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Abstract—This paper focuses on inferring a general class
of hidden Markov models (HMMs) using data acquired from
experts. Expert-acquired data contain decisions/actions made by
humans/users for various objectives, such as navigation data
reflecting drivers’ behavior, cybersecurity data carrying defender
decisions, and biological data containing the biologist’s actions
(e.g., interventions and experiments). Conventional inference
methods rely on temporal changes in data without accounting
for expert knowledge. This paper incorporates expert knowledge
into the inference of HMMs by modeling expert behavior as an
imperfect reinforcement learning agent. The proposed method
optimally quantifies experts’ perceptions about the system model,
which, alongside the temporal changes in data, contributes to
the inference process. The proposed inference method is derived
through a combination of dynamic programming and optimal
recursive Bayesian estimation. The applicability of this method is
demonstrated to a wide range of inference criteria, such as max-
imum likelihood and maximum a posteriori. The performance
of the proposed method is investigated through a comprehensive
numerical experiment using a benchmark problem and biological
networks.

Impact Statement—Inference is an essential tool for under-
standing and predicting the behavior of complex systems and
processes. Expert knowledge, such as that of scientists, doctors,
or engineers, can provide valuable insights into the underlying
mechanisms of complex systems. Incorporating expert knowledge
and intention into the inference process allows for construct-
ing/learning models that carry valuable expert perception of
complex systems. This helps overcome data limitations, deal with
the non-identifiability of models and increase the accuracy of
the inference process. In particular, the biological application
will help to fill the gap between expert knowledge and mathe-
matical/computational approaches, allowing for valuable domain
knowledge to be quantified and incorporated into the modeling.

Index Terms—Expert-Enabled Inference, Hidden Markov
Models, Inverse Reinforcement Learning, Gene Regulatory Net-
works.

I. INTRODUCTION

Modeling complex processes requires a deep understanding
of their underlying components and their interactions. Hidden
Markov Models (HMMs) are an important class of dynamic
models with a broad range of applications in fields such as
robotics, healthcare, smart grids, and finance [1]-[6]. Inferring
the parameters of these models through the available time-
series data is a crucial step in modeling complex systems using
HMMs. Over the years, several inference techniques have
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been developed for HMMs [7]-[14]. These include maximum
likelihood, expectation-maximization, maximum a posteriori,
and Markov chain Monte Carlo techniques [15]-[23]. These
techniques are capable of accounting for temporal changes in
data and prior probabilities (if available) of models for point-
based or distribution inference.

Two common challenges in the inference of HMMs are non-
identifiability issues and data limitation [24], [25]. The non-
identifiability problem arises when multiple system models
have the same probability given the observed data, meaning
that the true model is not distinguishable among models given
the available data. In addition, data limitation relative to large
parameters needed for modeling complex real-world systems
negatively impacts inference accuracy and the predictive power
of the inferred model.

In many domains, the available data contain subject matter
experts’ decisions, which is referred to as expert-acquired data.
Examples of these domains abound, such as medical data
obtained according to a course of treatments made by medical
professionals, cybersecurity data containing monitoring or
cleaning decisions made by engineers, and navigation data
that contain the human drivers’ actions. The standard HMM
tools fail to account for the experts’ intentions explicitly
and only incorporate the temporal changes in data into the
inference process. Ignoring the expert intention can lead to
the unreliability of the inference process, as experts’ decisions
often carry their rich knowledge about how the system’s
behavior and operation, and provide valuable insights into the
model of complex dynamical systems. For example, the biol-
ogist’s choice of interventions during the therapy reflects their
understanding of the underlying mechanisms of biological
systems. By incorporating expert knowledge into the inference
process, it is possible to overcome data limitations and the non-
identifiability of system models, which are two key challenges
in accurately modeling complex systems.

Several methods have been developed to account for expert
supervision to enhance the performance of the inference
process in HMMs. One class of approaches is supervised
inference through labeled data, where manual annotations by
experts are used with regard to the system state to enhance
the inference process [26], [27]. Data augmentation techniques
are another class of techniques that aim to generate addi-
tional training data that adhere to expert constraints [28]-
[31]. Finally, Bayesian approaches have been developed to
serve as regularization mechanisms to influence the parameter
estimation towards values that are consistent with the expert’s
knowledge [32], [33]. While all aforementioned methods rely
on expert presence and supervisors to label, impose con-



straints, or augment data, this paper develops a method for
implicit and non-supervised incorporation of expert knowledge
into the inference of HMMs.

It should be noted that inferring the system model dif-
fers from recovering the expert reward function or policy,
commonly discussed in imitation learning and inverse rein-
forcement learning [34]-[41]. Assuming the expert reward
functions are known, the goal is to implicitly incorporate the
information carried by the expert-acquired data into modeling
and inference. This paper models the expert as a reinforcement
learning (RL) agent, which provides probabilistic modeling of
expert perception of complex systems. The non-optimality of
the expert is accounted for using well-known Boltzmann and
e-greedy policies [42], where the expert deviation from optimal
decision-maker, if unknown, can also be quantified during
the inference. A combination of dynamic programming and
Bayesian filtering is employed for quantifying expert knowl-
edge in partially observable environments. The proposed op-
timal expert-enabled inference includes an expert-knowledge
term in addition to the transition term, measuring the temporal
data change in conventional inference techniques. The expert-
knowledge term can be incorporated into a wide range of
inference criteria, including maximum likelihood, maximum
a posteriori, and Bayesian inference. The analytical results
demonstrate that incorporating expert perception always helps
better distinguish models, as long as the expert decisions are
more informative than a random policy.

The primary application of this paper is to infer the model
of biological systems, such as gene regulatory networks and
microbial communities. These regulatory networks are often
modeled through HMMs with binary state variables, where
the state values of biological components are observed imper-
fectly through high-throughput sequencing data. The proposed
method’s performance is investigated in inferring regulatory
interactions in these biological systems using data acquired by
biologist during the intervention/perturbation process. Aside
from a benchmark problem, the numerical experiments utilize
the p53-MDM2 negative feedback loop network and the gut
microbial community to compare the results of the proposed
method with conventional inference methods.

The article is organized as follows. Section II describes
the HMM and the optimal infinite-horizon policy for the
underlying state process of HMM. The formulation of optimal
expert-enabled inference and its recursive matrix-form imple-
mentation are discussed in Sections III and IV, respectively.
Discussions and analysis have been mentioned in Section
V. Finally, numerical examples and concluding remarks are
presented in Section VI and Section VII, respectively.

II. MATHEMATICAL PRELIMINARIES
In this section, a brief description of the HMMs is provided,
followed by modeling the optimal policy derived for arbitrary
data collection objectives.

