for steiner tree augmentation problems.
In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2429–2448.
SIAM, 2023. 1

[38] Thatchaphol Saranurak. A simple deterministic algorithm for edge connectivity. In Symposium on Simplicity
in Algorithms (SOSA), pages 80–85. SIAM, 2021. 1, 2

[39] Thatchaphol Saranurak and Sorrachai Yingchareonthawornchai. Deterministic small vertex connectivity in
almost linear time, 2023. To appear at SODA’23. 2

[40] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of computer and
system sciences, 26(3):362–391, 1983. 9

[41] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM (JACM), 44(4):585–591,
1997. 1

A Constructing Cactus from Minimal Mincuts

The goal of this section is to prove Lemma 3.1:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1528

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 3.1. Given a graph G = (V,E), a tree packing T and the set of cut labels representing minimal
mincuts of each vertex v ∈ V and each edge e ∈ E, there exists a deterministic algorithm that computes a
cactus representation in O(mα(m,n) + n|T |) time, where α(m,n) is the inverse Ackermann function.

The difference between Lemma 3.1 and the statement given in [23] is that we are given all cut labels
representing minimal mincuts of all edges, while in [23] they are given only the labels of minimal mincuts of
some edges.8 Because of this, we are able to give a simpler algorithm than the one provided in [23].

This section is organized as follows. In Appendix A.3 and Appendix A.4 we define the hierarchy
representation H for all mincuts. With the hierarchy representation H, a cactus can then be constructed
in linear time (Lemma A.8). In Appendix A.5 we describe the algorithm that computes the hierarchy
representation H. Before we introduce the notations and dive into the construction — for both the warmup
as well as historical reasons — we would like to introduce a cruder hierarhcical representation which we call
it nesting relation tree T̂ in Appendix A.1 and Appendix A.2. Both warmup subsections are not strictly
required in Appendix A.3 and Appendix A.4 but they become useful for proving correctness in Appendix A.5.

A.1 Warmup I: Assumptions and Preprocessing Let r be the root we chose to fix throughout the
algorithm. As a technical reminder: from now on, we will abuse the notation and identify every cut (X,V \X)
by the subset X where r /∈ X. Any two cuts X and Y are nesting if either X ⊆ Y or Y ⊆ X. For any vertex
v ̸= r let Xv to be the minimal mincut of v on G. For convenience we also define Xr = V . Similarly, for
each edge e, if there exists a minimal mincut for e it is denoted by Xe; otherwise we set Xe = V .

Preprocessing: Merging Vertices with the Same Minimal Mincuts. First, without loss of
generality we may assume that all vertices (except r) have distinct minimal mincuts. This assumption can
be achieved easily by merging vertices with the same minimal mincut: if two vertices u and v have the same
minimal mincut, then any mincut does not separate u and v. If a vertex u does not have a minimal mincut,
then any mincut does not separate u and r. Therefore, all mincuts are preserved in the merged graph.

The preprocessing can be done in linear time deterministically: the algorithm first performs a bucket
sort to all vertices’ minimal mincut labels according to their sizes and breaking ties lexicographically. Then,
two vertices can be merged if and only if they are neighbors in the sorted order and they have identical cut
labels. Notice that we may assume that two cuts are the same if and only if their labels are the same.

A.2 Warmup II: Nesting Relation Tree Readers may skip this subsection if the goal is to obtain only
a high-level idea of the algorithm.

Let v ̸= r be a non-root vertex. By the non-crossing property (Lemma 2.1) of the mincuts, any two
minimal mincuts of vertices are either nesting or disjoint. With the preprocessing from Appendix A.1, we
are able to see that for all v ̸= r, there exists a unique vertex pv ∈ V such that Xv ⊊ Xpv

and there exists
no vertex u /∈ {v, p} with Xv ⊊ Xu ⊊ Xpv

.9

Now, the nesting relation tree T̂ can be defined by designating pv as the parent of v for each non-root v.
It is straightforward to check that T̂ is a well-defined tree, by observing that the nesting relations among all
minimal mincuts of vertices are acyclic. The following lemma states that T̂ can be constructed efficiently.

8In particular, [23] reduces the problem into several one-layer cactus construction problems, and piecing back all constructed
partial (and contiguous) cactus after solving these separated subproblems. The main reason for introducing this seemly-extra
reduction step is because in their algorithm some edges do not have correct minimal mincut labels — these erroneous labelings
will not cause a problem (with high probability) in the reduced problems. This reduction makes the problem simpler to solve.
However, the reduction complicates the correctness proof and some details were omitted.

Our simplified algorithm described in this section does not depend on the reduction mentioned above. We emphasize that
this algorithm is in fact equivalent to performing [23] in a bottom-up fashion. We give the algorithm and the correctness proof
via a hierarchy representation introduced implicitly by Gabow [12] in Appendix A.5.

9In [23] the authors call Xpv the second smallest minimal mincut of v.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1529

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma A.1. Given the labels to minimal mincuts of vertices and the tree packing T , there is a deterministic
algorithm that constructs T̂ in O(n|T |) time.

Proof. Consider the collection of all minimal mincuts of vertices X := {Xv}v∈V . For each vertex v ̸= r, to
find its parent pv on T̂ , it suffices to search for the second smallest sized set X that contains v (the smallest
one is Xv by definition.)

This can be done by considering each tree separatedly. Recall that each mincut has a label (type, v, w, T).
For each tree T ∈ T , we define XT to be all minimal mincuts of vertices with its label referring to T . For
any vertex v, if we are able to obtain the smallest and the second smallest mincuts of XT for every tree
T ∈ T , then we are able to obtain the parent pv by selecting the second smallest sized minimal mincuts
among the ≤ 2|T | mincuts that were returned.

Now, observe that XT is also a laminar set. Thus, if we mark the O(1) entry points for each mincut
in XT on the tree T , a simple DFS can be applied to find the first and the second smallest mincuts in XT

that contains any given vertex in O(n) total time for each tree T . Hence, the total time required is O(n|T |).

For any vertex v ∈ V , we define T̂v to be the set of vertices within the subtree rooted at v. The following
lemma gives a neat observation to this nesting relation tree T̂ :

Lemma A.2. For all v ∈ V , Xv = T̂v.

Proof. Observe that Xu ⊆ Xv if and only if u is a descendant of v. Then the statement follows.

