
Deep Reinforcement Learning Sensor Scheduling for Effective
Monitoring of Dynamical Systems
Mohammad Alalia,∗, Armita Kazeminajafabadia and Mahdi Imania

aNortheastern University, 360 Huntington Ave, Boston, MA, 02115, U.S.

A R T I C L E I N F O
Keywords:
Sensor Scheduling
Monitoring
Hidden Markov Models
State Estimation
Reinforcement Learning.

A B S T R A C T
Advances in technology have enabled the use of sensors with varied modalities to monitor different
parts of systems, each providing diverse levels of information about the underlying system. However,
resource limitations and computational power restrict the number of sensors/data that can be processed
in real-time in most complex systems. These challenges necessitate the need for selecting/scheduling
a subset of sensors to obtain measurements that guarantee the best monitoring objectives. This paper
focuses on sensor scheduling for systems modeled by hidden Markov models. Despite the development
of several sensor selection and scheduling methods, existing methods tend to be greedy and do not take
into account the long-term impact of selected sensors on monitoring objectives. This paper formulates
optimal sensor scheduling as a reinforcement learning problem defined over the posterior distribution
of system states. Further, the paper derives a deep reinforcement learning policy for offline learning
of the sensor scheduling policy, which can then be executed in real-time as new information unfolds.
The proposed method applies to any monitoring objective that can be expressed in terms of the
posterior distribution of the states (e.g., state estimation, information gain, etc.). The performance of
the proposed method in terms of accuracy and robustness is investigated for monitoring the security
of networked systems and the health monitoring of gene regulatory networks.

1. Introduction
Most real-world systems are complex and dynamic, of-

ten monitored through multiple sensors. These sensors pro-
vide diverse information about different parts of the systems.
Thus, given the large size of systems and the cost and
resource limitations, collecting and processing data from
all sensors at all times is impossible. Hidden Markov mod-
els (HMMs) are a well-known class of statistical mod-
els that have been used in a wide range of applications,
such as computer networks, systems biology, robotics, ecol-
ogy, and smart grids (Glennie, Adam, Leos-Barajas, Mich-
elot, Photopoulou and McClintock (2023); Imani, Imani
and Ghoreishi (2022); Raskar and Nema (2022); Hosam
(2022); Aoudni, Donald, Farouk, Sahay, Babu, Tripathi and
Dhabliya (2022); Mousavi, Bevan, Kucukdemiral and Fekih
(2024); Mor, Garhwal and Kumar (2020); Mustafa, Allen
and Appiah (2019); Ravari, Ghoreishi and Imani (2024);
Kouadri, Hajji, Harkat, Abodayeh, Mansouri, Nounou and
Nounou (2020)). Several methods have been developed for
state estimation and filtering of HMMs. The state estimation
performance by these methods significantly relies on the
information carried in data/measurements fed into these
methods. In fact, measurements provided by different sen-
sors have different levels of information about systems at
different time steps. Monitoring in HMMs consists of pro-
viding the most useful measurements to the state estimation

∗Corresponding author
alali.m@northeastern.edu (M. Alali);

kazeminajafabadi.a@northeastern.edu (.A. Kazeminajafabadi);
m.imani@northeastern.edu (.M. Imani)

alali.sites.northeastern.edu (M. Alali);
imani.lab.northeastern.edu (.M. Imani)

ORCID(s): 0000-0002-5458-5273 (M. Alali); 0009-0009-8174-8507 (.A.
Kazeminajafabadi); 0000-0001-9570-9909 (.M. Imani)

and filtering approaches. This can be achieved by select-
ing/scheduling a subset of sensors to obtain measurements
that ensure the best monitoring objectives, such as effec-
tively estimating the underlying system state, diagnosing
abnormalities, control, etc.

Several methods have been developed for sensor schedul-
ing in dynamical systems. These methods include a wide
class of approaches developed for linear dynamical systems,
such as those that aim at minimizing the error covariance
of the corresponding Kalman filter (Liu, Li, Johansson,
Mårtensson and Xie (2022); Han, Wu, Mo and Xie (2017)).
The extension of these approaches to nonlinear dynamical
systems has been achieved through extended and unscented
Kalman filtering (Li, Yu, Xia and Yang (2019)). However,
these approaches are applicable only to systems that can be
linearized, and their stochasticity in state and measurement
can be well-approximated by Gaussian noises. For nonlinear
systems with non-Gaussian uncertainty, several myopic and
tree search approaches have been developed for sensor
scheduling (Shamaiah, Banerjee and Vikalo (2010); Vitus,
Zhang, Abate, Hu and Tomlin (2012)). Additionally, a sensor
scheduling method based on an adaptive grid is introduced
in (Vaisenberg, Motta, Mehrotra and Ramanan (2014)) for
sentient spaces, such as smart video surveillance; however,
the solution is only applicable to relatively small systems.

In recent years, deep reinforcement learning (RL) tech-
niques have also gained attention for sensor scheduling in
dynamical systems. In (Leong, Ramaswamy, Quevedo, Karl
and Shi (2020)), a deep RL-based sensor scheduling method
is introduced for monitoring of cyber-physical systems, and
a deep RL monitoring policy is developed in (Yang, Rao,
Lin, Xu and Shi (2022)) for remote state estimation with
limited bandwidth. Both of these applications are modeled
using a linear and Gaussian state space, where Kalman

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 1 of 11

alali.sites.northeastern.edu
imani.lab.northeastern.edu

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

filtering combined with the deep Q-network (DQN) ap-
proach (Mnih, Kavukcuoglu, Silver, Rusu, Veness, Belle-
mare, Graves, Riedmiller, Fidjeland and Ostrovski (2015))
have been employed to derive monitoring solutions. How-
ever, these approaches are not applicable to the general form
of HMMs with nonlinear and non-differentiable state and
measurement processes and non-Gaussian noises. Finally,
a double DQN sensor scheduling is developed in (Zheng,
Liu, Zhang and Lan (2023)) for target tracking in underwater
wireless sensor networks. However, the approach is only de-
veloped for a specific monitoring objective and application,
making it impractical for a more general class of dynamical
systems.

Subset of
Sensors

State
Posterior

Measurements

Sensor
Scheduling Policy

Filtering/
State Es�ma�on

Dynamical Systems

Figure 1: Schematic diagram of the proposed deep reinforce-
ment learning sensor scheduling process.

This paper develops a deep reinforcement learning sen-
sor scheduling policy for a general class of HMMs. The
proposed policy consists of offline learning and online ex-
ecution. In offline learning, the HMMs are mapped into
a belief space, a continuous state space encompassing the
posterior distribution of system states. We demonstrate that
the belief transition is influenced by the last selected subset
of sensors, and the belief transitions follow the Markov steps.
We formulate the optimal sensor scheduling process as a
reinforcement learning problem, with the policy defined over
the belief state, the subset of sensors indicating the action
space, and the one-step change in the monitoring objective
(e.g., state estimation error) as the reward function. Since
the exact solution to the sensor scheduling problem is not
achievable due to the continuous nature of belief space, this
paper approximates the optimal sensor scheduling solution
using the combination of deep reinforcement learning and
Bayesian filtering. The sensor scheduling policy, represented
by a deep neural network, is trained according to a sequence
of trajectories simulated from HMMs before the start of the
execution.

Fig. 1 represents the schematic diagram related to the
execution process of the proposed policy. Given the current
posterior of states, the proposed policy selects a subset of
sensors that measurements should be collected from in the
next time step. Then, the sensor subset and the measurements
are fed into a state estimation method. The state posterior
distribution (often computed by the state estimation meth-
ods) is used to select the subset of sensors in the next time
step. The proposed policy ensures effective scheduling of the
subsets of sensors as new observations become available in
order to achieve the best monitoring performance (e.g., most
accurate state estimation). In this paper, the performance of
the proposed policy is assessed using two different problems:

1) security monitoring of computer networks; 2) health
monitoring of gene regulatory networks.

Two key contributions of the proposed policy, differen-
tiating it from existing methods, are: 1) applicability to a
general class of hidden Markov models, without constraint
to the linearity of processes or Gaussianity of the noise
characteristics; 2) generalizable monitoring solutions for
any arbitrary monitoring objectives that can be expressed
through the posterior distribution of states.

The remaining sections of this paper are structured as fol-
lows. Section 2 presents a detailed description of the hidden
Markov models and the proposed sensor scheduling policy.
Section 3 provides full details of the deep reinforcement
learning sensor scheduling policy and its algorithm. Further,
Section 4 includes the numerical experiments and Section 5
contains conclusions and a discussion of limitations.

