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Abstract

Interventions in gene regulatory networks (GRNs) aim to restore normal functions
of cells experiencing abnormal behavior, such as uncontrolled cell proliferation.
The dynamic, uncertain, and complex nature of cellular processes poses signifi-
cant challenges in determining the best interventions. Most existing intervention
methods assume that cells are unresponsive to therapies, resulting in stationary
and deterministic intervention solutions. However, cells in unhealthy conditions
can dynamically respond to therapies through internal stimuli, leading to the re-
currence of undesirable conditions. This paper proposes a Bayesian intervention
policy that adaptively responds to cell dynamic responses according to the latest
available information. The GRNs are modeled using a Boolean network with per-
turbation (BNp), and the fight between the cell and intervention is modeled as a
two-player zero-sum game. Assuming an incomplete knowledge of cell stimuli,
a recursive approach is developed to keep track of the posterior distribution of
cell responses. The proposed Bayesian intervention policy takes action accord-
ing to the posterior distribution and a set of Nash equilibrium policies associated
with all possible cell responses. Analytical results demonstrate the superiority of
the proposed intervention policy against several existing intervention techniques.
Meanwhile, the performance of the proposed policy is investigated through com-
prehensive numerical experiments using the p53-MDM?2 negative feedback loop
regulatory network and melanoma network. The results demonstrate the empirical
convergence of the proposed policy to the optimal Nash equilibrium policy.

Keywords: Gene Regulatory Networks, Two-Player Zero-Sum Game, Bayesian
intervention, Boolean networks, Nash Equilibrium.

1. Introduction
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Recent genomics advances have deepened our understanding of complex bi-
ological systems, particularly gene regulatory networks (GRNs) [1, 2, 3, 4, 5, 6].
GRN s consist of several interacting genes whose activities control cellular pro-
cesses, including DNA repair, stress response, and complex diseases like can-
cer [7]. In genomics intervention, the objective is to design effective intervention
strategies that can alter the undesirable behavior of unhealthy cells (e.g., those
associated with chronic diseases) and shift them into desirable ones.

Boolean networks have emerged as a powerful class of models for character-
izing the temporal dynamics of GRNs [8, 9, 10, 11, 12, 13]. Several interven-
tion strategies have been developed for Boolean network models in recent years.
These include structural interventions, which aim to make a single-time, long-
lasting change in the interaction between two or more genes [14, 15, 16, 17, 18],
and dynamic interventions that perturb (e.g., overexpress or suppress) the activity
of targeted genes over time [14, 15, 16, 17]. The most well-known method is the
optimal stationary intervention derived in [19], which is later extended to include
constraints [20, 21] and asynchronicity of the GRNs [22, 13]. Meanwhile, several
intervention approaches are developed for GRNs with states observed indirectly
through gene-expression data [23, 24, 25, 26, 27, 28], including robust interven-
tion methods for domains with partially-known dynamics and costs [29, 30].

Most existing intervention methods are built on the assumption that cells are
isolated and non-responsive to therapies. However, the dynamic and intelligent
responses of cells to therapies, triggered by internal stimuli, often result in the
short-term success of interventions at early stages and the recurrence of the un-
healthy condition afterward. This paper models GRNs using Boolean networks
with perturbation (BNp) [31, 32], and models the cell dynamic responses to inter-
ventions through a two-player zero-sum game [33, 34, 35]. There are two players
in the game: the cell and the intervention, each with opposing goals. The cell
aims to maintain the cell condition in unhealthy states using its internal stimuli,
while the intervention’s objective is to deviate the system from unhealthy condi-
tions through therapies. Assuming incomplete information about the possible cell
responses to interventions, this paper develops a recursive method for computing
the posterior distribution of the cell responses. Given the quantified uncertainty
in cell responses, we develop a Bayesian intervention policy. The proposed pol-
icy utilizes the combination of the Nash equilibrium policies for different cell
responses and the posterior associated with them. The policy is fully adaptive;
as new data appears, the posterior distribution of cell responses and the proposed
intervention policy are updated.

The main contributions of this paper are as follows:
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* Modeling the aggressive and dynamic responses of unhealthy cells during
the intervention process, which enables deriving intervention solutions by
accounting for and predicting possible cell responses to therapies.

* Develop an adaptive Bayesian intervention policy that can probabilistically
reason about cell responses and incorporate such knowledge to make better
intervention decisions.

* Analytically demonstrating the superiority of the proposed policy compared
to existing intervention methods, along with numerical results indicating the
empirical convergence of the proposed policy to the optimal Nash policy.

We analyze the performance of the proposed intervention policy using the
p53-MDM?2 and melanoma networks. The p53-MDM2 network is a crucial reg-
ulatory system that responds to cellular stresses such as DNA damage [36, 37].
The melanoma regulatory network also plays a crucial role in the development
and progression of melanoma, a highly aggressive form of skin cancer [21, 38].
Through a comprehensive set of numerical experiments using these two networks,
we compare the performance of the proposed policy with state-of-the-art interven-
tion methods.

The article is organized as follows: The GRN model is briefly described in
Section 2. Section 3 includes formulating the intervention process as a two-player
zero-sum game, followed by the optimal Nash equilibrium policy for a two-player
zero-sum game. The proposed Bayesian intervention policy and its matrix-form
implementation are presented in Sections 4 and 5, respectively. The analytical and
numerical results are presented in Section 6 and Section 7, respectively. Finally,
Section 8 contains the concluding remarks.

