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ABSTRACT

In the classic Correlation Clustering problem introduced by Bansal,
Blum, and Chawla (FOCS 2002), the input is a complete graph
where edges are labeled either + or —, and the goal is to find a
partition of the vertices that minimizes the sum of the +edges
across parts plus the sum of the -edges within parts. In recent years,
Chawla, Makarychev, Schramm and Yaroslavtsev (STOC 2015) gave
a 2.06-approximation by providing a near-optimal rounding of the
standard LP, and Cohen-Addad, Lee, Li, and Newman (FOCS 2022,
2023) finally bypassed the integrality gap of 2 for this LP giving a
1.73-approximation for the problem.

While introducing new ideas for Correlation Clustering, their
algorithm is more complicated than typical approximation algo-
rithms in the following two aspects: (1) It is based on two different
relaxations with separate rounding algorithms connected by the
round-or-cut procedure. (2) Each of the rounding algorithms has to
separately handle seemingly inevitable correlated rounding errors,
coming from correlated rounding of Sherali-Adams and other strong
LP relaxations.

In order to create a simple and unified framework for Correlation
Clustering similar to those for typical approximate optimization
tasks, we propose the cluster LP as a strong linear program that
might tightly capture the approximability of Correlation Cluster-
ing. It unifies all the previous relaxations for the problem. It is
exponential-sized, but we show that it can be (1 + €)-approximately
solved in polynomial time for any € > 0, providing the framework
for designing rounding algorithms without worrying about corre-
lated rounding errors; these errors are handled uniformly in solving
the relaxation.
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We demonstrate the power of the cluster LP by presenting a
simple rounding algorithm, and providing two analyses, one an-
alytically proving a 1.49-approximation and the other solving a
factor-revealing SDP to show a 1.437-approximation. Both proofs
introduce principled methods by which to analyze the performance
of the algorithm, resulting in a significantly improved approxima-
tion guarantee.

Finally, we prove an integrality gap of 4/3 for the cluster LP,
showing our 1.437-upper bound cannot be drastically improved.
Our gap instance directly inspires an improved NP-hardness of
approximation with a ratio 24/23 ~ 1.042; no explicit hardness
ratio was known before.
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1 INTRODUCTION

Clustering is a classic problem in unsupervised machine learning
and data mining. Given a set of data elements and pairwise similar-
ity information between the elements, the task is to find a partition
of the data elements into clusters to achieve (often contradictory)
goals of placing similar elements in the same cluster and separating
different elements in different clusters. Introduced by Bansal, Blum,
and Chawla [7], Correlation Clustering elegantly models such ten-
sion and has become one of the most widely studied formulations
for graph clustering. The input of the problem consists of a com-
plete graph (V,E* W E7), where EY WE™ = (‘2/) E* representing
the so-called positive edges and E~ the so-called negative edges.
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The goal is to find a clustering (partition) of V, namely (V3,...,Vg),
that minimizes the number of unsatisfied edges, namely the +edges
between different clusters and the —edges within the same cluster.
Thanks to the simplicity and modularity of the formulation, Corre-
lation Clustering has found a number of applications, e.g., finding
clustering ensembles [11], duplicate detection [5], community min-
ing [21], disambiguation tasks [34], automated labelling [1, 15] and
many more.

This problem is APX-Hard [17], and various O(1)-approximation
algorithms [7, 17] have been proposed in the literature. Ailon,
Charikar and Newman introduced an influential pivot-based al-
gorithm, which leads to a combinatorial 3-approximation and a
2.5-approximation with respect to the standard LP relaxation [4].
The LP-based rounding was improved by Chawla, Makarychev,
Schramm and Yaroslavtsev to a 2.06-approximation [20], nearly
matching the LP integrality gap of 2 presented in [17].

It turns out that (a high enough level of) the Sherali-Adams hier-
archy can be used to design a strictly better than 2-approximation.
Cohen-Addad, Lee, and Newman [27] showed that O(1/¢?) rounds
of the Sherali-Adams hierarchy have an integrality gap of at most
(1.994+¢). This approximation ratio was improved by Cohen-Addad,
Lee, Li, and Newman [26] to (1.73 + ¢) in nPoly(1/€) _time, which
combines pivot-based rounding and set-based rounding.

One undesirable feature of [26] is the lack of a single convex re-
laxation with respect to which the approximation ratio is analyzed.
For technical reasons, it combines the two rounding algorithms via
a generic round-or-cut framework. Given x € [0, l]E, each of the
two rounding algorithms outputs either an integral solution with
some guarantee or a hyperplane separating x from the convex hull
of integral solutions; if both algorithms output integral solutions,
one of them is guaranteed to achieve the desired approximation
factor. Though each of the rounding procedures is based on some
LP relaxations, they are different, so there is no single relaxation
that can be compared to the value of the final solution.

In this work, we propose the cluster LP as a single relaxation
that captures all of the existing algorithmic results. Based on this
new unified framework, we design a new rounding algorithm as
well as principled tools for the analysis that significantly extend
the previous ones, ultimately yielding a new approximation ratio
of 1.437 + ¢. The study of the cluster LP sheds light on the hardness
side as well, as we prove a 4/3 ~ 1.33 gap for the cluster LP and a
24/23 ~ 1.042 NP-hardness of approximation.

1.1 Our Results

We first state the cluster LP here. It is similar to configuration LPs
used for scheduling and assignment problems [8, 30]. In the cluster
LP, we have a variable zg for every S C V, S # 0, that indicates if S is
a cluster in the output clustering or not. As usual, xy, for every uv €
(‘2/) indicates if u and v are separated in the clustering or not. For any
x € [0, 1](‘2/), we define obj(x) = X ,uc g+ Xuo + Zuvek- (1 — Xuo)
to be the fractional number of edges in disagreement in the solution
X.

min obj(x) s.t. (cluster LP)
Z zg=1 YueV (1)
Ssu
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Z zs =1 =Xy 2

So{u,0}
zs 20

Yuv € (V)
2

VSCV,S#0 3)

The objective of the LP is to minimize obj(x), which is a linear
function. (1) requires that every vertex u appears in exactly one
cluster, (2) gives the definition of x,, using z variables.

The idea behind this LP was used in [26] to design their set-based
rounding algorithm, though the LP was not formulated explicitly
in that paper. Moreover, the paper did not provide an efficient
algorithm to solve it approximately. Our first result shows that we
can approximately solve the cluster LP in polynomial time, despite
it having an exponential number of variables. We remark that unlike
the configuration LPs for many problems, we do not know how to
solve the cluster LP simply by considering its dual.

THEOREM 1. Let ¢ > 0 be a small enough constant and opt be the
cost of the optimum solution to the given Correlation Clustering in-
stance. In time nP°Y(1/€) \ye can output a feasible cluster LP solution
((z8)scv. (xuv)uve(\zz)) with obj(x) < (1 + ¢)opt, described using a

list of non-zero coordinates. !

The cluster LP is the most powerful LP that has been considered
for the problem. Indeed, previous algorithms in [27] and [26] can
be significantly simplified if one is given a (1 + ¢)-approximate
solution to the LP. A large portion of the algorithms and analysis
in [27] and [26] is devoted to handle the additive errors incurred
by the correlated rounding procedure, which is inherited from the
Raghavendra-Tan rounding technique [39]. Instead, we move the
complication of handling rounding errors into the procedure of
solving the cluster LP relaxation.

With this single powerful relaxation, we believe that Theorem 1
provides a useful framework for future work that may use more
ingenious rounding of the exponential-sized cluster LP without
worrying about errors. Indeed, the constraints in the cluster LP
imply that the matrix (1 — xyo)y,0ev is PSD, 2 and thus the LP
is at least as strong as the natural SDP for the problem. For the
complementary version of maximizing the number of correct edges,
the standard SDP is known to give a better approximation guarantee
of 0.766 [17, 40]. For the minimization version, the standard SDP
has integrality gap at least 1.5 (see full paper), but it is still open
whether this program has an integrality gap strictly below 2 or not.

