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ABSTRACT

Deep neural networks have been successfully applied in many

computer vision tasks. However, these models suffer catas-

trophic forgetting when learning new knowledge incremen-

tally. To overcome the stability-plasticity dilemma, class in-

cremental learning (CIL) has been widely discussed recently.

The state-of-the-art CIL methods mainly leverage additional

exemplar sets, thus memory costly and may raise privacy is-

sues. To that end, we propose an autonomous generative fea-

ture replay (AGFR) framework without using exemplar sets.

It consists of three modules: the feature extractor module, the

feature generator module, and the unified classification mod-

ule. First, to stabilize features over tasks, robust feature ex-

tractors are learned in a self-supervised manner and thus gen-

eralize well to unseen data. Second, instead of using exem-

plar sets or producing raw images, we propose an autonomous

generative feature replay scheme to constantly update unified

classifier in CIL without saving any image data. This strat-

egy avoids overwhelming memory usage or poor quality of

the generated raw images. Experiments demonstrate that our

method achieves state-of-the-art performance in terms of av-

erage classification accuracy.
�

Index Terms— Knowledge reproduction, Generative rep-

resentation learning, Incremental learning.

1. INTRODUCTION

Incremental learning has been discussed recently to enable

deep neural networks to adapt to new tasks without complete

re-training [1]. Despite great progress in incremental learn-

ing over the past few years, deep neural networks still suffer

from “catastrophic forgetting” [2] when adapting to learn new

knowledge. Although humans can continuously acquire new

knowledge during their entire lives, learning systems must

face a “stability-plasticity” dilemma and manage to consol-

idate knowledge in a progressive way [3].

Early research mainly focuses on task-incremental learn-

ing where prior such as task-ID is given at inference time. A

more challenging setting termed “class-incremental learning

�
This material is based upon work supported in part by the National Sci-

ence Foundation under Grant No. 2144772.

Fig. 1. Overview of our AGFR framework. (a) The model

training process at the first incremental task to obtain G1. (b)

Model training process at the i-th incremental task Ti (i ≥ 2)

to obtain Gi. Digits (e.g., 1, 2, 4) are used to illustrate input

images of different classes. Feature extractor φ is trained at

the beginning through SimCLR with several data augmenta-

tion tricks applied. Classifier f is updated after each incre-

mental task.

(CIL)” becomes dominant where task-ID is no longer avail-

able [4]. Thus, a task-agnostic model is demanded to balance

different classifier heads or learn a unified classifier.

The overview of our work is shown in Figure 1. First, we

design a robust feature extractor through self-supervised

learning. This unsupervised learning fashion enables a

generic representation of upcoming data, without needing

any label information from them. When the incremental

phases begin, we freeze the feature extractor and prevent it

from being updated during the incremental training process.

This benefits not only the generalization but also the compu-

tational efficiency. Second, image generation becomes more

difficult with the increase in visual categories and diversities.

Since CIL is meant to be a discriminant model, feature replay

is more economical and affordable. Therefore, we propose a

generative feature replay model. Compared to other methods,

our feature generation strategy is simpler yet uses much less

memory than exemplars-based CIL models. Third, we main-

tain a group of autonomous generative sub-models instead to

address the issue of quality and diversity in image generation.

The autonomous sub-models dedicated to each task are stored

to avoid incremental training of GANs, and they jointly con-IC
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tribute feature replay to CIL and unified classifier at new

tasks. We found it very useful for alleviating performance

degradation as the number of categories increases.

Our contributions could be summarized as the following

three aspects. First, we propose to use self-supervised rep-

resentation learning to pursue robust and generic features for

existing and upcoming data and tasks. Second, a novel ap-

proach to replaying autonomous generative features without

using an exemplar set is developed to offer a memory-efficient

CIL solution. Finally, the results of the experiments demon-

strate the superiority of our method compared to the state-of-

the-art in terms of both accuracy and memory consumption.

