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ABSTRACT

In the classic Correlation Clustering problem introduced by Bansal,
Blum, and Chawla (FOCS 2002), the input is a complete graph
where edges are labeled either + or 2, and the goal is to �nd a
partition of the vertices that minimizes the sum of the +edges
across parts plus the sum of the -edges within parts. In recent years,
Chawla, Makarychev, Schramm and Yaroslavtsev (STOC 2015) gave
a 2.06-approximation by providing a near-optimal rounding of the
standard LP, and Cohen-Addad, Lee, Li, and Newman (FOCS 2022,
2023) �nally bypassed the integrality gap of 2 for this LP giving a
1.73-approximation for the problem.

While introducing new ideas for Correlation Clustering, their
algorithm is more complicated than typical approximation algo-
rithms in the following two aspects: (1) It is based on two di�erent
relaxations with separate rounding algorithms connected by the
round-or-cut procedure. (2) Each of the rounding algorithms has to
separately handle seemingly inevitable correlated rounding errors,
coming from correlated rounding of Sherali-Adams and other strong
LP relaxations.

In order to create a simple and uni�ed framework for Correlation
Clustering similar to those for typical approximate optimization
tasks, we propose the cluster LP as a strong linear program that
might tightly capture the approximability of Correlation Cluster-
ing. It uni�es all the previous relaxations for the problem. It is
exponential-sized, but we show that it can be (1+n)-approximately
solved in polynomial time for any n > 0, providing the framework
for designing rounding algorithms without worrying about corre-
lated rounding errors; these errors are handled uniformly in solving
the relaxation.
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We demonstrate the power of the cluster LP by presenting a
simple rounding algorithm, and providing two analyses, one an-
alytically proving a 1.49-approximation and the other solving a
factor-revealing SDP to show a 1.437-approximation. Both proofs
introduce principled methods by which to analyze the performance
of the algorithm, resulting in a signi�cantly improved approxima-
tion guarantee.

Finally, we prove an integrality gap of 4/3 for the cluster LP,
showing our 1.437-upper bound cannot be drastically improved.
Our gap instance directly inspires an improved NP-hardness of
approximation with a ratio 24/23 j 1.042; no explicit hardness
ratio was known before.
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1 INTRODUCTION

Clustering is a classic problem in unsupervised machine learning
and data mining. Given a set of data elements and pairwise similar-
ity information between the elements, the task is to �nd a partition
of the data elements into clusters to achieve (often contradictory)
goals of placing similar elements in the same cluster and separating
di�erent elements in di�erent clusters. Introduced by Bansal, Blum,
and Chawla [7], Correlation Clustering elegantly models such ten-
sion and has become one of the most widely studied formulations
for graph clustering. The input of the problem consists of a com-

plete graph (+ , �+ ® �2), where �+ ® �2 =
(+
2

)
, �+ representing

the so-called positive edges and �2 the so-called negative edges.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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The goal is to �nd a clustering (partition) of+ , namely (+1, . . . ,+: ),
that minimizes the number of unsatis�ed edges, namely the +edges
between di�erent clusters and the 2edges within the same cluster.
Thanks to the simplicity and modularity of the formulation, Corre-
lation Clustering has found a number of applications, e.g., �nding
clustering ensembles [11], duplicate detection [5], community min-
ing [21], disambiguation tasks [34], automated labelling [1, 15] and
many more.

This problem is APX-Hard [17], and various$ (1)-approximation
algorithms [7, 17] have been proposed in the literature. Ailon,
Charikar and Newman introduced an in�uential pivot-based al-
gorithm, which leads to a combinatorial 3-approximation and a
2.5-approximation with respect to the standard LP relaxation [4].
The LP-based rounding was improved by Chawla, Makarychev,
Schramm and Yaroslavtsev to a 2.06-approximation [20], nearly
matching the LP integrality gap of 2 presented in [17].

It turns out that (a high enough level of) the Sherali-Adams hier-
archy can be used to design a strictly better than 2-approximation.
Cohen-Addad, Lee, and Newman [27] showed that $ (1/Y2) rounds
of the Sherali-Adams hierarchy have an integrality gap of at most
(1.994+Y). This approximation ratiowas improved by Cohen-Addad,
Lee, Li, and Newman [26] to (1.73 + Y) in =poly(1/Y ) -time, which
combines pivot-based rounding and set-based rounding.

One undesirable feature of [26] is the lack of a single convex re-
laxation with respect to which the approximation ratio is analyzed.
For technical reasons, it combines the two rounding algorithms via
a generic round-or-cut framework. Given G * [0, 1]� , each of the
two rounding algorithms outputs either an integral solution with
some guarantee or a hyperplane separating G from the convex hull
of integral solutions; if both algorithms output integral solutions,
one of them is guaranteed to achieve the desired approximation
factor. Though each of the rounding procedures is based on some
LP relaxations, they are di�erent, so there is no single relaxation
that can be compared to the value of the �nal solution.

In this work, we propose the cluster LP as a single relaxation
that captures all of the existing algorithmic results. Based on this
new uni�ed framework, we design a new rounding algorithm as
well as principled tools for the analysis that signi�cantly extend
the previous ones, ultimately yielding a new approximation ratio
of 1.437 + Y. The study of the cluster LP sheds light on the hardness
side as well, as we prove a 4/3 j 1.33 gap for the cluster LP and a
24/23 j 1.042 NP-hardness of approximation.

1.1 Our Results

We �rst state the cluster LP here. It is similar to con�guration LPs

used for scheduling and assignment problems [8, 30]. In the cluster
LP, we have a variable I( for every ( ¦ + , ( b ', that indicates if ( is
a cluster in the output clustering or not. As usual, GDE for everyDE *(+
2

)
indicates ifD and E are separated in the clustering or not. For any

G * [0, 1] (
+
2 ) , we de�ne obj(G) := ∑

DE*�+ GDE +
∑
DE*�2 (1 2 GDE)

to be the fractional number of edges in disagreement in the solution
G .

min obj(G) s.t. (cluster LP)∑
(+D

I( = 1 "D * + (1)

∑
(§{D,E}

I( = 1 2 GDE "DE *
(
+

2

)
(2)

I( g 0 "( ¦ + , ( b ' (3)

The objective of the LP is to minimize obj(G), which is a linear
function. (1) requires that every vertex D appears in exactly one
cluster, (2) gives the de�nition of GDE using I variables.

The idea behind this LP was used in [26] to design their set-based
rounding algorithm, though the LP was not formulated explicitly
in that paper. Moreover, the paper did not provide an e�cient
algorithm to solve it approximately. Our �rst result shows that we
can approximately solve the cluster LP in polynomial time, despite
it having an exponential number of variables.We remark that unlike
the con�guration LPs for many problems, we do not know how to
solve the cluster LP simply by considering its dual.

Theorem 1. Let Y > 0 be a small enough constant and opt be the

cost of the optimum solution to the given Correlation Clustering in-

stance. In time =poly(1/Y ) , we can output a feasible cluster LP solution(
(I( )(¦+ , (GDE)DE*(+2 )

)
with obj(G) f (1 + Y)opt, described using a

list of non-zero coordinates. 1

The cluster LP is the most powerful LP that has been considered
for the problem. Indeed, previous algorithms in [27] and [26] can
be signi�cantly simpli�ed if one is given a (1 + Y)-approximate
solution to the LP. A large portion of the algorithms and analysis
in [27] and [26] is devoted to handle the additive errors incurred
by the correlated rounding procedure, which is inherited from the
Raghavendra-Tan rounding technique [39]. Instead, we move the
complication of handling rounding errors into the procedure of
solving the cluster LP relaxation.

With this single powerful relaxation, we believe that Theorem 1
provides a useful framework for future work that may use more
ingenious rounding of the exponential-sized cluster LP without
worrying about errors. Indeed, the constraints in the cluster LP
imply that the matrix (1 2 GDE)D,E*+ is PSD, 2 and thus the LP
is at least as strong as the natural SDP for the problem. For the
complementary version of maximizing the number of correct edges,
the standard SDP is known to give a better approximation guarantee
of 0.766 [17, 40]. For the minimization version, the standard SDP
has integrality gap at least 1.5 (see full paper), but it is still open
whether this program has an integrality gap strictly below 2 or not.