2. Proposed Sensor Scheduling Policy
2.1. Hidden Markov Models

Hidden Markov models (HMMs) are a popular class of
models for representing the dynamic behavior of complex
systems observed through time-series data (Glennie et al.
(2023); Raskar and Nema (2022); Hosam (2022); Aoudni
et al. (2022); Mor et al. (2020); Mustafa et al. (2019);
Kouadri et al. (2020)). The underlying dynamics of these
systems are represented using a state process. This can be
expressed as:

𝐱𝑘 ∼ 𝑝(. ∣ 𝐱𝑘−1), (1)
where 𝑝(.) denotes a probability mass function and 𝐱𝑘 de-
notes the system’s state at a given time step 𝑘. This paper
assumes that the state space is finite with 𝑛 elements denoted
by = (𝐱1,… , 𝐱𝑛). Note that the control inputs, if available,
could also be incorporated into the state process (e.g., 𝑝(. ∣
𝐱𝑘−1, 𝐚𝑘−1), where 𝐚𝑘−1 is the control input at time step
𝑘 − 1).

We assume that  contains all subsets of sensors in
which a subset can be selected at any given time for monitor-
ing the system. Each subset often provides information about
part of the system. Letting 𝐱𝑘 be the true unobserved state
of the system at time step 𝑘, this state can only be partially
observed through any selected subset 𝐬𝑘−1 as:

𝐲𝑘 ∼ 𝑝(. ∣ 𝐬𝑘−1, 𝐱𝑘), (2)
where the measurement process provides a nonlinear and
probabilistic realization of the underlying system state. For
instance, in network security, subsets can refer to a set of
computers on which the firewall can run to check for pos-
sible compromises. Considering the network structure and
all available information, monitoring should be conducted
effectively, as monitoring certain nodes might not provide
enough information about the entire network compromises
and could jeopardize the network security. This paper as-
sumes that the state and measurement processes in (1) and
(2) are fully known. Future work will study developing
sensor scheduling policies for partially known and unknown
systems.

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 2 of 11

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

2.2. Sensor Scheduling for Optimal Monitoring
The optimal monitoring problem in a system modeled by

HMMs consists of selecting the sequence of sensor subsets
that maximize the performance of monitoring objectives.
One such objective is accurately estimating the state of
the system, which can be measured through the posterior
distribution of the system state. Given 𝐬0∶𝑟−1 = (𝐬0, ..., 𝐬𝑟−1)be the sequence of the sensors and 𝐲1∶𝑟 = (𝐲1, ..., 𝐲𝑟) be the
observed data up to time step 𝑟, the posterior distribution of
the system state given the information up to time step 𝑟 can
be expressed as:

𝑝(𝐱𝑟 = 𝐱𝑖 ∣ 𝐬0∶𝑟−1, 𝐲1∶𝑟), for 𝑖 = 1, ..., 𝑛. (3)
If this posterior is peaked over a single state, then it indicates
the rich knowledge provided by the selected sensors about
the underlying system. On the other hand, if multiple states
have large probabilities in the posterior, then the selected
sensors do not clearly help to identify the true unobserved
system state.

The information carried in the posterior distribution
of state given the sequence of selected sensors 𝐬0∶𝑟−1 and
observed data 𝐲1∶𝑟 can be expressed using the following
entropy measure:

[𝑝(𝐱𝑟 ∣ 𝐬0∶𝑟−1, 𝐲1∶𝑟)] = −
𝑛
∑

𝑖=1
𝑝(𝐱𝑟 = 𝐱𝑖 ∣ 𝐬0∶𝑟−1, 𝐲1∶𝑟)

× log 𝑝(𝐱𝑟 = 𝐱𝑖 ∣ 𝐬0∶𝑟−1, 𝐲1∶𝑟),
(4)

where 0 ≤ [.] ≤ − log 1
𝑛 indicates the entropy. [.]

close to zero represents cases with distribution peaked over a
single state and, consequently, a more confident knowledge
of the true underlying system state.

Before any selection and observing any data, if the goal
is to select a sequence of sensors for maximum information
gain, the optimal monitoring can be expressed by minimiz-
ing the entropy of the conditional state distributions as:

𝐬∗0∶𝑘−1= argmin
𝐬0∶𝑘−1∈𝑘

𝑘
∑

𝑟=1
𝔼
[

[𝑝(𝐱𝑟 ∣ 𝐬0∶𝑟−1, 𝐲1∶𝑟)] ∣ 𝐬0∶𝑟−1, 𝐲1∶𝑟
]

,

(5)
where the expectation is with respect to the unobserved data
given any sequence of sensors. Solving the optimization in
(5) can be challenging in practice and, if obtained, cannot
be deployed for real-time sensor selection. In the following
paragraphs, the optimal sequential sensor scheduling strat-
egy is formulated.
2.3. Belief State Formulation

Belief state definition: We define the belief state as
the posterior distribution of the system state. The belief
state is a vector of size 𝑛, which is a sufficient statistic for
representing the history of information as a compact form in
a Markov decision process (MDP). The belief at time 𝑘 can
be represented as:

𝐛𝑘(𝑖) = 𝑝(𝐱𝑘 = 𝐱𝑖 ∣ 𝐬0∶𝑘−1, 𝐲1∶𝑘), for 𝑖 = 1, ..., 𝑛. (6)

The initial belief 𝐛0(𝑖) = 𝑝(𝐱0 = 𝐱𝑖), for 𝑖 = 1,… , 𝑛,
demonstrates the initial state distribution.

Upon selection of the sensor subset 𝐬𝑘 at belief state
𝐛𝑘 and observing the new data 𝐲𝑘+1, the belief state 𝐛𝑘+1can be computed according to the Bayesian filtering (Särkkä
(2013)) as:

𝐛𝑘+1(𝑖) = 𝑝(𝐱𝑘+1 = 𝐱𝑖 ∣ 𝐬0∶𝑘, 𝐲1∶𝑘+1)

=
𝑝(𝐲𝑘+1, 𝐱𝑘+1 = 𝐱𝑖 ∣ 𝐬0∶𝑘, 𝐲1∶𝑘)

∑𝑛
𝑗=1 𝑝(𝐲𝑘+1, 𝐱𝑘+1 = 𝐱𝑗 ∣ 𝐬0∶𝑘, 𝐲1∶𝑘)

,
(7)

for 𝑖 = 1, ..., 𝑛, where
𝑝(𝐲𝑘+1, 𝐱𝑘+1 = 𝐱𝑖 ∣ 𝐬0∶𝑘, 𝐲1∶𝑘)
= 𝑝(𝐲𝑘+1 ∣ 𝐬0∶𝑘, 𝐱𝑘+1 = 𝐱𝑖, 𝐲1∶𝑘)𝑝(𝐱𝑘+1 = 𝐱𝑖 ∣ 𝐬0∶𝑘, 𝐲1∶𝑘)
= 𝑝(𝐲𝑘+1 ∣ 𝐬𝑘, 𝐱𝑘+1 = 𝐱𝑖)𝑝(𝐱𝑘+1 = 𝐱𝑖 ∣ 𝐬0∶𝑘, 𝐲1∶𝑘)
= 𝑝(𝐲𝑘+1 ∣ 𝐬𝑘, 𝐱𝑘+1 = 𝐱𝑖)

×
𝑛
∑

𝑗=1
𝑝(𝐱𝑘+1 = 𝐱𝑖 ∣ 𝐱𝑘 = 𝐱𝑗)𝑝(𝐱𝑘 = 𝐱𝑗 ∣ 𝐬0∶𝑘, 𝐲1∶𝑘)

= 𝑝(𝐲𝑘+1 ∣ 𝐬𝑘, 𝐱𝑘+1 = 𝐱𝑖)
𝑛
∑

𝑗=1
𝑝(𝐱𝑘+1 = 𝐱𝑖 ∣ 𝐱𝑘 = 𝐱𝑗)𝐛𝑘(𝑗).