2. PROPOSED ALGORITHM

2.1. Preliminaries and Motivation

Given a sequence of m tasks T = {T1, T2, . . . , Tm} in incre-

mental learning, CIL aims to learn and update the classifier

f over time to accommodate all the tasks and classes seen

so far. Given a training dataset Di = {(xi
j , y

i
j)}ni

j=1 at task

Ti, where (x, y) are image and label pairs and ni is the num-

ber of samples, the CIL algorithm aims to achieve the update:

〈fi−1,Di, E〉 �→ fi where fi(x) ∈ R
ci is the softmax score

vector, ci is the number of accumulated classes after the i-th
task, and E is the optional exemplar set.

Most state-of-the-art CIL approaches store exemplars of

previous tasks to rehearse the past knowledge [5, 6, 7, 8, 9].

Such strategies are not applicable to scenarios with data re-

striction (e.g., healthcare data), or limited memory (e.g., edge

devices). The rest of CIL efforts have shifted to non-exemplar

approaches and propose to use rehearsal approaches to replay

or generate features/data of previous tasks [5, 10]. There are

major issues regarding the quality and diversity of the data

identified recently [11]. First, the visual quality of the gener-

ated images is difficult to guarantee, a common issue of many

types of generative models such as GANs. Second, the di-

versity of data increases along with the upcoming tasks. It

requires generative models to be incrementally updated and

usually leads to poor training in practicals.

Our work considers the above drawbacks and improves

the generative replay strategy. To address the first issue, we

propose using self-supervised learning to extract robust fea-

tures across different tasks and leverage the learned features

for replay purposes. For the second issue, we propose a novel

autonomous generative feature replay framework (AGFR).

AGFR is essentially a “divide-and-conquer” approach: in the

divide step, we split the entire generative model into several

sub-models to avoid incremental training of a single genera-

tor; in the conquer step, we merge the classifiers from each

task to offer a superior unified classifier for all tasks.

In our work, instead of raw images replay, we develop a

robust feature extractor φ(x) as the intermediate representa-

tion to be fed to the autonomous generative models. In ad-

dition, we maintain a set of autonomous generative models

G = {G1, G2, ..., Gm} for feature replay purpose. Here, Gi

is a generative model, e.g., GANs. Therefore, at task Ti, our

AGFR algorithm aims to learn:

〈fi−1,Di, φ,
⋃

j≤i−1

Gj〉 �→ fi, (1)

where we do NOT use the exemplar set E when learning the

new classifier fi.

2.2. Autonomous Generative Feature Replay

In the first part, we introduce the design of our feature extrac-

tor module, which is trained in a self-supervised manner. In

the second part, we explain the autonomous generative mod-

els and the replay mechanism, followed by the unified classi-

fication network to mitigate the catastrophic forgetting prob-

lem.

2.2.1. Self-supervised Representation Learning
The task-agnostic nature of CIL favors generalized represen-

tation, and a common latent space between different tasks

would be preferred in this case. In this paper, we replace su-

pervised feature learning with self-supervised learning meth-

ods. In particular, we adopt the popular SimCLR approach

[12, 13] as our backbone, but other self-supervised learning

frameworks could also be applied.

In summary, SimCLR learns representations by maximiz-

ing agreement between augmented views of the same data ex-

ample via a contrastive loss in the latent space. We conduct

stochastic data augmentation composed of three fundamen-

tal operations. First, we apply random cropping operations

and then resize the augmented images back to the original

size. Moreover, random color distortion operations and ran-

dom Gaussian blur operations are used to produce two differ-

ent views from one single image.

During the training process, we minimize contrastive loss.

The loss function between a pair of examples {xi, xj} aug-

mented from the same input sample can be computed as:

LSSL = − log
exp

(
sim

(
ψ(zi), ψ(zj)

)
/τ

)

∑
k �=i

exp
(
sim

(
ψ(zi), ψ(zk)

)
/τ

) , (2)

where ψ is a learnable embedding function, sim(·, ·) is co-

sine similarity between two vectors, and τ is a temperature

parameter. Note the latent vector z = φ(x). The overall loss

is computed across all positive pairs in a mini-batch. Once

SimCLR training is complete, we freeze the model and use

only φ(x) for feature extraction in CIL procedure.