We demonstrate the power of the cluster LP by presenting and
analyzing the following algorithm, signi�cantly improving the pre-
vious best 1.73-approximation.

Theorem 2. There exists a (1.49 + Y)-approximation algorithm

for Correlation Clustering that runs in time $ (=poly(1/Y ) ).

1We remark that obj(G ) given by the theorem is at most 1 + Y times opt, instead of
the value of the cluster LP. This is su�cient for our purpose. One should also be able
to achieve the stronger guarantee of (1 + Y )-approximation to the optimum fractional
solution. Instead of dealing with the optimum clustering C7 in the analysis, we deal
with the optimum fractional clustering to the LP. For simplicity, we choose to prove
the theorem with the weaker guarantee.
2Consider the matrix . * [0, 1]+ ×+ where ~DE = 1 2 GDE for every D, E * +
(.DD = 1, "D * + ). For every F * R+ , we have F).F =

∑
D,E*+ ~DEFDFE =∑

D,E

∑
(§{D,E} I(FDFE =

∑
D,E

∑
(¦+ I( · (FD · 1D*( ) · (FE · 1E*( ) =∑

(¦+ I( (
∑

D*( FD ) (
∑

E*( FE ) g 0.
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This is achieved by a key modi�cation of the pivot-based round-
ing algorithm that is used in conjunction with the set-based algo-
rithm as in [26]. In combination with more careful analysis, which
involves principled methods to obtain the best budget function, we
obtain a signi�cantly improved approximation ratio.

In order to obtain an even tighter analysis of the same algorithm,
we introduce the new factor revealing SDP that searches over possi-
ble global distributions of triangles in valid Correlation Clustering
instances. By numerically solving such an SDP, we can further
improve the approximation ratio of the same algorithm.

Theorem 3. There exists a (1.437 + Y)-approximation algorithm

for Correlation Clustering that runs in time $ (=poly(1/Y ) ).

While the proof includes a feasible solution to a large SDP and is
not human-readable, we prove that our SDP gives an upper bound

on the approximation ratio, so it is a complete proof modulo the SDP
feasibility of the solution. Our program and solution can be found
at https://github.com/correlationClusteringSDP/SDP1437code/.

We also study lower bounds and prove the following lower bound
on the integrality gap of the cluster LP.

Theorem 4. For any Y > 0, the integrality gap of the cluster LP is

at least 4/3 2 Y.

This integrality gap for the cluster LP, after some (well-known)
loss, directly translates to NP-hardness. It is the �rst hardness with
an explicit hardness ratio apart from the APX-hardness [17].

Theorem 5. Unless P = BPP, for any Y > 0, there is no (24/232Y)-
approximation algorithm for Correlation Clustering.

1.2 Further Related Work

The weighted version of Correlation Clustering, where each pair of
vertices has an associated weight and unsatis�ed edges contribute
a cost proportional to their weight to the objective, is shown to be
equivalent to the Multicut problem [29], implying that there is an
$ (log=)-approximation but no constant factor approximation is
possible under the Unique Games Conjecture [19].

In the unweighted case, a PTAS exists when the number of
clusters is a �xed constant [31, 35]. Much study has been devoted
to the minimization version of Correlation Clustering in various
computational models, for example in the online setting [23, 36, 37],
as well as in other practical settings such as distributed, parallel
or streaming [3, 6, 9, 10, 12–14, 16, 22, 24, 38, 41, 42]. Other recent
work involves settings with fair or local guarantees [2, 28, 33].

2 ALGORITHMIC FRAMEWORK AND SETUP

FOR ANALYSIS

In this section, we describe our algorithm for obtaining the im-
proved approximation ratio for Correlation Clustering.We solve the
cluster LP using Theorem 1 to get a fractional solution I = (I( )(¦+ ,
which determines G * [0, 1] (

+
2 ) as in (2): GDE := 1 2 ∑

(§{D,E} I(
for every DE *

(+
2

)
. We have obj(G) f (1 + Y)opt. The theorem will

be proved in Section 4. With I, we then run two procedures: the
cluster-based rounding and the pivot-based rounding with thresh-
old 1/3. We select the better result as the �nal clustering. The two
procedures are de�ned in Algorithms 1 and 2 respectively. We use

# + (D) and# 2 (D) to denote the sets of + and2neighbors of a vertex
D * + respectively.

Algorithm 1 Cluster-Based Rounding

1: C ± ',+ 2 ± +

2: while + 2 b ' do
3: randomly choose a cluster ( ¦ + , with probabilities I(∑

(2 I(2
4: if + 2 + ( b ' then C ± C * {+ 2 + (}, + 2 ± + 2 \ (
5: return C

Algorithm 2 Pivot-Based Rounding with Threshold 1/3
1: C ± ',+ 2 ± +

2: while + 2 b ' do
3: randomly choose a pivot D * + 2
4: � ± {E * + 2 + # + (D) : GDE f 1

3 }
5: for every E * + 2 + # 2 (D) do independently add E to �

with probability 1 2 GDE
6: randomly choose a set ( + D, with probabilities I( ² We

have
∑
(+D I( = 1

7: � ± � * (( ++ 2 + # + (D)), C ± C * {�}, + 2 ± + 2 \�
8: return C

Analysis of Cluster-Based Rounding Procedure. The cluster-based
rounding procedure is easy to analyze. The following lemma su�ces.

Lemma 6. For every DE *
(+
2

)
, the probability that D and E are

separated in the clustering C output by the cluster-based rounding

procedure is 2GDE
1+GDE . So the probability they are in the same cluster is

12GDE
1+GDE .

Proof. We consider the �rst set ( chosen in the cluster-based
rounding algorithm such that {D, E} + ( b '. D and E will be sep-
arated i� |( + {D, E}| = 1. The probability that this happens is

precisely
∑
|(+{D,E}|=1 I(∑
(+{D,E}b' I(

=
2GDE
1+GDE . ¥

Therefore, a +edge DE will incur a cost of 2GDE
1+GDE in expectation

in the cluster-based rounding procedure, and a 2edge will incur a
cost of 12GDE

1+GDE . The approximation ratios for a +edge DE and a 2edge
DE are respectively 2

1+GDE and 1
1+GDE . Notice that the latter quantity

is at most 1.

Notations and Analysis for Pivot-Based Rounding Procedure. We
now proceed to the pivot-based rounding procedure in Algorithm 2.
We remark that to recover the correlated rounding algorithm in
[27] and [26], we can use � ± ' in Step 4. Then we can obtain
their approximation ratios without the complication of handling
rounding errors. The errors are handled in [27] by distinguishing
between the short, median and long +edges. In our algorithm, we
also distinguish between short +edges (those with GDE f 1

3 ) and

long +edges (those with GDE >
1
3 ); however, the purpose of this

distinction is to get an improved approximation ratio, instead of to
bound the rounding errors.
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Our high-level setup of the analysis follows from [26, 27], which
in turn is based on [4] and [20]. We consider a general budget for
every edge. We shall de�ne two budget functions:

" 1+ : [0, 1] ³ Rg0 and 12 : [0, 1] ³ Rg0.
They determine the budget 1DE for the edge DE : if DE * �+, then
1DE := 1

+ (GDE), and if DE * �2 , then 1DE := 12 (GDE).
We now focus on one iteration of the while loop in Algorithm 2.

Suppose D, E,F * + 2 at the beginning of the iteration, and let � be
the cluster constructed at the end. We useD to denote the event that
D is chosen as the pivot. We say EF incurs a cost in the iteration,
if EF * �+ and |� + {E,F}| = 1, or EF * �2 and {E,F} ¦ � . Then,
we de�ne

costD (E,F) := Pr[EF incurs a cost | D],
and

�D (E,F) := Pr[� + {E,F} b ' | D] · 1EF .
costD (E,F) is the probability that EF incurs a cost conditioned
on the event D. When an edge EF disappears, we say EF releases

its budget. So, �D (E,F) is the expected budget released by EF in
the iteration when D is the pivot. Notice that both costD (E,F) and
�D (E,F) do not depend on + 2, provided that D, E,F * + 2.

We call a set of three distinct vertices a triangle. A set of two
distinct vertices is called a degenerate triangle. For triangle (D, E,F),
let

cost(D, E,F) :=costD (E,F) + costE (D,F) + costF (D, E), and

�(D, E,F) :=�D (E,F) + �E (D,F) + �F (D, E) .
For degenerate triangle (D, E), let

cost(D, E) :=costD (D, E) + costE (D, E), and

�(D, E) :=�D (D, E) + �E (D, E) .
We show the following lemma in our full paper.