A. Finite-State Hidden Markov Models

The HMMs characterize the dynamical behavior of systems
observed through noisy time-series data. The schematic dia-
gram of HMMs with external inputs is shown in Fig. 1. The

time-varying behavior of systems is represented through the
state process, where xj, represents the system state at time step
k. This paper considers HMMs with a finite state space, where
the system state takes a value in a finite set X'. The sequence of
states is observed indirectly through the measurement process.
The finite-state HMM can be represented by the following two
processes [5]:

Xk = fg (Xg-1,a5-1,10%) (state process)

)

vk = hg (Xg,vr) (measurement process)

for k=1,2,...; where @ is a vector of unknown parameters
which takes a value in a set ©, a;_; € A is the external input
to the system at time k — 1, ny is the transition noise at time
k, and fp represents the system dynamics. The measurements
depend on the sensor/technology in use, where h is a general
function mapping the current state and measurement noise vy,
into the measurement space. The noise processes {ng, vy;k =
1,2, ...} are assumed to be “white” in the sense that the noises
at distinct time points are uncorrelated random variables. It is
also assumed that the noise processes are uncorrelated with
each other and with the initial state xg.
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Figure 1: The schematic diagram of HMMs with external inputs.

B. Optimal Policy for Underlying HMM

HMMs with an external set of actions can be modeled
through a partially observable Markov decision process. Here,
the policy defined over the underlying Markov decision pro-
cess (MDP) (without accounting for the partial state observ-
ability) is described. The underlying state process in HMM is
a MDP, which can be represented by a 5-tuple (X, A, T, R,v),
where X is the state space, A is the action space, T : X x AxX
is the state transition probability function such that p(x’ | x,a)
represents the probability of moving to state x’ after taking
action a in state x, R: X x A x X — R is a bounded reward
function such that R(x, a,x") encodes the reward earned when
action a in taken in state x and the system moves to state x’,
and 0 <~ <1 is a discount factor.

More formally, a deterministic stationary policy 7: X - A
for an MDP is a mapping from states to actions. The expected
discounted reward function at state x € X after taking action
a € A and the following policy 7 afterward is defined as:

Qﬂ-(xa a) :E|: Z"YtR(Xta ag, Xt+1) ‘ Xo =X,a0 = a,aA]:00 ~ 7T:|

=0
)
According to (2), the expected return under the optimal policy
7" can be defined as:

Qﬂ*(x» a) :E[ ZWtR(Xt, ay,X¢+1) X0 = X, 80 = &, A0 ~ 77*],
t=0
3)



where Q*(x,a) = QT (x,a) indicates the expected dis-
counted reward after executing action a in state x and fol-
lowing optimal policy 7* afterward. An optimal stationary
policy 7* attains the maximum expected return for all states
as: m*(x) = argmax, 4 Q*(x,a), for x e X.

III. FORMULATION OF OPTIMAL EXPERT-ENABLED
INFERENCE FOR HMM s

This section first describes the inference problem in HMMs,
including the conventional inference approaches built on max-
imum likelihood and maximum a posteriori criteria. Then,
the proposed approach for inference through expert-acquired
data is described. A specific case of expert-enabled inference
through data with directly observable states is also analyzed.

A. Conventional Inference in HMMs

The inference in HMMs consists of estimating the unknown
parameters of the model in (1) represented by 6, using
available data. Let Dy = {(a9,¥1),(a1,¥2), -, (Ak-1,¥%)}
be the expert-acquired data up to time step k, where a,_;
is the taken action by an expert at time step r — 1, and y,
represents the measurement at time step r. The conventional
inference techniques aim to infer a model using the maximum
likelihood (ML) and maximum a posteriori (MAP) criteria as:

é,I;/IL = argmax Lg(@)(Conventional ML Inference),
0O

OAQIAP: argmax [log p(0)+LT (0 )] (Conventional MAP Inference),
6cO
“4)

where p(-) denotes either a probability density function or a
probability mass function, p(@) is the prior probability, and
the log-likelihood value for model @ can be represented as:

k
L{(0):=log p(F1:x | Aok-1,0) =Y log p(¥r | F1:r-1,80:-1,0) .
r=1

Transition Term (5)
The transition term in (5) measures the likelihood that the
temporal changes in the data are associated with model 6.
Clearly, the model with the highest (log)-likelihood or poste-
rior is selected as the inferred model. While these methods
are optimal techniques in discriminating models according
to their temporal changes, they cannot take into the value
expert knowledge carried in expert-acquired data for the in-
ference purpose (i.e., agp:x—1). In the following paragraphs, the
proposed expert-enabled inference method, which optimally
incorporates expert knowledge, is described.

B. Expert-Enabled Inference in HMMs

This part describes the inference through expert-acquired
data by incorporating expert knowledge. Let R(.,.,.) repre-
sent the expert reward function, which denotes the reward
associated with the main objectives from which data are
acquired. For instance, if the actions are interventions made
by biologists, the immediate expert reward function measures
the improvement achieved at any given step during the inter-
vention. Let 7* be the optimal policy given the expert reward

function. Expert decisions/actions are modeled according to
the following well-known e-greedy policy [34]:

1-q %
g+t Ifa=7*(x)
plalx,R) =1,

Al

, forae A, xe X,
If a+7*(x)

(6)
where 0 < ¢ < 1 represents the confidence of the expert. Values
of ¢ close to 1 represent near-optimal experts, whereas the
values close to 0 model random experts. Another popular way
to model expert behavior is through the Boltzmann policy,
which is also known as softmax policy expressed as [42]:

p(a|x,R) o< exp(nQ*(x,a)) forae A,xeX, (7)

where 1 > 0 represents the confidence of the expert; large
values of 1 model confident experts, whereas smaller values
model experts with more random/non-optimal decisions. It
should be noted that both expert models in (6) and (7) are
widely used in the inverse reinforcement learning context and
can model the imperfect behavior of expert/human [34].

The optimal expert-enabled inference given the expert-
acquired data Dy = {(29,¥1),(a1,¥2), -, (2x-1,¥%)} can be
formulated as:

éEE’ML = argmax LY (0),
0O

. ¥
HEE_MAP = argmax [logp(e) + LEE(O)] ,
6O

where the expert-enabled log-likelihood L%E(H) can be rep-
resented as:

LE®(0) =logp(Dy | 6, R)

=log p(¥1:k, A0:k-1 | 0, R) ©

k
= log H P(S’m ar_1 | ag-2, Y11, 07 R)

r=1

Unlike the log-likelihood function in (5), the expert-enabled
likelihood function in (9) considers the joint distribution of the
measurements and the expert decisions. The last expression in
(9) can be further simplified as:

k
LEE(Q) =log H p(yr | ap,-1,y1r-1, 0, R)
r=1
X p(é‘r—l ‘ 5017‘—27 ylir—la 07 R)

k
= > 1logp(¥r | Y1:r-1,80:0-1,0)
r=1

LT (6)= Transition Term

k
+ > logp(ar-1 | ¥1:r-1,80:r-2, 0, R),

r=1

LE(0):= Expert-Knowledge Term

(10)
where the expert reward function R is dropped in tran-
sition term due to the Markovian properties of the state
process. Comparing the expert-enabled and the conventional
log-likelihood functions in (5) and (10), one can see that the
conventional inference techniques only consider the transition
term for the inference process and ignore the expert-knowledge



term. The term expert-knowledge term includes the probability
that the expert would take actions reflected in expert-acquired
data if @ was the expert’s perception of the system. In general,
expert actions would be different if they perceived the system
as 0! or 62 (0' # 6?%). Therefore, given a realization of
the actions reflected in expert-acquired data, the goal is to
incorporate the expert’s perception of the system into the
inference process.