We demonstrate the power of the cluster LP by presenting and
analyzing the following algorithm, significantly improving the pre-
vious best 1.73-approximation.

THEOREM 2. There exists a (1.49 + ¢)-approximation algorithm
for Correlation Clustering that runs in time O(nPY(1/€)).

'We remark that obj(x) given by the theorem is at most 1 + ¢ times opt, instead of
the value of the cluster LP. This is sufficient for our purpose. One should also be able
to achieve the stronger guarantee of (1 + £)-approximation to the optimum fractional
solution. Instead of dealing with the optimum clustering C* in the analysis, we deal
with the optimum fractional clustering to the LP. For simplicity, we choose to prove
the theorem with the weaker guarantee.

2Consider the matrix Y € [0,1]V*Y where yyp = 1 — xy for every u,o € V
(Yuu = 1,Vu € V). For every w € RY, we have w/ Yw = YoV Yuo Wy Wy =
Zu,v ZSQ{u,u} Zswywy = Zu,zy ngv zs - (wy - lyes) - (wy - lyes)
Zscv 25 (Zues Wu) (Zoes Wo) 2 0.
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This is achieved by a key modification of the pivot-based round-
ing algorithm that is used in conjunction with the set-based algo-
rithm as in [26]. In combination with more careful analysis, which
involves principled methods to obtain the best budget function, we
obtain a significantly improved approximation ratio.

In order to obtain an even tighter analysis of the same algorithm,
we introduce the new factor revealing SDP that searches over possi-
ble global distributions of triangles in valid Correlation Clustering
instances. By numerically solving such an SDP, we can further
improve the approximation ratio of the same algorithm.

THEOREM 3. There exists a (1.437 + €)-approximation algorithm
for Correlation Clustering that runs in time O(nPy(1/€)),

While the proof includes a feasible solution to a large SDP and is
not human-readable, we prove that our SDP gives an upper bound
on the approximation ratio, so it is a complete proof modulo the SDP
feasibility of the solution. Our program and solution can be found
at https://github.com/correlationClusteringSDP/SDP1437code/.

We also study lower bounds and prove the following lower bound
on the integrality gap of the cluster LP.

THEOREM 4. For any e > 0, the integrality gap of the cluster LP is
at least 4/3 — ¢.

This integrality gap for the cluster LP, after some (well-known)
loss, directly translates to NP-hardness. It is the first hardness with
an explicit hardness ratio apart from the APX-hardness [17].

THEOREM 5. UnlessP = BPP, for anye > 0, there is no (24/23—¢)-
approximation algorithm for Correlation Clustering.

1.2 Further Related Work

The weighted version of Correlation Clustering, where each pair of
vertices has an associated weight and unsatisfied edges contribute
a cost proportional to their weight to the objective, is shown to be
equivalent to the Multicut problem [29], implying that there is an
O(log n)-approximation but no constant factor approximation is
possible under the Unique Games Conjecture [19].

In the unweighted case, a PTAS exists when the number of
clusters is a fixed constant [31, 35]. Much study has been devoted
to the minimization version of Correlation Clustering in various
computational models, for example in the online setting [23, 36, 37],
as well as in other practical settings such as distributed, parallel
or streaming [3, 6, 9, 10, 12-14, 16, 22, 24, 38, 41, 42]. Other recent
work involves settings with fair or local guarantees [2, 28, 33].

2 ALGORITHMIC FRAMEWORK AND SETUP
FOR ANALYSIS

In this section, we describe our algorithm for obtaining the im-
proved approximation ratio for Correlation Clustering. We solve the
cluster LP using Theorem 1 to get a fractional solution z = (zs)scvy,
which determines x € [0, 1](;’) as in (2): xup = 1 — Xso(uo} 25
for every uv € (‘2/) We have obj(x) < (1 + ¢)opt. The theorem will
be proved in Section 4. With z, we then run two procedures: the
cluster-based rounding and the pivot-based rounding with thresh-
old 1/3. We select the better result as the final clustering. The two
procedures are defined in Algorithms 1 and 2 respectively. We use

1607

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

N*(u) and N~ (u) to denote the sets of + and —neighbors of a vertex
u € V respectively.

Algorithm 1 Cluster-Based Rounding

1 Ce—0V «V

2: while V’ # 0 do

3 randomly choose a cluster S € V, with probabilities ZSZISZSI
ifV NS#0thenC — CU{V' NSHL V' «V'\S

return C

4:
5:

Algorithm 2 Pivot-Based Rounding with Threshold 1/3

1 C—0V «V
: while V' # 0 do

randomly choose a pivot u € V’

C—{veV' NNt (u):xyp < %}

for every v € V' N N~ (u) do independently add v to C
with probability 1 — xy,

2
3
4:
5

6: randomly choose a set S 3 u, with probabilities zg > We
have Y g5, 2zs =1
C—CUSNV' NN*(w),C—CU{CLV «V'\C

8: return C

Analysis of Cluster-Based Rounding Procedure. The cluster-based
rounding procedure is easy to analyze. The following lemma suffices.

Lemma 6. For every uv € (‘Z/), the probability that u and v are
separated in the clustering C output by the cluster-based rounding

procedure is lzj;“’ . So the probability they are in the same cluster is
uv

1-xuo

JE

Proor. We consider the first set S chosen in the cluster-based
rounding algorithm such that {&#,0} NS # 0. u and v will be sep-
arated iff |S N {w,0}| = 1. The probability that this happens is
2isn(wo}l=1 7S _

Sn{u,0}#0 Z2S

2Xuy

T+x,,° o

precisely

7 e 2. . .
Therefore, a +edge uo will incur a cost of 74 in expectation
Xuv

in the cluster-based rounding procedure, and a —edge will incur a
1-Xuo
1+xu0
uv are respectively —2— and
1+xy0

is at most 1.

cost of . The approximation ratios for a +edge uv and a —edge

1
I+xyu0 "

Notice that the latter quantity

Notations and Analysis for Pivot-Based Rounding Procedure. We
now proceed to the pivot-based rounding procedure in Algorithm 2.
We remark that to recover the correlated rounding algorithm in
[27] and [26], we can use C « 0 in Step 4. Then we can obtain
their approximation ratios without the complication of handling
rounding errors. The errors are handled in [27] by distinguishing
between the short, median and long +edges. In our algorithm, we
%) and
long +edges (those with x, > %), however, the purpose of this
distinction is to get an improved approximation ratio, instead of to
bound the rounding errors.

also distinguish between short +edges (those with x,, <
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Our high-level setup of the analysis follows from [26, 27], which
in turn is based on [4] and [20]. We consider a general budget for
every edge. We shall define two budget functions:

e bt :[0,1] > Rsgand b~ : [0,1] — Rxy.
They determine the budget by, for the edge uv: if uv € E*, then
buy = b¥ (xyp), and if uv € E~, then by, == b~ (xy0).

We now focus on one iteration of the while loop in Algorithm 2.
Suppose u, 0, w € V' at the beginning of the iteration, and let C be
the cluster constructed at the end. We use u to denote the event that
u is chosen as the pivot. We say vw incurs a cost in the iteration,
ifow € EYand |C N {o,w}| =1, 0orow € E~ and {o, w} C C. Then,
we define

costy (v, w) := Pr[ow incurs a cost | u],
and
Ay(v,w) :=Pr[C N {o,w} # 0| u] - byw.

costy (v, w) is the probability that vw incurs a cost conditioned
on the event u. When an edge vw disappears, we say ow releases
its budget. So, A, (v, w) is the expected budget released by vw in
the iteration when u is the pivot. Notice that both costy, (v, w) and
Ay (v, w) do not depend on V', provided that u, 0, w € V.