2. Background

In this paper, a Boolean network with perturbation model [32, 39] is used
to capture the dynamics of gene regulatory networks. The BNp model effec-
tively incorporates the stochastic nature of GRNs and accounts for the uncertainty
coming from unmodeled parts of the systems. Consider a GRN consisting of d
components. The state process can be represented as {x;;k = 0,1,...}, where
x;, € {0,1}? denotes the activation or inactivation state of the genes at time k.
The genes’ state is influenced by a series of internal and external inputs/stimuli.
At each discrete time point, the state of the genes evolves according to the follow-
ing Boolean signal model [40]:

Xp = f(xp1) @ a1 @ Wy Oy, k=12, (D
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where {a;; k = 0, 1, ...} refers to a set of external interventions/therapies, {uy; k =
0,1,...} represents internal inputs regulated by the cell, n;, € {0, 1}? represents
Boolean transition noise at time &, "@®" denotes component-wise module-2 addi-
tion, and f is the network function. The noise value ny(j) = 1 alters the state of
the jth gene at time step k; whereas for n,(j) = 0, the jth state follows the value
predicted by the network function. The noise process ny, is assumed to have inde-
pendent components modeled by a Bernoulli distribution with parameter p > 0.
The Bernoulli parameter p represents the noise intensity, with higher values rep-
resenting more chaotic systems and smaller values indicating nearly deterministic
models. Note that the rest of the paper is applicable to a general class of Boolean
network models of the form f(xy_1,a;_1, ux_1, ng).

The network function in GRNs is often represented through a Boolean logic
model or a pathway diagram model [41, 40]. The Boolean logic model captures
the genes’ activities and interactions using logical operators such as AND, OR,
XOR, and NOT, while the pathway diagram model parameterizes suppressive and
activating interactions among genes to capture their dynamics. These models have
shown success in capturing the temporal changes in gene activities and causal
interactions among genes.

3. Battle of Cell and Intervention

3.1. Two-Player Zero-Sum Game

We represent the battle between the cell and intervention as a two-player zero-
sum game [42, 33, 34, 35]. This can be characterized by a tuple (X, A,U, R*, T),
where X = {0, 1}¢ is the state space, A is the intervention space, U is the cell
control space, R® is the intervention reward function, and ' is the state transition
probability function. T : X x A x U x X is such that p(x’ | x,a, u) represents
the probability of moving to state x’ according to the external and internal inputs
a and u in state x. Also, R%(x,a, u,x’) denotes the immediate intervention re-
ward gained if the system moves from state x to state x’ according to the joint
intervention and cell actions (a, u).

3.2. Optimal Nash Intervention Policy under Known Cell Responses

The diagram representing the fight between cell and intervention is shown
in Fig. 1. For cells in cancerous conditions, the intervention objective is to de-
crease cell proliferation, whereas cells aim to increase such proliferation by fight-
ing against interventions. The opposite objectives of the intervention and cell can



be expressed by the cell reward R* taking the negative of the intervention reward,
ie., R*(x,a,u,x') = —R%(x,a,u,x).

A Decrease cell
External Intervention | . .
: . proliferation

Fight Between
Cell and
Intervention

' - ' Increase cell
| Internal Cell Stimuli “ ) .
proliferation

Figure 1: The fight between intervention and the cell dynamic response according to its
internal stimuli.

This paper focuses on stationary Markov Nash equilibria in GRNs modeled by
the infinite-horizon discounted Markov game. Let {/ contain a finite set of stim-
uli/actions that the cell could perform during the intervention process against ther-
apies. Let also A be the set of actions/therapies available during the intervention
process. We define the intervention policy 7%(a | x), representing the probabil-
ity of taking action a € 4 in any given state x € X. Similarly, the cell policy
7 (u | x) specifies the probability of selecting input u € I/ in state x € X. For
the joint stochastic policy (7%, 7), the expected value function of intervention
and cell can be defined as:

a t pa a u
Vﬂ'“,rr“(x) = E{ E YR (XtyatyutaxtJrl) | A0:oo Y T, Upico ~ T, X9 = X},
t>0
U t pu a u
vwa,wu(x) = E[ E Y R (Xtvat7utaxt+1) | A)ico Y T, Upico ~¥ T, X9 = X:|7
t>0

2)
for x € X; where 0 < v < 1 is a discount factor that prioritizes the early-
stage rewards compared to future ones. Given that cell and intervention reward



functions are negative of each other, we have V7% .(x) = =V .(x), for any
x € X. Due to the interplay between state values for the cell and intervention, this
problem differs from a Markov decision process (MDP). The optimal solution for
a two-player zero-sum game can be expressed through the Markov game. This is
expressed as the optimal Nash equilibrium policy 7* = (7%, %), which for any
joint policy m = (7%, 7*) and x € X satisfies [33]:

Va

a U
T T s

(X) Z V;‘lﬂri‘ (X) and VWU‘I,},Tr}j (X) 2 VWU‘:},W“ (X) (3)

The optimal Nash equilibrium policy is the policy that the cell and intervention
have no motivation to deviate from it. This policy can be expressed according to
the min-max theorem as [43]:

(x), forallx € X.
“4)

Based on equation (2), any pair of (7%, 7*) that achieves the supremum and infi-
mum values in equation (4) forms an optimal Nash equilibrium.

(x) = argmin argmax V.

a u
e,

(¢, ) = argmax argmin V2%

e Ty
i i T T

4. Bayesian Intervention Policy under Unknown Cell Responses

4.1. Intervention Challenges of Unknown Cell Space

If the cell space U, representing the internal cell stimuli, is fully known, then
the optimal Nash policy could be achieved as a solution for the optimization in
(4). However, in practice, the cell’s internal stimuli are often unknown, preventing
the computation of the optimal Nash policy. Therefore, this paper aims to de-
rive an effective intervention policy that can be implemented despite incomplete
knowledge about cell space. We present a systematic approach to probabilistically
reason about the possible cell responses using the latest available data and use this
knowledge for effective intervention selection.

Let U, ....,UM be the set of all possible cell spaces. This set depends on the
size of the regulatory networks and the prior biological knowledge regarding the
cell responses. Given a regulatory network consisting of d genes, there are 2 pos-

) ) ) d .. .
sible cell actions. In this case, there are (21 ) cell spaces containing 1 cell actions,

(2;) sets with 2 cell actions, and (Ej) sets containing m cell actions. This set can
be large in large regulatory networks, but as described in the following paragraph,
the posterior of many models approach zero as more data are observed.

If U is the true cell space, the optimal space-specific Nash policy can be ex-

pressed as (Wf’”i, Wf’”i ), where this policy can be computed using the optimization
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problem in (4) corresponding to the cell space U*. The Nash policy obtained under
cell space U’ might significantly differ from /7 # U*. Thus, given the limited or
no knowledge about the true cell space, the space-specific intervention policies are
not directly implementable. In fact, executing a wrong (non-optimal) intervention
policy corresponding to U4’ # U* could lead to poor intervention performance and
the dominance of the cell.