A description of how incorporating the expert-knowledge
term can help the inference process is described through
an illustrative example below (more details are provided in
Section V).

C. Directly Observable States: A Special Case

For the system with directly observable states, the transition
and expert-enabled terms in (10) can be expressed as:

k
Lg(a) = Z logP(ch | 5(7'—1757'—170),

r=1
k

Li(6) = )" logp(a, 1 | %r-1,0, R),
r=1

where the measurements y.; are replaced by states, X
and probabilities are simplified according to the Markovian
properties of the underlying state process.

An Illustrative Example: The following simple system with
a single unknown component 6 is considered:

Y

where 7 € {0,1},0 € {+1,-1} and ay_1 € A= {a' =0,a® =1}
and v maps the value of an arbitrary scalar v greater than 0 to
1, and otherwise to 0. The possible models for this system are
represented by 6! = +1 and 02 = —1, where 6* = §' represents
the true system model. The expert objective is to keep the
system at z = 1. The optimal model-specific policies can be
expressed through 75, (z =0) = 1,75, (x = 1) = 0 and 7y, (z =
0) =1,mg.(x =1) = 1. Assuming {Z = 0,d0=1,%1 = 1,a; =
0} be the expert-acquired data from the optimal expert (i.e.,
q = 11in (6) or n = o< in (7)), the expert-enabled log-likelihood
value for two models can be expressed as:

xR = 0zp_1 ® ap_1,

LY*(0") =log P(&1 =1 | &0 =0,a0=1,0")

LT (61)=log1

+logp(ao=1|%0=0,0", R) +logp(a,=0|Z,=1,0", R)=3log 1,

LE(61)=log1+log1

LY®(0%) = logP(&1=1|%0=0,a0=1,867)

LT(GQ):log 1

+logp(do = 1| %o = 0,0, R) +logp(d1=0|&; = 1,0%, R) =—oco.

LE(62)=log1+log0

It can be seen that the transition terms for both models are
the same; thus, these methods are not differentiable given the
temporal changes reflected in the observed data. This is an

example of a non-identifiability problem where two models
have the same likelihood values according to their transition
terms. However, the difference between the expert-knowledge
terms decisively differentiates the two models.

IV. MATRIX-BASED COMPUTATIONS OF THE
EXPERT-ENABLED INFERENCE

The matrix-based computations described below consist of
two main steps: 1) updating the state posterior for calculating
the transition term, and 2) modeling the expert for computing
the expert-knowledge term. These steps aim to compute the
two terms in the expert-enabled log-likelihood function in (10).
Furthermore, a recursive solution for the computation of the
expert-enabled likelihood and inference is provided in this
section.

A. Matrix-Based Computation of Expert-Enabled Log-
Likelihood Function

Efficient matrix-based computations of the transition and
expert-knowledge terms, required for evaluating the expert-
enabled log-likelihood function in (10), are described below.

1) Computation of transition term: Let {x',...,x"} be
an arbitrary enumeration of the possible states in X. The
following posterior and predictive posterior distributions of the
states are defined at time step r:

I, (i) = P(Xr =x' | Y1:r—1,aO:r—179) ,
) (12)
Hfh"(z) = P(XT = XZ | yl;r,a(];r,l,e) 5

forr=1,..andi=1,...,n; where Hg‘o(i) =P(xg=x"0),
for ¢ =1,...,n, is the initial states distribution. If no knowledge
about the initial state is available, a uniform prior can be
considered, i.e., Hglo(i) =1/n, fori=1,...,n and 6 € O.

We define the controlled transition matrix of size n x n
associated with a model under action a parameterized by 6
as:

(Mg(a));; = P(xr =x | xp_1 = x) a,_q = a,O) , (13)

fore,5=1,...,n.

Additionally, given a value of the observation vector y, at
time r, the update vector Tg(y,) of size n associated with
model 0 is defined by:

(To(y»))i = p(yr | X, =x',0) , (14)
fori=1,...,n.
Let Hff1|r71 be the posterior distribution of state using the

expert-acquired data (a¢:r_2,¥1:+-1). Given &,_; be the expert
action at time step r — 1, the predictive posterior distribution
of states at time step r can be expressed as:

IS, | = Mo(a, 1) TI7_ .

rlr-1

15)
Upon observing the measurement at time step r, y;, the
posterior distribution of state H$|r’ can be achieved using the
following Bayesian recursion [43]:

Tg(yr) ° Hf\r—l

I, - - . (16)
" o) o 110, I




[P L)

where “o” denotes Hadamard product (i.e., the component-
wise multiplication of two vectors). The recursive procedure
in (16) consists of the conditional probability of the last
measurement given the system state denoted by Tp(y, ), and
the predictive posterior of system state Hf|r71 given the
information available up to time step r — 1.

The transition term in (10) associated with model €@ can be
expressed in terms of the predictive posterior distribution as:

k
L{(0) = > 1ogp(Fr | F1:r-1, 80:-1,0)

r=1

lo [Zp(yrlxr—x 0)P(x, =x’ | §1:0-1,80:-1,0)

j=1

lz< To(3:)), Ty, ())

og[ITa () o 0%, 1] -

a7
where the predictive posterior can be computed according to
the recursion in (15)-(16).
2) Computation of Expert-Knowledge Term: The expert-
knowledge term in (10) can be further expanded for a given
6 €O as:

k
LkE(e) = Z logp(ér—l ‘ 5017'—275’117'—1a0)
r=1

[ n .
Zp(ér—l | Xp-1 = XZ70)

L i=1

M=

log

<
I
=

x P(X-1 = X" | 0i—2, Y1:-15 9)]

M=

log

S p(as x0T )|
| =1 (18)
where the computation of the last term can be achieved
according to the expert behavior model in (6) and (7).
Let 7 be the optimal model-specific policy associated with
the model parameterized by 6. The expert-knowledge term in
(18) according to the e-greedy policy can be written as:

k n
LkE(a):ZIOg[Z((q+ 1|A| ) ar,lzﬂg(xf’)

r=1 i=1
1-
+ |7|q 1574 #Tg (xi)) H?—1|r—1 (Z):|
(19)
Let also Q(.,.) be the optimal model-specific Q-function for
the model parameterized by 6. The expert knowledge term for
the softmax policy can also be expressed as:

l" exp (nQp(x',a,1))

Il
[

r

k
L{(8)=Ylog

r=1

; S eenexp (1Qp(xha)) g, 1(2)]

(20)
Note that the computation of the optimal model-specific Q-
function can be achieved through a dynamic programming
method [44] for relatively small and finite state and action
spaces, and approximate dynamic programming or reinforce-
ment learning techniques [45] for large and continuous spaces.

