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A Control Framework for Accurate Mechanical
Impedance Rendering with Series-Elastic Joints in
Prosthetic Actuation Applications

Isaac Harris', Elliott Rouse!?, Robert D. Gregg?, and Gray Cortright Thomas?3*

Abstract—In addition to lifting up the body during gait,
human legs provide stabilizing torques that can be modeled as a
spring-damper mechanical impedance. While powered prosthetic
leg actuators can also imitate spring-damper behaviors, the
rendered impedance can be quite different from the desired
impedance, stemming from unmodeled transmission character-
istics (e.g., sliding friction, bearing damping, gear inefficiency,
etc.). Moreover, for powered prostheses to mimic human joint
impedance, they will need actuators that accurately render a
wide range of mechanical impedances in a variety of ground
contact conditions, including nearly free-swinging behavior in
swing phase and stiff spring-like behavior in stance phase. For
series-elastic prosthetic leg actuators, as in Open-Source Leg
(OSL), these sudden output inertia changes present a challenge
for traditional cascaded impedance control. In this paper we
propose a solution based on disturbance observers (DOBs) and
full-state feedback (FSF) impedance control. The DOB serves
to mask transmission imperfections, while the FSF controller
(via pole-zero placement) specifies the actuator impedance that
couples to the uncertain joint inertia. We validate our control
framework on an OSL-like two-actuator dynamometry testbed.

Index Terms—Compliance and impedance control, compliant
joints and mechanisms, prosthetics

I. INTRODUCTION

OSS of a lower limb is a growing problem that prevents
millions of Americans from performing activities of
daily life [1]. Fortunately, powered prosthetic devices have
shown promise in recovering lost functionality [2] and are
consistently improving in both mechanical design and control.
However, there are still many limitations which can lead to
disuse of devices, fear of falling [3] and avoidance of activities
[4]. Bio-mimetic feedback control—or the ability to accurately
reproduce the natural dynamics and reflexes of biological
limbs—remains amongst these limitations despite the wide
range of control paradigms applied to prostheses [5]. And
this suggests a gap in the control strategies available for the
actuation sub-components of modern prosthetic legs.
Impedance control [6], or the achievement of virtual spring-
damper behaviors in robot manipulators, is a natural choice
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for solving this problem. A typical “impedance-controlled”
prosthetic leg will use a finite state machine (FSM) to switch
between different mechanical impedance values such as a bent
knee target for swing and a straight knee target for stance
[5], [7]. More recently, prosthesis controllers have begun to
employ continuously varying impedance control parameters
[8]-[12]. (And this potentially allows replication of the time-
dependent perturbation responses that have been measured
during walking [13]-[16] instead of the quasi-stiffness that
best smooths out the discrete phases of an FSM [17].) Ul-
timately, both approaches rely on the accurate rendering of
mechanical impedance behaviors using actuator-level control.

Traditionally, actuators for prostheses have used a small
high-speed motor with a highly geared transmission as in
[7]. This allows for lightweight designs, but the transmission
dynamics can result in inaccurate impedance rendering. Quasi-
Direct Drive (QDD) motors, for example as used in [18], rely
on larger, heavier motors with a lower ratio transmission to
more directly achieve the required joint torque. This greatly
improves impedance rendering quality, but comes at the cost
of increased weight and size. To improve the quality of
impedance rendering in either QDD or traditional systems,
unmodeled actuator characteristics, such as sliding friction,
bearing damping, or gear inefficiency, need to be compensated
for. Unaddressed, these issues can significantly degrade control
accuracy even for relatively low gear ratios, as exemplified by
the open loop impedance control results in [19].

Feedback control of measured actuator torque is a key strat-
egy for overcoming actuator model uncertainty. And Series-
Elastic Actuators (SEAs) are a common sensing approach that
also provides additional benefits like energy recovery [20]-
[23]. Utilizing a reduction ratio of 50:1, the Open Source
Leg (OSL) [2] includes an SEA for exactly these reasons,
making it an ideal candidate for researching impedance control
paradigms in the wearable robotics space. However, the addi-
tion of the spring module complicates the impedance control
of the device.