Lemma 7. Suppose that for every + 2 ¦ + , we have∑
(D,E,F ) *(+ 23 )

cost(D, E,F) +
∑

(D,E) *(+ 22 )
cost(D, E) f

∑
(D,E,F ) *(+ 23 )

�(D, E,F) +
∑

(D,E) *(+ 22 )
�(D, E) . (4)

Then, the expected cost of the clustering output by Algorithm 2 is at

most
∑
DE*(+2 ) 1DE .

To obtain an approximation ratio of U * [1, 2), we consider a
variant of our algorithm, in which we run the cluster-based round-
ing procedure (Algorithm 1) with probability U2 , and the pivot-based
rounding procedure with threshold 1/3 (Algorithm 2) with the re-
maining probability 1 2 U

2 . Clearly, the actual algorithm that picks
the better of the two clusterings generated can only be better. We
set up the budget functions 1+ and 12 such that every edge pays
a cost of at most U times its LP cost in expectation. That is, the
following properties are satis�ed for every G * [0, 1]:

U

2
· 2G

1 + G +
(
1 2 U

2

)
1+ (G) = UG,

U

2
· 1 2 G
1 + G +

(
1 2 U

2

)
12 (G) = U (1 2 G).

This gives us the following de�nitions:

1+U (G) :=
U

1 2 U/2 ·
G2

1 + G , and

12U (G) :=
U

1 2 U/2 ·
(1 + 2G) (1 2 G)

2(1 + G) , "G * [0, 1] . (5)

Lemma 8. If the budget functions 1+U and 12U satisfy (4) for some

U * [1, 2), then our algorithm has an approximation ratio of U .

Proof. Consider the variant of the algorithm where we run the
cluster-based rounding procedure with probability U

2 , and the pivot-
based procedure with threshold 1/3 with the remaining probability
of 1 2 U

2 . By Lemma 7, the expected cost of the clustering given by
the variant is at most∑

DE*�+

(
U

2
· 2GDE

1 + GDE
+

(
1 2 U

2

)
· 1+U (GDE)

)
+

∑
DE*�2

(
U

2
· 1 2 GDE
1 + GDE

+
(
1 2 U

2

)
· 12U (GDE)

)

=U

( ∑
DE*�+

GDE +
∑

DE*�2
(1 2 GDE)

)
= U · obj(G).

The actual algorithmwe run can only be better than this variant. ¥

As a baseline, we provide a per-triangle analysis leading to an
approximation ratio of 1.5 in the full paper:

Lemma 9. For budget functions 1+ c 1+1.5 and 1
2 c 121.5, we have

cost() ) f �() ) for every triangle ) .

Clearly, the lemma implies that (4) holds for 1+ c 1+1.5 and 1
2 c

121.5. By Lemma 8, our algorithm gives an approximation ratio of
1.5. We remark that 1.5 is the best possible ratio we can achieve
using the per-triangle analysis. For a ++2 triangle with length 1

2
for +edges and length 1 for the 2edge, we need to pay a factor of 2
for each of the 1

2 -length +edge. Then the cluster-based rounding

algorithm gives factors of 2 and 4
3 for +edges of lengths 0 and 1

2
respectively. For the pivot-based rounding algorithm, the factors
are at least 0 and 2. A combination of the two algorithms can only
lead to a factor of 1.5.

To get a better approximation ratio, we provide two analyses that
use global distributions of triangles. The former is purely analytic
and the latter relies on solving a factor-revealing SDP. The following
two lemmas are proved in the full paper.

Lemma 10. (4) holds for budget functions1+ c 1+1.49 and1
2 c 121.49.

Lemma 11. (4) holds for budget functions 1+ c 1+1.437 and 1
2 c

121.437.

Combined with Lemma 8, the two lemmas imply Theorems 2
and 3 respectively.

3 OVERVIEW OF TECHNIQUES

In this section, we provide overviews of the techniques used in our
results.
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Simpler and Better Preclustering Procedure. The concept of preclus-
tering was introduced in [26]. In a preclustered instance, we prede-
termine the fate of some edges: for some edges DE , D and E must be
in the same cluster; for some other edges DE , D and E must be sepa-
rated. Since the relation of being in the same cluster is transitive,
we de�ne a preclustered instance using a pair (K, �adm), where K
is a partition of + into so called atoms and �adm ¦

(+
2

)
is a set of

admissible edges. An atom can not be broken. If D and E are not
in the same atom and DE + �adm, then D and E must be separated.
[26] showed how to construct a preclustered instance (K, �adm),
losing only a (1 + Y) factor in the optimum cost, while at the same
time guaranteeing that |�adm | f $ (opt/Y12). This is crucial for
their correlated rounding algorithm, as it loses an additive error
depending on |�adm |. In this work, we still need the preclustering
procedure to bound the rounding error, but now it is inside the
procedure of solving the cluster LP.

We greatly simplify the preclustering procedure from [26], and
as a result, we achieve a much better bound of$ (opt/Y2) on |�adm |.
[26] used the agreement graph to construct the atoms; roughly
speaking, two vertices are in agreement if their neighborhood sets
are similar to each other. The analysis uses many technical struc-
tural lemmas from [24], which solves Correlation Clustering in the
online setting. In contrast, our construction of atoms is simple: we
construct an $ (1)-approximate clustering C, mark vertices whose
costs are large, and thenK is obtained from C by removing marked
vertices and creating singletons for them. The set of admissible
edges is roughly de�ned as follows: we construct a graph (+ , �1)
where two vertices are neighbors if their +degrees are similar. Then
an edge DE is admissible if D and E have many common neighbors
in �+ + �1.

Solving Cluster LP by Preclustering. As we mentioned, we move
the complication of handling rounding errors to the step of solving
the cluster LP. As in [26], we construct a preclustered instance
(K, �adm), and formulate an LP relaxation aimed at �nding the
(1 + Y)-approximate good clustering for (K, �adm), that we call
the bounded sub-cluster LP. In contrast to [26], which solves many
instances of this LP embedded in their round-or-cut framework, we
only solve the LP once, therefore avoiding this heavy framework.
With a solution (G,~) to the LP, we run a procedure that constructs
a single cluster � randomly. The probability that any vertex is in
� is precisely 1/~' , where ~' is the fractional number of clusters
in ~. The probabilities that exactly one of D and E is in � , and both
of them are in � , are respectively GDE

~'
and 12GDE

~'
up to some error

terms arising from the Raghavendra-Tan rounding procedure. As
usual, GDE is the extent in which D and E are separated.

To construct the solution I = (I( )(¦+ for the cluster LP, we
generate ~'� many clusters � independently, for a large enough
polynomial �. Roughly speaking, the solution I is 1

�
times the

multi-set of clusters � we generated. The error incurred by the
Raghavendra-Tan rounding procedure can be bounded in terms of
|�adm |, and the error from sampling can be bounded using concen-
tration bounds.

1.49-approximation. We start with the algorithm of [26], but
make several key modi�cations both in the design and in the anal-
ysis. This allows us to signi�cantly improve the approximation

ratio, �rst to 1.5 and, eventually, to 1.49, which shows that, perhaps
surprisingly, even the rather low approximation factor of 1.5 is not
tight for Correlation Clustering. The �rst key ingredient is to use a
principled budget function for the pivot-based rounding procedure,
de�ned earlier in (5), which is designed to optimally balance the
approximation factor of edges between the two rounding proce-
dures. This new budget function is better than the one used in [26],
but does not allow us to reach 1.5 without changing the algorithm.
Indeed, the budget for the short +edges in +++ triangles is still
too low to reach the approximation ratio 1.5. Thus, the second key
ingredient is to add the threshold step to the pivot-based rounding
procedure for the short +edges (i.e., +edges DE with GDE f 1/3). By
adding this threshold step, the cost of the triangles containing such
edges decreases; for example, a +++ triangle with all short edges
now has cost zero. This allows us to use the new budget function
and still reach 1.5. Notice that making the threshold too large would
result in too much cost for ++2 triangles.