This part briefly describes the value iteration method [44]
for the computation of the model-specific policies and Q-
functions in finite state and action spaces. The matrix-form
representation of the expert reward function, R(.,.,.), for a
given action, a € A can be expressed as:

(R(a));; = R(xj,a,xi), fori,j=1,..,n 21

The Bellman operator for model 6 in a matrix-form is defined
as [44]:

T*[Vo] = max [(R(a) © Mg ()" L1 +7Mg (a) Vo,
i 22)

where “max” is applied row-wise, 1,1 is a vector of size
n with all elements 1, and ”®” denotes the component-wise
multiplication of two matrices. Note that the Bellman operator
in (22) depends on the model 6, and the row-wise maximum
is over possible actions in the action space.

The optimal state value function Vg for any given model
6 can be obtained by starting with an arbitrary state value
vector V9 (e.g., V§ = [0,--,0]7) and recursively applying
the Bellman operator to all elements of this vector. This can
be expressed in a vectored form as Vi) = T*[V§ '], where the
process is guaranteed to converge to the optimal state value
function, which is a unique fixed-point solution for Bellman
operator. The iterative process of performing the Bellman
operator can stop when the maximum difference between
elements of value vectors in two consecutive iterations falls
below a small prespecified threshold, i.e., [V - V)|l < A.

The optimal model-specific Q-function can be obtained
according to Vg as:

Qé({& a)
Qy(x",a)

for a € A. The optimal model-specific policy can be computed
as mp(x") = argmax, 4 Qp(x",a), for i = 1,...,n. Replacing
g Or Qg into (19) or (20) leads to the exact computation of
the expert-knowledge term.

The transition and expert-knowledge terms computed in (17)
and (19) or (20) can be used for expert-enabled inference in
HMMs with arbitrary parameter space. Each expert-enabled
log-likelihood evaluation requires employing a dynamic pro-
gramming technique and a forward Bayesian recursion. As of
the conventional inference methods, inference through batch
expert-acquired data demands searching over the parameter
space and selecting the model with the largest expert-enabled
log-likelihood or log-posterior values.

=(R(a) © Mo (a))" 1nx1 +7Mg (2) Vg, (23)

B. Expert-Enabled Inference under Unknown Expert Confi-
dence

The expert-knowledge terms in (19) and (20) require knowl-
edge about the expert’s confidence, denoted by the parameters
q or n. In practice, the expert’s confidence may be unknown,
and thus one needs to take this into account during the expert-
enabled inference process. In such scenarios, the expert’s
confidence can be treated as an additional parameter and be
inferred alongside other model parameters during the inference



process. Given the e-greedy model of the expert behavior with
unknown confidence, the joint inference of the model and the
expert’s confidence can be achieved as:

(g7 ME, 07" MY) = argmax [LY(6) + LY(6)]
0cO&qe[01]
u 0
= argmax (Z log [|I76(3) © L7,y 1|
0eO0&qe[01]\ r=1

(24)

+i10g[2(( W

) a 71:Tf2(xi)
1-

q 0 :
wlérli‘n’;(xi)) Hrlrl(y’)])i

where the first term, Lf(@), includes only the model param-
eter, while the expert knowledge term, L¥ (6), includes both
the model parameters and expert confidence. Note that the
main difference in expert-enabled inference with unknown and
known expert confidence is the addition of a scalar parameter
representing the expert confidence, which should be optimized
alongside the model parameter 6. The optimization can be
achieved by quantization of the ¢ value or other optimization
algorithms suited for continuous variables. The inclusion of
this single parameter in the optimization process is expected
to be less impactful in the accuracy of inference in domains
with large parameters.

C. Optimal Recursive Expert-Enabled Inference for HMMs
with Finite Parameter Space

In this section, for HMMs with finite parameter space, the
exact recursive computation of the expert-enabled inference
is derived. The finite parameter space is common in many
domains modeled by HMMs, such as network systems where
the unknown parameters are often the possible topologies for
the network. Meanwhile, quantization of the parameter space
is a standard approach to achieving a finite parameter space
in practice.

A recursive formulation of the expert-enabled log-likelihood
function in (9) can be expressed as:

k
L%E(e) = Z Ing(S’r | A0:r—1, Y115 0)

r=1

k
+ Z logp(ér—l | éO:r—Q,S’l:r—l, 0)
r=1

= L5 (0) +logp(Fk | F1:k-1,A0:-1,0)

1 (6):=Transition Increment

+logp(ak-1 | ¥1:k-1, A0:k-2, 0),

lkE (6):=Expert-Knowledge Increment
(25)
where LY () is the previous expert-enabled log-likelihood
function, and the transition and the expert knowledge incre-
ments represent the addition to the log-likelihood value after
observing the last expert-acquired data, i.e., (ax-1,¥%)-
The transition and the expert-knowledge increments can be

expressed as:

I} (8) =log||To(yx) © TRy 4|,
12(6)=1lo lZ P i)

i=1 ZaeA €xXp (77 QQ(X7 ))
zlog[i((tﬁ

¢ ket jk—1(7 )] softmax

ak—1=7"§(xi)+
ﬂL <oy | TIO (i) | e-greed
|A| ap_1#mh(x?) k-1]k-1 g Y-

(26)
Given a finite parameter space O, the proposed method divides
the expert-enabled inference process into offline and online
steps. In the offline step, M dynamic programming techniques
are run in parallel, each tuned to a specific model/parameter,
{6',...,6M} = ©. The outcomes of the offline step are the
optimal model-specific Q-values, i.e., Q4 (.,.), for 8 € ©. Note
that the offline step contains the major computational costs
of the proposed method. In the online step, upon observing
any new expert-acquired data, the optimal recursive expert-
enabled MAP inference is updated. The expert-enabled log-
likelihood values get updated according to the transition and
expert-knowledge increments for all models. The process is
fully recursive; as new expert-acquired data at time &k + 1
arrives, the expert-enabled inference can be updated by only
computing the transition and expert-knowledge increments in
(26). The procedure is summarized in Algorithm 1.