Typically, SEA controller design uses a cascade of torque
and position feedback [24]-[26]. This framework is effec-
tive for applications requiring only one type of impedance
behavior. However, the cascaded control assumption—that
the inner loop has higher bandwidth than the outer loop—
restricts the capabilities of these controllers [27]. If the faster
inner loop is a position controller, stiffer impedances are
more accurately rendered. And conversely, if the inner loop
is a torque controller, soft impedances are more accurately
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rendered. Additionally, variability in output inertia will change
the closed-loop dynamics of the inner loop, further reducing
the practicality of the cascade. These trade-offs are problem-
atic for humanoids and other robots which have reason to
switch between extreme impedance behaviors and experience
changing inertia due to intermittent ground contact [28], [29].

Non-cascaded, full-state feedback (FSF) controllers avoid
these structural limitations, and are capable of generalizing
cascaded controllers at the cost of some additional complexity
in their tuning [30]-[32]. However, when FSF control is used
instead of cascaded control, some pole and zero placements
will result in gain settings that do not sufficiently attenuate
unmodeled transmission dynamics. This ultimately results in
poor impedance rendering performance and is most apparent
with gain settings that resemble neither of the two common
cascade approaches.

To deal with unmodeled dynamics, e.g., “internal” dis-
turbances like friction, recent SEA controllers have been
equipped with disturbance compensating filters known as dis-
turbance observers (DOBs). DOBs work by indirectly measur-
ing the disturbances to a nominal plant G(s) and compensating
for them. The measurement is achieved by comparing low-
pass filtered plant input to low-pass filtered plant output that
has gone through a plant-inverse filter (the combination of
the low pass filter Q(s) and the plant-inverse filter allows
the combined system Q(s)G~!(s) to be a causal system).
The framework then feeds the estimate of input disturbance
back into the input of the plant, attenuating the magnitude
of the disturbance completely at frequencies where Q(s) ~ 1.
DOB techniques have been central to state-of-the-art cascaded
controllers [33]-[36]. But such approaches remain limited by
the cascade structure when faced with a range of impedance
targets and output inertias. The DOB technique has also been
applied in FSF controllers for position control [37] and human
strength amplification [38]. However, FSF controllers with a
DOB have yet to be validated in rendering a target perturbation
response.

In this paper, we introduce a DOB and FSF framework
for accurate impedance rendering in prosthetic joints with
SEAs. Adopted from the two-pole two-zero placement strategy
for designing full-state SEA feedback controllers [39], this
framework adds a DOB for the motor and transmission sub-
system. The addition of the DOB primarily serves to reduce
various unmodeled friction effects with the added benefit
of compensating for other plant model uncertainties (e.g.
imperfect estimates of motor resistance or torque constant).
Additionally, we re-frame as a voltage control problem which
provides “free” electrical damping from the motor back emf,
and synthesize our DOB in discrete time to more accurately
capture the time delay inherent to our digital controller. We
validate this approach in the context of prosthesis control
using SEA testbed hardware which simulates the transmission
and spring-fixture of the Open-Source Leg (OSL) [2]. Results
demonstrate 1) online attenuation of transmission friction and
2) the successful superposition of a mechanical impedance on
top of biomechanical position and torque trajectory tracking.

TABLE I
SYMBOL GLOSSARY

Symbol  Meaning

¢a  knee motor position
¢;  environment motor position
N transmission ratio
motor output angles (reflected by V)
inertia and damping, motor-frame
Ts  spring torque
motor voltage and current
R motor electrical resistance
K  motor torque constant
K  spring stiffness
controller parameters (constant)
compliance shape parameters (constant)
Ts time step

II. MODELING AND CONTROL

A. System Model

The testbed simulates two systems: the OSL knee SEA
and the rest of the environment in which it is designed to
operate (see Fig. 1), i.e., the residual limb of a person with
transfemoral amputation moving through a periodic walking
behavior with intermittent ground contact.

We model the continuous dynamics of the SEA as

Jo = KiI, — by + N1, (1)

Vo = RI, + K;a, )

s = K (0; — 04), 3)

¢a = N4, ¢; = N0, )

with variables as defined in Tab. 1. Essentially, ideal DC
motors, (1) and (2), are coupled by a spring (3) in between
corresponding transmissions (4). The DC approximation of
the brushless DC motors is made possible by the g-axis DC
representation [40], [41]. Combining (1-4) and applying the
Laplace Transform, the actuator plant with input V,, and output
¢q (and for input V; to output ¢;) is

K,R™!