Finally, we observe that, analogous to the correlated rounding
approach of [27], only the bad triangles are tight, meaning their
cost equals their budget. Roughly speaking, a bad triangle is a ++2
triangle whose two +edges have value very close to half and whose
2edge has value close to one. This allows us to apply a charging
argument, in which tight triangles have part of their cost paid for
by triangles that are not tight (i.e., that have extra budget). Now
there are no tight triangles (i.e., all triangles have some unused
budget), and we can decrease the U in the budget function from
1.5 to 70/47. As previously [4, 20, 26, 27], the analysis necessary to
reach 1.5 and go below requires a case-by-case analysis of triangle
types to ensure that the budget allocated to each triangle covers its
cost. Both the new threshold step and the new budget functions
result in an analysis that is more involved than what was required
in [26], but is still feasible.

1.437-approximation. The above charging argument between dif-
ferent types of triangles can be more systematically expressed by
a factor-revealing SDP. Given a cluster LP solution I( and vertices
D, E,F , we de�ne~DE :=

∑
(§{D,E} I( (resp.~DEF :=

∑
(§{D,E,F} I( )

be the probability that D, E (resp. D, E,F ) are in the same cluster.
Given any quadruple ) = (0, 1, 2, 3) * [0, 1]4 and a cluster LP so-
lution I( , let [) represent the number of triangles (D, E,F) such
that of ~DE = 0,~DF = 1,~EF = 2,~DEF = 3 . The above 1.49-
approximation analysis can be regarded as putting one constraint
on the distribution of [) . To enhance the approximation ratio and
reduce the budget function, we opt for a more detailed categoriza-
tion of triangles, imposing stronger constraints on [) .

Consider an imaginary rounding procedure, where given a pivot
D, the cluster � that contains D is simply chosen with probability
I� (note that

∑
�+D I� = 1). Let -E denote the event that node E

is included in the cluster of node D in this rounding. We can show
E[-E · -F] = ~DEF and E[-E] · E[-F] = ~DE~DF . The covariance
matrix �$+D , where �$+D (E,F) = E[-E · -F] 2 E[-E] · E[-F] =
~DEF 2 ~DE~DF , must be positive semide�nite (PSD). This PSD
constraint on the covariance matrix enforces a stronger constraint
on [) . For instance, if all non-degenerate triangles centered atD are
++2 triangles with ~ value (~DE = 0.5, ~DF = 0.5, ~FE = 0, ~DEF =

0), then the covariance matrix of �$+D cannot be PSD because
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�$+D (E,F) = ~DEF 2 ~DE~DF = 20.25 for almost all non-diagonal
entries.

For a triangle ) = (~DE, ~DF , ~EF , ~DEF), we discretize ~DE, ~DF ,
~EF to incorporate the PSD constraint. We partition the interval
[0, 1] into numerous subintervals �1, �2, ..., �C . Each triangle with
~ value (~DE * �8 , ~DF * � 9 , ~EF * �: , ~DEF) is placed in one of
these interval combinations. We can rearrange�$+D as&D * RC×C ,
where &D (�8 , � 9 ) =

∑
~DE *�8 ,~DF *� 9 (~DEF 2 ~DE~DF). Considering

& =
∑
D*+ &D , we can represent & using ) and [) . The PSD prop-

erty of &D implies & is PSD, thus enforcing a constraint on [) .
Despite there being in�nitely many types of triangles in each

range �8 , � 9 , �: , our key observation is that ~DEF 2 ~DE~DF is multi-
linear. Therefore, we only need a few triangles in each range to
represent all possible triangles. We want to mention the triangles
we need are �xed so can be precomputed and the only unsure
variable is [) . To compute a lower bound

∑
[) (�() ) 2 cost() )),

we set up a semi-de�nite program (SDP) under the constraint that
& is PSD. This SDP is independent of cluster LP and relies on the
chosen interval and budget function. By employing a practical SDP
solver, we demonstrate that

∑
[) (�() ) 2 cost() )) g 0.

Gaps and Hardness. A high-level intuition for the cluster LP is the
following: (any) LPs cannot distinguish between a random graph
and a nearly bipartite graph. For the cluster LP, given a complete
graph � = (+� , �� ) with = = |+� |, our Correlation Clustering
instance is� = (+� , �� ) where+� = �� and 4, 5 * +� have a plus
edge in� if they share a vertex in+ . Consider vertices of� as ideal
clusters in � containing their incident edges. The LP fractionally
will think that it is nearly bipartite, implying that the entire �� can
be partitioned into =/2 ideal clusters of the same size. Of course,
integrally, such a partition is not possible in complete graphs.

For the cluster LP, it su�ces to consider a complete graph in-
stead of a random graph. We believe (but do not prove) that such a
gap instance can be extended to stronger LPs (e.g., Sherali-Adams
strengthening of the cluster LP), because it is known that Sherali-
Adams cannot distinguish a random graph and a nearly bipartite
graph [18].

The idea for the NP-hardness of approximation is the same. The
main di�erence, which results in a worse factor here, is that other
polynomial-time algorithms (e.g., SDPs) can distinguish between
random and nearly bipartite graphs! So, we are forced to work with
slightly more involved structures.

Still, we use a similar construction for 3-uniform hypergraphs;
let � = (+� , �� ) be the underlying 3-uniform hypergraph and
� = (+� , �� ) be the plus graph of the �nal Correlation Cluster-
ing instance where +� = �� and 4, 5 * �� has an edge in �
if they share a vertex in � . We use the hardness result of Cohen-
Addad, Karthik, and Lee [25] that shows that it is hard to distinguish
whether� is nearly bipartite, which implies that half of the vertices
intersect every hyperedge, or close to a random hypergraph.

Organization. We show how to solve the cluster LP in Section 4,
proving Theorem 1.We give the ( 432Y)-integrality gap of the cluster
LP (Theorem 4) in Section 5, and the improved hardness of 24/232Y
(Theorem 5) in Section 6.

Global Notations. For two sets � and �, we use �·� = (� \ �) *
(� \�) to denote the symmetric di�erence between � and �. We

used# +D and# 2D to denote the sets of + and2neighbors of a vertexD
respectively in the Correlation Clustering instance. For a clustering
C of+ , we de�ne obj(C) to be the objective value of C. For any G *
[0, 1] (

+
2 ) , we already de�ned obj(G) = ∑

DE*�+ GDE +
∑
DE*�2 (1 2

GDE). Recall that we de�ned costD (E,F),�D (E,F), cost() ) and �() )
for a triangle ) = (D, E,F) or a degenerate triangle ) = (D, E) in
Section 2; they depend on the budget functions 1+ and 12 .

4 SOLVING CLUSTER LP RELAXATION

APPROXIMATELY

In this section, we show how to solve the cluster LP in polynomial
time, by proving Theorem 1, which is repeated below.

Theorem 1. Let Y > 0 be a small enough constant and opt be the

cost of the optimum solution to the given Correlation Clustering in-

stance. In time =poly(1/Y ) , we can output a feasible cluster LP solution(
(I( )(¦+ , (GDE)DE*(+2 )

)
with obj(G) f (1 + Y)opt, described using a

list of non-zero coordinates.

We de�ne some global parameters used across this section. Let
Y1 = Y3, Yrt = Y

2
1 = Y6, and A = �(1/Y2rt) = �(1/Y12) be an integer,

with some large enough hidden constant. The subscript “rt” stands
for Raghavendra-Tan.

4.1 Preclustering

We use the de�nition of a preclustered instance from [26], with
some minor modi�cations.

De�nition 12. Given a Correlation Clustering instance (+ , �+®�2),
a preclustered instance is de�ned by a pair (K, �adm), where K
is a partition of + (which can also be viewed as a clustering), and

�adm ¦
(+
2

)
is a set of pairs such that for every DE * �adm, D and E

are not in a same set in K .
Each set  * K is called an atom. An (unordered) pair DE between

two vertices D and E in a same  * K is called an atomic edge; in
particular, a self-loop DD is an atomic edge. A pair that is neither an

atomic nor an admissible edge is called a non-admissible edge.

There are two minor di�erences between our de�nition and the
one in [26]. First, we require that K forms a partition; this can be
guaranteed by adding singletons. Second, we do not require an edge
between two di�erent non-singleton atoms to be non-admissible.
Our construction can guarantee this condition, but it is not essential.