With the help of the nesting relation tree T̂ , the following lemma enables us to categorize any global
mincut:

Lemma A.3. Let X be any (proper) mincut on G. Then, there is a set of vertices S ⊆ V such that all
vertices in S have the same parent on T̂ and X =

∪
u∈S T̂u.

Proof. First, observe that any mincut X satisfies X = ∪u∈XXu. To see this, if X crosses with some minimal
mincut Xv of vertex v, then by Lemma 2.1, both Xv \ X and Xv ∩ X are mincuts. Since v lies in one of
Xv \X and Xv ∩X, we have found a smaller mincut that contains v, contradicts to the definition of Xv. By
Lemma A.2, we further have that X = ∪u∈X T̂u so X is union of some subtrees in T̂ .

Now we would like to show that the roots of these subtrees have the same parent in T̂ . Let S ⊆ X be
comprised of all vertices x ∈ X such that the parent of x is not in X. Suppose there are two vertices x, y ∈ S
so that their parent vertices p and q are different. Since p ̸= q, without loss of generality we may assume
that p /∈ T̂q Now, X must cross with Xq(= T̂q) since x /∈ T̂q but y ∈ T̂q. In this case, one of Xq ∩ X or
Xq \X is a smaller mincut that contains q, contradicting the definition of Xq. Hence, all vertices in S has
the same parent and the statement is true.

The next Appendix A.3 gives important characterization to global mincuts, which leads to the actual
cactus construction algorithm. 10

10[23] stopped at the above Lemma A.3 and showed that by partitioning all mincuts according to the common parent vertex,
the cactus can be constructed layer-by-layer. However, the correctness proof to the remaining part of [23] dealing with one-layer
cactus construction is not explicitly stated. In the next subsection, we fill in the missing proof (and slightly simplify their
algorithm) for Karger and Panigrahi’s algorithm.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1530

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

A.3 Chains and Chain Certificates The goal of this section is to show that every global mincut has
a “simple certificate” corresponding to it. This will be crucial for defining the hierarchical representation of
all mincuts, which will be given in Appendix A.4. In fact, a generalization of the fact was already shown
by Gabow [12] but we give an alternative (and arguably simpler) presentation of this characterization using
terminology specific to mincuts.

Definition A.1. (Mincut Certificates) Let X ⊆ V be any set of vertices. We say X has a vertex
certificate if there is a vertex v so that X = Xv. Similarly, we say X has an edge certificate if X is the
minimal mincut for some edge e.

By the end of this section, we will prove in Lemma A.5 that every mincut must either has a vertex
certificate, an edge certificate, or a chain certificate. In order to understand the last object, we first give the
definitions of chains and chain certificates below.

Definition A.2. (inspired by [12], page 33–35) A chain is a sequence of disjoint non-empty vertex
subsets (C0, C1, . . . , Cℓ) where ℓ ≥ 1 and is defined recursively:

1. For each i, Ci ⊆ V has either a vertex certificate, an edge certificate, or a chain certificate.
2. For each 0 ≤ i < ℓ, Ci ∪ Ci+1 has an edge certificate.

We say that a subset of vertices X ⊆ V has a chain certificate if there exists a chain (C0, C1, . . . , Cℓ) such
that X = ∪ℓi=0Ci. A subchain is a consecutive subsequence of a chain. A maximal chain is a chain that is
not a subchain of any longer chain.

It is very important to note that Definition A.2 is well-defined, in the sense that once all subsets with
vertex or edge certificates are fixed, chains and maximal chains will be unambiguously defined. Now, we
explore some useful properties of chains. These properties can all be derived from the crossing lemma
(Lemma 2.1).

Lemma A.4. (basic properties of a chain) Let (C0, C1, . . . , Cℓ) be a chain and let X = C0∪C1∪· · ·∪Cℓ.
Then the following properties are true:

(1) X is either a mincut or the vertex set V .
(2) For any edge e leaving X (i.e., e connects X and V \X), then e has an endpoint in either C0 or Cℓ.
(3) For any 0 ≤ i < ℓ, C(Ci, Ci+1) = λ/2; also, C(C0, V \X) = C(Cℓ, V \X) = λ/2. In particular, for any

non-neighbor indices i and j such that |i− j| > 1 we have C(Ci, Cj) = 0.
(4) (Lemma 4.6 in [12]) For any i, if Ci has a chain certificate (C ′

0, C
′
1, . . . , C

′
ℓ′), then this certificate must

be a maximal chain.
(5) For any edge e leaving C0 (resp. Cℓ) to V \X, the minimal mincut of e either contains C0 (resp. Cℓ)

but nothing from X \ C0 (resp. X \ Cℓ), or contains the entire X.

Proof. We prove each property one by one below.

Property (1). This can be done by induction on |X| when |X| < n: we know that Cℓ has a certificate so
it is a mincut. Now, by the fact that X \Cℓ cross with Cℓ−1 ∪Cℓ, by Lemma 2.1 we know that X is a
mincut.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1531

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Property (2). Fix i with 1 ≤ i ≤ ℓ − 1. Since any subchain is a chain, by property (1) we have
A := C0 ∪ · · · ∪ Ci and B := Ci ∪ Ci+1 ∪ · · · ∪ Cℓ are two mincuts. By Lemma 2.1, there is no
edge going from A ∩B = Ci to the outside V \X.

Property (3). For any 0 ≤ i < ℓ, we focus on the term C(Ci, Ci+1) by the following: let A = V \(Ci∪Ci+1)),
since all of Ci, Ci+1, and Ci ∪Ci+1 are mincuts, we know that any two terms of C(A,Ci), C(Ci, Ci+1),
and C(Ci+1, A) add up to the value λ. Thus, each of them must be exactly λ/2. To show that
C(C0, V \X) = λ/2 we apply the same argument to the three mincuts C0, C1∪· · ·∪Cℓ and X. Similar
argument for C(Cℓ, V \X) = λ/2.
To prove the second statement, we assume i+1 < j and use Lemma 2.1 on mincuts A := Ci∪· · ·∪Cj−1

and B := Ci+1 ∪ · · · ∪ Cj . Since |i − j| > 1, we know that A crosses with B and hence
C(Ci, Cj) = C(A \B,B \A) = 0.