G =
O = T T R s T KN

&)

and the corresponding representation of the spring-rate as
transforming opposite-side motor-angle to a voltage (see
Fig. 2) is

RK

U=
K;N?

(6)

Together, (5-6) provide an actuator model with two in-
puts: commanded motor voltage, V,,, and the opposing motor
position, ¢; or the opposite combination (V; and ¢,). The
interconnections of these transfer functions is shown in Fig. 2.
Note that (6) converts ¢; to an effective voltage felt by the
motor (i.e., the change in motor voltage that would produce
the same change in motor acceleration as this change in spring
output position).
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Fig. 1. SEA Testbed Apparatus (a) emulates both a prosthetic knee joint and its environment. The joint simulator is designed to mimic the OSL knee
(b), consisting of an identical motor (1), a planetary gear transmission with matching transmission ratio (2), and an identical series spring assembly (3). The
SEA is coupled to another planetary gear transmission (4) and electric motor (5) which simulate the environment and all external forces on the joint of the
prosthetic leg. In this antagonistic configuration, it is possible to measure the response of the prosthetic leg joint to environmental perturbations and evaluate
controllers that are expected to imitate human-like mechanical impedance in response to such perturbations.

B. Controller

The impedance controller consists of three parts: (1) a
feed-forward trajectory generator, (2) a DOB for attenuating
unmodeled dynamics, and (3) an FSF controller used to
achieve biomimetic impedance.

1) Nominal Trajectory Generation: The goal of the nominal
trajectory generator is to produce the a-priori voltage signal
time series for the two motors, u; € R2, that will achieve
desired joint angle and joint torque trajectories, vy, in the
absence of disturbances and nonlinearities. This becomes a
non-trivial model inversion problem which can be achieved
by analyzing the coupled dynamics of both motors in state
space representation given by the LTI system

& = Az + Bu,
(N
y=Cux,
where
0 1 0 0 [¢a
| B8 a 0 | %a
A= o o o 1| "~ o1’
a 0 —a p _(ﬁj
0 0
Ky |1 0 V]
B=Trlo ol “= |y
0 1
—K 0 K, 0 Ts
C—l 0 -K, 0 K, | 7s
TN| o 0o 1 oo YT
o o0 o0 1 0,
and
a=K/jN2  B=—J b+ Ki/R). ®)

To account for the delay between consecutive motor voltage
commands, we convert (7) to a discrete time representation
with a ZOH on the input and sample time, T (i.e., voltage
commands are assumed constant between time steps). The
discretized model is given by

Ti+1 = ApTi + Brug, )

yr = Cg, (10)

where the discrete-time matrices can be calculated according
to a zero-order hold assumption on the input as

Ay = eATs (11)

Ts
/ A" Bdr.
0

Next, to find the voltage signals which correspond to nom-
inal joint angle and joint torque trajectories, we must invert
(9). There are multiple strategies which yield satisfactory yy,
but given the digital nature of our controller, we utilized the
discrete-time controllability matrix, M,,, where

My = By, AxBi, -+, A}7'By], (13)

for an n-step ahead state prediction. If M,, has full row rank
(i.e., rank(M,,) = dim(zy) = 4), then x,, can be arbitrarily
placed. Ideally, we would like full control over x1, but the
corresponding controllability matrix, My = By, only has rank
2. To achieve full row rank, we loosen our constraint to full
controllability of x5 which is given by

By, (12)

Tpy2 = Afxy + Brugsr + Ag Brug, (14)

M, = [By, ApBy]. (15)

Since My is full row rank, it permits model inversion. Taking
advantage of the fact that C is square and invertible, we rewrite
(14) using (10) and (15) to obtain the input vector & € R*
where

o= {“’“u“} = My (C ™ ypso — AZC M yr), (16)
i.e., the exact solution for the discrete feed-forward input that
brings the system output from yy, to yx4o. While this inversion
method technically only provides half the desired resolution
in our output signal, for small sample times and continuous
target behaviors, y[m| approaches the desired signal, y[n].