De�nition 13. Given a preclustered instance (K, �adm) for some

Correlation Clustering instance (+ , �+ ® �2), a clustering C of + is

called good with respect to (K, �adm) if
" D and E are in the same cluster in C for an atomic edge DE , and

" D and E are not in the same cluster in C for a non-admissible

edge DE .

The following theoremwith a worse bound on |�adm | was proved
in [26]. We give a cleaner proof of the theorem in the full paper; as
a byproduct, it achieves a better bound on |�adm |.

Theorem 14. For any su�ciently small Y > 0, there exists a

poly(=, 1Y )-time algorithm that, given a Correlation Clustering in-

stance (+ , �+ ®�2) with optimal value opt (which is not given to us),

produces a preclustered instance (K, �adm) such that
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" there exists a good clustering w.r.t (K, �adm), whose cost is at
most (1 + Y)opt, and
" |�adm | f $

( 1
Y2

)
· opt.

We can assume in the preclustered instance (K, �adm), the edges
between two di�erent atoms  and  2 are all admissible, or all
non-admissible. If one edge between them is non-admissible, we
can change all other edges to non-admissible edges. This will not
change the set of good clusterings, and it will decrease |�adm |.

We apply Theorem 14 to obtain a preclustered instance (K, �adm),
with the unknown good clustering C71 . We de�ne  D to be the atom
that contains D, and :D = | D |. We shall use #adm (D) to be the set
of vertices E such that DE * �adm; so #adm (D) = #adm (E) if E *  D .
We further process the good clustering C71 using the following pro-
cedure in [26]. This procedure is not a part of our algorithm; it is
only for analysis purpose.

1: while there exists some D in a cluster� * C71 with :D < |� | f
:D + Y1 · |#adm (D) | do

2: C71 ± C
7
1 \ {�} * { D ,� \  D }

Claim 15. The procedure increases obj(C71 ) by at most 2Y1 · |�adm |.

Proof. Whenever we break � into  D and � \  D in the proce-
dure, the cost increase is at most :D · ( |� |2:D ) f :D ·Y1 · |#adm (D) | =
Y1

∑
E* D |#adm (E) |. We separate each atom D at most once. There-

fore, the total cost increase is at most Y1
∑
E*+ |#adm (E) | = 2Y1 ·

|�adm |. ¥

So, the cost of C71 after the procedure will be at most (1+ Y)opt+
$ (Y1) |�adm |. Crucially, the following property is satis�ed:

(A1) For every D * + ,  D is either a cluster in C71 , or in a cluster
of size more than :D + Y1 · |#adm (D) |.

4.2 Bounded Sub-Cluster LP Relaxation for

Preclustered Instances

Following [26], we form an LP relaxation aiming at �nding the
good clustering C71 . In the LP, we have a variable ~B

(
, for every

B * [=], and ( ¦ + of size at most A (recall that A = �(1/Y12)), that
denotes the number of clusters in C71 of size B containing ( as a
subset. When ( b ', there is at most one such cluster and thus
~B
(
* {0, 1} indicates if ( is a subset of a cluster of size B in C71 . For

every ( ¦ + of size at most A , let ~( :=
∑
B ~
B
(
denote the number

of clusters (of any size) in C71 containing ( as a subset. Again, if
( b ', then ~( * {0, 1} indicates if ( is a subset of a cluster in C71 .
For every DE *

(+
2

)
, we have a variable GDE indicating if D and E

are separated or not in C71 . We call the LP the bounded sub-cluster
LP relaxation, as we have variables indicating if a small set ( is a
subset of a cluster or not.

We use the following type of shorthand: ~BD for ~B{D} , ~
B
DE for

~B{D,E} , and ~
B
(D

for ~B
(*{D} . The bounded sub-cluster LP is de�ned

as follows. In the description, we always have B * [=], D * + and

DE *
(+
2

)
. For convenience, we omit the restrictions. By default, any

variable of the form ~( or ~B
(
has |( | f A ; if not, we do not have the

variable and the constraint involving it.

min obj(G) (bounded sub-cluster LP)
=∑
B=1

~B( = ~( "( (6)

~D = 1 "D (7)

~DE + GDE = 1 "DE (8)

1

B

∑
D

~B(D = ~B( "B, ( (9)

~B( g 0 "B, ( (10)

GDE = 0 "D, E in a same  * K (11)

GDE = 1 "non-admissible edge DE (12)

~BD = 0 "D, B * [:D 2 1] *
[
:D + 1, :D + Y1 |#adm (D) |

]
(13)

∑
) 2¦)

(21) |) 2 |~B(*) 2 * [0, ~
B
( ]"B, ( +) = ' (14)

(6) gives the de�nition of ~( , (7) requires D to be contained in
some cluster, and (8) gives the de�nition of GDE . (9) says if ~B( = 1,
then there are exactly B elementsD * + with~B

(D
= 1. (An exception

is when ( = '; but the equality also holds.) (10) is the non-negativity
constraint. (11) and (12) follows from that C71 is a good clustering,
and (13) follows from (A1). The left side of (14) is the number of
clusters of size B containing ( but does not contain any vertex in
) . So the inequality holds. This corresponds to a Sherali-Adams
relaxation needed for the correlated rounding [39], see Lemma 16.

The running time for solving the LP is =$ (A ) = =$ (1/Y
12 ) .

4.3 Sampling One Cluster Using LP Solution to

the Bounded Sub-Cluster LP

We solve the bounded sub-cluster LP to obtain the ~ and G vectors.
Given ~, we can use the procedure construct-cluster described in
Algorithm 3, which is from [26], to produce a random cluster � .

Algorithm 3 construct-cluster(~)
1: randomly choose a cardinality B , so that B is chosen with prob-

ability
~B'
~'

2: randomly choose a vertex D * + , so that D is chosen with

probability
~BD
B~B'

3: de�ne a vector ~2 such that ~2
(
=
~B
(D

~BD
for every ( ¦ + of size

at most A 2 1
4: apply the Raghavendra-Tan correlated rounding technique over

the fractional set ~2 to construct a cluster � ¦ + that does not
break any atom, and return �

With (14), the Raghavendra-Tan technique can be applied:

Lemma 16 ([39]). In Step 4 of Algorithm 3, one can sample a set

� ¦ + that does not break atoms in time =$ (A ) such that

" For each E * + , Pr[E * �] = ~2E .
" 1
|#adm (D ) |2

∑
E,F*#adm (D )

�� Pr[E,F * �] 2 ~2EF �� f Yrt.
Recall that Yrt = �(1/

:
A ) and the hidden constant inside �(·) is

large enough.
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As in [26], we de�ne errB
EF |D to be the error generated by the

procedure when we choose B as the cardinality and D as the pivot:

errB
EF |D :=

����Pr [
E,F * � |B,D

]
2 ~

B
DEF

~BD

���� ,"EF *
(
+

2

)
,

and

errBEF :=
1

B~B'

∑
D*+

~BD · errBEF |D and errEF :=
∑
B

~B'
~'
· errBEF

as the error for EF conditioned on B , and the unconditioned error.
Notice that all these quantities are expectations of random variables,
and thus deterministic.

The following two lemmas can be proved using the same argu-
ments as in [26].

Lemma 17 ([26]). For any E * + , we have Pr[E * �] = 1
~'

.

Lemma 18 ([26]). Focus on an edge EF *
(+
2

)
.

(1) Pr [E * �,F + �] f 1
~'
· GEF + errEF .

(2) Pr [|{E,F} ¦ �] f 1
~'
· ~EF + errEF .

A similar lemma to the following is proved in [26]. The parame-
ters we use here are slightly di�erent and we provide a proof for
completeness.

Lemma 19.
∑

EF*(+2 )
errEF f $ (Y1) ·

1

~'
|�adm |.

Proof. Throughout the proof, we assume D, E,F are all in+ , EF

and DF are in
(+
2

)
.

Fix some B * [=], D * + with ~BD > 0, and we now bound∑
EF errB

EF |D . If B = :D , then � =  D ; no errors will be created and

the quantity is 0. Assume B > :D . By (13), we have that B > :D + Y1 ·
|#adm (D) |, since otherwise we shall ~BD = 0. By the second property
of Lemma 16, we have

∑
EF errB

EF |D f
Yrt
2 |#adm (D) |2. (Notice that

if one of E andF is not in #adm (D), then errB
EF |D = 0.) Recall that

Yrt = Y
2
1 . Therefore,∑

EF*(+2 )
errB

EF |D f
Yrt

2
· |#adm (D) |2 f

Yrt

2Y1
· |#adm (D) | · (B 2 :D )

=
Y1

2
· |#adm (D) | ·

∑
E*#adm (D )

~BDE
~BD

=
Y1

2
·

∑
E,F*#adm (D )

~BDE
~BD

.