Property (4). Without loss of generality assume i < ℓ (otherwise we simply reverse the chain.) Assume
for the contradiction that the chain certificate of Ci is not maximal. Without loss of generality there
exists an edge e such that Xe = C ′

ℓ′ ∪C ′
ℓ′+1. Moreover, since Ci is part of a chain, there exists an edge

f so that Xf = Ci ∪ Ci+1. By property (2), we know that one of f ’s endpoints must be in C ′
0 (i.e.,

cannot be leaving from C ′
ℓ′). By property (3), the other endpoint of f should not occur in C ′

ℓ′+1. So
both endpoints of f do not occur in Xe.
If Xe and Xf cross, by the crossing lemma (Lemma 2.1), Xf \Xe is a smaller mincut that contains f ,
a contradiction.
If Xe and Xf do not cross, then Xe ⊆ Xf . Notice that now Y := Ci∪Xe is a mincut that crosses with
Ci+1. By the crossing lemma again (Lemma 2.1) we know that C(Y \Ci+1, Ci+1 \ Y) = 0. However, f
is an edge that goes from Ci \Xe (⊆ Y \ Ci+1) to Ci+1 \Xe (⊆ Ci+1 \ Y), a contradiction too.

Property (5). We first show that C0 ⊆ Xe: suppose not, C0 cross with Xe (since e has an endpoint in
C0). Let f be an edge so that Xf = C0 ∪C1. Notice that Xe and Xf cross and so Xf \Xe is a smaller
mincut. Observe that Xf \Xe contains both endpoints of f because, by Lemma 2.1, there is no edge
from Xe ∩C0 to C1 ⊆ (V \Xe ∪C0). This contradicts to the fact that Xf is the minimal mincut of f .
Now that C0 ⊆ Xe, we assume for the contradiction that Xe contains strictly more than C0 but not
entire X. Then, Xe cross with A := C1 ∪ C2 ∪ · · · ∪ Cℓ. By Lemma 2.1 Xe \ A is also a mincut. Now
Xe \A is a smaller mincut that contains e, a contradiction too.
Therefore, Xe contains either entire X or just C0 but none of vertices from X \ C0.

As we will see, each chain actually corresponds to a further-from-root part of a cycle on a cactus.

Now, Gabow’s characterization of mincuts shows that every mincut has a certificate:

Lemma A.5. ([12], Lemma 4.4 and Lemma 4.5) Every mincut on G has either a vertex certificate, an
edge certificate, or a chain certificate.

Proof. Assume G is connected (so λ > 0). Let X be a mincut (so the induced subgraph G[X] is connected).
We prove by induction on the size of X.

Base Case. When |X| = 1, X trivially has a vertex certificate.

Inductive Case. Now suppose |X| > 1. If X has a vertex/edge certificate then we are done.

Suppose X has no vertex/edge certificate. Consider the collection X that consists of all maximal proper
subsets of X that are mincuts. Then, since Xv ⊊ X for all v ∈ X, we know that X ̸= ∅. Take any A ∈ X .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1532

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

By induction hypothesis, A has a certificate denoted as (C0, . . . , Cℓ). For convenience, if A has a vertex
certificate or an edge certificate, we use the same notation where C0 := A and ℓ = 0.

Finally, we claim that we can actually attach the entire X \A to either end of the certificate, forming an
authentic chain (C0, . . . , Cℓ, X \A) or (X \A,C0, . . . , Cℓ) and conclude the proof. Since G[X] is connected,
there is at least one edge e ∈ E(A,X \ A). Let Xe to be the minimal mincut of e. We know that Xe ⊊ X
because X has no edge certificate. Since Xe ∩A ̸= ∅ but Xe is not a superset of A (since A is maximal), we
know that Xe cross A. By Lemma 2.1, both Xe \A and Xe ∪A are mincuts. Now, we notice that Xe ∪A is
a superset of A. This implies that Xe ∪A = X and Xe \A = X \A is a mincut.

By property (2) of Lemma A.4, e must leave from C0 or Cℓ. By property (5) of Lemma A.4, with the
clue Xe ̸= X, we know that either Xe = (X \ A) ∪ C0 or Xe = (X \ A) ∪ Cℓ. Hence, by definition, one of
(X \A,C0, . . . , Cℓ) or (C0, . . . , Cℓ, X \A) is a chain certificate of X.

The following Lemma A.6 shows that chain certificates of a mincut are basically unique. This is helpful
in the following sense: suppose we have extended the chain certificate of a mincut A to some longer chain
(let B ⊃ A be the associated mincut). Then, we do not need to store A in the memory because the mincut
A is “preserved” (as a subchain) in any chain certificate of B.

Lemma A.6. (Briefly mentioned in [12], page 36) Let X be a mincut that has a chain certificate
(C0, C1, . . . , Cℓ). Then this certificate is unique up to reversing the chain.

Proof. Let e = (u, v) be any edge from the boundary E(V \ X,C0) with v ∈ C0. (The existence of e is
guaranteed by property (2) of Lemma A.4.) Let (C ′

0, C
′
1, . . . , C

′
ℓ′) be any maximal chain certificate of X.

Without loss of generality we have v ∈ C ′
0 (reverse the chain if necessary).

Now, let i be the smallest index such that Ci ̸= C ′
i. It is easy to see that i = 0: otherwise there are two

edges e and f such that Xe = Ci−1 ∪Ci and Xf = Ci−1 ∪C ′
i. By property (3), the endpoints of both e and

f belongs to Ci ∩C ′
i. We obtain a contradiction as Ci−1 ∪ (Ci ∩C ′

i) is a smaller mincut for either e or f (or
both). Thus, C0 ̸= C ′

0 but C0 ∩ C ′
0 ̸= ∅. Depending on whether or not C0 crosses with C ′

0, there are two
cases now:

Case 1: If C0 crosses C ′
0, this implies a contradiction to Lemma 2.1 because C(C0∩C ′

0, V \(C0∩C ′
0)) = 0

but the edge e connects C0 ∩ C ′
0 and V \X ⊆ V \ (C0 ∩ C ′

0). Therefore Ci = C ′
i for all i and the chain is

unique.

Case 2: If C0 and C ′
0 do not cross, then without loss of generality we may assume C0 ⊂ C ′

0. Suppose
there exists an index i > 0 such that C ′

0 crosses with Ci and let i to be the smallest one among all such
indices. Then, for each index j such that 0 ≤ j < i, we know that either Cj ⊊ C ′

0 or Cj ∩ C ′
0 = ∅. However

the latter case is impossible: notice that C0 ⊆ C ′
0 and Ci ∩ C ′

0, by property (3), C0 and Ci ∩ C ′
0 are not

connected in C ′
0. By property (1) C ′

0 should be a mincut and hence must be connected, a contradiction.