4.2. Probability Model over Cell Spaces

This paper constructs a probabilistic model over the cell spaces. Let py(i) be
the prior probability of the ith cell space U’. The prior information about the set
of cell spaces can be represented in a single vector as:

po = [PUY), ... PU™)]". )

If no prior biological knowledge about cell space is available, a uniform prior can
be considered over the cell spaces, i.e., pg = [1/M, ..., 1/M].

Let pr—1 = [pr—1(1),...,px—1(M)] be the posterior probability over the cell
spaces obtained according to the sequence of observed states Xg.,_; obtained upon
taking interventions ag.;_». If intervention a,_; is taken at time step £ — 1 and the
state x;, is observed at time step k, the posterior probability of the cell spaces at
time step k can be expressed as:

pe(i) = PU" = ui|aozk—1,X0:k)
p(xx, U | ag—1,X0:k-1)
p(Xk | @061, X0:6-1)
_ P(xi|aok—1, Xo—1,U") P(U* = U'|ag—2, Xo:p—1) (6)
Zj]\il P(xp|ag.r—1, Xo.p—1,UT) P(U* = U |ag.y 2, Xo:6-1)
p(Xk | Aok—1, Xok—1,U") Pr—1(7)

Zj]\il p(Xx | @0n—1,Xo0k—1,U7) pr—1(j)

Y

fori =1, ..., M. The numerator term in (6) specifies the probability of observing
the next state x;, given the sequence of interventions and states and the cell space
U'. Further simplification of this term through marginalization of the joint distri-
bution of the state x; and the unobserved cell action u,_; at time step & leads



to:

POk | U a0k 1, Xok-1) = Z P(Xp, w1 = [ U ag 1, Xk 1)

uelf’

= Z Pk | Wy = Wy ag 1, X ) p(ug—y = u [ U, x5 1)

uelf? (7

» [[f(xk—1) Dar_1 ©udxk||1 .
=2 (—1 ) (1= p) 7w  3i)
; —-Pp

uey’

w,U’

where 744" (up_; = ulxp_1) = p(ug_1 = u | U* = U’,x;,_1) is the probability
that cell takes action u;_; = u at state x;_; if the true cell action space is I/*. The
first line in the last expression in (7) is obtained using the Markovian properties
of the state transition and the Bernoulli process noise. Replacing (7) into (6), the
posterior probability of the cell space can be recursively computed using the last
taken intervention and observed state.

4.3. Bayesian Intervention Policy

Let px. be the posterior probability over the cell spaces obtained according to
the states xq.; and the sequence of intervention ay.;_1. The proposed Bayesian
intervention policy at time step k& can be expressed as:

MZ’B(3|Xk) = p(ak =a | a0:k—1, X0:k)

M
= Zp(ak = aaz/{* = uz ’ aOZk*laXO:k)

M
= Zp(ak =a | ui7 aO:kbeO:k)p(u* =U' \ a():kthO:k) 8)
i=1

M
= Zp(ak =a|U', agk—1, Xo:x) Pi (i)

— Z U (alxy) pi (i),

for a € A; where the cell space is augmented and marginalized out in the second
line. One can see that if the uncertainty over the cell spaces goes to zero, the
Bayesian policy p*3(.|x;) becomes the optimal Nash equilibrium policy under
the known cell space 7% (.|x;).



The Bayesian policy in (8) is stochastic and provides the best intervention
solution given the available data. Let {u', ..., u"} be all unique cell actions in the
set of cell spaces, i.e., {ul,...,u} = Ut U.. UUM c {0,1}" The Bayesian
modeling of the cell defense policy at time step £ can be expressed as:

MZB(u’Xk) =p(uy =u | agk—1,Xo:x)

M

= Zp(uk - uyz/{* = uz ’ aO:k—hXO:k)
=1
M

= plwe =u | U agp_1, Xox) pU" = U" | agx-1, Xoux) ©)
1

-.
Il

p(uy =u | U ag,_1, Xo.x) (i)

M-

1

-
Il

Wf’w(u|Xk)pk(i)>

M-

=1

for u € {u!,...,u’¥}. Note that the cell defense response in (9) represents the
intervention belief about the cell policy since the cell performs the optimal Nash
policy corresponding to the true cell space.

The Bayesian policy in (8) yields the optimality with respect to the posterior
distribution of the cell spaces. The schematic diagram of the proposed Bayesian
intervention policy is shown in Fig. 2. As the next intervention is performed and
the next state is observed, the posterior distribution over the cell spaces becomes
updated, and the optimal Bayesian policy can also be computed according to the
new posterior and the next observed state. The analysis of the proposed Bayesian
policy and its comparison with the state-of-art intervention policies are described
in Section 6.

5. Matrix-Form formulation of the Proposed Bayesian Intervention Policy

This section provides an efficient and recursive computation of the proposed
Bayesian intervention policy. The process is divided into offline and online steps.
The offline step consists of computing the space-specific optimal Nash policies
associated with all cell spaces. Upon termination of the offline step, the online
step computes the posterior distribution of all cell spaces given the last observed
state, followed by the calculation of the Bayesian intervention policy. The details
of these two steps are outlined below.
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Figure 2: The schematic diagram of the proposed Bayesian intervention policy.

5.1. Offline Step Computation

The offline step computes the optimal space-specific optimal Nash equilibrium
policy for all cell spaces, i.e., {U*,....UM}. This is achieved according to the
value iteration method for a two-player zero-sum game [33]. For the th cell space
U', we define the state joint-action value function for any state value function
V:X —Ras:

%ul (X7 a7 u) = EXINP(.|X,a,u) [Ra<X7 a) u7 X/) —I— /VV(X,):I ? (10)

forx € X,aec Aand u € U'. ((}Ul(x, .,.) can be seen as a matrix in
with elements representing the expected discounted accumulated rewards for the
intervention when the joint actions (a, u) are performed at state x and the policy
associated with the state value function V is followed.