(8)
For ease of notation, we define the prediction matrix and

the update matrix in the following paragraph. The prediction
matrix 𝑀 of dimension 𝑛 × 𝑛 corresponds to the transition
matrix of the system as:

(𝑀)𝑖𝑗 = 𝑝
(

𝐱𝑘+1 = 𝐱𝑖 ∣ 𝐱𝑘 = 𝐱𝑗
)

, (9)
for 𝑖, 𝑗 = 1,… , 𝑛. Furthermore, given that a subset of
sensors 𝐬𝑘 is selected and the value of the observation vector
𝐲𝑘+1 is provided at time 𝑘+1, the update matrix 𝑇 (𝐲𝑘+1, 𝐬𝑘)of dimension 𝑛 × 𝑛 can be defined as a diagonal matrix with
its diagonal elements as:

(

𝑇 (𝐲𝑘+1, 𝐬𝑘)
)

𝑖𝑖 = 𝑝
(

𝐲𝑘+1 ∣ 𝐬𝑘, 𝐱𝑘+1 = 𝐱𝑖
)

, (10)
for 𝑖 = 1,… , 𝑛. Given the definitions of the prediction
matrix and the update matrix, we can re-write equation (7)
as:

𝐛𝑘+1 =
𝑇 (𝐲𝑘+1, 𝐬𝑘)𝑀 𝐛𝑘

||𝑇 (𝐲𝑘+1, 𝐬𝑘)𝑀 𝐛𝑘||1
, (11)

where ||.||1 represents the absolute sum of the elements of
the vector. It can be seen that the belief state at time step
𝑘 + 1 given the observed data 𝐲𝑘+1 from sensor 𝐬𝑘 is only
dependent on the previous belief state at time step 𝑘, and not
the prior belief states. This represents that the belief state
follows a Markov process.

Belief state transition: Let 𝐛 be the current belief state,
and 𝐬 be the selected sensor for the next data. If data 𝐲 is
observed, the next belief state can be obtained using (11) as:

𝐛𝐬,𝐲 =
𝑇 (𝐲, 𝐬)𝑀 𝐛

||𝑇 (𝐲, 𝐬)𝑀 𝐛||1
. (12)

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 3 of 11

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

Using (12), upon selecting the sensor 𝐬 and prior to observ-
ing the next data 𝐲, the belief transition from belief state 𝐛
to 𝐛′ can be expressed as:

𝑝(𝐛′ ∣ 𝐛, 𝐬) =
∑

𝐲∈
𝑝(𝐲 ∣ 𝐛, 𝐬)1𝐛′=𝐛𝐬,𝐲

=
∑

𝐲∈
‖𝑇 (𝐲, 𝐬)𝑀 𝐛‖1 1𝐛′=𝐛𝐬,𝐲 ,

(13)

where  corresponds to the space of all possible observa-
tions, and 1𝐛′=𝐛𝐬,𝐲 is an indicator function that returns 1 if
𝐛′ = 𝐛𝐬,𝐲 and 0 otherwise.

Therefore, at any given belief state, upon the selection
of a subset of sensors, there will be several possible next
belief states before observing the next data. Note that the
possible next belief states will vary with different selections
of sensor subsets. This allows us to propagate the uncer-
tainty in the belief and analyze which selections could lead
to future beliefs that are more desirable according to the
monitoring objective. It should be noted that the stochastic
belief transitions are fully known for any HMMs with known
state and measurement processes represented in (9) and (10).

Monitoring in belief state: We measure the immediate
gain in the monitoring performance through the reward
function defined in the belief space. For a special case that
the reduction in the state distribution entropy is desired
(i.e., Bayesian state estimation), the reward function can be
expressed as:

𝑅(𝐛, 𝐬,𝐛′) = [𝐛] −[𝐛′], (14)
where 𝐛′ is the next belief state upon selecting the sensor
subset 𝐬 at the belief state 𝐛. The reward function can also be
defined for enhancing the performance of state estimators (Li
et al. (2019)). For the special case of the maximum a pos-
teriori (MAP) state estimator, the increase in the posterior
probability of the estimated state (i.e., the state with the
maximum posterior probability) measures the gain in the
monitoring performance as:

𝑅(𝐛, 𝐬,𝐛′) = max
𝑖∈{1,..,𝑛}

𝐛′(𝑖) − max
𝑖∈{1,..,𝑛}

𝐛(𝑖). (15)
We refer to this as the point-based reward function since it
measures the changes in the maximum posterior probability
of states. If the subsets of sensors have varied computa-
tional/monitoring costs, this can also be incorporated into
the reward function. Aside from two aforementioned reward
functions, any monitoring objectives that can be expressed
through the posterior distribution of the state (i.e., belief) can
be formulated as reinforcement learning problems through
proper reward functions. For instance, if the goal is to effec-
tively estimate the state of specific parts of the system (e.g.,
the operational servers in a network), the reward function
can be defined in terms of the change in the belief state
corresponding to those system parts.
2.4. Optimal Sensor Scheduling

We define a deterministic sensor scheduling policy 𝜋 ∶
 →  as mapping any belief state in the belief space to a

subset of sensors. The expected discounted return at belief
state 𝐛 ∈ , after selecting a subset of sensors 𝐬 from the
set  , and subsequently following policy 𝜋, can be defined
as the following state-value function:

𝑉 𝜋(𝐛) = 𝔼

[∞
∑

𝑡=0
𝛾 𝑡𝑅(𝐛𝑡, 𝐬𝑡,𝐛𝑡+1) ∣ 𝐛0 = 𝐛, 𝐬1∶∞ ∼ 𝜋

]

,

(16)
for 𝐛 ∈ ; where 𝛾 is the discount factor, which takes
values between 0 and 1, and the expectation is computed
taking into account the uncertainty associated with the belief
transition. The discount factor specifies the importance of
future rewards compared to early staged rewards. The state-
action value function for the policy 𝜋 can also be defined as:

𝑄𝜋(𝐛, 𝐬)=𝔼

[∞
∑

𝑡=0
𝛾 𝑡𝑅(𝐛𝑡, 𝐬𝑡,𝐛𝑡+1) ∣𝐛0 = 𝐛, 𝐬0 = 𝐬, 𝐬1∶∞∼𝜋

]

,

(17)
for 𝐛 ∈  and 𝐬 ∈  . The optimal policy holds the
maximum state value and state-action value function as:
𝜋∗ = argmax𝜋 𝑉 𝜋(𝐛) and 𝜋∗ = argmax𝜋 𝑄𝜋(𝐛, 𝐬), for
𝐛 ∈ , 𝐬 ∈  . Note that the optimal state value function 𝑉 ∗

and state-action value function 𝑄∗ correspond to the optimal
policy 𝜋∗. For any arbitrary value function (𝑉), the Bellman
equation can be written as:

 ∗[𝑉](𝐛) = max
𝐬∈

𝔼𝐛′∣𝐛,𝐬
[

𝑅(𝐛, 𝐬,𝐛′) + 𝛾 𝑉 (𝐛′)
]

= max
𝐬∈

∑

𝐛′∈
𝑝(𝐛′ ∣ 𝐛, 𝐬)

(

𝑅(𝐛, 𝐬,𝐛′) + 𝛾 𝑉 (𝐛′)
)

,
(18)

for 𝐛 ∈ ; where  ∗ is the Bellman optimality operator,
and the second line utilizes the belief transition in (13).
The Bellam optimality operator is a 𝛾-contractive in the
𝐿∞-norm for any MDP (Szepesvári (2010)), and its fixed-
point solution corresponds to the optimal value function. The
fixed-point solution could be obtained by starting from any
arbitrary 𝑉0 and repeatedly applying 𝑉𝑡+1(𝐛) =  ∗[𝑉𝑡](𝐛)for all 𝐛 ∈ , and 𝑡 = 0, 1, ..., until a fixed point solution
for the value is reached. However, performing the Bellman
operator for all the belief states 𝐛 ∈  is not possible, as
the belief space is a large and continuous space. The belief
space is an 𝑛-simplex (Δ𝑛), and as the state space size (𝑛)
increases, the belief space size greatly increases. Therefore,
dynamic programming approaches such as value iteration or
policy iteration (Sutton and Barto (2018)) methods cannot
be employed to find the optimal sensor scheduling policy
due to the continuity of belief space. Our proposed deep
reinforcement learning approach to approximate the optimal
policy is described in the next section.
3. Deep Reinforcement Learning Sensor

Scheduling Policy
In this paper, we employ a deep reinforcement learning

method for obtaining the sensor scheduling policy over a
Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 4 of 11

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

large belief space. The sensor scheduling problem contains
a large belief space with a limited number of actions (i.e.
subset of sensors). Therefore, the deep Q-network (DQN)
method (Mnih et al. (2015)) is an ideal candidate for solving
this problem. The state-action value function in (17) is repre-
sented by two fully connected feed-forward deep neural net-
works, which share similar structures (input, output, layers,
and neurons). The first network is called Q-network, denoted
by 𝑄𝐰, and the second network is called target-network,
indicated by 𝑄𝐰− , where 𝐰 and 𝐰− denote the weights of
the deep neural networks. The input to these networks is
the belief state 𝐛, which is a vector of size 𝑛. The outputs
of these neural networks represent the Q-values associated
with all the sensor subsets, i.e., 𝑄𝐰(𝐛, 𝐬1), ..., 𝑄𝐰(𝐛, 𝐬||) for
Q-network. The initial weights for Q-network and target-
network are set randomly.