We call a set of three distinct vertices a triangle. A set of two
distinct vertices is called a degenerate triangle. For triangle (u,v, w),
let

cost(u, v, w) :=costy (v, w) + costy (4, w) + costy,(u,0), and

A(u,0,w) :=Ay (0, w) + Ay (u, w) + Ay (u,0).
For degenerate triangle (u,v), let
cost(u, v) :=costy (u,v) + costy(u,v), and
A(u,v) =Ay(u,0) + Ay(u,0).
We show the following lemma in our full paper.

Lemma 7. Suppose that for every V' C V, we have

2 2

(u,v,w)e(‘g/) (u,v)e(‘;/)
(u,v,w)e(‘;,) (u,v)e(‘;,)
Then, the expected cost of the clustering output by Algorithm 2 is at
most Zuve ") buo.

cost(u, v, w) + cost(u,v) <

A(u, v, w) + A(u,v). 4)

To obtain an approximation ratio of @ € [1,2), we consider a
variant of our algorithm, in which we run the cluster-based round-
ing procedure (Algorithm 1) with probability &, and the pivot-based
rounding procedure with threshold 1/3 (Algorithm 2) with the re-
maining probability 1 — . Clearly, the actual algorithm that picks
the better of the two clusterings generated can only be better. We
set up the budget functions b* and b~ such that every edge pays
a cost of at most « times its LP cost in expectation. That is, the
following properties are satisfied for every x € [0, 1]:

a  2x ay\ 4 _

2 Tt (g)r@=as

a 1-x LA

3 Tt (1 3)r@=at-x.
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This gives us the following definitions:

2

ba(x) :=1—aa/2 ' lix’ and
_ - (1+2x)(1-x)
be ) = T aeny 0 rElel 0

Lemma 8. If the budget functions b}, and b, satisfy (4) for some
a € [1,2), then our algorithm has an approximation ratio of a.

Proor. Consider the variant of the algorithm where we run the
cluster-based rounding procedure with probability &, and the pivot-
based procedure with threshold 1/3 with the remaining probability
of 1 — §. By Lemma 7, the expected cost of the clustering given by
the variant is at most

a  2x o
(E . l-l-i + (1 — 5) . b;(xu,,)) +
uveEt Xuo
a 1-x o _
5[5 -9
uveE- uo

Z Xyo t Z (1= xuo)

uveE* uveE~

The actual algorithm we run can only be better than this variant.

) = a - obj(x).
O

As a baseline, we provide a per-triangle analysis leading to an
approximation ratio of 1.5 in the full paper:

Lemma 9. For budget functions b* = b] . and b~ = b] , we have

cost(T) < A(T) for every triangle T.

1.5’

Clearly, the lemma implies that (4) holds for b* = b] . and b~ =
bl 5. By Lemma 8, our algorithm gives an approximation ratio of
1.5. We remark that 1.5 is the best possible ratio we can achieve
using the per-triangle analysis. For a ++— triangle with length %
for +edges and length 1 for the —edge, we need to pay a factor of 2
for each of the %-length +edge. Then the cluster-based rounding
algorithm gives factors of 2 and % for +edges of lengths 0 and %
respectively. For the pivot-based rounding algorithm, the factors
are at least 0 and 2. A combination of the two algorithms can only
lead to a factor of 1.5.

To get a better approximation ratio, we provide two analyses that
use global distributions of triangles. The former is purely analytic
and the latter relies on solving a factor-revealing SDP. The following
two lemmas are proved in the full paper.

Lemma 10. (4) holds for budget functions b* = b} 4 andb™ = b .
zdfmma 11. (4) holds for budget functions b* = b 45, and b~ =
1.437°

Combined with Lemma 8, the two lemmas imply Theorems 2
and 3 respectively.

3 OVERVIEW OF TECHNIQUES

In this section, we provide overviews of the techniques used in our
results.
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Simpler and Better Preclustering Procedure. The concept of preclus-
tering was introduced in [26]. In a preclustered instance, we prede-
termine the fate of some edges: for some edges uv, u and v must be
in the same cluster; for some other edges uv, u and v must be sepa-
rated. Since the relation of being in the same cluster is transitive,
we define a preclustered instance using a pair (K, Eydy,), where K
is a partition of V into so called atoms and E,g4,, (‘2/) is a set of
admissible edges. An atom can not be broken. If u and v are not
in the same atom and uv ¢ E, g4, then u and v must be separated.
[26] showed how to construct a preclustered instance (K, E,qm),
losing only a (1 + ¢) factor in the optimum cost, while at the same
time guaranteeing that |E 4| < O(opt/e!?). This is crucial for
their correlated rounding algorithm, as it loses an additive error
depending on |E,4y,|. In this work, we still need the preclustering
procedure to bound the rounding error, but now it is inside the
procedure of solving the cluster LP.

We greatly simplify the preclustering procedure from [26], and
as a result, we achieve a much better bound of O(opt/e?) on |Eagp -
[26] used the agreement graph to construct the atoms; roughly
speaking, two vertices are in agreement if their neighborhood sets
are similar to each other. The analysis uses many technical struc-
tural lemmas from [24], which solves Correlation Clustering in the
online setting. In contrast, our construction of atoms is simple: we
construct an O(1)-approximate clustering C, mark vertices whose
costs are large, and then K is obtained from C by removing marked
vertices and creating singletons for them. The set of admissible
edges is roughly defined as follows: we construct a graph (V, E!)
where two vertices are neighbors if their +degrees are similar. Then
an edge o is admissible if u and v have many common neighbors
in E* nEL

Solving Cluster LP by Preclustering. As we mentioned, we move
the complication of handling rounding errors to the step of solving
the cluster LP. As in [26], we construct a preclustered instance
(K, Eadm), and formulate an LP relaxation aimed at finding the
(1 + ¢)-approximate good clustering for (K, E,qm), that we call
the bounded sub-cluster LP. In contrast to [26], which solves many
instances of this LP embedded in their round-or-cut framework, we
only solve the LP once, therefore avoiding this heavy framework.
With a solution (x, y) to the LP, we run a procedure that constructs
a single cluster C randomly. The probability that any vertex is in
C is precisely 1/yg, where yg is the fractional number of clusters
in y. The probabilities that exactly one of u and v is in C, and both
of them are in C, are respectively % and %
terms arising from the Raghavendra-Tan rounding procedure. As
usual, xy, is the extent in which u and v are separated.

To construct the solution z = (zg)scy for the cluster LP, we
generate ypA many clusters C independently, for a large enough
polynomial A. Roughly speaking, the solution z is % times the
multi-set of clusters C we generated. The error incurred by the
Raghavendra-Tan rounding procedure can be bounded in terms of
|Eadm |, and the error from sampling can be bounded using concen-
tration bounds.

up to some error

1.49-approximation. We start with the algorithm of [26], but
make several key modifications both in the design and in the anal-
ysis. This allows us to significantly improve the approximation
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ratio, first to 1.5 and, eventually, to 1.49, which shows that, perhaps
surprisingly, even the rather low approximation factor of 1.5 is not
tight for Correlation Clustering. The first key ingredient is to use a
principled budget function for the pivot-based rounding procedure,
defined earlier in (5), which is designed to optimally balance the
approximation factor of edges between the two rounding proce-
dures. This new budget function is better than the one used in [26],
but does not allow us to reach 1.5 without changing the algorithm.
Indeed, the budget for the short +edges in +++ triangles is still
too low to reach the approximation ratio 1.5. Thus, the second key
ingredient is to add the threshold step to the pivot-based rounding
procedure for the short +edges (i.e., +edges uv with x,, < 1/3). By
adding this threshold step, the cost of the triangles containing such
edges decreases; for example, a +++ triangle with all short edges
now has cost zero. This allows us to use the new budget function
and still reach 1.5. Notice that making the threshold too large would
result in too much cost for ++— triangles.