We define the joint-action transition matrix associated with (a, u) in R’
as:

Alx U
RIAIXIU

x 24

(M(a,u)),; =P (x;c =% |xp =% a1 =a,u_; = u)

(11)

= plfe) @aduexiil (] _ ,yd-lfx) Dasuex|)

—-Pp
forl,j =1,...,2% a € A and u € U’, where ||.||; is the absolute L-1 norm of
a vector. Under zero noise and stochasticity, f(x!) @& a @ u represents the state
of genes in the next time step. Thus, ||f(x') & a & u & xJ||; counts the number
of flips caused by the noise once the system moves from state x' to state x?. The
transition probability in (11) is computed based on the noise characteristics for
each variable, modeled as independent Bernoulli variables with parameter p.

i
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The matrix form representation of the intervention reward function associated
with a and u can be expressed as:

(R*(a,u)),; = R* (xl,a, u, Xj) cforl,j=1,..,2% (12)

The expected intervention reward in state x' after taking actions (a, u) and before
observing the next state can be computed as:

R*(x',a,u) = Exjxau[R*(x', a,u,x)]

2d
= Z P(xp = | x1 =%\ a1 = a,u_ = u)R* (X', a,u,x7),
j=1

(13)
for [ = 1,..,2%. The expected reward in (13) can be rewritten according to (11)
and (12) as:
2d
R(x',a,u) = > (R%(a,u)); (M(a,u));. (14)
j=1
We define the expected intervention reward function in a vector form as Ry , =
[R(x',a,u),---, R*x2',a,u)]”. This vector can be computed using the follow-
ing matrix-form computation:

Rg,u = (Ra(aa u) © M(aa u)) 12d><1a (15)

fora € A and u € U?; where 144, is a vector of size 2¢ with all elements 1, and
® is the Hadamard product.

According to the controlled transition matrix M (a,u) and the vector-form
reward function R? , the Q-values defined in (10) can be calculated as:

a,u’

“U(x! a,u)

=Ry, +7M(a,u)V, (16)
(x>, a,u)

fora € A and u € U’ and any given state value function V.

Let 7@ be 2%-simplex of size A, and 7% be 2¢-simplex of size U*. Consider

4 (x, .,.) as the payoff matrix in a matrix form zero-sum game. We define the

Bellman operator 7* for any x € & as [33]:
(T*[V])(x) = Value[Qy" (x, -, )]
= max mmz Z (alx) 7%(u|x) Q¥ (x,a,u), a7

ac A uclt
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which should meet the condition ), , 7%(alx) = > 7" (ulx) = 1. The
solution for the min-max optimization in (17) can be obtained using a linear pro-
gramming technique.

The Bellman operator 7* is a y-contractive in the L.,-norm, and the exclu-
sive solution to the Bellman equation corresponds to the optimal value function,
denoted as V* = T*[V*| [33]. This fixed-point solution represents an optimal
Nash equilibrium for the Markov game, associated with the cell space U/*. There-
fore, starting from any arbitrary V, we can repeatedly apply V,.; = T*[V,] for
t =0,1,..., and compute a fixed point solution for the value vector.

Let Vo = [0,---,0]" denote the initial value vector with all elements set to
0. During the rth iteration of the value iteration method, the new vector V, is
obtained upon performing the Bellman operator to the previous value V,. as:

V.1 (x') = Value[Qy (<, ., )], forl = 1,...,2%, (18)

where Q%,i{ (x!,.,.) consists of Q-values for all joint pairs of (a,u). In practice,
the iterations continue until the maximum difference between the elements of the
value vectors in two consecutive iterations becomes smaller than a predetermined
threshold € > 0, expressed as:
max |Vr(l) — V()] <e
le{1,..,24}

Let V = V* be the fixed-point solution after conducting the value iteration

method. The Q-values associated with V* can be computed as:

W (x' a,u)

: =Re,+yM(a,u) V", forac A, uecld’. (19

aUt ,_ od

ve (x

After computation of the optimal Q-values, the optimal policy for intervention and
cell can be calculated as:

<7Tf’ui<.’X), qu(]x)) = argmax argminz Z m(alx) 7 (ulx) 2,” (x,a,u),
™ ™ acA uey’
(20)

for any x € X, where 7%’ (a|x) and 7*¥' (u|x) are non-negative numbers that
add up to 1 for any x € X. The solution to the Nash equilibrium policy in (20) can
be obtained using a linear programming technique. Repeating the above process
for all cell spaces leads to the computation of the space-specific Nash policies in
the offline step.

7a7u)
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Algorithm 1 Bayesian Intervention Policy

I: Intervention space A; Cell spaces, U, ..., UM; intervention reward (R%(a, u));; =
R%(x!,a,u,x7); controlled transition matrix M (a, u); threshold € > 0.

Offline Step
2: for 4 € {U', ..., UM} do
3: Set V/ = 02d><1.

4: repeat
5: V=V,
%w (x!,a,u)
6: : = [(R%(a,u) ® M(a,u)) 1y4,; +yM(a,u) V], fora €
%}Ui (x2', a,u)
Aandu e U’
7: Bellman Operator: V'(x!) = Value| %,_ui (x!,.,)], for I = 1,...,2% — Eq.
a7
8: until max;c gy 90y V(x) - V(x| < e
9: For any given x € X » use linear programming approach over Q%ﬁﬁ (x,.,.) to
obtain 72" (.|x) and 72" (|x).
10: end for
Online Step

11: Initial state xo, and initial probability of cell space: pg = [P(U'),. .., P(UM)].
12: for k=0,1,2,...,do

13: Compute Bayesian Intervention ui’B(aB| xp) = M, M (a | xi) pi(i),a €
. . a,
A, and select action accordingly: aj, ~ 1, (. | Xg).
14: Apply the intervention aj and receive the next system state, Xg 1.

15: Posterior Update:

If(xx) @ apOudxp 1|1 wld?

S (i25) =4 ul) | i)

Iy p /) @ ar@®udxerilly 7/
Zj:l ZuGZ/{j(l—p)

T (uXk)]pk(J’)

pk+1(i): ,izl,...,M.