Let  be a replay memory, which is used for storing
the history of the beliefs, subsets of sensors, and rewards
during the training. The training process consists of multiple
episodes, where each episode starts with an initial belief state
𝐛0 (if known) or a random belief sample from the belief
space (if unknown). At step 𝑡 of each episode, the Q-network
is used for selecting the next sensor subset. Using the latest
Q-network, the Q-value corresponding to all subsets of
sensors can be computed from the belief state 𝐛𝑡 as𝑄𝐰(𝐛𝑡, 𝐬),for all 𝐬 ∈  . The sensor subset is then selected using
the computed Q-values and the exploratory epsilon-greedy
policy (Sutton and Barto (2018)) as:

𝐬𝑡 ∼
{

argmax𝐬∈ 𝑄𝐰(𝐛𝑡, 𝐬) w.p. 1 − 𝜖
Random{𝐬1, ..., 𝐬||} w.p. 𝜖 , (19)

where the operator "∼" indicates that 𝐬𝑡 is a sample drawn
from the distribution on the right, and 0 ≤ 𝜖 ≤ 1 is the
epsilon-greedy policy rate, which controls the level of ex-
ploration during the learning process. The right distribution
is categorical distribution, where the subset of sensors with
the maximum Q-value (i.e., argmax𝐬∈ 𝑄𝐰(𝐛𝑡, 𝐬)) has the
probability of (1−𝜖+𝜖∕||) and the other subsets of sensors
have the probability of 𝜖∕||. Since 𝜖 is often small, the
subset with the maximum Q-value has the largest probability
of being selected.

Upon selecting 𝐬𝑡, the next belief state is a sample from
𝑝(. ∣ 𝐛𝑡, 𝐬𝑡). This sample can be generated by first drawing a
sample from the current belief as:

𝑙 ∼ Cat ((𝑀𝐛𝑡)1, ..., (𝑀𝐛𝑡)𝑛
)

, (20)
where (𝑀𝐛𝑡)𝑖 refers to the 𝑖th component of the 𝑀𝐛𝑡 vector
and “Cat” stands for categorical distribution. A sample from
the next measurement can be obtained as 𝐲𝑡+1 ∼ 𝑝(𝐲 ∣
𝐱𝑡+1 = 𝐱𝑙, 𝐬𝑡). Then, using (11), the next belief, 𝐛𝑡+1, can
be obtained.

Upon observing this transition, one can compute the
reward function using (14) or (15) as:

𝑟𝑡 = 𝑅(𝐛𝑡, 𝐬𝑡,𝐛𝑡+1). (21)

The created (𝐛𝑡, 𝐬𝑡,𝐛𝑡+1, 𝑟𝑡) at each step of the episode is
saved at the end of the replay memory and replaces the oldest
experience if it is full.

The Q-network 𝑄𝐰 weights need to be updated every
𝑁Q _Update steps. This can be done by randomly selecting a
minibatch from the experiences in the replay memory . Let
the selected minibatch be denoted by:

𝑍 = {(𝐛𝑖, 𝐬𝑖,𝐛𝑖+1, 𝑟𝑖)}
𝑁batch
𝑖=1 ∼ , (22)

where 𝑁batch is the size of the minibatch. For each selected
experience, the target-network,𝑄𝐰− , can be used to calculate
the following target values:

𝑧𝑖 = 𝑟𝑖 + 𝛾 max
𝐬∈

𝑄𝐰− (𝐛𝑖+1, 𝐬), (23)

for 𝑖 = 1, ..., 𝑁batch. Using the created target values for the
minibatch, the objective is to update the Q-network weights
by minimizing the following mean squared error loss:

𝐿(𝑍;𝐰,𝐰−) =
𝑁batch
∑

𝑖=1

(

𝑧𝑖 −𝑄𝐰(𝐛𝑖, 𝐬𝑖)
)2 . (24)

The minimization of this loss function can be achieved
using a stochastic gradient optimization approach such as
Adam (Kingma and Ba (2015)), where back-propagation
methods compute the gradient of the loss function. This can
be expressed as:

𝐰 = 𝐰 − 𝜂∇𝐰𝐿(𝑍;𝐰,𝐰−), (25)
where 𝜂 is the learning rate, and 𝐿 represents the loss in

(24).
Upon updating the Q-network weights 𝐰, the weights of

the target network, 𝐰−, should be updated in a soft format
as:

𝐰− = (1 − 𝜏)𝐰− + 𝜏𝐰, (26)
where 𝜏 is the soft update hyperparameter (often close to
0.001). This slow approach of the target network weights to
the Q-network is a key aspect of the stability of the deep re-
inforcement learning process. At each step, new experiences
will be added to the replay memory, and an update takes
place every 𝑁Q _Update steps. The process continues until a
fixed number of episodes or a pre-specified performance is
achieved (stopping criteria).

Upon termination of the training process, the policy at
any given belief state 𝐛 can be computed using the latest Q-
network as:

𝐬∗ ≈ argmax
𝐬∈

𝑄𝐰(𝐛, 𝐬). (27)

This can be seen as a greedy mode of the epsilon-greedy
policy in (19), where no further exploration is needed upon
the termination of the training process. All the steps of
the proposed deep reinforcement learning sensor scheduling
policy are summarized in Algorithm 1.

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 5 of 11

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

Algorithm 1 The proposed sensor scheduling policy for effective monitoring of dynamical systems.
1: Number of system states 𝑛, initial belief 𝐛0(𝑖) = 𝑝(𝐱0 = 𝐱𝑖), for 𝑖 = 1,… , 𝑛 or equivalently prior distribution of the

states, possible subsets of sensors  = {𝐬1, ..., 𝐬𝐿}, horizon 𝑇 .
2: Size of replay memory ||, length of batch sample 𝑁batch, length of episodes 𝑇episode, the training step 𝑁Q _Update,discount factor 𝛾 , learning rate 𝜂, epsilon-greedy hyperparameter 𝜖, soft update parameter 𝜏, Q-network and target network

with random initial weights 𝐰 and 𝐰−.
3: Replay Memory  = {}, counter = 0.
4: while (stopping criteria is not met) do
5: Initial belief 𝐛0.
6: for 𝑡 = 0 to 𝑇episode do
7: counter = counter + 1.
8: Generate 𝐬𝑡 at belief state 𝐛𝑡 from epsilon-greedy policy — Eq. (19).
9: Sample a possible next state 𝐱𝑙 — Eq. (20)

10: Obtain a sample from the next measurement as 𝐲𝑡+1 ∼ 𝑝(𝐲 ∣ 𝐱𝑡+1 = 𝐱𝑙, 𝐬𝑡).
11: Calculate the next belief using 𝐛𝑡+1 =

𝑇 (𝐲𝑡+1,𝐬𝑡)𝑀 𝐛𝑡
||𝑇 (𝐲𝑡+1,𝐬𝑡)𝑀 𝐛𝑡||1

.
12: Use 𝐛𝑡+1 to compute the reward based on the objective of the problem 𝑟𝑡 = 𝑅(𝐛𝑡, 𝐬𝑡,𝐛𝑡+1) — Eq. (14) or (15).
13: Save experience (𝐛𝑡, 𝐬𝑡,𝐛𝑡+1, 𝑟𝑡) into ; if it is full, replace with the oldest experience.
14: if counter = 𝑁Q _Update then
15: Generate 𝑁batch random samples from  — Eq. (22).
16: Update the Q-network using Eqs. (23)-(24).
17: Update the target network using Eq. (26).
18: counter = 0.
19: end if
20: end for
21: end while
22: Use the latest Q-network for sensor scheduling policy — Eq. (27).

4. Numerical Experiments
In this section, the performance of the proposed sensor

scheduling policy is assessed through numerical experi-
ments for security monitoring of computer networks and
health monitoring of gene regulatory networks. The results
are averaged across 1000 trials using the following parame-
ters: number of hidden layers 3, number of neurons in hidden
layers 128, 𝜂 = 5× 10−4, || = 105, 𝑁batch = 64, 𝛾 = 0.95,
𝜖 = 0.1, 𝑁Q _Update = 4, and 𝜏 = 10−3.

