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ABSTRACT

Deep neural networks have been successfully applied in many
computer vision tasks. However, these models suffer catas-
trophic forgetting when learning new knowledge incremen-
tally. To overcome the stability-plasticity dilemma, class in-
cremental learning (CIL) has been widely discussed recently.
The state-of-the-art CIL methods mainly leverage additional
exemplar sets, thus memory costly and may raise privacy is-
sues. To that end, we propose an autonomous generative fea-
ture replay (AGFR) framework without using exemplar sets.
It consists of three modules: the feature extractor module, the
feature generator module, and the unified classification mod-
ule. First, to stabilize features over tasks, robust feature ex-
tractors are learned in a self-supervised manner and thus gen-
eralize well to unseen data. Second, instead of using exem-
plar sets or producing raw images, we propose an autonomous
generative feature replay scheme to constantly update unified
classifier in CIL without saving any image data. This strat-
egy avoids overwhelming memory usage or poor quality of
the generated raw images. Experiments demonstrate that our
method achieves state-of-the-art performance in terms of av-
erage classification accuracy. -

Index Terms— Knowledge reproduction, Generative rep-
resentation learning, Incremental learning.

1. INTRODUCTION

Incremental learning has been discussed recently to enable
deep neural networks to adapt to new tasks without complete
re-training [1]. Despite great progress in incremental learn-
ing over the past few years, deep neural networks still suffer
from ““catastrophic forgetting” [2] when adapting to learn new
knowledge. Although humans can continuously acquire new
knowledge during their entire lives, learning systems must
face a “stability-plasticity” dilemma and manage to consol-
idate knowledge in a progressive way [3].

Early research mainly focuses on task-incremental learn-
ing where prior such as task-ID is given at inference time. A
more challenging setting termed “class-incremental learning
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Fig. 1. Overview of our AGFR framework. (a) The model
training process at the first incremental task to obtain G'. (b)
Model training process at the ¢-th incremental task 7; (¢ > 2)
to obtain G;. Digits (e.g., 1, 2, 4) are used to illustrate input
images of different classes. Feature extractor ¢ is trained at
the beginning through SimCLR with several data augmenta-
tion tricks applied. Classifier f is updated after each incre-
mental task.

(CIL)” becomes dominant where task-ID is no longer avail-
able [4]. Thus, a task-agnostic model is demanded to balance
different classifier heads or learn a unified classifier.

The overview of our work is shown in Figure 1. First, we
design a robust feature extractor through self-supervised
learning.  This unsupervised learning fashion enables a
generic representation of upcoming data, without needing
any label information from them. When the incremental
phases begin, we freeze the feature extractor and prevent it
from being updated during the incremental training process.
This benefits not only the generalization but also the compu-
tational efficiency. Second, image generation becomes more
difficult with the increase in visual categories and diversities.
Since CIL is meant to be a discriminant model, feature replay
is more economical and affordable. Therefore, we propose a
generative feature replay model. Compared to other methods,
our feature generation strategy is simpler yet uses much less
memory than exemplars-based CIL models. Third, we main-
tain a group of autonomous generative sub-models instead to
address the issue of quality and diversity in image generation.
The autonomous sub-models dedicated to each task are stored
to avoid incremental training of GANs, and they jointly con-
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tribute feature replay to CIL and unified classifier at new
tasks. We found it very useful for alleviating performance
degradation as the number of categories increases.

Our contributions could be summarized as the following
three aspects. First, we propose to use self-supervised rep-
resentation learning to pursue robust and generic features for
existing and upcoming data and tasks. Second, a novel ap-
proach to replaying autonomous generative features without
using an exemplar set is developed to offer a memory-efficient
CIL solution. Finally, the results of the experiments demon-
strate the superiority of our method compared to the state-of-
the-art in terms of both accuracy and memory consumption.

2. PROPOSED ALGORITHM

2.1. Preliminaries and Motivation

Given a sequence of m tasks T = {T1,T5, ..., T, } in incre-
mental learning, CIL aims to learn and update the classifier
f over time to accommodate all the tasks and classes seen
so far. Given a training dataset D; = {(a%,y})}]2, at task
T;, where (x,y) are image and label pairs and n; is the num-
ber of samples, the CIL algorithm aims to achieve the update:
(fi—1,D;, &) — f; where f;(x) € R is the softmax score
vector, ¢; is the number of accumulated classes after the i-th
task, and £ is the optional exemplar set.