The �rst equality is by (9) and ~BDE = ~
B
D for every E *  D . (To see

this, notice that ~BDE f ~BD is implied by (14). We have ~DE =
∑
B ~
B
DE ,

~D =
∑
B ~
B
D , and ~DE = ~D = 1 if E *  D .)

Considering the inequalities over all D * + , we have∑
EF

errBEF =
1

B~B'

∑
D

~BD ·
∑
EF

errB
EF |D

f 1

B~B'

∑
D

~BD ·
∑

E,F*#adm (D )

Y1

2
· ~
B
DE

~BD

=
Y1

2
· 1

B~B'
·

∑
D*+ ,E,F*#adm (D )

~BDE

=
Y1

2
·
∑
E*+

~BE
B~B'

∑
D*#adm (E),F*#adm (D )

~BDE
~BE

f Y1
2
·
∑
E*+

~BE
B~B'

∑
DF*�adm

(
~BDE + ~BEF

~BE

)

f Y1 ·
∑
E*+

~BE
B~B'

∑
DF*�adm

Pr[� + {D,F} b ' | B, E is pivot]

= Y1

∑
DF*�adm

Pr[� + {D,F} b ' | B] .

To see the last inequality, notice that
~BDE
~BE

= Pr[D * � |B, E is pivot] f

Pr[� + {D,F} b '|B, E is pivot]. The same inequality holds for
~BEF
~BE

.

Finally, we take all B into consideration:

∑
EF

errEF =

∑
B

~B'
~'
·
∑
EF

errBEF

f Y1 ·
∑
B

~B'
~'

∑
DF*�adm

Pr[� + {D,F} b '|B]

= Y1 ·
∑

DF*�adm
Pr[� + {D,F} b ']

f 2Y1

~'
|�adm | + 3Y1

∑
DF*(+2 )

errDF .

To see the last inequality, we notice that � + {D,F} b ' is the
union of the 3 disjoint events: D * � andF + � , D + � andF * � ,
and {D,F} + � . By Lemma 18, we have Pr[� + {D,F} b '] f
2GEF+~EF

~'
+ 3 · errDF f 2

~'
+ 3 · errDF . So, we have

∑
EF errEF f

1
123Y1 ·

2Y1
~'
|�adm |. This proves the lemma. ¥

4.4 Construction of Solution to the Cluster LP

Using Independently Sampled Clusters

With all the ingredients, we can now describe our algorithm for
solving the cluster LP approximately, �nishing the proof of Theo-

rem 1. Let � = �

(
=2 log=

Y21 |�adm |

)
with a large enough hidden constant,

and �~' being an integer. (We assume |�adm | g 1 since otherwise
the preclustered instance is trivial.) We run Algorithm 3 �~' times
independently to obtain clusters �1,�2, · · · ,��~' .

We use the following variant of Cherno� bound.

Theorem 20. Let -1, -2, -3, · · · , -= be independent (not neces-

sarily iid) random varibles which take values in [0, 1]. Let - =∑=
8=1 -8 , ` = E[- ], and `2 g ` be a real. Then for any X * (0, 1), we

have

Pr[- < (1 2 X)`] < 42X2`/2 and Pr[- > ` + X`2] < 42X2`2/3 .

For every D * + , let 'D = {C : D * �C }. Notice that �~' · |�adm |~'=2
=

�
( log=
Y21

)
, with a large enough hidden constant. Using Cherno�

bound and union bound, we can prove that with probability at least
1 2 1/=, the following conditions hold.

" For everyD * + , we have |'D | g (12Y1)�~' · 1~' = (12Y1)�.
" For every D, E * + such that DE * �+, we have

|'D \ 'E | f �~'

(
GDE

~'
+ errDE + Y1 ·max

{
GDE

~'
+ errDE,

|�adm |
~'=2

})
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f (1 + Y1)�(GDE + ~'errDE) +
Y1�|�adm |

=2
. (15)

" For every DE * �2 , we have

|'D + 'E | f �~'

(
~DE

~'
+ errDE + Y1 ·max

{
~DE

~'
+ errDE,

|�adm |
~'=2

})

f (1 + Y1)�(~DE + ~'errDE) +
Y1�|�adm |

=2
.

From now on we assume the conditions hold. For every D * + ,
we let '2D be the set of the +(1 2 Y)�+ smallest indices in 'D . Clearly,
|'2D + '2E | f |'D + 'E |. We show |'2D \ '2E | is still upper bounded by
(15).

Claim 21. For every DE * �+ we have max{|'2D \ '2E |, |'2E \ '2D |} f
(1 + Y1)�(GDE + ~'errDE) + Y1� |�adm |=2

.

Proof. For convenience, we use � to denote the upper bound

(1 + Y1)�(GDE + ~'errDE) + Y1� |�adm |
=2

. We think of '2D ('2E resp.)
as obtained from the set 'D ('E resp.) by removing the largest
indices one by one. Wlog we assume |'D | g |'E |; and thus initially
|'E \ 'D | f |'D \ 'E | f �. We remove the elements from 'D and 'E
in two stages.

In the �rst stage we do the following. While |'D | > |'E |, we
remove the largest index from 'D . This can not increase |'D \ 'E |.
After the �rst stage, we have |'D \ 'E | = |'E \ 'D | f �.

In the second stage we do the following. While |'D | = |'E | >
+(1 2 Y)�+, we remove the largest index in 'D from 'D , and do the
same for 'E . Consider one iteration of the while loop. If the two
indices are the same, then |'D \ 'E | = |'E \ 'D | does not change.
Otherwise, wlog we assume the index we removed from 'D is
larger. Then removing the index in 'D will decrease |'D \ 'E |. So
the iteration can not increase |'D \ 'E | = |'E \ 'D |. ¥

Then, for every C * [1,�~'], we de�ne �2C = {D : C * '2D } ¦ �C ;
then every E is contained in �2C for exactly +(1 2 Y)�+ values of C .
We de�ne I( =

1
+ (12Y )�+ · |{C : �

2
C = (}| for every ( ¦ + with ( b '.

De�ne G̃DE = 1 2∑
{D,E}¦( I( for every DE *

(+
2

)
. Then (G̃, I) is a

valid solution to the cluster LP.
For a DE * �+, we have

G̃DE =
1

+(1 2 Y)�+ · |'
2
D \ '2E | f

1 + Y1
1 2 Y (GDE + ~'errDE) +

Y1 |�adm |
(1 2 Y)=2

.

For a DE * �2 , we have

(1 2 G̃DE) f
1 + Y1
1 2 Y (1 2 GDE + ~'errDE) +

Y1 |�adm |
(1 2 Y)=2

.

Therefore,

obj(G̃) f (1 +$ (Y))
©­­«
obj(G) + ~'

∑
DE*(+2 )

errDE
ª®®¬
+$ (Y1) |�adm |

f (1 +$ (Y))obj(G) +$ (Y1) |�adm |

f (1 +$ (Y)) · opt +$ (Y3) ·$
( 1
Y2

)
· opt = (1 +$ (Y))opt.

The second inequality is due to Lemma 19, and the third one used
that |�adm | f $

( 1
Y2

)
· opt. By scaling Y, the upper bound can be

made to (1 + Y)opt. This �nishes the proof of Theorem 1.

5 1.33-GAP FOR CLUSTER LP

In this section, we show that the cluster LP has a gap of 4/3, proving
Theorem 4 restated below.

Theorem 4. For any Y > 0, the integrality gap of the cluster LP is

at least 4/3 2 Y.
The graph of the plus edges of our gap instance is based on the

line graph of a base graph; given a based graph � = (+� , �� ), our
correlation clustering instance is� = (+� , �� ) where+� = �� and
4, 5 * +� have a plus edge in � if they share a vertex in +� .