The performance of the proposed method is compared
with the expected information gain (EIG), which is a well-
known class of approaches for monitoring complex sys-
tems (Kreucher (2005); Williams (2007)). The EIG policy
aims to sequentially select a subset of sensors at each step to
maximally reduce the entropy in the posterior distribution of
state as:
𝐬𝑘 = argmax

𝐬∈
𝔼
[


[

𝑝(𝐱𝑘 ∣𝐬0∶𝑘−1, 𝐲1∶𝑘)
]

−
[

𝑝(𝐱𝑘+1 ∣𝐬0∶𝑘−1, 𝐬𝑘 = 𝐬, 𝐲1∶𝑘+1)
]

∣ 𝐲1∶𝑘, 𝐬0∶𝑘−1, 𝐬𝑘 = 𝐬
]

,

(28)
where the expectations are with respect to the unobserved
data at time step 𝑘 + 1. The second comparison method is
the maximum a posteriori (MAP) policy (Shamaiah et al.
(2010)). This established method sequentially selects sensor
subsets as:

𝐬𝑘 = argmax
𝐬∈

𝔼
[

max
𝑖∈{1,...,𝑛}

𝑝(𝐱𝑘+1 = 𝐱𝑖 ∣𝐬0∶𝑘−1, 𝐬𝑘 = 𝐬, 𝐲1∶𝑘+1)

− max
𝑖∈{1,...,𝑛}

𝑝(𝐱𝑘 = 𝐱𝑖 ∣𝐬0∶𝑘−1, 𝐲1∶𝑘) ∣ 𝐲1∶𝑘, 𝐬0∶𝑘−1, 𝐬𝑘 = 𝐬
]

.

(29)
The MAP policy outlined in (29) follows a greedy strategy
designed to maximize monitoring performance in a single
step. Conversely, our proposed method strives to maximize
the posterior probability of states throughout the entire time
horizon. The MAP policy can be seen as a greedy strategy
with the point-based reward function in (15), whereas the
EIG policy in (28) corresponds to the greedy version of the
proposed policy with entropy reward function.

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 6 of 11

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

(a) (b) (c)

Figure 2: Performance comparison of different sensor scheduling techniques: (a) average negative entropy (b) average maximum
posterior probability of the states (c) average rate of true MAP estimator.

4.1. Monitoring Network Systems for Security
Bayesian attack graphs (BAGs) are a well-known class

of models that represent the propagation of attacks and
compromises in networks (Kordy, Piètre-Cambacédès and
Schweitzer (2014)). They can be seen as a Markov process
with binary state variables. The state vector, denoted as
𝐱𝑘 = [𝐱𝑘(1), ..., 𝐱𝑘(𝑑)], captures the compromised status of
all (𝑑) nodes in the network. The 𝑖th state variable takes
values 1 or 0, where 1 and 0 represent the existence and
lack of compromise at node 𝑖, respectively. Meanwhile, the
binary values for each variable lead to 𝑛 = 2𝑑 possible states,
indicating all possible compromise status in the network.

BAGs model cybersecurity vulnerabilities via exploit
probabilities (𝜌𝑖𝑗) between nodes, along with probabilities
representing the external network vulnerability (𝜌𝑖). The 𝜌𝑖𝑗shows the likelihood of attack progression from node 𝑖 to 𝑗.
Given distinct node characteristics and network defender’s
actions (𝐚𝑘−1) to remove compromises, the conditional prob-
ability of the 𝑗th node’s compromise at time step 𝑘, based
on its state (𝐱𝑘−1(𝑗)) in the previous step (𝑘 − 1), can be
expressed for AND and OR nodes as:

• 𝐀𝐍𝐃 𝐍𝐨𝐝𝐞𝐬:
𝑝(𝐱𝑘(𝑗) = 1 ∣ 𝐱𝑘−1, 𝐚𝑘−1) =

⎧

⎪

⎨

⎪

⎩

(1𝑗∉𝐚𝑘−1 + 𝛽1𝑗∈𝐚𝑘−1)
[

𝜌𝑗 + (1 − 𝜌𝑗)
∏

𝑖∈𝐷𝑗

𝜌𝑖𝑗1𝐱𝑘−1(𝑖)=1

]

if 𝐱𝑘−1(𝑗) = 0,

1𝑗∉𝐚𝑘−1 + 𝛽1𝑗∈𝐚𝑘−1 if 𝐱𝑘−1(𝑗) = 1,

(30)
• 𝐎𝐑 𝐍𝐨𝐝𝐞𝐬:

𝑝(𝐱𝑘(𝑗) = 1 ∣ 𝐱𝑘−1, 𝐚𝑘−1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1𝑗∉𝐚𝑘−1 + 𝛽1𝑗∈𝐚𝑘−1)
[

𝜌𝑗 + (1 − 𝜌𝑗)
[

1 −
∏

𝑖∈𝐷𝑗

(

1 − 𝜌𝑖𝑗1𝐱𝑘−1(𝑖)=1
)

]

]

if 𝐱𝑘−1(𝑗) = 0,

1𝑗∉𝐚𝑘−1 + 𝛽1𝑗∈𝐚𝑘−1 if 𝐱𝑘−1(𝑗) = 1,

(31)
where 𝛽 is the probability of effectively eliminating compro-
mises within the system’s nodes, 𝐷𝑗 is the set of all possible
attacks from neighboring nodes of 𝑗, 1condition returns 1 if the
condition is true, and 0 otherwise. Note that the conditional
probabilities in (30) and (31) consider both the external (i.e.,
𝜌𝑗) and internal (i.e., 𝜌𝑖𝑗) attacks.

We investigate sensor scheduling on a 10-node BAG
shown in Fig. 3. The network’s vulnerabilities are captured
by 𝜌𝑖𝑗 values: 𝜌12 = 0.7, 𝜌14 = 0.6, 𝜌25 = 0.6, 𝜌36 = 0.55, 𝜌39 =
0.7, 𝜌47 = 0.7, 𝜌58 = 0.7, 𝜌62 = 0.7, 𝜌87 = 0.7, 𝜌94 = 0.6, 𝜌98 =
0.7, 𝜌10 8=0.7, 𝜌10 9=0.4, and 𝜌𝑖 values: 𝜌1=0.65, 𝜌3=0.6, 𝜌10=
0.55. Further, the probability of successfully removing a
compromise by a stochastic network defender (i.e., 𝛽) is 0.5.

Attacker

1

3 6

7

10

9

852

4

Figure 3: The BAG consisting of 10 components. Double circles
indicate AND nodes, while regular circles denote OR nodes.

Monitoring is achieved by selecting a single node at each
time to check its compromise, with minimal disruption to the
system’s operation. Therefore, the sensor space consists of
 = {𝐬1, ..., 𝐬10}, with the 𝑖th sensor (𝐬𝑘−1 = 𝐬𝑖) providing a
noisy realization of the true network compromise at node 𝑖
as:

𝐲𝑘 =

⎧

⎪

⎨

⎪

⎩

1 if 𝐱𝑘(𝑖) = 1 w.p. 𝛼
0 if 𝐱𝑘(𝑖) = 1 w.p. 1 − 𝛼
0 if 𝐱𝑘(𝑖) = 0 w.p. 1

, 𝑖 = 1, ..., 10, (32)

where 𝛼 is the measurement accuracy rate. This measure-
ment process identifies a compromise in a compromised
node with probability 𝛼 and misses it with probability 1−𝛼.
In our experiments, we consider 𝛼 to be 0.7. Note that the
parameters of the state and measurement processes in (30)-
(32) are assumed to be known.

Our proposed policy is trained for monitoring the secu-
rity of the 10-node network system according to the entropy
and point-based rewards in (14) and (15) and compared with

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 7 of 11

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

Table 1
Average entropy and average rate of true MAP estimator per step during monitoring of the 10 Node BAG.