Finally, we observe that, analogous to the correlated rounding
approach of [27], only the bad triangles are tight, meaning their
cost equals their budget. Roughly speaking, a bad triangle is a ++—
triangle whose two +edges have value very close to half and whose
—edge has value close to one. This allows us to apply a charging
argument, in which tight triangles have part of their cost paid for
by triangles that are not tight (i.e., that have extra budget). Now
there are no tight triangles (i.e., all triangles have some unused
budget), and we can decrease the « in the budget function from
1.5 to 70/47. As previously [4, 20, 26, 27], the analysis necessary to
reach 1.5 and go below requires a case-by-case analysis of triangle
types to ensure that the budget allocated to each triangle covers its
cost. Both the new threshold step and the new budget functions
result in an analysis that is more involved than what was required
n [26], but is still feasible.

1.437-approximation. The above charging argument between dif-
ferent types of triangles can be more systematically expressed by
a factor-revealing SDP. Given a cluster LP solution zg and vertices
u, 0, w, we define Yy = Y55 (1,0} 25 (t€SP- Yuow = 253 {w,0,w} 2S)
be the probability that u,v (resp. u,v, w) are in the same cluster.
Given any quadruple T = (a, b,c,d) € [0,1]* and a cluster LP so-
lution zg, let nT represent the number of triangles (u,v, w) such
that of yyo = @, Yuw = b, Yow = ¢ Yuow = d. The above 1.49-
approximation analysis can be regarded as putting one constraint
on the distribution of n7. To enhance the approximation ratio and
reduce the budget function, we opt for a more detailed categoriza-
tion of triangles, imposing stronger constraints on 5.

Consider an imaginary rounding procedure, where given a pivot
u, the cluster C that contains u is simply chosen with probability
zc (note that } -5, zc = 1). Let X, denote the event that node v
is included in the cluster of node u in this rounding. We can show
E[Xy - Xw] = yuow and E[Xy] - E[Xw] = yuoYuw- The covariance
matrix COV,,, where COV,, (v, w) = E[X, - X4w] — E[Xo] - E[Xw]
Yuow — YuoYuw, must be positive semidefinite (PSD). This PSD
constraint on the covariance matrix enforces a stronger constraint
on nr. For instance, if all non-degenerate triangles centered at u are
++— triangles with y value (yuy = 0.5, Yuw = 0.5, Ywo = 0, Yuow =
0), then the covariance matrix of COV,, cannot be PSD because
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COVy (v, W) = Yuow — YuoYuw = —0.25 for almost all non-diagonal
entries.

For a triangle T = (Yy0, Yuws Yows Yuow), We discretize yyo, Yuws
Ypw to incorporate the PSD constraint. We partition the interval
[0, 1] into numerous subintervals Ij, I, ..., I;. Each triangle with
y value (Yuo € Ii,Yuw € Ij, Yow € Ik, Yuow) is placed in one of
these interval combinations. We can rearrange COVy, as Q,, € R¥*?,
where Qy (I3, I}) = ZyuUEIbyquIj (Yuow — YuoYuw)- Considering
Q = Y uev Qu, we can represent Q using T and nr. The PSD prop-
erty of Qy, implies Q is PSD, thus enforcing a constraint on 7.

Despite there being infinitely many types of triangles in each
range I, I, I, our key observation is that yyyw — YuolYuw is multi-
linear. Therefore, we only need a few triangles in each range to
represent all possible triangles. We want to mention the triangles
we need are fixed so can be precomputed and the only unsure
variable is n7. To compute a lower bound }; n7(A(T) — cost(T)),
we set up a semi-definite program (SDP) under the constraint that
Q is PSD. This SDP is independent of cluster LP and relies on the
chosen interval and budget function. By employing a practical SDP
solver, we demonstrate that ', n7(A(T) — cost(T)) > 0.

Gaps and Hardness. A high-level intuition for the cluster LP is the
following: (any) LPs cannot distinguish between a random graph
and a nearly bipartite graph. For the cluster LP, given a complete
graph H = (Vy, Eg) with n = |Vg|, our Correlation Clustering
instance is G = (Vg, Eg) where Vg = Egy and e, f € V5 have a plus
edge in G if they share a vertex in V. Consider vertices of H as ideal
clusters in G containing their incident edges. The LP fractionally
will think that it is nearly bipartite, implying that the entire Efy can
be partitioned into n/2 ideal clusters of the same size. Of course,
integrally, such a partition is not possible in complete graphs.

For the cluster LP, it suffices to consider a complete graph in-
stead of a random graph. We believe (but do not prove) that such a
gap instance can be extended to stronger LPs (e.g., Sherali-Adams
strengthening of the cluster LP), because it is known that Sherali-
Adams cannot distinguish a random graph and a nearly bipartite
graph [18].

The idea for the NP-hardness of approximation is the same. The
main difference, which results in a worse factor here, is that other
polynomial-time algorithms (e.g., SDPs) can distinguish between
random and nearly bipartite graphs! So, we are forced to work with
slightly more involved structures.

Still, we use a similar construction for 3-uniform hypergraphs;
let H = (Vy, Eg) be the underlying 3-uniform hypergraph and
G = (Vg, Eg) be the plus graph of the final Correlation Cluster-
ing instance where Vg = Ep and e, f € Eg has an edge in G
if they share a vertex in H. We use the hardness result of Cohen-
Addad, Karthik, and Lee [25] that shows that it is hard to distinguish
whether H is nearly bipartite, which implies that half of the vertices
intersect every hyperedge, or close to a random hypergraph.

Organization. We show how to solve the cluster LP in Section 4,
proving Theorem 1. We give the (% —e¢)-integrality gap of the cluster
LP (Theorem 4) in Section 5, and the improved hardness of 24/23 —¢
(Theorem 5) in Section 6.

Global Notations. For two sets A and B, we use AAB = (A\ B) U
(B\ A) to denote the symmetric difference between A and B. We
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used N;' and N, to denote the sets of + and —neighbors of a vertex u
respectively in the Correlation Clustering instance. For a clustering
C of V, we define obj(C) to be the objective value of C. For any x €
[0,1] (‘2/) we already defined obj(x) = X ,,cg+ Xuo + 2uveg- (1 —
Xuo). Recall that we defined costy, (v, w), Ay (v, w), cost(T) and A(T)
for a triangle T = (u,0, w) or a degenerate triangle T = (u,0) in
Section 2; they depend on the budget functions b* and b~.

4 SOLVING CLUSTER LP RELAXATION
APPROXIMATELY

In this section, we show how to solve the cluster LP in polynomial
time, by proving Theorem 1, which is repeated below.

THEOREM 1. Let ¢ > 0 be a small enough constant and opt be the
cost of the optimum solution to the given Correlation Clustering in-
stance. In time nP°Y(1/€) \ve can output a feasible cluster LP solution
((z8)scv. (xuv)uve(‘zz)) with obj(x) < (1 + ¢)opt, described using a

list of non-zero coordinates.

We define some global parameters used across this section. Let
e1= &6 = ef = andr = @(l/erzt) = ©(1/¢'2) be an integer,
with some large enough hidden constant. The subscript “rt” stands

for Raghavendra-Tan.

4.1 Preclustering

We use the definition of a preclustered instance from [26], with
some minor modifications.

Definition 12. Given a Correlation Clustering instance (V, E¥YWE™),
a preclustered instance is defined by a pair (K, Eyqm), where K
is a partition of V (which can also be viewed as a clustering), and
Eadm S (‘2/) is a set of pairs such that for every uv € E gy, u and v
are not in a same set in K.