One remaining question is what data shall be used for

SimCLR training. Compared to the common strategy that in-

crementally updates feature extractors during the CIL process

[5, 14], our feature extractor is trained only once before the

CIL procedure without using any labeled data. To this end,
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Fig. 2. Classification accuracy on CIFAR-100. The 100 classes of CIFAR-100 are equally divided into 5, 10, and 20 tasks.

we build a holdout unlabeled dataset without any intersection

with the training or testing data of CIL. For instance, we di-

vide TinyImageNet [15] into two subsets, each of which con-

tains 100 classes. In experiments, one of them is used for pre-

training, while the other is for training and evaluation. More

details can be found in the experiment sections.

2.2.2. Feature Replay
This section details the learning of the set of autonomous gen-

erative model G. At task Ti, the training process is divided

into two steps. The first step is to learn Gi, and the second

step is to learn an unified classification model fi.
Generative modeling. For the first step, we adopt

Wasserstein GANs with gradient penalty [16] to generate

replayed features due to their promising ability reflecting the

true distribution of complex data. Instead of adopting weight

clipping as WGAN [17], penalizing the growth of gradient

improves training stability and generation quality. In our au-

tonomous generative replay framework, the generator G and

discriminator D consists of three deconvolution and convo-

lution layer, respectively. Here, we skip the subscript “i” for

{G,D} for simplicity. The input of the conditional generator

G includes a vector v sampled from the Gaussian distribution

and a corresponding label y. With a particular feature z, the

improved objective function of the discriminator D is:

LD =
v∼N(0,1)

[
D(G(v, y)

]
− E

z∼Pr

[
D(z)

]

+ λ E
ẑ∼Pẑ

[
(‖∇ẑD(ẑ)‖2 − 1)2

]
,

(3)

where ẑ is a random sample selected for gradient penalty, z is

a real sample, the latent vector v is randomly sampled from

Gaussian distribution accompanied by a given label y, and λ
is the balancing parameter. Additionally, Pr represents the

real data distribution, and the distribution Pẑ is sampled uni-

formly from straight lines which are drawn by pairs of points.

One point of each pair is sampled from real data distribution,

while the other is from generated data distribution.

Unified classifier. After the training of Gi, we will use

the set of autonomous generative models learned so far, i.e.,

{G1, ..., Gi−1} to replay the features of previous tasks. To-

gether with the feature extracted from task Ti, we are allowed

to update the unified classifier fi which is a single-head net-

work and can distinguish all seen classes from T1 through Ti.

3. EXPERIMENTS

3.1. Experimental Setup

♦ Datasets. We evaluate the performance of our approaches

and other state-of-the-art methods on CIFAR-100 [18] and

TinyImageNet [15] datasets. In terms of the dataset parti-

tion, we follow the protocol of [19] and equally split the 100

classes of CIFAR-100 dataset into 5, 10 and 20 tasks prepared

for incremental phases. Similarly, for TinyImageNet dataset,

we first randomly select 100 classes of images from the entire

dataset to pre-train the self-supervised feature extractor. Then

the rest 100 classes are equally divided into 5, 10 and 20 tasks

in the same way as the CIFAR-100 dataset.

♦ Baselines & Evaluation Metrics. We compare our method

with three non-exemplar-based approaches: LwF [20], MeR-

GAN [21], PASS [22] and three exemplar-based methods

iCaRL [5], BiC [23], BFP [19]. All exemplar-based meth-

ods have a limited memory size of 4,000. We also add Joint

Training (JT) and Finetuning (FT) methods as the baseline to

compare with our proposed AGFR framework. In particular,

JT method is trained on all seen data together and can be

treated as the upper-bound performance of incremental learn-

ing methods. FT method is considered as a naive baseline

method for CIL since it trivially re-trains the classifier with

the new data and possibly defines the lower-bound.

In this work, we employ the most critical evaluation met-

ric: the average classification accuracy [22, 24]. This metric

is defined as the average top-1 classification accuracy over all

the incremental learning tasks. Phased classification accuracy

ai,j ∈ [0, 1](j ≤ i) reflects the task Tj performance after

learning the current task Ti, which is computed after each in-

cremental step. After task Tk, the overall classifier perfor-

mance is evaluated by the average accuracy 1
kΣ

k
j=1ak,j .