Average Entropy per Step Average Rate of True MAP Estimator per Step

ALL OR R
OR AND ALL OR R

OR AND

Proposed Policy (Entropy) 1.552 ± 0.091 1.726 ± 0.081 1.854 ± 0.074 1.639 ± 0.085 0.478 ± 0.013 0.408 ± 0.010 0.370 ± 0.008 0.402 ± 0.009
Proposed Policy (Point-Based) 1.520 ± 0.079 1.728 ± 0.079 1.881 ± 0.073 1.629 ± 0.081 0.491 ± 0.013 0.446 ± 0.010 0.390 ± 0.005 0.416 ± 0.008
EIG Policy 1.686 ± 0.077 1.856 ± 0.072 1.941 ± 0.072 1.684 ± 0.077 0.356 ± 0.007 0.348 ± 0.005 0.339 ± 0.006 0.368 ± 0.008
MAP Policy 1.802 ± 0.078 1.926 ± 0.069 1.986 ± 0.073 1.734 ± 0.074 0.349 ± 0.008 0.339 ± 0.006 0.342 ± 0.006 0.362 ± 0.008
Random Policy 1.968 ± 0.078 1.969 ± 0.072 1.985 ± 0.072 1.850 ± 0.078 0.321 ± 0.009 0.343 ± 0.004 0.337 ± 0.006 0.341 ± 0.008

the EIG, MAP, and random policies. The following measures
are compared for different policies: the average negative
entropy, the maximum posterior probability of states, and the
rate of true MAP estimator. The rate of true MAP estimator
at each time step indicates the rate at which the state with the
maximum posterior probability refers to the actual system
state. Let the maximum posterior probability of states and
the actual state at step 𝑘 be 𝐱̂𝑘, 𝐱∗𝑘, respectively. The rate
of true MAP estimator can be written as

∑𝑘
𝑡=1 1𝐱̂𝑡=𝐱∗𝑡

𝑘 , where
1𝐱̂𝑡=𝐱∗𝑡 is 1 if 𝐱̂𝑡 = 𝐱∗𝑡 and 0 otherwise.

Fig. 2 shows the average performance of different poli-
cies in terms of average negative entropy, the maximum
posterior probability of states, and the rate of true MAP
estimator. It can be seen that the proposed policies with
entropy and point-based rewards exceed the performance
of the other policies. More specifically, in Fig. 2(a) for
average negative entropy, the proposed policy with entropy
reward shows a slightly better performance in comparison
to the point-based reward. The EIG policy’s performance
falls below the proposed policies, followed by the MAP, and
random policies. For the maximum posterior probability of
states, and the rate of true MAP estimator in Fig. 2(b) and (c),
both of the proposed policies exhibit almost the same per-
formance, with the performance of the point-based reward
policy being slightly higher. The EIG and MAP policies in
Fig. 2(b) and (c) have almost the same performance and
random policy has the lowest performance.

The robustness of the proposed policy with respect to the
sensor noise is considered in this part of the experiments.
Fig. 4 shows the average results of all policies in terms of
average rate of true MAP estimator per time step for four
different measurement accuracy rates: 𝛼 = 1, 0.85, 0.7, 0.5.
One can see as 𝛼 decreases (i.e., sensor noise increases), the
performance of all methods decreases. However, it can be
seen that the proposed policies have the best performance
among the others across different 𝛼 values. In particular, the
proposed policy with the point-based reward has performed
better than the entropy reward in noisier sensor cases. There-
fore, the results in Fig. 4 demonstrate the robustness of the
proposed method across different noise values.

Furthermore, we investigate the impact of the mon-
itoring subsets (i.e., sensor space) on the performance
of the proposed policies. Four sensor spaces are consid-
ered: 1) all nodes: ALL = {𝐬1, ..., 𝐬10} 2) all OR nodes:
OR = {𝐬1, 𝐬3, 𝐬5, 𝐬6, 𝐬7, 𝐬9, 𝐬10} 3) three OR nodes: R

OR =
{𝐬1, 𝐬6, 𝐬7} 4) all AND nodes: AND = {𝐬2, 𝐬4, 𝐬8}. Table 1

Figure 4: Performance comparison of various sensor scheduling
techniques for different measurement accuracy rates.

represents the average entropy and the average rate of true
MAP estimator per step obtained by various monitoring
policies under different subsets. The average values in this
table are accompanied with their 95% confidence intervals.
Note that a single node at a time is selected for monitoring
from each sensor space by all methods. For average entropy
per step, the OR and R

OR sensor spaces achieve the best
performance by the proposed policy with entropy reward.
Further, the ALL and AND sensor spaces exhibit the best
performance in terms of average entropy under the proposed
policy with point-based reward. Also, among all sensor
spaces, the best and worst average entropy per step results are
achieved using ALL and R

OR, respectively. For the average
rate of true MAP estimator, one can notice that the proposed
policy with the point-based reward has the best performance
under all sensor space. More specifically, the sensor space
with all the nodes (ALL) has the best performance among
others. The second best performance belongs to the ORsensor space containing 7 nodes, the third best is the ANDspace, and the worst performance is obtained by the R

ORspace.
Finally, we compare the performance of the proposed

sensor scheduling method with three well-known network
monitoring techniques. These include a tree-based (or Monte
Carlo) approach (Noel and Jajodia (2008)) that relies on the
simulated most likely attack paths for the sensor selection
process; the minimum mean square error (MMSE) mon-
itoring method (Kazeminajafabadi and Imani (2023)) that

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 8 of 11

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

(a)

(b)

Figure 5: Performance comparison of our proposed method
with three network monitoring methods: (a) average negative
entropy (b) average maximum posterior probability of the
states.

sequentially selects sensor subsets that hold the minimum
expected mean square error in the next time step; and a prob-
abilistic vulnerability assessment approach (Dantu, Loper
and Kolan (2004)) which selects sensor subsets according
to the expected increase in the probability of compromise
at different nodes. Fig. 5 showcases the performance of our
proposed method in comparison to these three methods. The
results are presented in terms of the average negative entropy
and average maximum posterior probability. Our proposed
method, which incorporates entropy and point-based re-
wards, demonstrates considerably better performance com-
pared to the three competing network monitoring techniques.
This is due to the consideration of the system and measure-
ment stochasticity, as well as potential compromises in the
system over a longer period of time. In contrast, the other
methods rely on single probable outcomes or the one-step
impact of sensors in their selection processes. As expected,
the proposed method with entropy reward yields the largest
negative entropy values, and the proposed policy with a
point-based reward function achieves the largest maximum
posterior probability.

4.2. Health Monitoring of Gene Regulatory
Networks

Gene regulatory networks are commonly modeled through
HMMs with binary state variables (Liu and Rajapakse
(2019); Hosseini and Imani (2023); Alali and Imani (2023)).
We consider the mammalian cell-cycle network shown in
Fig. 6 for our analysis. This network governs the cellular
division process in mammalian organisms, and its dynamics
hold a pivotal role in overall organismal growth. This
network consists of 10 genes with the state vector at time
step 𝑘 represented by 𝐱𝑘 = [𝐱𝑘(1), ..., 𝐱𝑘(10)]𝑇 =[CycD,
Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, CycB]𝑇 .
Each state variable takes from a binary set 𝐱𝑘(𝑖) ∈ {0, 1},
where 1 and 0 represent the activation and inactivation of the
𝑖th gene, respectively. The state value of the 10 genes at time
step 𝑘 can be represented by (Imani and Braga-Neto (2017);
Alali and Imani (2022)):

𝐱𝑘 = 𝐂𝐱𝑘−1 ⊕ 𝐧𝑘, for 𝑘 = 1, 2,… , (33)
where 𝐯 maps the positive element of a vector to 1 and others
to 0, “⊕” indicates component-wise modulo-2 addition, 𝐧𝑘is the transition noise at time 𝑘, and 𝐂 is the connectivity
matrix of 10 × 10 size represented by:

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

+1 0 0 0 0 0 0 0 0 0
−1 0 +1 0 −1 −1 0 0 0 −1
−1 0 +1 0 −1 −1 0 0 0 −1
0 −1 +1 0 0 −1 0 0 0 −1
0 −1 +1 +1 −1 −1 0 0 0 0
0 −1 0 +1 0 +1 −1 −1 −1 0
0 0 0 0 0 0 −1 0 0 +1
0 0 +1 0 0 −1 +1 0 0 −1
0 0 0 0 0 +1 +1 −1 +1 +1
0 0 0 0 0 0 −1 −1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(34)
The elements in the 𝑖th row and 𝑗th column of the connectiv-
ity matrix represent the types of regulations from gene 𝑖 to
gene 𝑗, where +1 and −1 represent the positive and negative
regulations and 0 indicates no regulation. The noise process
𝐧𝑘 is modeled by an independent Bernoulli random variable
with intensity 𝑝 = 0.05.