Algorithm 1 The proposed Optimal Expert-Enabled Inference
for Hidden Markov Models with Finite Parameter Space

: Parameter space © = {6%,...,0™}; known expert reward
(R(a))i; = R(x?,a,x); transmon matrices M?(a); known
expert confidence ¢; Value Iteration threshold A > 0.

Offline Step: Parallel Dynamic Programming Methods
2: for 0 < © do

3: Run dynamic programming using (22) and (23) to obtain g
4: end for

Online Step: Recursive Expert-Enabled MAP Inference
5: Lo(0) =0, set HS,O, for 0 € ©.

6: for k =1,2,... do /* Upon receiving new data (ax-1,y%) */
7: for 6 < © do
8: Prediction: HZ‘,WI = Mg(ék,l)l'lgfllkfl
9: Unnormalized Posterior update: ,BZ =Te(yx) © HZ|1€71
10: Posterior Update: Hk‘k = B2/118%]):.
11: Compute 1 (@) and I} () using (26):
12: Expert-Enabled Likelihood:
Li®(0) = LyE1(0) + 1 (8) + 1 (8).

13: end for

14: Optimal Expert-Enabled ML Inference

OFE ML _ argmaxlog LEE(6).
0cO
15: end for




V. DISCUSSIONS AND ANALYSIS
In this section, the impact of the incorporation of expert
knowledge in the inference process is examined. The conven-
tional ML inference and the expert-enabled ML inference for
HMMs can be expressed according to (4) and (8) as:

OML = argmax LT (),
6O

P M = argmax [ LY (8) + Lf(6) . 7
6<cO

In logarithmic form, the expert-knowledge term, LZ(0), can
be seen as an additional term that appears in expert-enabled
ML inference. The goal is to analyze the impact of the expert
knowledge term on the deviation of optimization solutions in
(27). Consider the expert knowledge term LF(0), derived in
(19):

k n
Lf(e):Zbg[z((w

r=1 i=1

) a,_1= 7T9(X7’)

optimal model-specific term

1-g¢q .
Wla_mg(xw )Hfl|r1(2):|~
(28)

The optimal model-specific term takes (g + ‘ ‘ if the expert
action is matched with the actions prescribed by the optimal
model-specific policy for model 0, otherwise, it takes (1 —
q)/|A|, as indicated by the non-optimal model-specific term
in (19). For extremely confident expert modeled by ¢ ~ 1, the
expert-knowledge term can be simplified as:

Lk: (0) Zlog(zlar 1= W*(XI) H’l“ 1|r- 1( ))

r=1

R S —
non-optimal model-specific term

(29)

which only includes the optimal model-specific term. Thus, for
a confidence rate close to 1, the optimal-model-specific term
plays a larger role than non-optimal model-specific terms, as
experts are expected to make more optimal decisions.

For experts with behavior close to random decision makers,
the expert behavior can be modeled using g close to 0. The
expert-knowledge term in (19) can be expressed for these cases
as:

(0) = Z IOgZ [|A| r—1|r— 1(1)] klog |A| (30)
The expert knowledge, in this case, is independent of 0, as it
takes a fixed value for all models 8 € O, and can be perceived
as a constant addition to the transition terms of all models.
Thus, the expert-enabled inference and regular inference in
(27) become the same under random experts.

Using the expert knowledge term in (19), given the large
available data, the largest value for LF (6) should correspond
to @ = 8" and when the posterior is peaked over the true state
as: .

Hf—l\r—l(i) = {1 *

Xpr-1

i=1,..,n. 31)

0 otherwise ’

In practice, the posterior distribution of the true model is
expected to be peaked around the true state, especially in

domains with small measurement noise and a long history
of observations. For models other than the true model, the
posterior distribution is generally not expected to be peaked
around the true state, as observed data from 6* might not
match the expected trajectory for models 0 + 6*.

For those models that are not distinguishable according to
their transition terms, the incorporation of expert knowledge
helps them to be differentiable in general. If the goal is to
infer the true underlying system model, the incorporation
of knowledge from a biased expert could lead to a biased
inference. However, if the goal is to infer the system model
that represents the expert’s perception of systems, then the
proposed method can be directly used to infer such models. For
instance, inferring (inaccurate or biased) biologists’ perception
of systems helps them to test new hypotheses or design new
experiments to confirm or reject their perception.

VI. NUMERICAL EXPERIMENTS

This section analyzes the performance of the proposed
expert-enabled inference method using three problems, a
benchmark, and two biological systems. e-greedy policy with
parameter ¢ is used through numerical experiments for mod-
eling the expert behavior. The ML and MAP are used as
inference criteria, and the results of the proposed expert-
enabled approach are compared with the optimal conventional
ML and MAP inference techniques. The following three
metrics are used for comparison purposes: 1) true inference

rate 19 _o+> which takes on a value of 1 if the inferred model

Ok at time step k matches the true model 8* and 0 otherwise;
2) inference error ||ék — 0*||1, which measures the absolute
sum of errors between the inferred model and the true model;
3) maximum posterior probability maxgee p(0 | Dy), which
denotes the largest posterior probability of models. All average
results presented through the numerical experiments include
the standard error of the mean to better analyze the consistency
and robustness of the proposed method.

0.5

0.5
Figure 2: Benchmark finite state MDP problem
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Figure 3: Average true inference and error obtained by proposed ~Proposed method for the benchmark problem.
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ment noise(e) in the benchmark problem.

A. A Benchmark HMM Problem

The first experiment is conducted using a benchmark finite-
state HMM [46]. The system contains four states denoted
by X = {z!,22,2%,2*}. The state transition probabilities are
shown by arrows in Fig. 2. The transition probabilities from
state 2! to other states is assumed to be unknown, which can



be expressed using the following parameter vector:

0= [(7"%2, 7“%37 7’%4)7 (7”%27 7'f3a 7”%4)> (7'?2» 7”:133, 7“:134)] (32)

where rij =p(wp =27 | 4oy = 2L, sy = a).

Each element of unknown parameter vector 7% ; 1s assumed
to take its true value from {0, 3, 5,1}, subject to rj, + ris +
riy = 1, for i = 1,2,3. This leads to 343 possible models
for the system represented by © = {8',.... 8343}, The true
system model shown in Fig. 2 can be expressed using 6* =
[(%,O,%),(%,%,%),(O,%,%)]. The system state is assumed
to be partially observable through the following measurement
process:

with probability 1 —e

L
_ : 3
Yk {x’ € {X -z} with probability e 53

where zj is the underlying true state at time step k, which
is observed correctly with probability 1 — e and observed
wrongly with probability e. Therefore, 0 < e < 1 represents
the measurement noise, where e = 0 is a special case with
direct state observability.