♦ Implementation Details. In CIFAR-100 experiments, we

pre-train the feature extractor framework using CIFAR-10

dataset [18] without labels. In TinyImageNet experiments,

we pre-train the feature extractor with the presegmented sub-

set. In all experiments, different from “Base50”, which uses

half of the categories of data for supervised CNN pre-training,

we follow the “Base0” setting that conducts CIL from the first

task [25]. This protocol allows us to evaluate our framework
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Fig. 3. Average classification accuracy on TinyImageNet. 100 classes of examples are randomly selected from the full TinyIm-

ageNet dataset and then equally divided into 5, 10 and 20 tasks.

Methods Datasets Exemplar Number Memory Size

Exemplar based
CIFAR-100 4000 Images 18Mb

TinyImageNet 4000 Images 70Mb

AGFR(Ours)

12Mb(5 Tasks)

- - 24Mb(10 Tasks)

48Mb(20 Tasks)

Table 1. Comparison of memory cost across exemplar-based

methods and our AGFR. The main memory overhead of our

AGFR comes from the number of generative models, and is

unrelated to image size and quantity.

with others under a more difficult setting on both datasets.

Our AFGR is implemented with PyTorch [26]. For both

datasets, we adopt ResNet-50 [27] as the backbone of the

self-supervised feature extractor and ResNet-18 as the back-

bone of the classifier. The feature extractor and the genera-

tive model are trained for 100 epochs, while the classifier is

trained for 200 epochs, with Adam [28] as optimizer.

3.2. Experimental Results

For fair comparisons, all compared methods adopt ResNet-18

as the backbone to extract feature from raw images. Figure 2

and Figure 3 report the performance of the selected methods

on Cifar-100 and TinyImageNet, respectively.

From Figure 2 and Figure 3, it is simple to find that our

AGFR achieves better average accuracy than the existing

methods. Especially, our AGFR framework surpasses PASS

with the second best performance on most cases. Moreover,

when comparing with non-exemplar-based algorithms ( e.g.,

LwF ), our method obtains significant improvement. The

main reason lies in that our AGFR implicitly preserves data

pattern of previous tasks into model and precisely repro-

duce high-quality samples for model adaptation on the novel

tasks. Similarly, exemplar-based approaches also stores par-

tial instances for incremental learning. However, our method

explores “feature replay” mechanism to increase sample

diversity and bring the additional benefits on avoiding knowl-

edge forgetting, which results in the higher performance.

These observations illustrate that our method continuously

learns novel knowledge and effectively preserve semantic

information of previous seen samples.

3.3. Analysis of Memory Consumption

In this section, we further discuss the required memory size of

exemplar-based methods, including iCaRL, BiC, and DER++

w/BFP. In our experiment setting, all these methods have a

fixed memory size of 4,000 images for all seen classes. Also,

we compare the required memory consumption of our AGFR

used for storing generative models with the above exemplar-

based methods. The comparison result is shown in Table 1.

On the CIFAR-100 dataset, the memory consumption

for the exemplar set is affordable due to the low resolu-

tion of raw images. However, the required memory space

increases dramatically from CIFAR-100 to TinyImageNet

dataset in order to host higher-resolution images in the ex-

emplar set. With larger datasets and higher image resolution,

the memory consumption will increase linearly in dataset

size and quadratically in image size. Therefore, it becomes

less reasonable to store more raw images to improve model

performance. Note that although our approach requires more

memory space on CIFAR-100 dataset under the setting of 10

and 20 divided tasks, it saves more space on the TinyIma-

geNet dataset. Moreover, our AGFR framework is promising

to be extremely space-saving on large-scale datasets with

higher image resolution, such as ImageNet [29], compared to

the state-of-the-art exemplar-based methods.

4. CONCLUSIONS

In this work, we proposed a novel generative feature replay

framework to mitigate the catastrophic forgetting problem

and data privacy issue in the setting of class incremental

learning without using exemplar sets. Different from other

class incremental approaches, our method proposed to use a

self-supervised pre-trained feature extractor for better gen-

eralization in facing new tasks. Considering the fact that

low-dimensional features are much easier to generate, we ap-

plied conditional GANs to replay features of previous tasks.

We also used multiple autonomous generative models to deal

with different tasks. Experiments illustrated that our method

outperformed other state-of-the-art methods in average accu-

racy, especially when the number of tasks was large.
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