Most state-of-the-art CIL approaches store exemplars of
previous tasks to rehearse the past knowledge [5, 6, 7, 8, 9].
Such strategies are not applicable to scenarios with data re-
striction (e.g., healthcare data), or limited memory (e.g., edge
devices). The rest of CIL efforts have shifted to non-exemplar
approaches and propose to use rehearsal approaches to replay
or generate features/data of previous tasks [5, 10]. There are
major issues regarding the quality and diversity of the data
identified recently [11]. First, the visual quality of the gener-
ated images is difficult to guarantee, a common issue of many
types of generative models such as GANs. Second, the di-
versity of data increases along with the upcoming tasks. It
requires generative models to be incrementally updated and
usually leads to poor training in practicals.

Our work considers the above drawbacks and improves
the generative replay strategy. To address the first issue, we
propose using self-supervised learning to extract robust fea-
tures across different tasks and leverage the learned features
for replay purposes. For the second issue, we propose a novel
autonomous generative feature replay framework (AGFR).
AGFR is essentially a “divide-and-conquer” approach: in the
divide step, we split the entire generative model into several
sub-models to avoid incremental training of a single genera-
tor; in the conquer step, we merge the classifiers from each
task to offer a superior unified classifier for all tasks.

In our work, instead of raw images replay, we develop a
robust feature extractor ¢(z) as the intermediate representa-
tion to be fed to the autonomous generative models. In ad-
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dition, we maintain a set of autonomous generative models
G = {G1,Ga,...,G,,} for feature replay purpose. Here, G;
is a generative model, e.g., GANs. Therefore, at task 7;, our
AGFR algorithm aims to learn:

(fi-1.Dino, |J Gy i (1)

j<i—1

where we do NOT use the exemplar set £ when learning the
new classifier f;.

2.2. Autonomous Generative Feature Replay

In the first part, we introduce the design of our feature extrac-
tor module, which is trained in a self-supervised manner. In
the second part, we explain the autonomous generative mod-
els and the replay mechanism, followed by the unified classi-
fication network to mitigate the catastrophic forgetting prob-
lem.

2.2.1. Self-supervised Representation Learning

The task-agnostic nature of CIL favors generalized represen-
tation, and a common latent space between different tasks
would be preferred in this case. In this paper, we replace su-
pervised feature learning with self-supervised learning meth-
ods. In particular, we adopt the popular SimCLR approach
[12, 13] as our backbone, but other self-supervised learning
frameworks could also be applied.

In summary, SimCLR learns representations by maximiz-
ing agreement between augmented views of the same data ex-
ample via a contrastive loss in the latent space. We conduct
stochastic data augmentation composed of three fundamen-
tal operations. First, we apply random cropping operations
and then resize the augmented images back to the original
size. Moreover, random color distortion operations and ran-
dom Gaussian blur operations are used to produce two differ-
ent views from one single image.

During the training process, we minimize contrastive loss.
The loss function between a pair of examples {x;,x;} aug-
mented from the same input sample can be computed as:

exp (sim(?ﬁ(zi),i/f(zj))/T)
> exp (sim(w(zi), 1/1(Zk))/7> 7

ki

Lssr, = —log

where 1 is a learnable embedding function, sim(-,-) is co-
sine similarity between two vectors, and 7 is a temperature
parameter. Note the latent vector z = ¢(x). The overall loss
is computed across all positive pairs in a mini-batch. Once
SimCLR training is complete, we freeze the model and use
only ¢(z) for feature extraction in CIL procedure.

One remaining question is what data shall be used for
SimCLR training. Compared to the common strategy that in-
crementally updates feature extractors during the CIL process
[5, 14], our feature extractor is trained only once before the
CIL procedure without using any labeled data. To this end,
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Fig. 2. Classification accuracy on CIFAR-100. The 100 classes of CIFAR-100 are equally divided into 5, 10, and 20 tasks.

we build a holdout unlabeled dataset without any intersection
with the training or testing data of CIL. For instance, we di-
vide TinyImageNet [15] into two subsets, each of which con-
tains 100 classes. In experiments, one of them is used for pre-
training, while the other is for training and evaluation. More
details can be found in the experiment sections.

2.2.2. Feature Replay
This section details the learning of the set of autonomous gen-

erative model G. At task T}, the training process is divided
into two steps. The first step is to learn G, and the second
step is to learn an unified classification model f;.

Generative modeling. For the first step, we adopt
Wasserstein GANs with gradient penalty [16] to generate
replayed features due to their promising ability reflecting the
true distribution of complex data. Instead of adopting weight
clipping as WGAN [17], penalizing the growth of gradient
improves training stability and generation quality. In our au-
tonomous generative replay framework, the generator GG and
discriminator D consists of three deconvolution and convo-
lution layer, respectively. Here, we skip the subscript “7” for
{G, D} for simplicity. The input of the conditional generator
G includes a vector v sampled from the Gaussian distribution
and a corresponding label y. With a particular feature z, the
improved objective function of the discriminator D is:

Lp= E

ol [D(G(v,y)] - E [D(2)]

3

+A _E [(IV:D@), - 17, v
where 2 is a random sample selected for gradient penalty, z is
a real sample, the latent vector v is randomly sampled from
Gaussian distribution accompanied by a given label y, and A
is the balancing parameter. Additionally, PP, represents the
real data distribution, and the distribution IP; is sampled uni-
formly from straight lines which are drawn by pairs of points.
One point of each pair is sampled from real data distribution,
while the other is from generated data distribution.