We assume the expert objective is to guide the system to
move to state x* as early as possible and stay in that state. This
can be presented using the following expert reward function:

R(z,a,2") = =1+ 51,44, for z,2"e{z', 2%, 2% 2%} ,a ¢ A,

(34)
where the indicator 1,,_,4 assigns a reward of 5 for observing
state 2% and -1 for taking any action. Using v = 0.95 and
A =0.01 in the offline step of Algorithm 1, the optimal expert
policy used for generating expert-acquired data is as follows:
mh(2') = @t or a®, 7. (2?) = al, 7). (23) = a'. Note that
the confidence rate g represents the probability that the expert
follows the optimal policy compared to non-optimal actions.

The ML is considered as a criterion for inference in this
case. The expert confidence is assumed to be ¢ = 0.75
and measurement noise to be e = 0.25 for generating the
expert-acquired data. Fig. 3 represents the average accuracy
of inference obtained by the proposed expert-enabled ML
inference, compared to the conventional ML inference method.
It is evident that the proposed method achieves a much
higher inference rate. As more data are observed, the average
true inference rates for both methods increase. The superior
performance of the proposed method can also be seen in
terms of a smaller average error, indicating the importance
of incorporating expert knowledge.

The impact of utilizing the wrong expert’s confidence on
the performance of the proposed method is investigated by
generating 100 datasets with a length of 100 using experts
with a confidence rate of ¢ = 0.75. The average results of the
proposed method with different expert confidence levels (true
and untrue) are shown in Fig. 4. As expected, the highest
inference rate and the minimum average error are obtained
for ¢ = 0.75, which matches the confidence in the data. The
expert-enabled ML inference significantly outperforms the ML
inference when the true expert confidence rate is utilized.
The performance of the proposed method decreases as the
confidence rate used in the method becomes further from the

true confidence rate. However, in almost all cases, the expert-
enabled ML inference outperforms the regular ML inference,
demonstrating the proposed method’s non-sensitivity to the
exact expert confidence rate. Note that for the extreme case
of an optimal expert with ¢ = 1, the results are significantly
impacted. This is because of the deterministic representation of
the expert knowledge in this case, which rules out models with
a single mismatch from what the optimal expert is expected
to take under those models. Therefore, a rough approximation
of the expert confidence can often provide good inference
performance.

To analyze how to deal with domains where there is no
knowledge about expert confidence, we use optimization in
equation (24) for joint inference of parameters and expert
confidence. Fig. 5 shows the inferred model and expert confi-
dence over time given a single expert-acquired data. The solid
red lines represent the true confidence rate and model. One
can see that the inferred model approaches the true model in
less than 30 steps with the proposed method. The inferred
confidence rate becomes closer to the true confidence rate as
more data becomes available. Note that the small difference
in the inferred confidence rate is to the availability of a
single trajectory for expert-acquired data, which does not carry
enough information for an accurate assessment of the expert
confidence rate.

The impact of the measurement noise on the performance of
the proposed method is examined in this part. The top plots
of Fig. 6 represent the average inference rates with respect
to the measurement noise intensity for two different numbers
of data. It can be seen that expert-enabled ML inference out-
performs regular ML inference in all cases. The performance
of both methods decreases as the level of measurement noise
increases. However, the reduction in average inference rates
obtained by the proposed expert-enabled inference method is
less than that of regular ML inference. A similar trend can be
observed for the average errors in the second row of Fig. 6. It
can be seen that the incorporation of expert knowledge helps
enhance the inference rate under various measurement noise
intensities.

B. Biological Networks Application

The application of interest in this paper is biological systems
such as gene regulatory networks and microbial communities.
These regulatory networks are composed of a number of
interacting components, such as bacteria, microbes, genes, and
small molecules, which are often observed in high-throughput
sequencing data [47]. These systems are often modeled by
hidden Markov models with binary state variables [48], [49].
Most available data from these biological systems contain
the decisions made by biologists or microbiologists, such as
data acquired during interventions for disease treatment or
experimental perturbation for hypothesis testing.

Consider a regulatory network with d components. The
state process can be expressed as {xy;k = 0,1,...}, where
x), € {0,1}¢ represents the activation/inactivation state of
the components at time k. The components’ state is updated
at each discrete time using the following Boolean signal



model [50], [51]:

X = Cxp1 +b ®ag_ 1 & ng, (35)
for £ =1,2,..., where C is a matrix of size d x d, Vv maps
the elements of an arbitrary vector v greater than 0 to 1
and smaller than or equal to 0 to 0, ap_; € A c {0,1}¢
is an external input (e.g., intervention, perturbation, etc.) at
time step k — 1, ny € {0,1}¢ is noise process at time k,
“@®” denotes component-wise binary addition (the exclusive-or
logic operation). The elements in the ¢th row and jth column
of the connective matrix, (C);; model the type of regulatory
interaction from component j to component i. (C);; takes a
value in {-1,0, +1}, where 0 represents no interaction, and +1
and -1 represent positive and negative regulatory interactions,
respectively. The stress vector b € {0, 1}¢ specifies the external
input to each gene, where b(%) = 1 represents the ith system
component is under stress. The noise process is modeled
through d independent Bernoulli process with parameter p
(i.e., 0 < p < 0.5) as: ng(i) ~ Bernoulli(p), for ¢ = 1,...,d.
The small values of p represent less noisy Boolean network
models, whereas larger values correspond to stochastic models.

The measurement process in HMM modeling of biological
systems depends on the type of biological data (e.g., type
of gene expression or omics data). Without loss of gener-
ality, the measurements are considered to be from cDNA
microarrays [52] or live-cell imaging-based assays [53], and
the following Gaussian model is employed for the observation
model:

yk(j):m+5Xk(j)+Vk(j), k:172a"'7 (36)
for j = 1,...,d; where vi(j) ~ N'(0,0%) is an uncorrelated
zero-mean Gaussian noise vector, m is a baseline expression
corresponding to the “zero” state of components, § is a
differential expression value that indicates by how much the
“one” state of each component is over-expressed over the
“zero” state.

The unknown parameters of regulatory networks are often
missing interactions between different components or bias
units. Letting n regulatory interactions be unknown, there
will be M = 3" possible network models for the regulatory
networks. These possible models can be represented by © =
{0',...,0M}, where Cg is the connectivity matrix associated
with model 0 € ©.

The controlled transition matrix in (13) can be expressed
for the regulatory network with model @ as:

(Mg(a)); = pHMea@xi\h(1_p)d—||m@a®xi”1 ,

for 4,7 = 1,...,2% The update vector defined in (14) can be
written according to the observation model in (36) as:

d . Xi N —m 2
(T(y4)),=———exp 20 () =X G) =) |

1_(271'02)% 202

fori=1,...,2%

@

Figure 7: The pathways diagram for the P53 network.