16: end for
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5.2. Online Step Computation

This section describes a recursive and online computation of the Bayesian in-
tervention policy, obtained according to the space-specific Nash equilibrium poli-
cies computed during the offline step. Let p; contain the posterior probability of
the cell spaces and x;, be the system state at time step k. An intervention at time
step k can be selected according to the Bayesian policy in (8) as:

ay, ~ (| %), 1)
where
M .
ppPa ] xp) =Y 7 (a | xi) pili), fora € A, (22)
=1

Upon performing the intervention a; and observing the next state Xy, the pos-
terior distribution of the cell spaces can be updated using (6) and (7) as:

S (1
S| S (5

fort =1,..., M.

The diagram in Fig. 3 represents the processes of the computation of the pro-
posed intervention policy in the offline and online steps. Algorithm 1 provides the
details of the computations in both steps. Meanwhile, the complexity of each step
is provided in Table 1. The offline step has a computational complexity of order
0(2% x |A| x max;—y__a |U*| x L), where 2*¢ is due to the transition matrices
involved, L represents the number of steps of the value iteration method before
termination, |A| is the size of intervention space, and the |I/’| is the size of the
t1th cell space. In the online step, the computation of the Bayesian intervention
has the complexity of order O(M ), whereas the posterior update’s complexity is
of order O(M x max;—1 s |U?|). Overall, the complexity of the online step is
significantly lower than that of the offline step, enabling a recursive computation
of the proposed intervention policy.

[1f(xx) ®ar ©udxpi1]|1 i .
) Ul (u\Xk)]pk(Z>

|If (k) Dar Budxpii]| widi '
) it (u|Xk:)]Pk(J)

Pr1(i) = , (23)

6. Performance Analysis and Comparison with State-of-Art Methods

This section analyzes the performance of the proposed Bayesian intervention
policy with the system under no intervention and some of the existing interven-
tion policies. First, consider a system with no intervention under the aggressive
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Online Step b

observe x,, —¥ update posterior py;

select and apply |
@~ (%)

s TTTTTTTmmm “‘ _________________________ ~a

compute ,uE’B

. i i Offline Step \
If' — store t®Y and 72! \
I
1
| 1
: vEs | max|V'(x) —V(x)| < e i
| for U e qut, ., uMy NO XEy :
1
! V= |
! T ; i
! v=90¢" (x,.,.) Vxx):vmqugﬂ(x”J] !
\ XEy XEy /

Figure 3: The schematic diagram of processes in the offline and online steps of the pro-
posed Bayesian intervention policy.

Table 1: Computational complexity of the proposed Bayesian intervention policy.

Offline Step (Cell Space U/*) | Bayesian Intervention Posterior Update
0224 x |A| x [U'] x L;) O(M) O(M x max{|U'|,..., [UM]})

response of cells, e.g., representing uncontrolled cancerous conditions. The best
cell policy under no intervention is deterministic. Let 7% : X — U* be a determin-
istic cell policy, which maps a cell action in U* to each system state. The optimal
cell response under no intervention can be computed as:

[e. 9]
=0 (x) = argminE{Ztha(xt, a = 0,u;,X41) | X0 = X, Upgioo ~ T,
™ t=0
(24)
where 7 € (U *)2d and the minimization is used since the reward of the interven-
tion is negative of the cell reward function. The steady-state probability under no
intervention can be expressed as:

00 0

a:O(j) = khm P(Xk - Xj | Up:00 ﬂ-ll’a: y A0io0 — 0)7 (25)
—00

for j = 1....,2%. One can see I, as a long-term probability of the visitation of

various states under no intervention.
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Most conventional intervention methods assume non-responsive cells [19],
wherein cells lack defense mechanisms to counteract interventions (i.e., i = {}).
In this scenario, the Markov game can be represented by an MDP with a single
agent/player, and since the intervention is driven by no competition with cell re-
sponses assumption, the optimal intervention policy becomes deterministic. This
policy can be expressed as:

o0
a,u=0 o t pa _ o a
i (x) = argmaxE[ E v RY (x4, a0 = 0,X441) | Xo = X, Ag.00 ~ T,
TrCL
=0

(26
where the maximization is over all deterministic intervention policies, i.e., (.A)zd.
The cell’s aggressive response to the naive and deterministic intervention in (26)
can be expressed as:

[e.e]

a,u=0
U T4

Ty (x) = argminE{Zth“(xt, ag, U, Xe41) | Xo = X,
i =0

A0:00 ™ ﬂ_it,u:O’ Up:0o ™~ T y forx € X.

27)
The expected value function for the intervention under no cell response policy in
(26) and (27) can be expressed through V¢ _au=o- The intervention gain

a,u=0 _u,
Tx 3Tk

obtained under this policy compared to no intervention case can be expressed as:

VO e =0 (X) =V waso(x) >0, (28)

for any x € X'. The positivity of the difference in the state values indicates that the
intervention helps the system to experience less undesirable conditions, compared
to cases with no intervention. Meanwhile, the comparison with the optimal Nash

policy (724", 744" can be achieved as:
Vaa u=0 _u 2u=0 (X) S VZ_a,u:O ﬂ_u,Z/I* (X) S V;lravu* 7Tu’u* (X)7 (29)
ﬂ-*v 77-‘-*’ * * 3 Mk * 3 MUk

for any x € A&, where the inequalities are obtained due to the fact that devia-
tion of the intervention from the optimal Nash policy leads to a reduction in the
intervention performance (see (3)). More specifically, if the intervention policy
deviates from the Nash policy, the cell can take advantage of this and further shift
the system toward undesirable conditions. Note that the conventional intervention
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policies can achieve the same performance level as the optimal Nash policy if and
only if the optimal Nash policy is deterministic, i.e., 744" (7%4=0(x)|x) = 1, for
allx e X.