Monitoring the state value of all 10 genes at all times is
often too costly or impossible. Therefore, for health moni-
toring, it is often critical to track the activity of a subset of
genes by monitoring the state value of a single gene (or a
small subset of genes). For our experiments, we consider
that a single gene can be selected for monitoring at each
step, which can be expressed through the sensor subset  =
{𝐬1, ..., 𝐬10}, where 𝐬𝑘−1 = 𝐬𝑖 indicates monitoring the state
value of the 𝑖th gene as: 𝐲𝑘 =

{

𝐱𝑘(𝑖) w.p. 0.8
1 − 𝐱𝑘(𝑖) w.p. 0.2 .

The performance of the proposed policy with entropy
and point-based rewards alongside other comparing poli-
cies for monitoring the mammalian cell cycle network is
presented in Table 2. This table shows the average entropy
and average rate of true MAP estimator for different steps

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 9 of 11

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

Table 2
Average entropy and average maximum posterior probability during monitoring of the mammalian cell-cycle network.

Average Entropy Average Rate of True MAP Estimator

20 Steps 40 Steps 60 Steps 80 Steps 100 Steps 20 Steps 40 Steps 60 Steps 80 Steps 100 Steps

Proposed Policy (Entropy) 3.186 ± 0.007 3.195 ± 0.007 3.182 ± 0.007 3.189 ± 0.007 3.196 ± 0.007 0.301 ± 0.015 0.309 ± 0.015 0.324 ± 0.015 0.319 ± 0.015 0.312 ± 0.015
Proposed Policy (Point-Based) 3.179 ± 0.007 3.189 ± 0.007 3.189 ± 0.007 3.180 ± 0.007 3.190 ± 0.007 0.332 ± 0.015 0.339 ± 0.015 0.326 ± 0.015 0.325 ± 0.015 0.329 ± 0.015
EIG Policy 3.334 ± 0.009 3.346 ± 0.009 3.348 ± 0.009 3.327 ± 0.009 3.342 ± 0.009 0.270 ± 0.014 0.276 ± 0.014 0.263 ± 0.014 0.277 ± 0.014 0.248 ± 0.014
MAP Policy 3.252 ± 0.007 3.245 ± 0.007 3.251 ± 0.007 3.245 ± 0.007 3.239 ± 0.007 0.210 ± 0.013 0.208 ± 0.013 0.180 ± 0.012 0.241 ± 0.014 0.226 ± 0.013
Random Policy 3.449 ± 0.008 3.448 ± 0.008 3.435 ± 0.008 3.462 ± 0.008 3.436 ± 0.008 0.223 ± 0.013 0.204 ± 0.013 0.209 ± 0.013 0.195 ± 0.013 0.191 ± 0.012

Figure 6: Pathway diagram for the mammalian cell-cycle
network.

during the monitoring process. Note that the best perfor-
mances of each measure at all the steps are shown with
a bold color. One can see that the proposed policies yield
the best performance in all the steps, which demonstrates
the effectiveness of the proposed policies in monitoring the
gene regulatory network. Moreover, it can be seen that, on
average, the proposed policy with point-based reward has
shown a better performance in comparison to the one with
entropy reward in almost all the steps.

5. Conclusion
In conclusion, this paper developed a sensor scheduling

policy for monitoring systems modeled by hidden Markov
models (HMMs). The paper formulates optimal sensor
scheduling as a reinforcement learning problem, where the
actions are subsets of sensors, and the state contains the
posterior distribution of system states. We developed a deep
reinforcement learning sensor scheduling policy, which can
be learned offline and implemented in real-time for effective
multi-purpose monitoring of complex dynamical systems.
The superiority of the proposed method is demonstrated in
the security monitoring of networks and health monitoring
of gene regulatory networks.

Two key limitations of the proposed sensor scheduling
policy are the scalability and the reliance on the full system
model. The former refers to the lack of scalability to large
and continuous system states, and the latter indicates the
need for full knowledge of state and measurement processes

for training the proposed policy. Our future work will ad-
dress these limitations and enable sensor scheduling to a
larger class of real-world dynamical systems.

Acknowledgment
The authors acknowledge the support of the National

Institute of Health award 1R21EB032480-01, National Sci-
ence Foundation awards IIS-2311969 and IIS-2202395,
ARMY Research Laboratory award W911NF2320179, ARMY
Research Office award W911NF2110299, and Office of
Naval Research award N00014-23-1-2850.

Disclosure Statement
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are avail-

able from the corresponding author, M.A., upon reasonable
request.

References
Alali, M., Imani, M., 2022. Inference of regulatory networks through

temporally sparse data. Frontiers in Control Engineering 3. doi:10.3389/
fcteg.2022.1017256.

Alali, M., Imani, M., 2023. Reinforcement learning data-acquiring for
causal inference of regulatory networks, in: American Control Confer-
ence (ACC), IEEE. doi:10.23919/ACC55779.2023.10155867.

Aoudni, Y., Donald, C., Farouk, A., Sahay, K.B., Babu, D.V., Tripathi,
V., Dhabliya, D., 2022. Cloud security based attack detection using
transductive learning integrated with hidden Markov model. Pattern
Recognition Letters 157, 16–26. doi:10.1016/j.patrec.2022.02.012.

Dantu, R., Loper, K., Kolan, P., 2004. Risk management using behavior
based attack graphs, in: International Conference on Information Tech-
nology: Coding and Computing, 2004. Proceedings. ITCC 2004., pp.
445–449 Vol.1. doi:10.1109/ITCC.2004.1286496.

Glennie, R., Adam, T., Leos-Barajas, V., Michelot, T., Photopoulou, T.,
McClintock, B.T., 2023. Hidden Markov models: Pitfalls and oppor-
tunities in ecology. Methods in Ecology and Evolution 14, 43–56.
doi:10.1111/2041-210X.13801.

Han, D., Wu, J., Mo, Y., Xie, L., 2017. On stochastic sensor network
scheduling for multiple processes. IEEE Transactions on Automatic
Control 62, 6633–6640. doi:10.1109/TAC.2017.2717193.

Hosam, O., 2022. An earthquake query system based on hidden Markov
models. International Journal of Embedded Systems 15, 149–157.
doi:10.1504/IJES.2022.123311.

Hosseini, S.H., Imani, M., 2023. Learning to fight against cell stimuli:
A game theoretic perspective, in: 2023 IEEE Conference on Artificial
Intelligence (CAI), IEEE. pp. 285–287. doi:10.1109/CAI54212.2023.
00127.

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 10 of 11

http://dx.doi.org/10.3389/fcteg.2022.1017256
http://dx.doi.org/10.3389/fcteg.2022.1017256
http://dx.doi.org/10.23919/ACC55779.2023.10155867
http://dx.doi.org/10.1016/j.patrec.2022.02.012
http://dx.doi.org/10.1109/ITCC.2004.1286496
http://dx.doi.org/10.1111/2041-210X.13801
http://dx.doi.org/10.1109/TAC.2017.2717193
http://dx.doi.org/10.1504/IJES.2022.123311
http://dx.doi.org/10.1109/CAI54212.2023.00127
http://dx.doi.org/10.1109/CAI54212.2023.00127

Deep Reinforcement Learning Sensor Scheduling for Effective Monitoring of Dynamical Systems

Imani, M., Braga-Neto, U.M., 2017. Maximum-likelihood adaptive filter
for partially observed Boolean dynamical systems. IEEE Transactions
on Signal Processing 65, 359–371. doi:10.1109/TSP.2016.2614798.

Imani, M., Imani, M., Ghoreishi, S.F., 2022. Optimal Bayesian biomarker
selection for gene regulatory networks under regulatory model uncer-
tainty, in: 2022 American Control Conference (ACC), IEEE. pp. 1379–
1385. doi:10.23919/ACC53348.2022.9867683.

Kazeminajafabadi, A., Imani, M., 2023. Optimal monitoring and attack
detection of networks modeled by bayesian attack graphs. Cybersecurity
6, 22. doi:https://doi.org/10.1186/s42400-023-00155-y.

Kingma, D.P., Ba, J., 2015. Adam: A method for stochastic optimization.
CoRR abs/1412.6980. doi:10.48550/arXiv.1412.6980.

Kordy, B., Piètre-Cambacédès, L., Schweitzer, P., 2014. Dag-based attack
and defense modeling: Don’t miss the forest for the attack trees. Com-
puter Science Review 13-14, 1–38. doi:10.1016/j.cosrev.2014.07.001.