Each set K € K is called an atom. An (unordered) pair uv between
two vertices u and v in a same K € K is called an atomic edge; in
particular, a self-loop uu is an atomic edge. A pair that is neither an
atomic nor an admissible edge is called a non-admissible edge.

There are two minor differences between our definition and the
one in [26]. First, we require that % forms a partition; this can be
guaranteed by adding singletons. Second, we do not require an edge
between two different non-singleton atoms to be non-admissible.
Our construction can guarantee this condition, but it is not essential.

Definition 13. Given a preclustered instance (K, E,qm,) for some
Correlation Clustering instance (V,E* W E7), a clustering C of V is
called good with respect to (K, Epqpm) if

e u ando are in the same cluster in C for an atomic edge uv, and
e u and v are not in the same cluster in C for a non-admissible
edge uv.

The following theorem with a worse bound on |E, 4, | was proved
in [26]. We give a cleaner proof of the theorem in the full paper; as
a byproduct, it achieves a better bound on |E gy |-

THEOREM 14. For any sufficiently small ¢ > 0, there exists a
poly(n, %)—time algorithm that, given a Correlation Clustering in-
stance (V,E* W E™) with optimal value opt (which is not given to us),
produces a preclustered instance (K, E,qm) such that
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o there exists a good clustering w.r.t (K, E,qm), whose cost is at
most (1 + ¢)opt, and
i
® |Eygml < O(E_z) - opt.

We can assume in the preclustered instance (%, E, 4y, ), the edges
between two different atoms K and K’ are all admissible, or all
non-admissible. If one edge between them is non-admissible, we
can change all other edges to non-admissible edges. This will not
change the set of good clusterings, and it will decrease |E gy |-

We apply Theorem 14 to obtain a preclustered instance (%, E,qm),
with the unknown good clustering C;'. We define K, to be the atom
that contains u, and k;, = |Ky,|. We shall use N, 4, (u) to be the set
of vertices v such that uv € E,q,; 0 Nagm(#) = Nagm (v) if v € Ky,
We further process the good clustering C; using the following pro-
cedure in [26]. This procedure is not a part of our algorithm; it is
only for analysis purpose.

1: while there exists some K, in a cluster C € Cl* with ky, < |C| <
ky + €1 - |Nagm (u)| do

2 Cf < C\{CYU{Ky,C\ Ky}

Claim 15. The procedure increases obj(C}') by at most 2¢1 - |Eqgm|-

Proor. Whenever we break C into K, and C \ Ky, in the proce-
dure, the cost increase is at most ky, - (|C|—ky) < ky-€1-|Nagm (0)| =
€1 2ivek,, |Nadm (v)]. We separate each atom Ky, at most once. There-
fore, the total cost increase is at most €1 Y yev [Nadm (0)| = 2¢1 -

|Eadm | O

So, the cost of C; after the procedure will be at most (1+¢)opt +
O(¢1)|Eadm|- Crucially, the following property is satisfied:

(A1) For every u € V, Ky, is either a cluster in CJ, or in a cluster
of size more than ky, + €1 - [N g (1)].

4.2 Bounded Sub-Cluster LP Relaxation for
Preclustered Instances

Following [26], we form an LP relaxation aiming at finding the
good clustering C;'. In the LP, we have a variable y, for every
s € [n],and S C V of size at most r (recall that r = ©(1/¢1?)), that
denotes the number of clusters in C;' of size s containing S as a
subset. When S # 0, there is at most one such cluster and thus
ys € {0, 1} indicates if S is a subset of a cluster of size s in C;". For
every S C V of size at most r, let ys := }; y¢ denote the number
of clusters (of any size) in C; containing S as a subset. Again, if
S # 0, then ys € {0, 1} indicates if S is a subset of a cluster in C}'.
For every uv € (‘2/), we have a variable x,, indicating if v and v
are separated or not in C;'. We call the LP the bounded sub-cluster
LP relaxation, as we have variables indicating if a small set S is a
subset of a cluster or not.

We use the following type of shorthand: y;, for y?u}, ys, for
y?usv}, and yg, foryg () The bounded sub-cluster LP is defined

as follows. In the description, we always have s € [n],u € V and
uv € (‘2/) For convenience, we omit the restrictions. By default, any
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variable of the form yg or yg has |S| < r; if not, we do not have the
variable and the constraint involving it.

min obj(x) (bounded sub-cluster LP)
n 1 S S

D us=ys VS (6) ST VS0

s=1 u
w=1 VYu (1) ye =0 Vs S (10

Yuo +Xup =1 Yuo (8)
Xuo =0 VYu,vinasame K € K (11)
Xup =1  Vnon-admissible edge uv (12)
Yo =0 Vuse€l[k,—1]U [ku +1,ky + £1|Nadm(u)|] (13)
DI lys g € 10,451V, SNT =0 (14)
T'CcT

(6) gives the definition of yg, (7) requires u to be contained in
some cluster, and (8) gives the definition of xy,. (9) says if y§ = 1,
then there are exactly s elements u € V with y%. = 1. (An exception
iswhen S = 0; but the equality also holds.) (10) is the non-negativity
constraint. (11) and (12) follows from that C| is a good clustering,
and (13) follows from (A1). The left side of (14) is the number of
clusters of size s containing S but does not contain any vertex in
T. So the inequality holds. This corresponds to a Sherali-Adams
relaxation needed for the correlated rounding [39], see Lemma 16.

The running time for solving the LP is n®(") = nO/e")

4.3 Sampling One Cluster Using LP Solution to
the Bounded Sub-Cluster LP
We solve the bounded sub-cluster LP to obtain the y and x vectors.

Given y, we can use the procedure construct-cluster described in
Algorithm 3, which is from [26], to produce a random cluster C.

Algorithm 3 construct-cluster(y)

1: randomly choose a cardinality s, so that s is chosen with prob-
e Yo
ability %

: randomly choose a vertex u € V, so that u is chosen with

Tiy Yu
probability S
S
3. define a vector y’ such that yg = yyss“ for every S C V of size

atmostr —1

. apply the Raghavendra-Tan correlated rounding technique over
the fractional set y’ to construct a cluster C C V that does not
break any atom, and return C

With (14), the Raghavendra-Tan technique can be applied:
Lemma 16 ([39]). In Step 4 of Algorithm 3, one can sample a set
C C V that does not break atoms in time n®") such that

e Foreachv € V,Pr[v € C] =y,
b m Zv,weNadm(u) \Pr[v,w € C] - y;:w| < et

Recall that & = ©(1/+/r) and the hidden constant inside ©(-) is
large enough.
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As in [26], we define errz i to be the error generated by the
procedure when we choose s as the cardinality and u as the pivot:

Y 14
S — _ Juow
eIy oy = Pr [v,w € Cls, u] 5 ,Yow € (2)
and
S
1 Yo
S — S S — S
erry,, = oy Yo~ €Ty 1 and erry,, = — -erry,,
Yo uev 5 Yo

as the error for vw conditioned on s, and the unconditioned error.
Notice that all these quantities are expectations of random variables,
and thus deterministic.

The following two lemmas can be proved using the same argu-
ments as in [26].

Lemma 17 ([26]). Foranyv € V, we have Pr[v € C] = ﬁ

Lemma 18 ([26]). Focus on an edge vw € (‘2/)
(1) PrlveCweCl < &
(2) Pr[[{o,w} CC] < ﬁ  Ypw + EITgay.

- Xgw + €ITgqy.

A similar lemma to the following is proved in [26]. The parame-
ters we use here are slightly different and we provide a proof for
completeness.