1) p53-MDM?2 Negative Feedback Loop Regulatory Net-
work: The p53-MDM2 negative feedback loop gene regulatory
network plays a critical role in various types of cancers,
including the ovarian, esophageal, larynx, and lung [54],
[55]. This network includes four genes, ATM, p53, Wipl,
and MDM?2, and the stress input “dna_dsb”, which shows
the presence of DNA double-strand breaks. The pathway
diagram for the network is shown in Fig. 7; the solid arrows
demonstrate the activating rules (+1 regulatory interactions),
and the blunt arrows demonstrate the suppressive rules (-
1 regulatory interactions). This Boolean model in (35) in
stress response can be represented for this network using the
following connectivity matrix and bias units:

C11 =0 C12 =0 C13:—1 61420 1
_|c21 = +1 co2 =0 co3 =—-1 cog=-1 _ 0

C_ C31:0 632=+1 63320 63420 7b_ ol (37)
C41 = -1 C42 = +1 C43 = +1 C44 = 0 0

The network in healthy conditions stays at state 00007,
meaning all 4 genes are often in inactivated states. This is,
however, not the case for the network in stressed conditions.
The stress often leads to unnecessary activation of various
genes and uncontrolled cell proliferation. Therefore, in ge-
nomics intervention, the experts aim to keep the network
at state ”0000” through drug-induced controls. The interven-
tion is achieved through the following control inputs: A
{a! = [0,0,0,0]7,a% = [1,0,0,0]%,a% = [0,1,0,0]%,a*
[0,0,1,0]7,a® = [0,0,0,1]7}, where a? to a® can alter the
value of a single gene at a time. The expert reward function
can be defined as:

1
R(x,2,%) == - 5l

where the cost of any gene inactivation is —1, and the control
input altering the gene state has the reward of —%. The negative
reward value for the control represents the expert’s desire to
take minimum controls due to their potential side effects. The
expert aims to make the system far from the state "11117,
which has the lowest reward value and makes the system close
to the state ”0000”, which yields the largest reward value.
The expert-acquired data is assumed to be collected using
the true network model in (37). The following five interacting
parameters are considered to be unknown: ci3, C21, C32, C42
and c43. Since each interaction can take in {-1,0,+1}, there
will be M = 3° = 243 possible network models with 8* =
(-1,+1,+1,+1,+1). The following parameters are used for
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Figure 8: Average true inference and error obtained by proposed
expert-enabled MAP and regular MAP methods for the p53-MDM?2
network.

the experiments: p = 0.05, ¢ = 0.75, o = 10, m = 20, § = 30,
v = 0.95, X = 0.01. These are typical parameter values for
modeling genomics and microbial communities [50], [S1]. The
prior probability of all models is assumed to be the same, i.e.,
p(0)=1/M, for 0 € ©.

The results of expert-enabled MAP inference and regular
MAP inference are demonstrated in Fig. 8. The top plot
demonstrates the average maximum posterior probability. It
can be seen that the proposed method significantly outperforms
the conventional MAP inference method. In fact, under the
proposed method, the true inference rate is around 90% after
40 data points, whereas the rate for regular MAP inference
does not exceed 50% even after 100 data points. The average
error results in the right plot of Fig. 8 better illustrate the
reason behind the high performance of the proposed method.
One can see that the average error under the proposed expert-
enabled inference becomes close to 0 after 40 data points,
whereas for regular MAP inference, it does not approach
zero and remains around 1.5. This comes from the non-
identifiability of some parameters of the model when using
only the temporal changes in data.

This part of the experiment examines the impact of mea-
surement noise on the performance of the proposed method.
The results in terms of average error and maximum posterior
probability obtained under the proposed expert-enabled MAP
inference and the regular MAP inference for three different
measurement noise levels are presented in Table I. It can be
seen that as the measurement noise increases, the maximum
posterior probability decreases and the error increases. This
reduction is much more significant for conventional inference
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Figure 9: Average inference rate and error with respect to the number
of unknowns in the p5S3-MDM2 network.

techniques. In fact, the proposed method significantly outper-
forms conventional inference under large noise levels. As more
data becomes available, the inference rate for both methods
increases. For the large noise case of o = 45, the maximum
posterior probability for conventional MAP inference is still
0.13, whereas the proposed method’s rate is 0.83. This indi-
cates how the incorporation of expert knowledge in domains
with noisy data can help the probability of distinguishing
models from each other and improve the maximum posterior
probability.

Table I: Average performance of proposed expert-enabled MAP and
regular MAP inference methods with respect to the measurement
noise intensity for the p53-MDM2 network.

Expert-Enabled MAP Inference MAP Inference
k o Avg. Error Max. Post. Avg. Error Max. Post.
15 0.87+£0.18 0.56 + 0.04 1.4+0.23 | 0.33+0.07
20 | 30 1.36 +0.23 0.36 £ 0.04 2.35+0.24 | 0.06 +£0.01
45 1.47+0.23 0.28 +0.03 2.87+0.27 | 0.03+0.00
15 0.15+0.08 0.88 +£0.03 0.59+0.14 | 0.60+0.04
40 | 30 | 0.65+0.0.14 0.66 + 0.04 1.74+0.25 | 0.14+0.02
45 0.76 £0.18 0.58 £ 0.05 2.48+0.26 | 0.05+0.01
15 0+0 0.99 £ 0.00 0.14+£0.06 | 0.90+0.02
100 | 30 0.1+0.05 0.91 £0.02 0.82+0.17 | 0.43+0.03
45 0.29 +0.10 0.83 +£0.03 1.87+0.19 | 0.13+0.02

The impact of the number of unknown regulations on
the performance of the proposed expert-enabled method is
demonstrated in Fig. 9. The top plots represent the average
true inference rate, while the bottom plots show the average
error with respect to the number of unknown regulations.
It can be observed that the results of expert-enabled and
conventional MAP inference are closer for smaller unknowns,
owing to the decrease in complexity of inference under smaller
unknowns. The most significant difference between these two
approaches corresponds to the case with five unknowns, where
the proposed method achieves a much smaller average error
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obtained by the proposed method for the pS3-MDM?2 network.

and higher inference rate. Meanwhile, for a larger number of
data shown in the second column plots in Fig. 9, the average
error has decreased and the inference rate has increased for
both methods, while the expert-enabled inference approach
still outperforms the regular MAP inference in all cases.

The joint inference of the expert confidence and system
model is illustrated in Fig. 10. The top figure represents the
average error for the inferred expert confidence and system
model using 10 datasets generated from an expert with the
confidence rate ¢ = 0.85. One can see that the error model
approaches O after 20 data, and the expert confidence is also
inferred with about a 0.1 distance from the true confidence rate
throughout the process. This indicates a higher applicability
of the proposed expert-enabled inference in domains with
unknown expert confidence.