Kouadri, A., Hajji, M., Harkat, M.F., Abodayeh, K., Mansouri, M., Nounou,
H., Nounou, M., 2020. Hidden Markov model based principal com-
ponent analysis for intelligent fault diagnosis of wind energy converter
systems. Renewable Energy 150, 598–606. doi:10.1016/j.renene.2020.
01.010.

Kreucher, C.M., 2005. An Information-based Approach to Sensor Resource
Allocation. Phd thesis. University of Michigan. Ann Arbor, MI.

Leong, A.S., Ramaswamy, A., Quevedo, D.E., Karl, H., Shi, L., 2020. Deep
reinforcement learning for wireless sensor scheduling in cyber–physical
systems. Automatica 113, 108759. doi:10.1016/j.automatica.2019.
108759.

Li, L., Yu, D., Xia, Y., Yang, H., 2019. Remote nonlinear state estimation
with stochastic event-triggered sensor schedule. IEEE Transactions on
Cybernetics 49, 734–745. doi:10.1109/TCYB.2017.2776976.

Liu, H., Li, Y., Johansson, K.H., Mårtensson, J., Xie, L., 2022. Rollout
approach to sensor scheduling for remote state estimation under integrity
attack. Automatica 144, 110473. doi:10.1016/j.automatica.2022.110473.

Liu, W., Rajapakse, J., 2019. Fusing gene expressions and transitive protein-
protein interactions for inference of gene regulatory networks. BMC
Systems Biology 13. doi:10.1186/s12918-019-0695-x.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare,
M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., 2015.
Human-level control through deep reinforcement learning. Nature 518,
529. doi:10.1038/nature14236.

Mor, B., Garhwal, S., Kumar, A., 2020. A systematic review of
hidden Markov models and their applications. Archives of Com-
putational Methods in Engineering 28, 1429–1448. doi:10.1007/
s11831-020-09422-4.

Mousavi, Y., Bevan, G., Kucukdemiral, I.B., Fekih, A., 2024. Observer-
based high-order sliding mode control of dfig-based wind energy conver-
sion systems subjected to sensor faults. IEEE Transactions on Industry
Applications 60, 1750–1759. doi:10.1109/TIA.2023.3317823.

Mustafa, M.K., Allen, T., Appiah, K., 2019. A comparative review of
dynamic neural networks and hidden Markov model methods for mobile
on-device speech recognition. Neural Comput. Appl. 31, 891–899.
doi:10.1007/s00521-017-3028-2.

Noel, S., Jajodia, S., 2008. Optimal ids sensor placement and alert
prioritization using attack graphs. Journal of Network and Systems
Management 16, 259–275. doi:10.1007/s10922-008-9109-x.

Raskar, C., Nema, S., 2022. Metaheuristic enabled modified hidden Markov
model for traffic flow prediction. Computer Networks 206, 108780.
doi:10.1016/j.comnet.2022.108780.

Ravari, A., Ghoreishi, S.F., Imani, M., 2024. Optimal inference of hidden
Markov models through expert-acquired data. IEEE Transactions on
Artificial Intellegence .

Särkkä, S., 2013. Bayesian filtering and smoothing. volume 3. Cambridge
University Press. doi:10.1017/CBO9781139344203.

Shamaiah, M., Banerjee, S., Vikalo, H., 2010. Greedy sensor selection:
Leveraging submodularity, in: Decision and Control (CDC), 2010 49th
IEEE Conference on, IEEE. pp. 2572–2577. doi:10.1109/CDC.2010.
5717225.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction.
The MIT Press, Cambridge, MA, USA.

Szepesvári, C., 2010. Algorithms for Reinforcement Learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, Morgan &
Claypool Publishers. doi:10.1007/978-3-031-01551-9.

Vaisenberg, R., Motta, A.D., Mehrotra, S., Ramanan, D., 2014. Scheduling
sensors for monitoring sentient spaces using an approximate POMDP
policy. Pervasive and Mobile Computing 10, 83–103. doi:10.1016/j.
pmcj.2013.10.014.

Vitus, M.P., Zhang, W., Abate, A., Hu, J., Tomlin, C.J., 2012. On efficient
sensor scheduling for linear dynamical systems. Automatica 48, 2482–
2493. doi:10.1016/j.automatica.2012.06.092.

Williams, J.L., 2007. Information theoretic sensor management. Phd thesis.
Massachusetts Institute of Technology. Cambridge, MA.

Yang, L., Rao, H., Lin, M., Xu, Y., Shi, P., 2022. Optimal sensor scheduling
for remote state estimation with limited bandwidth: a deep reinforcement
learning approach. Information Sciences 588, 279–292. doi:10.1016/j.
ins.2021.12.043.

Zheng, L., Liu, M., Zhang, S., Lan, J., 2023. A novel sensor scheduling
algorithm based on deep reinforcement learning for bearing-only target
tracking in uwsns. IEEE/CAA Journal of Automatica Sinica 10, 1077–
1079. doi:10.1109/JAS.2023.123159.

Mohammad Alali is a third-year Ph.D. candidate
in Electrical Engineering at Northeastern Univer-
sity. He received his B.Sc. degree in Electrical
Engineering from University of Tehran, Tehran,
Iran, in 2018, and M.Sc. degree in Electrical En-
gineering from Montana State University, Boze-
man, USA, in 2021. His research interests lie in
the domains of Bayesian statistics, reinforcement
learning, and experimental design. More specifi-
cally, he is currently investigating several projects
with a focus on the inference, perturbation, and
data collection of various Markov Models. He is
the recipient of the Best Paper Finalist award from
the American Control Conference in 2023.

Armita Kazeminajafabadi is a Ph.D. student in
Electrical Engineering at Northeastern University.
She received her B.Sc. degree in Computer Science
with a minor in Mathematics from the Sharif Uni-
versity of Technology, Tehran, Iran, in 2022. Her
research interests include cybersecurity, graphical
models and machine learning.

Mahdi Imani received his Ph.D. degree in Electri-
cal and Computer Engineering from Texas A&M
University, College Station, TX in 2019. He is
currently an Assistant Professor in the Department
of Electrical and Computer Engineering at North-
eastern University. His research interests include
machine learning, Bayesian statistics, and decision
theory, with a wide range of applications from
computational biology to cyber-physical systems.
He is the recipient of several awards, including the
NIH NIBIB Trailblazer award in 2022, the Oracle
Research Award in 2022, the NSF CISE Career Re-
search Initiation Initiative award in 2020, the As-
sociation of Former Students Distinguished Grad-
uate Student Award for Excellence in Research-
Doctoral in 2019, and the Best Paper Finalist award
from the American Control Conference in 2023
and the 49th Asilomar Conference on Signals, Sys-
tems, and Computers in 2015.

Mohammad Alali, Armita Kazeminajafabadi, and Mahdi Imani: Preprint submitted to Elsevier Page 11 of 11

http://dx.doi.org/10.1109/TSP.2016.2614798
http://dx.doi.org/10.23919/ACC53348.2022.9867683
http://dx.doi.org/https://doi.org/10.1186/s42400-023-00155-y
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.1016/j.cosrev.2014.07.001
http://dx.doi.org/10.1016/j.renene.2020.01.010
http://dx.doi.org/10.1016/j.renene.2020.01.010
http://dx.doi.org/10.1016/j.automatica.2019.108759
http://dx.doi.org/10.1016/j.automatica.2019.108759
http://dx.doi.org/10.1109/TCYB.2017.2776976
http://dx.doi.org/10.1016/j.automatica.2022.110473
http://dx.doi.org/10.1186/s12918-019-0695-x
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1007/s11831-020-09422-4
http://dx.doi.org/10.1007/s11831-020-09422-4
http://dx.doi.org/10.1109/TIA.2023.3317823
http://dx.doi.org/10.1007/s00521-017-3028-2
http://dx.doi.org/10.1007/s10922-008-9109-x
http://dx.doi.org/10.1016/j.comnet.2022.108780
http://dx.doi.org/10.1017/CBO9781139344203
http://dx.doi.org/10.1109/CDC.2010.5717225
http://dx.doi.org/10.1109/CDC.2010.5717225
http://dx.doi.org/10.1007/978-3-031-01551-9
http://dx.doi.org/10.1016/j.pmcj.2013.10.014
http://dx.doi.org/10.1016/j.pmcj.2013.10.014
http://dx.doi.org/10.1016/j.automatica.2012.06.092
http://dx.doi.org/10.1016/j.ins.2021.12.043
http://dx.doi.org/10.1016/j.ins.2021.12.043
http://dx.doi.org/10.1109/JAS.2023.123159