Thus, C ′
0 should contain all the Cj for j < i, and there exists an edge e such that Xe = Ci−1 ∪ Ci.

First observe that C ′
0 doesn’t contain both endpoints of e, otherwise C ′

0 ∩ (Ci−1 ∪ Ci) will be a smaller
mincut containing e for both cases that C ′

0 crossing with Ci−1 ∪ Ci and C ′
0 ⊂ Ci−1 ∪ Ci. Then the edge e

connects C ′
0 \ Ci and Ci \ C ′

0 but this contradicts to Lemma 2.1 for C(C ′
0 \ Ci, Ci \ C ′

0) = 0 since C ′
0 crosses

Ci. Therefore C ′
0 must be a subchain (C0, C1, . . . , Ck) of the chain (C0, C1, . . . , Cℓ), but this contradicts to

property (4) of Lemma A.4 since it is not a maximal chain.

A.4 Reducing Cactus to Hierarchical Representation of Global Mincuts The goal of this section
is to reduce the problem of cactus construction to constructing a hierarchical representation H of mincuts

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1533

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

based on chain certificates defined in Appendix A.3.11

Lemma A.7. ([12], Lemma 4.6 (i)) Consider the collection C of all mincuts X such that either all chain
certificates of X are maximal, or X has no chain certificate. Then C is laminar.12

Proof. We first show that for any two mincuts A and B that cross each other, then both A and B have a
chain certificate. Suppose A does not have a chain certificate, by Lemma A.5 we know that A has a vertex
certificate (A = Xv) or an edge certificate (A = Xe). If A = Xv for some v ∈ V then by the crossing lemma
either A \B or A ∩B is a smaller mincut that contains v, a contradiction. If A = Xe then e must have one
endpoint in A\B and another in A∩B, otherwise one of the two sets contains e, which contradicts minimality
of Xe. But this implies that (A \ B,A ∩ B) is a chain certificate for A, which is also a contradiction. The
same proof applies to B.

Now, we show that if two mincuts A and B that cross each other, then none of A and B has a maximal
chain certificate. Consider any edge e ∈ E(A ∩ B,B \ A). Since both endpoint of e are in B, we know
that Xe ⊆ B. Now, since A has a chain certificate, and Xe does not contain entire A, by property (5)
from Lemma A.4 we know that e is an edge that extends the chain certificate of A. Hence, there is a chain
certificate of A that is not maximal. Same proof for B.

To conclude the statement, we notice that if there are two mincuts A and B crossing each other, then
both A and B does not appear in C . So C must be laminar.

As a sanity check we note that a mincut with a vertex certificate has no chain certificate, so Xu ∈ C for
all u ∈ V . Since C is laminar on V , we know that |C | = O(n) and the total length of chain certificates from
mincuts in C is also O(n).

The Hierarchical Representation. Let C be the collection described in Lemma A.7. The collection
C naturally defines a hierarchy tree H: for each mincut A ∈ C there is a node vA in H. Moreover, the
children of vA in H are all nodes vB such that B ∈ C is the maximal proper subset of A.

According to the definition of H and Lemma A.6, the hierarchy H is unique, but the chain certificates
are unique up to reversion. In particular, Lemma A.6 implies that every mincut X on the graph G can be
“captured” by H: if X does not have a chain certificate, then X ∈ C . Otherwise, X has a chain certificate.
By extending this chain certificate to a maximal chain, we know that there exists a mincut Y ∈ C such that
the chain certificate of X occurs as a subchain to Y ’s maximal chain certificate.

We finish this subsection by showing that a hierarchy H can be easily turned into a cactus. Hence, once
a hierarchy H is formed with all certificates given, a cactus representation of graph G can be constructed in
linear time.

Lemma A.8. ([12], Section 4.5) Given a graph G = (V,E) and its corresponding hierarchy H with
certificates in O(n) total size, a cactus representation of G can be constructed in O(n) time.

Proof. A cactus graph P can be constructed from the hierarchy H as follows. For each node vA on H where
the corresponding mincut A ∈ C has a (maximal) chain certificate (C0, C1, . . . , Cℓ). By property (4) of
Lemma A.4, all parts Ci either have a maximal chain certificate or a vertex/edge certificate. Any superset

11Gabow [12] defined special directed graphs based on partial order sets called chain-trees. However, the chain-trees are
not uniquely defined. Gabow showed that a specific chain-tree can be algorithmically created based on a particular laminar
collection of mincuts. Here we define the hierarchical representation H based on exactly the same collection as Gabow’s. There
are two benefits introducing H: (1) the representation itself is based purely on the structural property of G, not algorithmically,
and (2) with the preprocessing mentioned in Appendix A.1, the representation is unique up to reversing the chains in the chain
certificates.

12The collection defined corresponds to F− in [12].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1534

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

of Ci that is proper in A has a chain representation but they are always extendable. Thus, for each Ci there
is a corresponding node vCi in H and they are children of vA. We replace this star {(vA, vCi)}ℓi=0 by a cycle
of length ℓ+ 1: (vA, vC0

, vC1
, . . . , vCℓ

).

After all the replacement are done, it is straightforward to verify that P is a cactus. Now we assign
vertices V to nodes in P . Since Xu ∈ C for all u ∈ V , by simply assign each vertex u ∈ V to the node vXu

then we are done.

All mincuts are preserved: a mincut with a chain certificate can be found by cutting two edges from
the replaced cycle. A mincut A without a chain certificate can be found by cutting the edge from vA with
its parent on P . On the other hand, cutting a bridge or a pair of edges in the same cycle corresponds to a
mincut too.

Now the task of constructing a cactus representation reduces to computing a hierarchy representation
H.

A.5 Constructing a Hierarchical Representation In this section we describe an algorithm that
constructs the hierarchy H defined in Appendix A.4.13

Assume that the graph has been preprocessed as described in Appendix A.1 such that every vertex has
a distinct minimal mincut. The algorithm constructs the hierarchy by processing all vertex/edge-certificated
mincuts in the non-decreasing order of their sizes.