1
Lemma 19. Z erryy < O(er) - %|Eadm|~

owe ()

Proor. Throughout the proof, we assume u, v, w are all in V, ow
and uw are in (‘Z/)

Fix some s € [n],u € V with y;, > 0, and we now bound
Dow errzwlu. If s = ky, then C = Ky;; no errors will be created and
the quantity is 0. Assume s > ky,. By (13), we have that s > k;, +¢1 -
[Nadm (#)|, since otherwise we shall y, = 0. By the second property
of Lemma 16, we have },,, errzwlu < %2 Nygm (w)|%. (Notice that
if one of v and w is not in N,q, (1), then errzwlu = 0.) Recall that

et = s%. Therefore,

Ert Ert
D) el = 3 Naam @ € 25 Nam @) - (s k)
uwe(‘z/)
€1 Yoo _ €1 Y
=5 Wam@l- ) =0 4o,
UENadm(u) Yu 0, WE Nygm (1) Yu

The first equality is by (9) and 5, = 5, for every v € Ky,. (To see
this, notice that y;,,, < y5 is implied by (14). We have yy, = X5 Y5,
Yy =2sys,and yyy =y, = 1ifv € Ky,.)

Considering the inequalities over all u € V, we have
1

s _ s . s
Z eIly,, = _sys Yy Z 2 S
ow 0 u ow
s
< L S ., 8_1 . M
=5 Yu us
0 u 0,WE Nyam (1) u
_a 1 s
=5 E ’ Yuo
0 ueV,0,weNygm(u)
s s
€1 Yo Yuo

S S
S
veV ym ©E Nadm (9), WE Nagm (1) Yo
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€1 D % D (yiu +yf,w)
< = . Jo Juv ~ Jow
- S S

2 oev Yo uw€Eagm Yo

Yo o
SEI-ZE Z Pr[CN{u,w} # 0| s, v is pivot]
veV 70 uweE,gy,
=& Z Pr[CNn{u,w}#0]s].
uweE,gm

yj‘s“ =Pr[u € Cls, v is pivot] <
Pr[C N {u, w} # 0ls,v is pivot]. The same inequality holds for %
Finally, we take all s into consideration:

To see the last inequality, notice that

Yo s
€Ty = — erry,,,
2= gy 2
<6 Zy—“’ DT Pr[Cn {uw) # 0ls]
s Yo uweE4m
= - Z Pr[C N {u,w} # 0]
uweE,gm
2€1
< y_0|Eadm| + 361 Z €ITy .

uwe(¥)

To see the last inequality, we notice that C N {u, w} # 0 is the
union of the 3 disjoint events: u € Candw ¢ C,u ¢ C and w € C,
and {u,w} ¢ C. By Lemma 18, we have Pr[C N {u,w} # 0] <
2XpwtYow

Yo
1
1—381

+3-erryw < % + 3 - erryy. So, we have )., erry,, <

. Zy%l |Eadm!- This proves the lemma. m]

4.4 Construction of Solution to the Cluster LP
Using Independently Sampled Clusters

With all the ingredients, we can now describe our algorithm for

solving the cluster LP approximately, finishing the proof of Theo-

n’logn
é'f‘EaclmI

rem1.Let A =0 ( ) with a large enough hidden constant,

and Ay being an integer. (We assume |E,q,| > 1 since otherwise
the preclustered instance is trivial.) We run Algorithm 3 Ayg times
independently to obtain clusters Cq,Cz, -+, Ca Yo

We use the following variant of Chernoff bound.

THEOREM 20. Let X1,X2,X3,---,Xp be independent (not neces-
sarily iid) random varibles which take values in [0,1]. Let X =
Xty Xi,p=E[X], and ' > p be a real. Then for any § € (0,1), we
have

Pr[X < (1-8)u] < e ®#? and Pr[X > p+5p'] < e W/,

Foreveryu € V,let R, = {t : u € C;}. Notice that Ay - lj;:;‘il“gl =
@(lofzn), with a large enough hidden constant. Using Chernoff

bounii and union bound, we can prove that with probability at least
1 — 1/n, the following conditions hold.

e Foreveryu € V,we have |R,| > (l—el)Ay@-ﬁ = (1-¢)A.

]

e For every u,0 € V such that uv € E*, we have

|Eadm|

Xuo
— + erryy, >
Yon

Yo

X
[Ru \ Ry| < Ayp 0 terryp + € - max{
Y0
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51A|Eadm|
nz

(15)

]

From now on we assume the conditions hold. For every u € V,
we let R/, be the set of the [(1 — £)A] smallest indices in R,,. Clearly,
[R;, N R,| < |Ry N Ry|. We show |R], \ R} is still upper bounded by
(15).

< (1+¢e1)A(xuo + yperryy) +
e For every uv € E~, we have

|Eadm |
yon?

Yuo + erryy,
Yo

flAlEadm|
nz

|Ry N Ry| < Ayy Yuo +erryy + €1 - max{
Yo

< (1+¢€1)A(yuo + ygerryp) +

Claim 21. For everyuv € E* we have max{|R], \ R}|,|R, \ R},|} <

A|Eognn
(14 e1)A(xyp + yperryy) + %

Proor. For convenience, we use B to denote the upper bound
(1 + &1)A(xyy + yperryy) + %. We think of R, (R}, resp.)
as obtained from the set R, (R, resp.) by removing the largest
indices one by one. Wlog we assume |Ry| > |Ry|; and thus initially
|[Ry \ Ry| < |Ry \ Ry| < B. We remove the elements from R, and R,

in two stages.
In the first stage we do the following. While |R,| > |Ry|, we

remove the largest index from R;,. This can not increase |R;, \ Ry|.

After the first stage, we have |R, \ Ry| = |Ry \ Ry| < B.

In the second stage we do the following. While |Ry| = |Ry| >
[(1 - ¢)A], we remove the largest index in R;, from Ry, and do the
same for R,. Consider one iteration of the while loop. If the two

indices are the same, then |R;, \ Ry| = |Ry \ Ry| does not change.

Otherwise, wlog we assume the index we removed from Ry is
larger. Then removing the index in R, will decrease |R, \ Ry|. So
the iteration can not increase |Ry, \ Ry| = |Ry \ Ry|. O

Then, for every t € [1, Ayg], we define C; = {u : t € R} € Cy;

then every v is contained in C; for exactly [(1 — )A] values of t.
“|{t : C} = S}| forevery S C V with S # 0.

We define zg = ﬁ

Define Xyp = 1 — X{y, 01 cs 2s for every uv € (‘2/) Then (%,z) isa
valid solution to the cluster LP.
For a uv € E*, we have

. 1 1+ ¢ €1|Eadm|
Xyp = — - |[R,\R,| < Xyp + Yperryy) + ————.
uv [(1=o)A] R, \ Ryl 1—6( uo + YperTyy) (1—e)n?
For auv € E~, we have
~ 1+¢1 51|Eadm|
1-x < 1 — xyo + yperr, + —.
( wo) 1—¢ ( uo T YQ uo) (1- E)nz
Therefore,

obj(%) < (1+0(e) [obj(x) +yo D, ertuo |+ O(en) Enml
uve(Y)

< (1+0(¢))obj(x) + O(e1)|Eagml
< (1+0(¢)) - opt+O(£%) - 0(812) -opt = (1+0(¢))opt.

The second inequality is due to Lemma 19, and the third one used
that |Eagm| < O(g—lz) - opt. By scaling ¢, the upper bound can be
made to (1 + ¢)opt. This finishes the proof of Theorem 1.
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5 1.33-GAP FOR CLUSTER LP

In this section, we show that the cluster LP has a gap of 4/3, proving
Theorem 4 restated below.

THEOREM 4. For any ¢ > 0, the integrality gap of the cluster LP is
at least 4/3 — e.

The graph of the plus edges of our gap instance is based on the
line graph of a base graph; given a based graph H = (Vy, Efy), our
correlation clustering instance is G = (V5, Eg) where Vg = Epy and
e, f € Vg have a plus edge in G if they share a vertex in Vg.