It should be noted that an asymmetric pair of actuators
could have been used on the testbed without significantly
altering the model. For the primary function of performing
impedance tests, a mirrored setup was sufficient as we only
needed to apply small perturbations on top of the knee motors
trajectories. However, if a broader range of perturbations were
desired, a second pair of equations, identical in structure to (5)
and (6), would represent the environment actuator and state
space equations (7) and (8) would contain two sets of actuator
constants instead of one.
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Fig. 2. Controller block diagram—the prosthetic joint’s actuator plant, G(z), is surrounded by a disturbance observer (DOB) which attenuates a frictional
disturbance, Vs, . The system input, y, contains a-priori joint trajectories and desired feed-forward voltages, Vad” and dees. A full-state feedback controller
(FSF Controller) is used to shape the mechanical impedance of the prosthetic joint. Note that, while the simple discrete derivative operator, (1 — z~1)/Ts,
is used in the block diagram, differentiation is actually accomplished by the Dephy ActPack motor driver at a higher sampling rate than the main controller.

2) Disturbance Observer: A DOB wraps the nominal actu-
ator model given by (5), allowing the feed-forward trajectory
generator and FSF controller to assume a pristine model
without friction and other imperfections [42]. The largest un-
modeled disturbance present in our testbench is static friction
from the gear boxes. Additionally, there is plant uncertainty
in the estimates of Ky, b, J, R, etc.

Using (5) and (6), a typical continuous-time DOB can be
constructed for the actuator model which has the form

s , .
oo, - Qe + 0, - V),
where Q(s) is a second order low pass filter with cutoff
frequency, w, and damping ratio, (,

Vs, = (17)

w2

_—. 18
52 + 2¢w + w? (18)

Q(s) =
This low pass filter serves the dual purpose of reducing
high frequency measurement noise and preserving causality
despite inverting GG. The DOB’s output, \A/(;a, can be subtracted
from the voltage effort issued by the feed-forward and FSF
controllers, Vades, to attenuate any effects that unmodeled
friction or parameter uncertainty would otherwise have on the
output.
To adapt this continuous-time DOB to our digital control
system, we solve (17) for

. E(S) _ des
Vs, = G(S)Ga E(s)(V*° +90,), (19)
1
E(s) = o T (20)

Next, we obtain the discrete transfer function, F(z), by a three
step process: 1) convert E(s) to state space controllable canon-
ical form, 2) use (11) and (12) to obtain discrete matrices, and

3) convert back to transfer function representation. The same
process is applied to G(s) to obtain G(z), which then allows
us to write the full expression for the discrete DOB output as
. _ E(2)

Vs, = 5—~

TG

which is shown in context in Fig. 2.

ba — E(2)(VI + Ug,), Q1)

C. Full-State Feedback Compliance Shaping

1) Control Structure: To accurately render biomimetic
impedance, we adopt the compliance shaping paradigm de-
veloped in [39]. This method involves manipulating the gains
of an FSF control law with the following structure:

R
- o ((K2 + Bos)Ads — (K1 + Bls)A%), (22)

A(bs = A¢] - A(baa ¢

By feeding back the entire state, we can arbitrarily place the
poles and zeros of the actuator’s integral admittance transfer
function, 6;/7,(s)—the more convenient, causal representa-
tion of its mechanical impedance. This transfer function is

0,  Js*+ (b+ Bi+ By)s+ (K, + K1 + K»)
<j82 + (i)—i—Bl)S—‘rKl)Ks

Ts

Ve

Ag = 7 — (23)

;o (24

where

J=JN? b=>bN?+K?N?R'. (25)

To construct (24), one can use (1-4) where (2) is equal to the
new FSF control law given by (22).
Changing variables as in [38], we obtain its monic form
(which lends itself to frequency domain tuning),
0

82+BQS+R2

et R2 26
(s2+ Bis+ Ki) K (20

Ts
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where

K, =JK.,, K,=JK,—- K, — K,

By =JBy—b, By=.JBy— B, —b. (27)