Two variables are introduced explicitly: a (partial) collection C and a (partial) hierarchy forest H. C is
initialized as an empty set and H is initialized as an empty forest. At any moment, the algorithm maintains
a collection C of disjoint mincuts with corresponding certificate. In the meantime, the algorithm maintains
a hierarchy forest H with the invariant such that there is always a bijection between C and the roots of
all trees in H. Throughout processing the mincuts, two subsets in C may be merged (so the corresponding
trees in H may be merged at the root.) Once a mincut A ∈ C is removed, we guarantee that some superset
B of A is added to C and vA becomes a child of vB in H.

Before we describe the steps of the algorithm, we state the most important property that leads to the
correctness of the algorithm.

Lemma A.9. (Inductive Correctness Guarantee) Upon processing a mincut of size t, any mincut of
size strictly less than t can be uniquely “represented” in H. That is, let X be a mincut with |X| < t. If X
has a chain certificate C, then there is a unique node vA in H with a chain certificate containing C as a
subchain. If X does not have a chain certificate, then X has a corresponding node vX ∈ H.

This property explains the validity of certain steps in our algorithm. As you can see, by Lemma A.9,
at the end the algorithm returns a correct hierarchy representation H defined in Appendix A.4. Now we
describe this high-level algorithm.

Let L be the list of minimal mincuts of vertices and edges. The mincuts in L is sorted by their size in
increasing order. The algorithm processes mincuts in L one by one. Let X ∈ L be the current processing
minimal mincut. If there is already a mincut A ∈ C such that X ⊆ A, then the algorithm does nothing.
Now we assume the otherwise: X is not contained in any mincut in C . X could be a minimal mincut of a
vertex u ∈ V , or a minimal mincut of an edge e ∈ E.

Suppose that X = Xu has a vertex certificate. Using the crossing lemma (Lemma 2.1), we deduce that
the minimal mincut Xu does not cross with any mincut. In particular, Xu does not cross any mincut in

13Our algorithm is simpler than Karger and Panigrahi’s algorithm because we do not reduce the problem into one-layer cactus
construction problems.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1535

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

the current C . In this case, we remove any mincut that is a subset of Xu from C and add Xu to C . The
hierarchy forest H is updated accordingly, by creating a node vXu and assign the nodes vA to be its children
for all A ⊆ Xu that was removed from C .

Suppose that X = Xe has an edge certificate e = (u, v) ∈ E. The algorithm checks if this edge helps
extending or creating a chain. We observe that right now u and v must belong to different mincuts in C ,
otherwise there is already a mincut A ∈ C containing X. Let the mincuts A,B ∈ C such that u ∈ A and
v ∈ B. If Xe crosses with one of the mincut, say A, then we must have X \A be a mincut. By Lemma A.9,
since |X \ A| < |X|, we know that the mincut X \ A must have already been represented in the current
hierarchy H, which implies that there exists a mincut in the current collection C that contains X \A. Since
v ∈ X \A and by the assumption v ∈ B ∈ C , we know that X \A ⊆ B.

Therefore, only three cases can occur between X and A∪B: either X = A∪B, X ⊊ A∪B, or X ⊋ A∪B.
In the first case where X = A∪B, we know that a new chain is formed. We create a new node vX and set vA
and vB be its children in H. The certificate of vX will be a chain certificate (A,B). In the second case where
X ⊊ A ∪B, we know that some chain can be extended (or possibly, two chains are concatenated.) Without
loss of generality we assume that X cross with A. Now there will be two sub-cases, either X \ A = B or
X \ A ⊊ B. If X \ A = B then on the hierarchy H we rename vA to be vA∪B and then put vB as a new
child of vA∪B . If X \A ⊊ B, we know that e concatenates the two chains of A and B. On the hierarchy H
it suffices to merge the two trees rooted at vA and vB , and update the certificate of vA∪B . In the third case
where X ⊋ A ∪ B, similar to the vertex case, the algorithm removes all mincuts that are contained in X.
The hierarchy H is updated accordingly.

We summarize this high-level algorithm in Algorithm 4.

Algorithm 4 High-Level Approach for Constructing a Hierarchy Representation
Require: A graph G = (V,E), tree packing T , labels of minimal mincuts of all vertices and edges.
Ensure: A hierarchy tree H = (VH , EH). Every node on H has a certificate.

1: L ← the list of minimal mincuts of all vertices and edges, sorted by their sizes.
2: C ← ∅. ▷ A disjoint collection of mincuts.
3: H ← ∅. ▷ A hierarchy forest with certificates.
4: for each vertex/edge minimal mincut X ∈ L do
5: if there does not exist A ∈ C such that X ⊆ A then
6: if X has a vertex certificate u ∈ V then
7: AddNestingSuperset(Xu).
8: else (now X has an edge certificate e = (u, v) ∈ E)
9: Let A,B ∈ C such that u ∈ A and v ∈ B.

10: if X = A ∪B then
11: AddNewChain(Xe, A,B). ▷ Create a new chain (A,B).
12: else if X ⊊ A ∪B then
13: Swap the role of A and B so that A cross with X.
14: if X \A = B then
15: ExtendChain(Xe, A,B). ▷ Extend A’s chain by adding B at the end.
16: else (now X \A ⊊ B)
17: ConcatChains(Xe, A,B). ▷ Concat A and B’s chain certificates via Xe.
18: else (now X ⊋ A ∪B)
19: AddNestingSuperset(Xe).

Correctness Proof. We end this subsection by proving Lemma A.9, which implies that Algorithm 4
does produce a correct hierarchy H after processing all minimal mincuts of vertices and edges.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1536

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof of Lemma A.9.. Let’s apply mathematical induction on t and let A be a mincut on G of size |A| < t.
First, since a chain certificate can only be extended or concatenated, it is straightforward to see that if A is
added to C , A will be “represented” in any future moment.Notice that whenever A has a vertex certificate
or an edge certificate, either A will be added to C or is used for extending/concatenating a chain.

Now, assume that A has a chain certificate (C0, C1, . . . , Cℓ) with ℓ ≥ 1. Since |A| < t, for any 0 ≤ i < ℓ
we know that |Ci ∪Ci+1| < t as well. Since Ci ∪Ci+1 has an edge certificate, we know that Ci ∪Ci+1 must
have been processed already for all i. If ℓ = 1, then Line 11 correctly construct a chain. If ℓ > 1, then the
mincuts Al := C0 ∪ · · · ∪ Cℓ−1 and Ar := C1 ∪ · · · ∪ Cℓ can be found uniquely in some node (say vl and vr
respectively) on H, by the induction hypothesis of Lemma A.9. Since the node that represents C1 can also
be uniquely found as a child of both vl and vr, we conclude that vl = vr. Therefore, A can be found uniquely
in v = vl = vr too.