A high-level intuition is the following: LPs cannot distinguish
between a random graph and a nearly bipartite graph. Consider
vertices of � as ideal clusters in � containing their incident edges.
Given a random graph � , the LP fractionally will think that it is
nearly bipartite, implying that the almost entire �� can be parti-
tioned into =/2 ideal clusters. Of course, integrally, such a partition
is not possible in random graphs. For the cluster LP, it su�ces
to consider a complete graph instead of a random graph. We be-
lieve (but do not prove) that such a gap instance can be extended
to stronger LPs (e.g., Sherali-Adams strengthening of the cluster
LP), because it is known that Sherali-Adams cannot distinguish a
random graph and a nearly bipartite graph [18].

Proof of Theorem 4. Let � = (+� , �� ) be a complete graph
on = vertices. Let 3 = = 2 1 be the degree of � . Our correlation
clustering instance � = (+� , �� ) is the line graph of � ; +� = ��
and 4, 5 * �� has + edge in � if and only if they share a vertex in
� . The + degree of each 4 * �� in � is 23 2 2.

Consider the following solution for the cluster LP: for every
E * +� , let �E ¦ �� be the 3 edges containing E . The cluster LP has
I�E = 1/2 for every E * E� . Each 4 * �� belongs to two fractional
clusters, each of which has its 3 2 1 plus neighbors, so fractionally
3 2 1 plus edges incident on it are violated. Since each violated edge
is counted twice, the LP value is

(=
2

)
(3 2 1)/2.

Let us consider the integral optimal correlation clustering of� .
Consider a cluster � in the clustering. Note that every vertex in �
has at least |� |/2 plus neighbors in � , which implies |� | f 43 . We
apply the following procedure to � to partition it further.

Claim 22. There is a partition of� into�1, . . . ,�A such that (1) each

�8 is a subset of �E for some E * +� , and (2) replacing� by�1, . . . ,�A
in the correlation clustering solution increases the objective function

by at most 35|� |.

Proof. For E * +� , let =E := |� + �E |. Note that
∑
E =E = 2|� |.

Without loss of generality, assume +� = {E1, . . . , E=} with =E1 g
· · · g =E= . If 4 = (E8 , E 9 ) * � has 8, 9 > 8, then the number of its
plus neighbors in � is =E8 + =E9 < 2 · 18 · 2|� | = |� |/2, so it should
not exist in � . So, every edge is incident on E8 for some 8 f 8.

Let us make at most
(8
2

)
= 28 edges in � between E1, . . . , E8 as

singleton clusters; the objective function increases by at most 28|� |.
Then partition the remaining� into �1, . . . , �8 where �8 := � + �E8 .
Each 4 * �8 has at most seven plus neighbors in *9b8� 9 , so the
objective function increases by at most 7|� |. So, we partitioned �
into �1, . . . ,�A where all the edges in �8 share a common endpoint.
We increased the objective function by at most 35|� |. ¥

After we apply the above procedure to every cluster � , we in-
creased the cost by at most 35|+� | f 35=2 and all the edges in
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a cluster � share a common endpoint. For E * +� , let �E be the
cluster in the solution whose common endpoint is E . (If there are
many of them, merging them will strictly improve the objective
function value.) Without loss of generality, there are C such clusters
�E1 , . . . ,�EC and let =8 := |�E8 | such that =1 g · · · g =C .

Claim 23.
∑C
8=1 =

2
8 f =

3/3.

Proof. The LHS is monotone in (=1, . . . , =C ), and if there is an
edge (E8 , E 9 ) * � 9 with 9 > 8 (which implies =8 g = 9 ), the LHS
strictly improves by moving (E8 , E 9 ) to�8 . Therefore, the con�gura-
tion that maximizes the LHS is when C = = and �E8 contains all the
edges of � not incident on E1, . . . , E821. In that case, the LHS is

=21∑
8=1

(= 2 8)2 = =3
=21∑
8=1

(= 2 8
=
)2 · 1

=
f =3

∫ 1

0
(1 2 G)23G

= =3 [G 2 G2 + G3/3]10 = =
3/3,

as desired. ¥

Using this, we can prove a lower bound on the cost of our near-
optimal clustering. Note that every cluster is a clique of +edges.
Thus, the only edges violated are +edges. Moreover, there are at
most

∑
8*[C ] =

2
8 /2 f =

3/6 correctly clustered +edges. The cost of
our near-optimal clustering is the total number of +edges of �
minus the number of correctly clustered +edges, namely at most(=
2

)
(3 2 1) 2 =3/6 = =3/3 2 > (=3). Since the cost of the optimal

clustering is at most 35=2 lower than ours, it is still =3/3 2 > (=3).
The fractional solution has the value at most =3/4, so the gap is at
least 4/3 2 > (1). ¥

6 1.04-NP HARDNESS

In this section, we show that it is NP-hard (under randomized
reductions) to obtain an algorithm with an approximation ratio of
24/23 g 1.043, proving Theorem 5 restated below.

The idea is similar to the gap for the cluster LP in Section 5,
which is based on the fact that the LPs generally cannot distinguish
nearly bipartite graphs and random graphs. The main di�erence,
which results in a worse factor here, is that other polynomial-time
algorithms (e.g., SDPs) can distinguish between them! So, we are
forced to work with slightly more involved structures.

Still, we use a similar construction for 3-uniform hypergraphs;
let � = (+� , �� ) be the underlying 3-uniform hypergraph and
� = (+� , �� ) be the plus graph of the �nal Correlation Clustering
instance where +� = �� and 4, 5 * �� has an edge in � if they
share a vertex in � . We use the following hardness result of Cohen-
Addad, Karthik, and Lee [25] that shows that it is hard to distinguish
whether � is nearly bipartite or close to a random hypergraph.

Theorem 24. For any Y > 0, there exists a randomized polynomial-

time algorithm that receives a 3-CNF formulaq as input and outputs a

simple 3-uniform hypergraph� = (+� , �� ) where the degree of each
vertex is (1 ± > (1))3 for some 3 = l ( |+� |) such that the following

properties are satis�ed with high probability.

" (YES) If q is satis�able, there exists* ¦ +� with |* | = |+� |/2
that intersects every hyperedge in �� . Moreover, for every

D * * , |{4 * �� : 4 +* = {D}}| g (1/2 2 Y)3 .

" (NO) If q is unsatis�able, any set of W |+� | vertices (W * [0, 1])
do not intersect at least a (1 2 W)3 2 Y fraction of hyperedges

in �� .

Proof. The same reduction in Theorem 4.1 of (the arXiv version
of) [25] yields the desired hardness. In the following, we highlight
the di�erence between the statement of Theorem 4.1 of [25] and
our Theorem 24 and brie�y explain how our additional properties
are satis�ed by their reduction.

(1) Regularity of � : Section 4.5 of [25], based on an earlier
weighted hard instance, constructs the �nal hard instance
� = (+� , �� ) as a certain random hypergraph where the
degree of each vertex E is the sum of independent {0, 1} vari-
ables with the same expected value. This expected value is
�( |+� |1.5), so the standard Cherno� and union bound argu-
ment will show that the degree of each vertex is almost the
same with high probability.

(2) In the (YES) case, for everyD * * , |{4 * �� : 4+* = {D}}| g
(1/2 2 Y)3 : It follows from their construction in Section 4.1.
The construction is analogous to Håstad’s celebrated result
on Max-3SAT [32] where in the (YES) case, almost three
quarters of the clauses have one true literal and almost one
quarter have three true literals, so that for each true literal
ℓ , roughly half of the clauses containing ℓ has it as the only
true literal.

(3) In the (NO) case: the guarantee holds for any value of W *
[0, 1] instead of just 0.5: One can simply change 1/2 to 1 2 W
in the proof of Lemma 4.4 in Section 4.3. It is analogous to the
fact that all nontrivial Fourier coe�cients vanish in Håstad’s
result on Max-3SAT and Max-3LIN [32].

¥

Given such � = (+� , �� ), let = := |+� |. Our correlation clus-
tering instance � = (+� , �� ) is the line graph of � ; +� = �� and
4, 5 * �� have a plus edge in � if they share a vertex in � . This
means that every 4 * +� has (3 ± > (1))3 plus edges incident on
it; we used the fact that 3 = l (=) and 4 has at most $ (=) other
hyperedges that intersect with 4 with at least two points (which
causes double counting).