Ultimately, this controller is used to shape the closed loop
joint compliance

& _ 82+328—|—I~(2 (28)
Tj Jj82(82+BQS+K2)+KS(82+318+K1)7

so that it emulates the compliance of a biological knee joint
1

n Jps?2 + Bps + K,

2) Frequency Domain Shaping: The controller gains
present in (26) are tuned by analyzing its transfer function in
the frequency domain. The design space is constrained by four
factors: 1) the target knee stiffness, K}, which necessitates
a low frequency asymptote equal to K, 1. 2) the target knee
damping, By, which governs the placement of a low frequency
pole, 3) the stiffness of the physical series-elastic element, K,
which necessitates a high frequency asymptote equal to K1,
and 4) the practical limitation of the controller’s update rate,
fu» equal to 450 Hz and the related Nyquist frequency of fu/2.
Since most of the poles and zeros in the resulting system are
achieved via delayed feedback, we intentionally limit these
pole and zero placements to be 50 Hz or less, well below the
Nyquist frequency. Example values for K, and By, equal to
50 Nm/rad and 1.59 Nm/rad/s respectively, are loosely
within the realm of plausible human impedance values based
on stiffness from [43] and damping ratio from [44].

We start by choosing our two poles, with the lower
frequency pole, p;, given directly by the target biological
impedance, and the high frequency pole, p», at 50 Hz,

_ _ Tfu
pl_Bk7 b2 = 4 .

Given the asymptotic high and low frequency behaviors, these
two poles define two lines that cross in the Bode plot. We
connect these two lines with a pair of critically damped zeroes
1 1
c=/7m D=
“~\ DB K.p>

Finally, we can extract the gains which comprise (26) using
the following relationships

Ch(s) (29)

(30)

€29

(32)
(33)

B, = p1 + p2,
BQ ZQOJZ,

K1 = pips,

KQ = (.di,

which can subsequently be used with (27) to obtain the final
set of gains present in our FSF control law given by (22).

III. EXPERIMENTS

The SEA testbed (see Fig. 1) was used to conduct both
frequency domain and time domain experiments. The testbed’s
knee simulator consists of three parts: 1) an OSL BLDC motor
(ActPack, Dephy Inc. Boston, MA), 2) a 50:1 Gearbox (Boston
Gear, Boston, MA) which matches the transmission ratio of the
OSL knee, and 3) the OSL torsional spring carriage assembly

TABLE II
EXPERIMENT PARAMETERS

Symbol Value Units

J 2.0 x 10~ kgm?

b 1.16 x 1072 Nm/rad/s
Ky 0.14 Nm/A
R 0.28 Q

N 50 -

K 191 Nm/rad
Ky 50.0 Nm/rad
By, 1.59 Nm/rad/s
K 4932.9 Nm/rad
Ko 13719.7 Nm/rad
B —5.7 Nm/rad/s
By 21.4 Nm/rad/s

[2]. On the opposite side of the spring, another 50:1 Gearbox
and OSL BLDC motor serve as the environment simulator.

Identical to the OSL’s embedded system, a Raspberry Pi
computer is responsible for logging data and orchestrating
the high-level voltage commands sent to each motor’s control
board. During all experiments, ¢, and ¢; were measured using
the embedded motor encoders with a resolution of +0.022°
and sampling rate of 450 Hz. From those two measurements,
both 7; and ¢; can be calculated using (3) and (4). Quantities
for all experiment parameters can be found in Tab. II.

Both experiments utilize the environment actuator to perturb
the knee actuator for the purpose of measuring impedance. We
use “perturbation” to refer to external torques from the envi-
ronment on the knee actuator while “disturbance” is reserved
for “internal” disturbances compensated for by the DOB. For
example, the external force of heel strike is a perturbation and
the error in the motor torque constant, K, is a disturbance.

A. Frequency-Domain Validation

To measure the actual joint compliance rendered by our
controller, wavelet perturbations in joint angle, 6;, were ap-
plied to the knee actuator via the environment actuator. Each
wavelet was generated with a single frequency component
ranging from 0.5 to 50 Hz and an amplitude of 0.1 radians.
DOB filter parameters f; and ¢ were set to 10Hz and 0.7,
respectively. In between wavelets, a minimum pause of 2
seconds was included to allow the knee actuator to come to
rest prior to the next perturbation. Following the experiment,
a least squares method was used to convert 7; and ¢; from
time series data to their respective phasor representations in
the complex plane. From here, phasors were divided to obtain
point estimates of the transfer function. A confidence region
was constructed by repeating the identification five times per
frequency and displaying the one standard deviation spread
in magnitude and phase. Performance was evaluated by the
metric of root mean squared percent error (RMSPE) between
the achieved and desired transfer functions. The error signal
used when computing combined RMSPE was formed by first
subtracting desired and measured impedance values in their
complex form and then taking the magnitude. In contrast, the
error signals used to compute magnitude RMSPE and phase
RMSE were calculated with the magnitudes and phases of the
complex numbers independently.
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Fig. 3. Bode plots of the closed loop actuator—the ‘DOB On’ and