A.6 Efficient Implementation of Algorithm 4 Once the high-level idea is confirmed, the remaining
parts of the implementation become relatively easier tasks. There may be different ways to implement
Algorithm 4, and we give one of them in this subsection.

For C the algorithm maintains an additional disjoint set data structure (with Union and Find
operations). For any mincut A ∈ C , we store (1) its size |A|, (2) one vertex v ∈ A, and (3) certificates
of A. If there are multiple certificates available for the same mincut, we store one certificate of each kind:
vertex, edge, and chain. For a chain certificate (C0, C1, . . . , Cℓ), we assume that a doubly linked list of edges
(e1, e2, . . . , eℓ) is stored in the memory where Xei = Ci−1 ∪ Ci for all 1 ≤ i ≤ ℓ. That said, the operations
to chains (e.g., AddNewChain in Line 11, ExtendChain in Line 15, and ConcatChains in Line 17) can be
implemented in a straightforward way in O(1) time).

Containment Queries. In Algorithm 4, the algorithm is often required to test whether two given
mincuts A and B satisfies A ⊆ B. (Specifically, this operation is used to implement Line 5, Line 10, and
Line 14.) This test is denoted by Karger and Panigrahi [23] as the containment query: Containment(A,B)
returns true if and only if A ⊆ B. In [23] the authors merely mentioned that the containment queries can
be answered in O(1) by answering LCA queries in the corresponding tree. The authors did not describe
an algorithm that answers containment queries — it becomes highly non-trivial when A or B has a chain
certificate. Fortunately, thanks to the crossing lemma, most of the containment queries in the high-level
Algorithm 4 can be implemented by simply checking and comparing the sizes of the mincuts. In below, we
describe the detailed implementations line by line.

Line 1. First of all, Line 1 in Algorithm 4 can be done efficiently in O(m + n|T |) time, by computing the
sizes of the mincuts in O(n|T |) time and performing a bucket sort in O(m + n) time. Notice that in
order to correctly implement Line 19, we require that the same minimal mincuts are listed together.
This can be achieved by, e.g., breaking ties using the lexicographical order of the cut labels. Moreover,
for the same mincut we process vertices first then the edges.

Line 5. Since all mincuts in C are disjoint and they are only replaced by supersets, it suffices to use a
standard disjoint set data structure supporting membership queries. In particular, Find(x) returns
the mincut in C that contains x, or ⊥ if such mincut does not exist.
To implement Line 5, if X = Xu is a minimal mincut of vertex u, then we know that Find(u) =⊥,
and that the if statement is always evaluated to true.
If X = Xe is a minimal mincut of an edge e = (u, v). We observe that there exists A ∈ C that contains
X if and only if Find(u) = Find(v).

Line 10. Let X = Xe with e = (u, v). Suppose now that Find(u) ̸= Find(v) and there are two mincuts
A,B ∈ C with u ∈ A and v ∈ B. There are only three cases to distinguish: X = A ∪ B, X ⊊ A ∪ B,
and X ⊋ A ∪B. Since A ∩B = ∅, it suffices to compare the size |X| with |A|+ |B|.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1537

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Line 13. To test whether A ⊆ X, we utilize the cut label of X and the certificate of A. Let (type, v, w, T)
be the cut label of X. Using a prebuilt data structure on T it is easy to check whether a vertex belongs
to X in O(1) time.
If A = Xu has a vertex certificate, we know that A ⊆ X for sure by definition of minimal mincut of u.
If A = Xe′ has an edge certificate e′ = (u′, v′), then definition of Xe′ we know that A ⊆ X if and only
if u′ ∈ X and v′ ∈ X, and this can be tested in O(1) time. If A has a chain certificate (C0, C1, . . . , Cℓ),
we know that by property (5) from Lemma A.4, A cross with X if and only if exactly one of {C0, Cℓ}
is contained in X but the other one does not. To test so, it suffices to choose an arbitrary vertex from
each of C0 and Cℓ and test whether or not it belongs to X. This can be done in O(1) time too.

Line 14. To test whether X \ A = B or not, it suffices to check again if B ⊆ X or B cross with X. This
can be achieved as described above (implementation of Line 13).

AddNestingSuperset. It is a bit challenging if we want to search for all mincuts that are currently in C
that is contained in the given mincut X — enumerating all vertices in X and then using the disjoint
set data structure takes too much time!
To cope with this, we handle minimal mincuts for vertices and edges differently, and describe the
implementation details below.
Vertex Case (Line 7). Let X = Xv be the minimal mincut of a vertex v ∈ V . A cool trick is, we
can implement this step utilizing the nesting relation tree T̂ defined in Appendix A.2, which requires
O(n|T |) preprocessing time by Lemma A.1.
Let Cv = {u1, u2, . . .} be the children of v on T̂ . We notice that upon processing Xv, all minimum
mincuts of ui must have been processed already. Hence, by Lemma A.9, for each ui there exists some
mincut Ai ∈ C that contains Xui

. Therefore, it suffices to query the disjoint set data structure |Cv|
times to identify all mincuts that are covered by X.
Since T̂ is a tree, there will be exactly n− 1 Find calls and at most n− 1 Union calls to the disjoint
data structure in total.
Edge Case (Line 19). Unfortunately all minimal mincuts of edges does not have a hierarchy
representation as T̂ in the vertex case, so the method we use for the vertex case does not apply
to this edge case14. However, this case can be solved easily by making sure we process a bunch of
identical minimal mincuts at a time. Consider the set F of all edges f such that Xf = Xe. We claim
that the sub-collection of mincuts that contain endpoints to any f ∈ F is exactly the set of all mincuts
to be subsumed. The “⇐” direction is trivial, and the “⇒” direction is true because G[X] is connected,
and any edge f ∈ F connecting these mincuts whose minimal mincut has not been processed yet must
have Xf = Xe.

In conclusion, we successfully proved Lemma 3.1 by providing an algorithm that constructs a cactus in
O(mα(m,n)+n|T |) time. Notice that it is linear time on a not-so-sparse graph whenever m = Ω(n|T |) and
|T | = Ω(log n).