In this part of the numerical experiments, the performance of
the proposed method is compared with two popular inference
methods that incorporate expert knowledge. The same set of
parameters used for experiments in Fig. 8 is considered here.
In the first comparing approach, the known expert reward
function is used for imposing constraints on the space of
models [30], [31]. In fact, expert knowledge is used to remove
the models that expert actions cannot be strongly justified. This
can be expressed through the following constrained inference
problem:

k

6y = argmax > logp(¥r | 3gir-1,¥1:r-1, 0),
GGGCOHS 7.:1

(38)

where ©€°" = {0 € © | p(ap:x-1 | Y1:,0) > 0}. The restricted
models are those in which the actions taken by the experts are
the least likely.

The second method for comparison is supervised label-
ing [26], [27], which explicitly incorporates expert knowledge
about the underlying system state to enhance the inference pro-
cess. This information is derived from a proficient expert who
is familiar with the true underlying system state. Therefore,
this approach necessitates explicit expert knowledge, while
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Figure 11: Comparison of average true inference and error ob-
tained by proposed expert-enabled MAP method with constrained,
supervised labeling, and regular MAP methods for the p53-MDM?2
network.

the proposed method is capable of implicitly incorporating
expert knowledge without the need for expert supervision.
Implicit knowledge incorporation is particularly applicable
in the absence of an expert or when the data collected by
an expert in the past is no longer available. Specifically,
the expert provides perfect labeling at 20% of randomly
selected time steps. Fig. 11 represents the comparison results
in terms of the average maximum posterior probability and
the average error. It can be observed that the proposed method
outperforms all other methods, especially when dealing with
small data sizes. The results of supervised labeling are similar
to those of regular MAP inference methods, even though
labeling has been performed. This demonstrates the impact
of the expert-knowledge term in the proposed method, which
is not accounted for in supervised labeling. The constrained
inference method with the threshold § = 0.45 performs better
than the other two competing methods. However, the reliance
on a threshold and the non-systematic incorporation of expert
knowledge have led to lower performance of this approach
compared to the proposed method.

2) Gut Microbial Community: In this part of the numerical
experiment, the performance of the proposed framework
is examined using the gut microbial community [56].
This microbial community plays a critical role in the
normal intestinal functions. Mutation or damage to this
community can lead to different serious illnesses such
as obesity, diabetes, and even neurological disorders.
The pathway diagram of the gut microbial community
network is shown in Fig. 12. The state vector consists of xj =
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Figure 12: The pathways diagram for the gut microbial community.

[Cli., Lachn., Lachn._other, Other, Barn., C_diff, Enteroco., Blautia]”.

The 8 components of this network lead to the state space of
size 2% = 256. The connectivity matrix and bias vector for the
gut microbial network can be expressed using the pathway
diagram in Fig. 12 as:

+1 0 0 0 0 0 0 0
-1 +1 +1 +1 O 0 0 0
-1 +1 +1 +1 O 0 0 0
C- -1 +1 +1 +1 0 0 0 O
-1 +1 +1 +1 O 0 0 0 (39)
0 0 0 0 -1 +41 0 0
0 0 0 0 0 +1 0 +1
0 0 0 0 0 0 +1 O

b=[1L 0 0 0 00000 0.

The intervention in the gut microbial community in patients
with antibiotic resistance issues takes place in the presence
of Clindamycin. In this condition, it is critical to prevent the
activation of C_diff and the inactivation of Barn., which are
both found to be associated with these undesirable conditions.
Therefore, the expert reward function during the intervention
can be expressed as:

R(X7a7 XI) = 1x’(5):1 - 1x’(6):1 - 05”3”13

for x,x’ € X,a € A. The action space includes A =
{a!,a? a® a%}, where a' represents no alteration, a® corre-
sponds to altering x(2) and x(3), a® correspond to altering
x(3) and x(4), finally a* correspond to altering x(2) and
x(4).

For the experiments, the following four unknown inter-
actions are considered: coy4 = +1, c33 = +1, c53 = +1,
cs6 = +1. These unknowns lead to 3% = 81 possible network
models for the regulatory networks. We assume a uniform
prior probability for these models prior to observing any data.
The following parameters are also used for this experiment:
p=0.01, ¢ =0.75, 0 =10, m = 20, § = 30, v =0.95,A = 0.01.

The average results in terms of the maximum posterior
probability, the true inference rate, and error are shown in
Fig. 13. The proposed expert-enabled MAP inference resulted
in a higher maximum posterior probability compared to reg-
ular MAP inference, demonstrating the impact of the expert
knowledge term in distinguishing models. Additionally, the
proposed method has shown a significantly higher average
rate of true inference. The average rate obtained by the expert-
enabled method exceeded 0.8 upon observing 20 data, whereas

the average rate under regular MAP inference did not exceed
0.6 even with 100 data. Similarly, the proposed method yields
a much smaller average error compared to regular MAP. The
average error became O under the proposed method after 80
data, whereas the average error did not fall below 0.5 under
the regular MAP inference approach. Finally, a comparison
between the left and middle plots of Fig. 13 shows that the
model with the maximum posterior probability selected by the
proposed method mostly corresponds to the true system model,
as evidenced by the similar trends of the blue solid lines in
these two plots. On the other hand, for regular MAP inference,
the true inference rate is lower than the maximum posterior
probability, indicating that the non-true models also hold the
maximum posterior probability.

VII. CONCLUSION AND FUTURE WORK

This paper presents an optimal inference technique for
complex systems modeled by hidden Markov models (HMMs)
and observed through expert-acquired data. Unlike conven-
tional methods that consider the temporal data changes for
the inference process, the proposed approach accounts for
expert knowledge reflected in available data in terms of actions
or decisions. Expert behavior is modeled as a non-optimal
reinforcement learning agent, where a stochastic policy is used
for modeling expert policy. Using this model, the expert’s
perception of the system is quantified and incorporated to
derive optimal expert-enabled inference. The proposed method
is built on the combination of dynamic programming and
Bayesian filtering techniques, where a recursive and exact
inference solution is provided. The analytical results demon-
strate that the additional term in the expert-enabled likelihood
function makes the true system model more distinguishable.
This superiority is shown to be significant in the presence
of confident experts, compared to less-confident experts with
more randomness in their policies. For domains with a priori
unknown confidence level, the joint inference of system model
and expert confidence is formulated. Numerical experiments
using benchmark and biological systems demonstrate the
significance of incorporating expert knowledge in terms of
better inference rate and robustness compared to conventional
techniques. Also, the importance of expert-enabled inference
in noisier data is empirically demonstrated, and a comparison
between the proposed method and other inference methods
in terms of average posterior probability and average error is
presented.

Future steps include extensions of the proposed expert-
enabled inference to large and complex systems, including
those with continuous/large state and action spaces, as well as
domains consisting of multiple cooperative and competitive
experts. Additionally, studying the impacts of incorporating
knowledge from biased experts on the inference solution is
among the next steps of the paper.
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