‘DOB Off’ empirical integral admittance transfer functions, 6;/7s(s), are
measured using the wavelet identification experiment and compared to the
desired (Nominal) behavior. At low frequency, f; = 0.5 Hz, the addition of
the DOB significantly improved the controller’s ability to render mechanical
impedance, exhibiting a combined RMSPE of 8.9% in contrast to the DOB
Off case which yielded a combined RMSPE of 36.3%. At higher frequencies,
the DOB performance worsened but always maintained a lower combined
RMSPE relative to the DOB Off case.

B. Time-Domain Demonstration

A time domain test was conducted to demonstrate the
controller’s capability to track biological knee signals and
respond appropriately to perturbation. Joint angle and joint
torque during level walking were used as the nominal tra-
jectories. These signals were generated using data from [45],
assuming a 1.2-second walking period' and 80kg body mass
. Both an unperturbed and perturbed step were simulated for
comparison. The perturbation was applied at the beginning
of stance as a 3-second pulse in joint angle, with a 5-degree
amplitude. DOB filter parameters f, and ¢ were set to 5 Hz
and 1.5, respectively.

To analyze the accuracy of impedance rendering, we begin
by defining another delta term

A05 = as,p - os,ua (34)
where the secondary subscripts, p and u, denote perturbed and
unperturbed steps, respectively. Note, (34) compares measured
values from two different steps, while (23) compares a mea-
sured value with a desired value for the same time sample.
Next, we compute the difference in measured spring torque
between the nominal and perturbed steps, A7,, which is given
by,

ATy = KSA037 (35)

and the difference in ideal knee torque, A7y (i.e., the torque
that would occur if the system exhibited the ideal knee
impedance), which is given by

AT, = Kp A, + BrAb,. (36)

!'As reported in [45], the walking speed corresponding to our time domain
signals (when denormalized with a 1.2-second duration) is slightly slower
than comfortable barefoot walking.

TABLE III
FREQUENCY DOMAIN TEST RESULTS, RMSE/RMSPE

f (Hz) =0.5 € [0.5,5] € (0.5,50]
DOB On Off On Off On Off
Mag. 7.2% 280% 11.8% 347% 31.1% 46.2%

Phase (Deg)  2.88° 15.6° 14.9° 12.2° 21.7° 30.1°
Combined  8.9% 36.3% 283% 387% 47.0% 53.2%
60 —— Pulse
50 —— Nominal /\ /.“
- Measured \ \
40 ; “ |\
K] ‘ \ I\
2 30 [\ [
< I \ / II
E 20 \
<

10 /"V\\./' \//\\/ \
/\

0
50 —— Desired
40 . —— Nominal A
) [ Measured
22|
o 20 [ f )]
& { f ‘ |
g1 | | | \
e \ AN Vo
£ 0 \ \ !
=10 \ \ !
\ v" \/ \ .
-20
0.0 05 10 s 2.0
Time (s)

Fig. 4. Time domain perturbation—Top: the joint angle (6;) “Measured”
follows the “Nominal” walking trajectory until perturbed by a “Pulse”.
Bottom: The actuator torque (7s) “Measured” follows the “Nominal” walking
kinetics until perturbed. This “Measured” torque is similar (4.17 Nm RMSE)
to the “Desired” torque due to the target perturbation response.

Thus we define our impedance accuracy using the error
between those torque quantities as

e = A1, — AT, (37)

C. Frequency-Domain Validation Results

The frequency-domain experiment shows that the DOB
improves mechanical impedance rendering performance. Bode
plots comparing the DOB On/Off cases vs the nominal be-
havior are shown in Fig. 3, and key metrics are captured in
Tab. III. The DOB performed especially well at low frequency,
f = 0.5 Hz, yielding a combined RMSPE of 8.9%, compared
to a combined RMSPE of 36.3% with no DOB. Although
performance decreased at higher frequencies, the DOB con-
troller still outperformed the no DOB case across all frequency
ranges.