B Minimal Mincuts of Vertices: Proof of Lemma 3.3

B.1 On the Missing Case in [23] In [23], the key subroutine is computing the minimal mincut for
vertices. Under their framework, they compute Type 1, Type 2-Comparable and Type 2-Incomparable
minimal 2-respecting mincut for vertices. We believe that their approach is correct, but there seems to be a
missing case for computing the minimal incomparable 2-respecting mincut of vertices.

In one of the cases where they compute the minimal incomparable mincut partner for each vertex v
(corresponds to Lemma B.1), they define the “outermost” minimal minprecut parter of v. In Section 3.1 of

14No pun intended.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1538

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

[23], two copies of the tree S and T are maintained. One of them is the shrunk tree S where the algorithm
contracts processed boughs and produces the bough decomposition. On the other hand, the algorithm
does not shrink T (see [23, Figure 2]). The outermost minprecut is then defined and computed on the
uncontracted tree T . Upon processing the bough (v1, v2, . . . , vk) where v1 is the lowest vertex, the algorithm
examines all edges incident to any vertex in v↓k with a postorder traversal, and then dynamically maintains
the outermost minimal minprecut partner. However, in the case where the outermost partner lies in v↓i \v

↓
i−1,

this partner may become invalid once the algorithm visits vi. Their algorithm did not describe how to update
the “outermost” partner correctly in this case.

r = v4

v3

v = v2

u = v1

w

w′

S
T

32

Figure 5: A Missing Case.

An Example. Recall the definition of incomparable precut value
C⊥v (w) = C(w↓) − 2C(v↓, w↓). Consider the graph in Figure 5 and the
green spanning tree T , we have

C⊥u (w′) = C(w′↓)− 2C(u↓, w′↓) = 4− 2× 3 = −2 .

C⊥u (w) = C(w↓)− 2C(u↓, w↓) = 3− 2× 2 = −1 .

C⊥v (w′) =∞ . (since w′ ∥ v)
C⊥v (w) = C(w↓)− 2C(v↓, w↓) = 3− 2× 2 = −1 .

Therefore, w is the unique outermost minimal minprecut of v, and w′

is the unique outermost minimal minprecut of u. But there doesn’t exist
any edge between X = v↓ \ u↓ = {v, w′} and w↓, which turns out to be a
missing case for Lemma 3.4 of [23].

Note that maintaining the minprecuts on the uncontracted tree T
instead of the shrunk tree S is necessary. The reason is, it is possible to have a vertex v whose all
minprecut partners are processed in boughs of earlier phases. However, if the algorithm shrunk the bough
after processing it, the minprecut values at vertices on that bough are no longer available.

In the next subsection, we provide a simpler and complete algorithm that uses a completely different
approach compared to [23].

B.2 Our Algorithm A natural question is this: can we add a self-loop on each vertex and reduce the
problem of computing minimal mincut for vertices to computing minimal mincut for edges? The reason we
cannot prove this way is that, for the incomparable case, the direction of the reduction is actually opposite.
Recall that, Lemma 6.3 computes the minimal incomparable 2-respecting mincut candidates for vertices,
and we use it to prove Lemma 6.1 which computes minimal incomparable 2-respecting candidates for edges.
Therefore, proving Lemma 6.3 will be one of the main tasks in this section. The key insight is again exploiting
the structural property of 2-respecting mincut and using top-tree to find the minimal one. (See the proof of
Lemma B.1 at the end of this subsection.)

On the other hand, we can use the self-loop idea to compute the minimal comparable 2-respecting mincut
candidates for vertices using Lemma 5.1, which does not involve in a circular proof.

Corollary B.1. There is an algorithm that, given a spanning tree T of G = (V,E), in total time
O(m log2 n) computes, for every vertex u ∈ V an comparable 2-respecting minimal mincut candidate
f(u) = (vu, wu) or null with the following guarantee:

If there exists comparable 2-respecting cut that separating u from root r, then v↓u \ w↓
u is such a mincut

with smallest size.

Proof. Given a graph G = (V,E), we insert a self-loop edge eu on each vertex u ∈ V . Denote the new
graph as G′ = (V,E′). By Lemma 5.1, given the graph G′ and the spanning tree T , there is an algorithm

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1539

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

computing a comparable 2-respecting minimal mincut candidate f(e) = (ve, we) for each edge e ∈ E′ with
the following guarantee: if the minimal mincut of e is a comparable 2-respecting cut of T , then v↓e \ w↓

e is
the minimal mincut of e. Therefore, for each vertex u ∈ V , the comparable 2-respecting minimal mincut
candidate of u can be set as f(u) = f(eu), since the minimal mincut of u is the same as the minimal mincut
of eu.

We shall prove Lemma 3.3 which computes minimal 2-respecting mincut candidates for vertices. The
proof is essentially the same as Section 7, except that we use the corresponding subroutines computing each
type of 2-respecting minimal mincut for vertices.

Proof of Lemma 3.3. Given a spanning tree T , there are three types of 2-respecting cut of T . For each type,
we compute the minimal mincut candidates for vertices.

Type 1. By Lemma 3.6, the algorithm computes the minimal 1-respecting mincut candidate for every vertex
v.

Type 2-Comparable. By Corollary B.1, the algorithm computes the minimal comparable 2-respecting
mincut candidates for every vertex v.

Type 2-Incomparable. By Lemma 6.3, the algorithm computes the minimal incomparable 2-respecting
mincut candidates for every vertex v.

For each vertex v, we get three minimal mincut candidates as above. If all of the three candidates are
null, then the minimal 2-respecting mincut of v respects to T is null. Otherwise, the minimal 2-respecting
mincut of v respects to T is the mincut with the smallest size among these minimal mincut candidates.

Since the algorithm for each case runs in O(m log2 n) time and the comparing time is constant for each
vertex, the whole algorithm runs in O(m log2 n) total time.

In the rest of this section, we focus on proving Lemma 6.3, which exploits the following lemma as a key
subroutine.

Lemma B.1. There is an algorithm that, given a graph G = (V,E) and a spanning tree T ∈ T , in total
time O(m log2 n) computes, for every vertex v ∈ V , a vertex called minimal incomparable mincut partner
rv ∈ V ∪ {null} with the following guarantee: if there exists incomparable mincut partner of v, then rv is the
incomparable mincut partner of v with the smallest subtree size r↓v.