In this part, the difference between the state-value function of the proposed
Bayesian intervention policy and the optimal Nash policy is investigated. The
proposed Bayesian policy is adaptive, meaning that its policy becomes updated
according to the latest observed states. We represent the Bayesian policy after
time step k as > = [u”, qul, ...], where ,uZ’fl yields optimality with respect
to the information up to time step k£ + 1. Thus, we can express the difference be-
tween the state-value functions of the proposed Bayesian policy and the optimal
Nash policy as:

Vies we (k) = Vi wue () <0. (30)

Hpo: oo T

It can be shown that the state value function of the Bayesian policy becomes close
to the optimal Nash policy as time progresses. In fact, for a sufficiently large value
of k, the posterior distribution over the cell spaces is expected to become peaked
over the true cell space, and according to (8), the Bayesian policy becomes the
same as the optimal Nash policy. In particular, the difference between the pro-
posed Bayesian policy at time step &k and the optimal Nash policy can be expressed
as follows:

. ot (a|x
KL(w% (%), 1™ (| xx)) ZW““ (a|xy) log (afx)
= el
= 3w () [log mH (alxi) — log i (alx) |

acA

where KL indicates the Kullback-Leibler divergence. The KL approaches zero if
the posterior peaks over a single cell space (i.e., the true cell space). Finally, unlike
existing deterministic intervention policies, the stochastic nature of the proposed
policy aligns with the stochastic nature of the optimal Nash policy. This stochastic-
ity prevents the cell from predicting a single deterministic intervention in different
cases, helping to ensure short-term and long-term success during the intervention
process.

7. Numerical Experiments

In this section, the performance of the proposed intervention policy is assessed
through two well-known gene regulatory networks: the p53-MDM?2 Boolean net-
work model and the melanoma regulatory network.
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7.1. P53-MDM?2 Negative Feedback Loop Network

This paper utilizes a simplified p53-MDM?2 Boolean network [44] with DNA
double-strand break (DNA-DSB) for the experiment. This network has been widely
studied for assessing the performance of various intervention policies. The p53
tumor suppressor is a crucial transcription factor that regulates essential cellular
processes, including DNA repair, cell cycle control, apoptosis, angiogenesis, and
senescence [45]. Fig. 4(a) illustrates the diagram of this network, where solid and
blunt arrows indicate activating and suppressive interactions, respectively. The
network consists of four genes: ATM, p53, WIP1, MDM2, and DNA-DSB, which
is an external stress to the cell. The system state is represented using the following
vector: x; = [ATMy, p53,,, WIP1,, MDM2,]. The Boolean model described in (1)
represents the state transition of the healthy system as:

0 0 -1 0 dna_dsb
+1 0 -1 -1 0

k=19 41 o9 o|¥1t| o |PAPwaOn, G2
1 41 41 0 0

where V is a function that maps the element of the vector v greater than O to 1 and
others to 0.
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Figure 4: (a) The pathway diagram for the p5S3-MDM?2 Boolean network. (b) The aver-
age reward gained by the Bayesian intervention policy, naive intervention policy, and the

Baseline. (c) The average absolute difference of the rewards.

In cells under normal conditions, the stress response is zero (i.e., dna_dsb =
0), whereas under stressed conditions, the stress is present (i.e., dna_dsb = 1).
For no stressed cells, the genes’ states are mostly at rest, i.e., the system remains
in the "0000" state. In stressed conditions, the activation and inactivation of p53
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help the system control the genes’ activities and cell proliferation. However, when
p53, a tumor suppressor gene, undergoes a loss of function, other genes can exhibit
excessive activations and cell proliferation, leading to transitioning from a healthy
to a cancerous condition.

The cell defensive responses are modeled using single-gene and double-gene
perturbations. This represents realistic situations in which cells have the capability
to respond to therapies by altering the states of multiple genes simultaneously.
Therefore, the possible cell responses can be expressed through the following 7
actions:

u' =[0000]",u?*=1[1000",u*=[0010",u* =[0001]7,

5 T .6 T 7 T (33)
u =[1010]",u”=[1001]",u’"=[0011]".

The cell might utilize one or multiple stimuli in response to interventions. In our

experiment, we consider the following cell space to be true but unknown:

U = {u? u’}, (34)

where u? alters the state value of ATM, and u® simultaneously alters the state of
ATM and MDM2.

Toward modeling the possible cell spaces, we consider cell spaces to contain
any subset of one, two, and three elements from the above 7 possible cell actions
in (33). This leads to M = (I) + (;) + (;) = 63 possible cell spaces. Among them,
7 contain a single action, denoted by U! to /7, 21 contain two actions indicated
by U® to U?®, and 35 consist of 3 actions, indicated by %" to 1%, Note that the
true cell space in (34) is the 17th space (i.e., U* = U'7), which is unknown during
the intervention.

The space of intervention (i.e., drugs/therapies) is assumed to be:
A={a'=1[0000",a>=[1000]",a’ =[0001]"}, (35)

where the first intervention a' corresponds to no therapy, whereas the second and
third interventions alter the state value of the ATM and MDM?2 genes, respectively.

Intervention aims to reduce cell proliferation in cancerous situations and re-
store the system to a normal condition. For the p53-MDM2 network, this can be
achieved by reducing the activation of ATM, WIP1, and MDM?2. This can be ex-
pressed through the following intervention reward function:

R%(x,a,u,x') = —x'(1) — x'(3) — x'(4). (36)
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The activation of each of ATM, MDM2, and WIP1 yields a negative reward of
-1, resulting in an immediate reward ranging from -3 to 0. The objective of the
intervention is to maximize cumulative intervention rewards by maintaining ATM,
MDM2, and WIP1 in an inactivated state. Conversely, the cell with the opposing
reward seeks to increase the activation of these genes and drive the system closer
to states leading to uncontrolled cell proliferation.

We consider the optimal Nash policy associated with true cell space (i.e.,
7uU"and m@4") as a Baseline policy. The Baseline provides the best interven-
tion outcomes that could be achieved by any intervention policy (since it assumes
the full knowledge of true cell space). The following parameters are used for the
numerical experiments: p = 0.05, v = 0.95, and € = 0.01, the initial state "1011",
representing the cancerous condition.