D. Time-Domain Demonstration Results

The time domain experiment (Fig. 4) clearly demonstrates
the two-fold capability of the controller: 1) it successfully
tracks knee angle and torque trajectories during nominal
conditions and 2) it accurately renders the desired biological
impedance when the joint experiences a perturbation. Using
(37), the impedance accuracy RMSE was 4.17 Nm for the
time-domain perturbation test.
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IV. DISCUSSION

The DOB improved the rendering of mechanical impedance
in the simulated prosthetic application, yielding significant
reductions in both magnitude and phase errors, however, open
issues still remain.

The controller admittedly struggled at higher frequencies
as a direct consequence of a low DOB cutoff frequency
fq = w/2m. In theory, we should have been able to increase
fq up to the Nyquist frequency independent of the FSF gains
or chosen trajectory while also preserving stability. But in
practice, this did not hold. By trial and error, the DOB was
found to be stable for f;, < 10 Hz and ( = 0.7 during the
frequency domain wavelet tests, and f, <5 Hz and ¢ = 1.5
for the level walking time domain test. This may be due to
the assumption that the disturbance is completely uncorrelated
with the state vector, which is likely not held in practice.
Judging from the DOB Off behavior in the frequency domain
plot, the chief disturbance appears to have been some nonlinear
frictional effect. This is because the low frequency spring
asymptote is reduced in magnitude, yet maintains a nonzero
phase lag—similar to hysteretic damping models or complex
stiffness [44]. This tracks with observations made in manually
back-driving the gear system, and extremely rapid decay of
free-spinning motion. Our low-frequency DOB was certainly
helpful in reducing the effect of this disturbance on rendered
impedance below its cutoff frequency, but future versions of
the system should be able to achieve better performance by
investigating the bandwidth limit on the DOB more carefully
and re-considering or working around the independence as-
sumption on the disturbance.

Different FSF controller settings produce different levels
of sensitivity to the transmission friction, and therefore dif-
ferent levels of importance for the DOB which compensates
for this friction. Low impedance behaviors that result from
greater utilization of the spring feedback terms K5 and Bs
will naturally attenuate the friction disturbance due to this
spring feedback alone. And negative spring feedback gains
(used to produce stiffer-than-passive impedance) amplify the
disturbance. Thus, by careful design of the actuator it may be
possible to avoid the DOB component of the controller, and
(equivalently) by introducing a DOB it may be possible to
overcome the mechanical limits of a design.

When bench-marked against human perception, the DOB
performs well. According to [46], the smallest change in
knee stiffness an able-bodied human can reliably detect is
~ 13%. Another study demonstrated below-knee amputees
can perceive changes in ankle stiffness as low as 7.7% [47].
Although neither are an exact comparison, the DOB controller
magnitude RMSPE of 7.2% at f = 0.5 Hz (essentially a DC
gain error metric corresponding to stiffness) was below both of
these thresholds. A step in the right direction for biomimetic
actuators, future iterations will seek to improve on this design
further by driving impedance error below human perception
across a wider frequency range.

These results are also significantly better than state-of-the-
art open loop impedance control performed in [19], which
showed stiffness errors that reached up to 42% when the

actuator included a large transmission ratio. While the authors
discuss a solution capable of reducing stiffness errors to
a mere 2.9%, it required characterizing disturbances offline
and manually tuning feed-forward correction factors. This
strategy also compensated for the nonlinear disturbance by
changing the linear controller, without necessarily evaluating
how this would impact performance at magnitudes other than
the one tested in their system identification. In contrast, our
DOB framework provides a way to accurately attenuate low
frequency disturbances online, without the need for manually
tuning feed-forward friction terms. While we also perform
system identification at a single amplitude, the DOB attenuates
non-LTI behavior (at low frequencies).

V. CONCLUSION

At frequencies below the DOB’s cutoff, our control frame-
work significantly improved the ability of the FSF controller
to accurately render mechanical impedance despite the friction
in the system. At very low frequencies (i.e. the region of
the bode plot corresponding solely to stiffness) we achieved
an RMSPE magnitude error of 7.2%. Performance at higher
frequencies was less impressive, and unexpected instability
prevented an increase in the bandwidth of the DOB. Despite
this limitation, the system was also able to demonstrate the
intended superposition of a biomechanical trajectory with a
perturbation response.
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