With Lemma B.1, we can efficiently compute minimal incomparable 2-respecting mincut candidates for
vertices, since all the minimal incomparable 2-respecting mincut candidates for vertices are of the form v↓∪r↓v
for some v. We shall prove Lemma 6.3, and defer the proof of Lemma B.1 to the end of this subsection.

Proof of Lemma 6.3. Observe that if an incomparable 2-respecting mincut contains u, it will also contain
all the descendants of u. Hence, the minimal incomparable 2-respecting mincut of u is either the minimal
incomparable 2-respecting mincut of the parent of u or the minimal incomparable 2-respecting mincut u↓∪r↓u.
Therefore, we can find the minimal incomparable 2-respecting mincut of all the vertices using a one-time
depth-first-search after computing all the rv in Lemma B.1.

The algorithm for Lemma B.1 is the main technical contribution of this subsection. We highlight that
top-tree is again the right data structure for exploiting the structural property: using MinTree↓ we can find
the partner with minprecut value and break tie by finding the one with smallest subtree size, which meets
exactly the criteria of minimal incomparable mincut partner.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1540

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof of Lemma B.1. We will use the reduction to path from Lemma 4.1. For any P ∈ P , define g(e, P) = rv
if v ∈ P and e is the tree edge with v being the lower vertex, otherwise g(e, P) = null.

Given a path P = (v1, v2, . . . , vk) from the path decomposition with v1 being the deepest vertex, our
algorithm will process vi starting from i = 1, 2, . . . , k. We will maintain the invariant that once we process
the vertex vi the incomparable precut values C⊥vi

(w) for all w ⊥ vi can be accessed via val[w].

Next we show how to maintain the invariant. In the preprocessing step before the path P was given,
we set val[w] = C(w↓) for each vertex w ⊥ v1 and ∞ for w ∥ v1, which can be computed in O(m log n)

time. Now we start from the deepest vertex v1, the algorithm needs to add −2C(v↓1 , w↓) to each val[w] so
that val[w] = C⊥v1(w). To achieve this efficiently, we create a dynamic tree on T (Lemma 4.2). For each
edge (u, u′) where u ∈ v↓1 , we invoke AddPath(u′, 2C(u, u′)) so that two times the weight of the edge (u, u′)
is added to val[w] for each w ∈ u′↑.

Then, the algorithm scans through the rest of vertices v2, v3, · · · vk on the path one by one. Suppose
the algorithm reaches vi now. With the invariant after processing vi−1, it suffices to add 2C(v↓i \ v

↓
i−1, w) to

val[w] for each w ⊥ vi by invoking AddPath(u′, 2C(u, u′)) for each edge (u, u′) where u ∈ v↓i \ v
↓
i−1. (These

edges can be found in O(d(v↓i \ v
↓
i−1)) time using a DFS from vi without searching the subtree rooted at

vi−1.) Therefore, in O(d(v↓i \ v
↓
i−1) log n) time, val[w] are updated to C⊥vi(w) for all w ⊥ vi.

After obtaining C⊥vi(w) values, we compute the minimal incomparable mincut partner rvi by the following
dynamic tree operations. We first invoke Cut(vi, parent(vi)); then rvi can be found by MinTree↓(parent(vi));
finally invoke Link(vi, parent(vi)) to restore the tree.

From the discussion above, we have an algorithm that, given a path P , computes g(e, P) for all
e ∈ E(P ↓) in O(d(P ↓) log n) time. By plugging in the path decomposition Lemma 4.1, we obtain an
algorithm that computes rv of all vertices v ∈ V in O(m log2 n) total time, because the preprocessing time
is tp = O(m+ n log n) for computing C(w↓) and building the dynamic tree.

C The Algorithm from [23] Runs in Ω(m log4 n) Time

Here, we give an explanation of why the algorithm by [23] takes Ω(m log4 n) time. For the first log factor,
their algorithm randomly generates Θ(log n) graphs from the original input graph as follows: in each copy,
an edge with weight w is contracted with probability min{ w

2λ , 1}. Note that each contracted graph could still
contain Θ(m) edges even if we increase the contraction probability by any constant (e.g. a complete graph
with unit-weight edges).

Their algorithm then spends at least Θ(m log3 n) time on each contracted graph, which is our time-
bound. These three log factors come from (1) there are Θ(log n) trees in the tree packing, (2) for each tree,
there are Θ(log n) phases in the bough decomposition, (3) for each phase, we need to process Θ(m) edges
using dynamic tree data structure, each of which takes Θ(log n) time. Therefore, in total, the algorithm by
[23] takes Ω(m log4 n) time, while ours avoids generating the randomized Θ(log n) copies of the graph and
takes only O(m log3 n) time.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1541

D
ow

nl
oa

de
d

04
/2

9/
25

 to
 1

36
.1

67
.5

0.
13

8
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

	1 Introduction
	1.1 Related Works

	2 Preliminaries
	2.1 Crossing Mincuts, Uniqueness of Minimal Mincuts
	2.2 Cactus: Representation of all Global Mincuts

	3 The Framework of [KP09] and Our Improvement
	3.1 2-Respecting Mincuts and Tree Packing
	3.2 Cut Labels and Three Types of 2-Repecting Mincuts
	3.3 Computing Cut Labels Efficiently
	3.4 Technical Contribution

	4 Useful Tools
	5 Comparable 2-respecting Minimal Mincuts of Edges
	5.1 Reduction to Computing Lower Vertices
	5.2 Computing the Lower Vertex for each Edge
	5.2.1 Computing Highest Partner of each Vertex
	5.2.2 Main Algorithm for Computing Lower Vertices

	6 Incomparable 2-respecting Minimal Mincuts of Edges
	6.1 Minimum v-Precuts and P-Outer Minimum v-Precuts
	6.2 Algorithm Description
	6.3 Implementation
	6.4 Correctness
	6.5 Runtime Analysis

	7 Putting Everything Together: Proof of lemma3.7
	A Constructing Cactus from Minimal Mincuts
	A.1 Warmup I: Assumptions and Preprocessing
	A.2 Warmup II: Nesting Relation Tree
	A.3 Chains and Chain Certificates
	A.4 Reducing Cactus to Hierarchical Representation of Global Mincuts
	A.5 Constructing a Hierarchical Representation
	A.6 Efficient Implementation of Algorithm4

	B Minimal Mincuts of Vertices: Proof of Lemma3.3
	B.1 On the Missing Case in [KP09]
	B.2 Our Algorithm

	C The Algorithm from [KP09] Runs in mlog4n Time