A high-level intuition is the following: LPs cannot distinguish
between a random graph and a nearly bipartite graph. Consider
vertices of H as ideal clusters in G containing their incident edges.
Given a random graph H, the LP fractionally will think that it is
nearly bipartite, implying that the almost entire Efy can be parti-
tioned into n/2 ideal clusters. Of course, integrally, such a partition
is not possible in random graphs. For the cluster LP, it suffices
to consider a complete graph instead of a random graph. We be-
lieve (but do not prove) that such a gap instance can be extended
to stronger LPs (e.g., Sherali-Adams strengthening of the cluster
LP), because it is known that Sherali-Adams cannot distinguish a
random graph and a nearly bipartite graph [18].

ProoF oF THEOREM 4. Let H = (Vy, Ef) be a complete graph
on n vertices. Let d = n — 1 be the degree of H. Our correlation
clustering instance G = (Vg, Eg) is the line graph of H; Vg = Ey
and e, f € Ey has + edge in G if and only if they share a vertex in
H. The + degree of each e € Efy in G is 2d — 2.

Consider the following solution for the cluster LP: for every
v € Vy, let E, C Ep be the d edges containing v. The cluster LP has
zg, = 1/2 for every v € vy. Each e € Ef belongs to two fractional
clusters, each of which has its d — 1 plus neighbors, so fractionally
d —1 plus edges incident on it are violated. Since each violated edge
is counted twice, the LP value is (121) (d-1)/2.

Let us consider the integral optimal correlation clustering of G.
Consider a cluster C in the clustering. Note that every vertex in C
has at least |C|/2 plus neighbors in C, which implies |C| < 4d. We
apply the following procedure to C to partition it further.

Claim 22. There is a partition of C into Cy, ..., C, such that (1) each
Ci is a subset of E,, for somev € Vi, and (2) replacing C by Cy, ..., Cr
in the correlation clustering solution increases the objective function
by at most 35|C]|.

Proor. For v € Vg, let n, := |C N Ey|. Note that Y, n, = 2|C].
Without loss of generality, assume Vg = {01,...,0,} with ny >

© 2 ng,.If e = (v;,05) € Chasi,j > 8, then the number of its
plus neighbors in C is ny, + ny; < 2 % - 2|C| = |C]/2, so it should
not exist in C. So, every edge is incident on v; for some i < 8.

Let us make at most (g) = 28 edges in C between vy, ...,vg as
singleton clusters; the objective function increases by at most 28|C|.
Then partition the remaining C into Ey, ..., Eg where E; := C N Ey,.
Each e € E; has at most seven plus neighbors in U;x;Ej, so the
objective function increases by at most 7|C|. So, we partitioned C
into Cy, ..., C, where all the edges in C; share a common endpoint.
We increased the objective function by at most 35|C]|. m]

After we apply the above procedure to every cluster C, we in-
creased the cost by at most 35|Vg| < 35n% and all the edges in
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a cluster C share a common endpoint. For v € Vy, let Cy, be the
cluster in the solution whose common endpoint is v. (If there are
many of them, merging them will strictly improve the objective
function value.) Without loss of generality, there are ¢ such clusters
Coy,, ..., Cy, and let n; := |Cy,| such that ny > -+ > ny.

Claim 23. Zle nl? <n3/3.

Proor. The LHS is monotone in (ny,..., n;), and if there is an
edge (v;,0j) € C; with j > i (which implies n; > nj), the LHS
strictly improves by moving (v;,v;) to C;. Therefore, the configura-
tion that maximizes the LHS is when ¢ = n and Cy, contains all the
edges of H not incident on vy, . .., v;—1. In that case, the LHS is

2

n-1 1 1
Z(n—i)2=n3 )2~—Sn3/ (1-x)2dx
i=1 i=1 n 0

= n3[x — x* +x3/3](l) =n/3,

n-1 .
n-—i

n

as desired. O

Using this, we can prove a lower bound on the cost of our near-
optimal clustering. Note that every cluster is a clique of +edges.
Thus, the only edges violated are +edges. Moreover, there are at
most Xje[;] nf/Z < n3/6 correctly clustered +edges. The cost of
our near-optimal clustering is the total number of +edges of G
minus the number of correctly clustered +edges, namely at most
(g)(d - 1) —n®/6 = n3/3 — o(n®). Since the cost of the optimal
clustering is at most 35n% lower than ours, it is still n3/3 — o(n?).
The fractional solution has the value at most n3/4, so the gap is at
least 4/3 — o(1). |

6 1.04-NP HARDNESS

In this section, we show that it is NP-hard (under randomized
reductions) to obtain an algorithm with an approximation ratio of
24/23 > 1.043, proving Theorem 5 restated below.

The idea is similar to the gap for the cluster LP in Section 5,
which is based on the fact that the LPs generally cannot distinguish
nearly bipartite graphs and random graphs. The main difference,
which results in a worse factor here, is that other polynomial-time
algorithms (e.g., SDPs) can distinguish between them! So, we are
forced to work with slightly more involved structures.

Still, we use a similar construction for 3-uniform hypergraphs;
let H = (V, Eg) be the underlying 3-uniform hypergraph and
G = (Vg, Eg) be the plus graph of the final Correlation Clustering
instance where Vg = Eg and e, f € Ey has an edge in G if they
share a vertex in H. We use the following hardness result of Cohen-
Addad, Karthik, and Lee [25] that shows that it is hard to distinguish
whether H is nearly bipartite or close to a random hypergraph.

THEOREM 24. Foranye > 0, there exists a randomized polynomial-
time algorithm that receives a 3-CNF formula ¢ as input and outputs a
simple 3-uniform hypergraph H = (Vi, Ery) where the degree of each
vertex is (1 + 0(1))d for some d = w(|Vy|) such that the following
properties are satisfied with high probability.

o (YES)If § is satisfiable, there exists U C Vi with |U| = |Vg|/2
that intersects every hyperedge in Epy. Moreover, for every
ueU,|{e€Eg:enU={u}}| > (1/2-¢)d.
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o (NO) If ¢ is unsatisfiable, any set of y|Vy| vertices (y € [0,1])
do not intersect at least a (1 —y)3 — ¢ fraction of hyperedges
in EH.

ProOF. The same reduction in Theorem 4.1 of (the arXiv version
of) [25] yields the desired hardness. In the following, we highlight
the difference between the statement of Theorem 4.1 of [25] and
our Theorem 24 and briefly explain how our additional properties
are satisfied by their reduction.

(1) Regularity of H: Section 4.5 of [25], based on an earlier
weighted hard instance, constructs the final hard instance
H = (Vy, Eg) as a certain random hypergraph where the
degree of each vertex v is the sum of independent {0, 1} vari-
ables with the same expected value. This expected value is
O(|Vz|'®), so the standard Chernoff and union bound argu-
ment will show that the degree of each vertex is almost the
same with high probability.

In the (YES) case, foreveryu € U, |{e € Eg : enU = {u}}| >
(1/2 = ¢€)d: Tt follows from their construction in Section 4.1.
The construction is analogous to Hastad’s celebrated result
on Max-3SAT [32] where in the (YES) case, almost three
quarters of the clauses have one true literal and almost one
quarter have three true literals, so that for each true literal
¢, roughly half of the clauses containing ¢ has it as the only
true literal.

In the (NO) case: the guarantee holds for any value of y €
[0, 1] instead of just 0.5: One can simply change 1/2to 1 —y
in the proof of Lemma 4.4 in Section 4.3. It is analogous to the
fact that all nontrivial Fourier coefficients vanish in Hastad’s
result on Max-3SAT and Max-3LIN [32].