The average reward over 100 independent runs obtained by the proposed Baye-
sian intervention policy, the naive intervention policy, and the Baseline is pre-
sented in Fig. 4(b). As can be seen, the reward gained by the proposed Bayesian
policy becomes closest to the Baseline after a few steps (i.e., a few numbers of
interventions). The performance of the naive intervention policy is notably poor,
with an average 2 out of 3 genes remaining activated. In contrast, the Bayesian
intervention policy demonstrates a significant improvement by effectively deac-
tivating approximately 2.4 of the genes, which highlights the superiority of the
proposed approach. Furthermore, Fig. 4(c) shows the average absolute difference
between the rewards obtained by the Baseline and the proposed Bayesian pol-
icy and the Baseline and the naive intervention policy. As can be seen, a much
smaller absolute reward difference is achieved for the proposed intervention pol-
icy. In particular, the absolute reward difference approaches zero for the proposed
Bayesian policy as time progresses, which means the proposed method achieves
intervention performance (i.e., reward) similar to the Baseline. On the other hand,
one can see the poor performance of the naive policy with a large absolute reward
difference over time.

The prior and average posterior probability over cell spaces is shown in Fig.
5(a). A uniform prior is considered over cell spaces (blue bars). The average pos-
teriors after 20 steps are shown with red bars. As can be seen, the proposed method
has been almost able to discern the true cell space, i.e., U!7. Aside from the true
cell space, another cell space (i.e., U'? = {u',u®}) has a large posterior proba-
bility. This set shares a single cell action with the true cell space, making it prob-
abilistically indistinguishable from the true cell space, given 20 observed states.
Furthermore, the average posterior of the true cell space over time is shown in
Fig. 5(b). The average posterior of the true cell space is increasing over time. The
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reason for not approaching 1 is the existence of another cell space, U2, with a
similar space-specific Nash policy.
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Figure 5: (a) The prior and posterior (after 20 steps) probability over cell spaces. (b) The
average posterior of the true cell space over time.

Fig. 6(a) represents the probability assigned to each intervention (a', a, and
a®) by both the optimal Nash equilibrium policy and the proposed Bayesian policy
in a single run. It can be seen that the proposed Bayesian policy and Baseline
behave similarly after a few initial steps. In fact, the average result reveals that
the Bayesian intervention policy empirically converges toward the optimal Nash
intervention policy after approximately 7 steps.

In this part, the KL divergence is used as a distance measure between the
optimal Nash equilibrium policy and the proposed Bayesian intervention policy.
Fig. 6(b) represents the average KL divergence performed over 100 independent
runs. The results indicate that these two policies become close to each other not
only in individual runs (as shown in Fig. 6(a)), but also on average. This indicates
the empirical convergence of the proposed policy to the optimal Nash policy as
more interventions are taken, and more data are observed.

In this part of the experiment, we investigate the reason for obtaining a large
posterior probability for a non-true cell space in Fig. 5(a). Fig. 7(a) illustrate the
space-specific Nash policies under the true cell space U/* and the cell space U/'2.
The blue bars represent the probability assigned to each intervention at the 16
states under the true cell space’s Nash equilibrium policy, while the red bars rep-
resent the corresponding probabilities under the Nash policy associated with /12,
One can see the similarity between these two policies in different states.
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Figure 6: (a) The proposed Bayesian intervention policy and the optimal Nash equilibrium
intervention policy (both stochastic) in one single run. (b) The average KL divergence
between the true Nash intervention policy and the proposed Bayesian intervention policy.

The average rate of state visitations under the proposed Bayesian policy is
shown in Fig. 7(b). One can see the subset of states {x!, x?, x'°, x1?} are the most
frequently visited states. At these most visited states, we can see the similarity
between the space-specific Nash policies associated with 2/* and U'? in Fig. 7(a).
This explains the reason behind the similar performance of the proposed Bayesian
policy to the Baseline, despite a large posterior probability for a non-true cell
space.

This section analyzes the impact of the system stochasticity on the perfor-
mance of the proposed Bayesian policy. Fig. 8(a) illustrates the average posterior
of the true cell space under two levels of state stochasticity. The solid line corre-
sponds to the small noise level, characterized by a Bernoulli process noise with
p = 0.001, whereas the dashed line represents a higher noise level with p = 0.15.
The results indicate that when there is less randomness in the system (low stochas-
ticity), the average posterior of the true cell space becomes closer to 1. However,
when the stochasticity level increases (high stochasticity), there is greater uncer-
tainty in determining the true cell space. Therefore, as expected, the proposed
method performs better for less chaotic systems.

Fig. 8(b) shows the average reward obtained by the proposed Bayesian in-
tervention policy and the naive intervention policy under low and high levels of
stochasticity. The average rewards obtained by both policies have more fluctuation
under a larger stochasticity level. The results indicate that the naive intervention
policy performs poorly when the stochasticity level is low. Under a high stochas-
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Figure 7: (a) The space-specific Nash equilibrium intervention policy associated with U/*
and U2, (b) The average state visitation rate in 100 independent runs under the proposed
Bayesian intervention policy.

ticity level, it takes longer for the proposed policy to achieve a performance similar
to that of the optimal Nash equilibrium policy. However, the final average reward
obtained by the proposed policy under low and high stochasticity levels is similar.
This demonstrates that the proposed Bayesian policy exhibits greater robustness
compared to the naive policy. In fact, in more chaotic systems characterized by
higher levels of noise, decision-making becomes more challenging for both cells
and intervention, resulting in similar performance regardless of changes in the
noise level.

This section of numerical experiments investigates the robustness of the pro-
posed policy with respect to different cell and intervention spaces. Table 1 presents
the average reward obtained by various policies across 9 pairs of intervention and
true cell spaces. The Bayesian policy and the Baseline outperform the naive pol-
icy in all cases. For a fixed intervention space (i.e., the results in a single row),
a reduction in the reward can be seen for cell spaces with larger elements. This
is due to the greater power of cells with larger cell space to resist intervention.
Given a fixed true cell space (a column in the table), a stronger intervention space
yields a larger or similar average reward. The improvement in the result is more
significant when the size of the intervention space has increased from 2 to 3, and
less significant once it is increased to 4.
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Figure 8: (a) Average posterior of the true cell space for systems with low (p = 0.001) and
high (p = 0.15) levels of stochasticity. (b) The average reward gained by the Bayesian
intervention policy and naive intervention policy under low (p = 0.001) and high (p =
0.15) levels of stochasticity.