YES case. Consider * ¦ +� guaranteed in Theorem 24. Our
(randomized) clustering is the following: randomly permute vertices
to obtain* = {E1, . . . , E=/2}, and let �8 := {4 * �� : E8 * 4 and 4 +
{E1, . . . , E821} = '}. Since* intersects every 4 * �� , (�1, . . . , �=/2)
forms a partition of �� .

We analyze the expected cost of this clustering. For each 4 * �� ,
let B0E4 (4) be (the number of plus neighbors in the same cluster)
minus (the number of minus neighbors in the same cluster). Intu-
itively, it is the amount of saved cost between 4 and its neighbors,
compared to the situation where 4 is a singleton cluster. Then, the
cost of our clustering is the total number of plus edges of� , namely

|�� | · 3(1±> (1) )32 = =32 · (1±> (1) )2 , minus
∑
4*�� B0E4 (4)/2.

Fix E * * and let �E := {4 * �� : E * 4}, �2E := {4 * �� : 4 +* =

{E}}, �22E := �E \ �2E . Then |�E | = (1 ± > (1))3 and |�2E | g (1/2 2 Y)3 .
We would like to compute E[|�8 |2] over random permutations
where 8 is de�ned such that E8 = E . It is clear that �2E ¦ �8 . For each
4 * �22E , the probability that 4 * �8 is at least 1/3 (when E comes
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before the other two vertices of 4 in the random permutation). And
two hyperedges 4, 5 * �22E , the probability that both are in �8 is at
least 1/5 (when E comes �rst among |4 * 5 | f 5 vertices). Therefore,

E[|�8 |2] g |�28 |
2 + 2|�28 | |�

22
8 |/3 + |�

22
8 |

2/5
g 32 (1/4 + 1/6 + 1/20 2$ (Y)) = 32 (7/15 2$ (Y)) .

Therefore, the total saving is at least =32 (7/302$ (Y)) and the �nal
cost is at most =32 (1/2 2 7/60 +$ (Y)) = =32 (23/60 +$ (Y)).

NO case. Our analysis will be similar to that of the gap instance,
slightly more complicated by the fact that we are working with a
non-complete hypergraph. Consider the optimal correlation cluster-
ing and consider one cluster� . For 4 * � , it has at most (3±> (1))3
plus edges in � , so |� | f (6 + > (1))3 ; otherwise, it is better to
make 4 a singleton cluster. We prove that if � is large, then we
can partition � into smaller clusters where each cluster consists of
hyperedges sharing the same vertex in � . For E * �� , let �E ¦ ��
be the set of hyperedges containing E .

Claim 25. There is a partition of� into�1, . . . ,�A such that (1) each

�8 is a subset of �E for some E * +� , and (2) replacing� by�1, . . . ,�A
in the correlation clustering solution increases the objective function

by at most $ (= |� |).

Proof. Without loss of generality, assume +� = {E1, . . . , E=}
and de�ne =8 := |� + �E8 | such that =1 g · · · g == . Note that∑
8 =8 = 3|� |.
If 4 = (E8 , E 9 , E: ) with 8, 9, : > 20, then =8 + = 9 + =: < 3 ·

(3|� |/20) < |� |/2, which implies that 4 has more minus neigh-
bors than plus neighbors in � , leading to contradiction. So, every
hyperedge is incident on E8 for some 8 f 20.

Since two vertices of � have at most = hyperedges containing
both of them, let usmake atmost=·

(10
2

)
hyperedges in� that contain

at least two of E1, . . . , E20 as singleton clusters; the objective function
increases by at most = ·

(10
2

)
· |� |. Then partition the remaining �

into �1, . . . , �20 where �8 := � + �E8 . Each 4 * �8 has at most
2 · 20 · = plus edges in *9b8� 9 (20 choices for E 9 , 2 choices for a
vertex in 4 + {E8 }, and = choices for hyperedges containing both
vertices), so the objective function increases by at most $ (= |� |).
So, we partitioned � into �1, . . . ,�A where all the hyperedges in
�8 share a common endpoint. In total, we increased the objective
function by at most $ (= |� |). ¥

Applying the above procedure for every cluster � increases the
objective function by at most$ (= · |�� |) = $ (=23). Then, we have
a clustering where all the edges in a cluster� share a common end-
point.� forms a clique in � . For E * +� , let�E be the cluster in the
solution whose common endpoint is E . (If there are many of them,
merging them will strictly improve the objective function value.)
Without loss of generality, there are C such clusters�E1 , . . . ,�EC and
let 28 := |�E8 | such that 21 g · · · g 2C .

Claim 26.
∑C
8=1 2

2
8 f 3

2=(0.2 +$ (
:
Y)), where Y is the parameter

from Theorem 24.

Proof. Here, we use the NO case guarantee from Theorem 24:
for any W * [0, 1] and choice of W= vertices, it covers at most 12 (12

W)3 + Y = 3W 2 3W2 +W3 + Y fraction of the edges, which is equivalent
to: for every 8 * [=],

8∑
9=1

28 f (3(8/=) 2 3(8/=)2 + (8/=)2 + Y) |�� |. (16)

Let X = > (1) be such that every vertex of � has degree at most
(1 + X)3 , which means that (1 + X)3 g 21 g · · · g 2C . And let
58/= := 28/((1 + X)3). Then (16) becomes

1

=

8∑
9=1

59/= f (3(8/=) 2 3(8/=)2 + (8/=)2 + Y)
|�� |
(1 + X)3=

f (3(8/=) 2 3(8/=)2 + (8/=)2 + Y)/3. (17)

(Note that |�� | f (1 + X)3=/3.) if we interpret 1
=

∑8
9=1 59/= as∫ 1

0
5 (G)3G where 5 (G) = 2 +G=+ , we have that

C∑
8=1

|28 |2 f (1 + X)232=max
5

∫ 1

0
5 (G)23G,

where the maximum is taken over functions 5 : [0, 1] ³ [0, 1] with
the constraints that

(1) For all ~ * [0, 1],∫ ~

G=0
5 (G)3G f ~ 2 ~2 + ~3/3 + Y/3. (18)

(Compared to (17), we add more constraints for every ~ *
[0, 1], but it is valid to do so since the step function 5 (·)
de�ned above satis�es all these constraints; if (18) is violated
for some value ~ * (8/=, (8 + 1)/=) for some integer 8 , (17)
is violated at (8 + 1)/= because 5 (~) stays the same in the
interval while the upper bound increases strictly less than
linearly.)

(2) 5 decreasing with 5 (0) f 1.

Then one see that the optimal 5 satis�es either 5 (~) = 1 or
∫ ~
G=0

5 (G)
= ~ 2~2 +~3 + Y/3 for every ~ * [0, 1). If it is not satis�ed at some ~,
we can increase 5 (~) while decreasing 5 (I) for some I > ~, which

will still satisfy the constraints and increase
∫ 1

0
5 (G)23G . Therefore,

we can conclude that 5 (~) = 1 for ~ f g and∫ ~

G=0
5 (G)3G = ~ 2 ~2 + ~3/3 + Y/3

ó5 (~) = (~ 2 ~2 + ~3/3 + Y/3)2 = 1 2 2~ + ~2

for ~ > g , where g = �(
:
Y) is the solution of g = g 2g2 +g3 +Y/3.

Then, we can bound∫ 1

G=0
5 (G)23G f $ (

:
Y) +

∫ 1

G=0
(1 2 2G + G2)23G f 0.2 +$ (

:
Y),

which implies that
∑
8 2

2
8 f 3

2=(0.2 +$ (
:
Y)). ¥

Using this, we can prove a lower bound on the cost of our near-
optimal clustering. Note that every cluster is a clique of +edges.
Thus, the only edges violated are +edges. Moreover, there are at
most

∑
8*[C ] 2

2
8 /2 f 3

2=(0.1+$ (
:
Y) correctly clustered +edges. The

cost of our near-optimal clustering is the total number of +edges
of � minus the number of correctly clustered +edges, namely at
least =32 (1/2 2 0.1 2$ (

:
Y)) = =32 (0.4 2$ (

:
Y)). Since the cost of
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the optimal clustering is at most $ (=23) lower than ours, it is still
=32 (0.4 2$ (

:
Y)) using 3 = l (=).

Since the value in the YES case is at most (23/60 +$ (Y))=32, so
the gap is almost 24

23 g 1.043.
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