—
)
~

—
W
=

O

Given such H = (Vy, Eg), let n := |Vg|. Our correlation clus-
tering instance G = (Vg, Eg) is the line graph of H; Vi = Ey and
e, f € Ep have a plus edge in G if they share a vertex in H. This
means that every e € V; has (3 + 0(1))d plus edges incident on
it; we used the fact that d = w(n) and e has at most O(n) other
hyperedges that intersect with e with at least two points (which
causes double counting).

YES case. Consider U C Vp guaranteed in Theorem 24. Our
(randomized) clustering is the following: randomly permute vertices
to obtain U = {o,. ..,vn/z}, andletE; :={e€ Eg :v; €eandeN
{v1,...,0i—1} = 0}. Since U intersects every e € Ey, (E1,...,Ep/2)
forms a partition of Epy.

We analyze the expected cost of this clustering. For each e € Ep,
let save(e) be (the number of plus neighbors in the same cluster)
minus (the number of minus neighbors in the same cluster). Intu-
itively, it is the amount of saved cost between e and its neighbors,
compared to the situation where e is a singleton cluster. Then, the
cost of our clustering is the total number of plus edges of G, namely
|Eg| - w =nd?®. w, minus Y.cg,, save(e)/2.

FixveUandletE,:={ecEg:vee},E,:={ecEg:enU =
{v}}, E}) .= Ey \ E,. Then |Ey| = (1 £ 0(1))d and |E}| > (1/2—¢)d.
We would like to compute E[|E;|?] over random permutations
where i is defined such that v; = v. It is clear that E}, C E;. For each
e € EJ/, the probability that e € E; is at least 1/3 (when v comes
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before the other two vertices of e in the random permutation). And
two hyperedges e, f € E,/, the probability that both are in E; is at
least 1/5 (when v comes first among |e U f| < 5 vertices). Therefore,

E[|Ei[*] > |E]|* + 2|E}||E}'|/3 + |E]'1*/5
> d®(1/4+1/6 +1/20 — O(¢)) = d*(7/15 — O(e)).

Therefore, the total saving is at least nd?(7/30 — O(¢)) and the final
cost is at most nd?(1/2 — 7/60 + O(¢)) = nd%(23/60 + O(¢)).

NO case. Our analysis will be similar to that of the gap instance,
slightly more complicated by the fact that we are working with a
non-complete hypergraph. Consider the optimal correlation cluster-
ing and consider one cluster C. For e € C, it has at most (3 +0(1))d
plus edges in G, so |C| < (6 + 0(1))d; otherwise, it is better to
make e a singleton cluster. We prove that if C is large, then we
can partition C into smaller clusters where each cluster consists of
hyperedges sharing the same vertex in H. For v € Eg, let E,, C Egy
be the set of hyperedges containing o.

Claim 25. There is a partition of C into Cy, ..., Cy such that (1) each
Cj is a subset of Ey, for somev € Vi, and (2) replacing C by Cy, ..., Cy
in the correlation clustering solution increases the objective function
by at most O(n|C|).

., 0n}
> nyp. Note that

Proor. Without loss of generality, assume Vg = {oq,.
and define n; := |C N Ey,| such that ny > ---
2ini =3|C|.

If e = (v;,0j,08) with i, j,k > 20, then n; + nj + nj < 3 -
(3]C]/20) < |C|/2, which implies that e has more minus neigh-
bors than plus neighbors in C, leading to contradiction. So, every
hyperedge is incident on v; for some i < 20.

Since two vertices of H have at most n hyperedges containing
both of them, let us make at most n- (120) hyperedges in C that contain
atleast two of vy, . . ., vg9 as singleton clusters; the objective function
increases by at most n - (120) -|C|. Then partition the remaining C
into Ey,...,Ez where E; := C N Ey,. Each e € E; has at most
2 - 20 - n plus edges in Ujx;E; (20 choices for v, 2 choices for a
vertex in e 3 {v;}, and n choices for hyperedges containing both
vertices), so the objective function increases by at most O(n|C|).
So, we partitioned C into Cj,...,C, where all the hyperedges in
C; share a common endpoint. In total, we increased the objective
function by at most O(n|C]). O

Applying the above procedure for every cluster C increases the
objective function by at most O(n - |[Egz|) = O(n?d). Then, we have
a clustering where all the edges in a cluster C share a common end-
point. C forms a clique in H. For v € Vg, let C, be the cluster in the
solution whose common endpoint is v. (If there are many of them,
merging them will strictly improve the objective function value.)
Without loss of generality, there are ¢ such clusters Cy,, ..., Cy, and
let ¢; := |Cy,;| such thatcy > -+ > ¢4.

Claim 26. Zle cf < d?n(0.2 + O(+/e)), where ¢ is the parameter
from Theorem 24.

Proor. Here, we use the NO case guarantee from Theorem 24:
for any y € [0, 1] and choice of yn vertices, it covers at most 1 — (1 —
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7)3 +& =3y = 3y% +y3 + ¢ fraction of the edges, which is equivalent
to: for every i € [n],
i
Zci < (3(i/n) = 3(i/n)? + (i/n)? + ¢)|Ex|.

J=1

(16)

Let 6 = 0(1) be such that every vertex of H has degree at most

(1 + 6)d, which means that (1 +8)d > ¢; > -+ > ¢;. And let
fiyn = ci/((1+ 6)d). Then (16) becomes
1 d . ) L N2 |EH|
;ZywnS@UM%30M)+0M)+Qa:3ﬁ;

< (3(i/n) - 3(i/n)? + (i/n)% + €) /3.
(Note that |Eg| < (1 + 6)dn/3.) if we interpret %Z;zl fin as
/01 f(x)dx where f(x) = c[xp], we have that

t

2

i=1

(17)

1
leil> < (1 +5)2d2nm?x‘/ f(x)2dx,
0

where the maximum is taken over functions f : [0, 1] — [0, 1] with
the constraints that

(1) Forally € [0,1],

Yy
flo)ydx <y-y?+y3/3+¢/3.

x=0

(18)

(Compared to (17), we add more constraints for every y €
[0, 1], but it is valid to do so since the step function f(-)
defined above satisfies all these constraints; if (18) is violated
for some value y € (i/n, (i + 1)/n) for some integer i, (17)
is violated at (i + 1)/n because f(y) stays the same in the
interval while the upper bound increases strictly less than
linearly.)
(2) f decreasing with f(0) < 1.

Then one see that the optimal f satisfies either f(y) = 1or /x !io f(x)

=y—-y?+y3+e/3forevery y € [0,1). If it is not satisfied at some y,

we can increase f(y) while decreasing f(z) for some z > y, which

will still satisfy the constraints and increase /01 f(x)%dx. Therefore,
we can conclude that f(y) = 1 for y < r and

y
/ Fedx=y -y 4433+ ¢/3
x=0

=fy)=y-v*+y*/3+¢/3) =1-2y+¢?

fory > 7, where 7 = @(+/¢) is the solution of 7 = 7— 7%+ 13 +¢/3.
Then, we can bound

1 1

fx)%dx < O(Ve) + (1-2x+x%)2%dx <0.2+0(Ve),
0 0

x=

which implies that 3}; ¢? < d®n(0.2 + O(ve)).

x=

[m]

Using this, we can prove a lower bound on the cost of our near-
optimal clustering. Note that every cluster is a clique of +edges.
Thus, the only edges violated are +edges. Moreover, there are at
most Xes] c?/Z < d%n(0.1+0(~/e) correctly clustered +edges. The
cost of our near-optimal clustering is the total number of +edges
of G minus the number of correctly clustered +edges, namely at
least nd?(1/2 — 0.1 — O(/e)) = nd?(0.4 — O(+/¢)). Since the cost of
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the optimal clustering is at most O(n®d) lower than ours, it is still
nd?(0.4 — O(~/e)) using d = w(n).

Since the value in the YES case is at most (23/60 + O(¢))nd?, so
the gap is almost % > 1.043.
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