7.2. Melanoma Regulatory Network

In this part of the numerical experiment, we evaluate the effectiveness of the
proposed Bayesian intervention policy using the melanoma regulatory network.
Melanoma is a deadly type of skin cancer arising from melanocytes’ malignant
conversion [21, 46, 47]. In this paper, we consider a well-known Boolean network
model of melanoma network [21], which is widely studied in deriving genomics
interventions. Fig. 9(a) illustrates the regulatory relationships among the genes
in the network. This network consists of a total of 10 genes and 1,024 states. The
state vector shows the activation/inactivation of the following genes in sequential
order: WNTSA, pirin, S100P, RET1, MMP3, PHOC, MART1, HADHB, synu-
clein, and STC2. The network function can be expressed as:
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Table 2: Average steady-state reward gained by different policies under different intervention sets

and true cell spaces

u* =

o O O

u*=

—_ o O =

O O O

= o O
== O O

[Nl

o O O O

S O O

Baseline: —0.402 4+ 0.008
Bayesian: —0.415 =+ 0.026
Naive: — 1.319+0.010

Baseline: —1.044 4+ 0.013
Bayesian: —1.057 £ 0.036
Naive: —2.207 £0.012

Baseline: —1.802 4+ 0.021
Bayesian: —1.885 =+ 0.039
Naive: — 2.602 +0.011

[N e

= o O O

Baseline: —0.288 +0.011
Bayesian: —0.297 £ 0.028
Naive: — 1.188 +0.010

Baseline: —0.627 +0.016
Bayesian: —0.637 £ 0.041
Naive: — 1.941+0.011

Baseline: —0.833 4+ 0.026
Bayesian: —0.846 £ 0.052
Naive: — 2.131 £ 0.009

o~
I
cooo

o OO =

= o oo

_= -0 O

Baseline: —0.193 4 0.008
Bayesian: —0.209 + 0.032
Naive: —1.051+0.012

Baseline: —0.565 4+ 0.018
Bayesian: —0.602 + 0.053
Naive: —1.740+0.014

Baseline: —0.725 4+ 0.028
Bayesian: —0.744 + 0.062
Naive: — 1.969 + 0.012

f(x) = [f1(xn), fo(Xk), -y fro(xn)]"

I (S100P A MMP3 A PHOC) v (MMP3 A PHOC)
(WNTSA A SIOOP A MMP3) V (WNT5A A STO0P A MMP3)
MART1
(WNT5A A pirin A RET1) V (pirin A RET1)
(RET1 A synuclein) V synuclein

(RETI A MARTI) V (RET1 A MART1 A STC2)

MARTI
(WNT5A A MMP3) V (MMP3 A synuclein) V (WNT5A A MMP3 A synuclein)
(RETI A MARTI A STC2) V (RET1 A MARTI A STC2) V MART1

S100P

The intervention objective is to reduce the activation of two genes: WNTSA

and pirin. This can be expressed using the following intervention reward function:
R*(x,a,u,x') =2 —x'(1) — x/(2), (37)

where the reward of 2 is reached if both genes are inactivated, 1 if one of them is
activated, and O when both genes are in the inactivated state.
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Figure 9: (a) The pathway diagram for the melanoma regulatory network. (b) The aver-
age reward gained by the Bayesian intervention policy, naive intervention policy, and the
Baseline.

In our experiment, we consider modeling cell responses using single-gene per-
turbations, which lead to 11 distinct cell actions denoted as u' to u''. The action
u' represents no cell stimuli, and u? to u'! correspond to gene 1 to gene 10 stim-
uli, respectively. Similar to the previous experiment, cell spaces are assumed to
contain one, two, or three cell actions, resulting in 231 possible cell spaces. We
use the following true (unknown) cell space in our experiment:

U =uU*® = {u°,u®}, (38)

where the cell has the capability to alter the state value of the RET1 or MART1.
The intervention space contains three possible actions as A = {a', a? a®}, where
a! indicates no intervention, and a? and a® represent interventions targeting RET1
and PHOC, respectively. All the parameters are the same as in the previous exper-
iment. The initial state is randomly selected from states with activated WNTSA
and pirin.

Fig. 9(b) represents the average reward obtained by the proposed Bayesian
intervention policy, naive intervention policy, and the Baseline. The average re-
ward achieved by the Bayesian policy gradually converges towards the Baseline
after a few steps. In contrast, the naive intervention policy performs poorly, with
an average reward of approximately half of the Bayesian policy. This difference
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highlights the superiority of the Bayesian approach to probabilistically model the
cell space and fight back against internal cell responses through stochastic policy.
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Figure 10: (a) The average posterior of the true cell space over time. (b) The average KL

divergence between the true Nash intervention policy and the proposed Bayesian inter-
vention policy.

Fig. 10(a) illustrates the average posterior of the true cell space over time. As
can be seen, the true cell space has the largest posterior probability, and its prob-
ability approaches 1 after about 15 steps. Furthermore, Fig. 6(b) shows the aver-
age KL divergence between the true Nash equilibrium intervention policy and the
proposed Bayesian intervention policy. The KL divergence approaching zero in-
dicates the empirical convergence of the Bayesian policy converges to the optimal
Nash policy.

8. Conclusion

This paper develops a Bayesian intervention policy for gene regulatory net-
works (GRNSs) that takes into account cell defensive responses. The temporal dy-
namics of GRNs are modeled using a Boolean network with perturbation (BNp)
model, and the interaction between the cell and the intervention is formulated as
a two-player zero-sum game. Given incomplete information about cell responses,
this paper provides a recursive and probabilistic method to capture the posterior
distribution of cell defensive responses. The Bayesian policy is introduced using
the combination of the cell-specific Nash policies for each cell space and the pos-
terior distribution associated with them. Our analytical results demonstrate the
superiority of the proposed intervention policy against several existing interven-
tion techniques. Meanwhile, the superiority of the proposed intervention policy
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is demonstrated through comprehensive numerical experiments using the p53-
MDM2 negative feedback loop regulatory network and melanoma network.

Our future studies will explore the extension of the proposed game-theoretic
intervention policy to practical settings, including studying the partial observabil-
ity of the genes’ state through noisy gene-expression data, as well as addressing
scalability issues related to large gene regulatory networks and cell stimuli spaces.
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