Unified classifier. After the training of G;, we will use
the set of autonomous generative models learned so far, i.e.,
{G1,...,G;—1} to replay the features of previous tasks. To-
gether with the feature extracted from task 75, we are allowed
to update the unified classifier f; which is a single-head net-
work and can distinguish all seen classes from 77 through 7;.

3. EXPERIMENTS

3.1. Experimental Setup

¢ Datasets. We evaluate the performance of our approaches
and other state-of-the-art methods on CIFAR-100 [18] and
TinyImageNet [15] datasets. In terms of the dataset parti-
tion, we follow the protocol of [19] and equally split the 100
classes of CIFAR-100 dataset into 5, 10 and 20 tasks prepared
for incremental phases. Similarly, for TinylmageNet dataset,
we first randomly select 100 classes of images from the entire
dataset to pre-train the self-supervised feature extractor. Then
the rest 100 classes are equally divided into 5, 10 and 20 tasks
in the same way as the CIFAR-100 dataset.

¢ Baselines & Evaluation Metrics. We compare our method
with three non-exemplar-based approaches: LwF [20], MeR-
GAN [21], PASS [22] and three exemplar-based methods
iCaRL [5], BiC [23], BFP [19]. All exemplar-based meth-
ods have a limited memory size of 4,000. We also add Joint
Training (JT) and Finetuning (FT) methods as the baseline to
compare with our proposed AGFR framework. In particular,
JT method is trained on all seen data together and can be
treated as the upper-bound performance of incremental learn-
ing methods. FT method is considered as a naive baseline
method for CIL since it trivially re-trains the classifier with
the new data and possibly defines the lower-bound.

In this work, we employ the most critical evaluation met-
ric: the average classification accuracy [22, 24]. This metric
is defined as the average top-1 classification accuracy over all
the incremental learning tasks. Phased classification accuracy
a;; € [0,1](j < 1) reflects the task T performance after
learning the current task 7}, which is computed after each in-
cremental step. After task T}, the overall classifier perfor-
mance is evaluated by the average accuracy +X%_, ay, ;.
¢ Implementation Details. In CIFAR-100 experiments, we
pre-train the feature extractor framework using CIFAR-10
dataset [18] without labels. In TinylmageNet experiments,
we pre-train the feature extractor with the presegmented sub-
set. In all experiments, different from “Base50”, which uses
half of the categories of data for supervised CNN pre-training,
we follow the “Base(” setting that conducts CIL from the first
task [25]. This protocol allows us to evaluate our framework
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Methods Datasets ~ Exemplar Number Memory Size
Exemplar based CIFAR-100 4000 Images 18Mb
TinyImageNet 4000 Images 70Mb
12Mb(5 Tasks)
AGFR(Ours) - - 24Mb(10 Tasks)
48Mb(20 Tasks)

Table 1. Comparison of memory cost across exemplar-based
methods and our AGFR. The main memory overhead of our
AGFR comes from the number of generative models, and is
unrelated to image size and quantity.

with others under a more difficult setting on both datasets.

Our AFGR is implemented with PyTorch [26]. For both
datasets, we adopt ResNet-50 [27] as the backbone of the
self-supervised feature extractor and ResNet-18 as the back-
bone of the classifier. The feature extractor and the genera-
tive model are trained for 100 epochs, while the classifier is
trained for 200 epochs, with Adam [28] as optimizer.

3.2. Experimental Results

For fair comparisons, all compared methods adopt ResNet-18
as the backbone to extract feature from raw images. Figure 2
and Figure 3 report the performance of the selected methods
on Cifar-100 and TinyImageNet, respectively.

From Figure 2 and Figure 3, it is simple to find that our
AGFR achieves better average accuracy than the existing
methods. Especially, our AGFR framework surpasses PASS
with the second best performance on most cases. Moreover,
when comparing with non-exemplar-based algorithms ( e.g.,
LwF ), our method obtains significant improvement. The
main reason lies in that our AGFR implicitly preserves data
pattern of previous tasks into model and precisely repro-
duce high-quality samples for model adaptation on the novel
tasks. Similarly, exemplar-based approaches also stores par-
tial instances for incremental learning. However, our method
explores “feature replay” mechanism to increase sample
diversity and bring the additional benefits on avoiding knowl-
edge forgetting, which results in the higher performance.
These observations illustrate that our method continuously
learns novel knowledge and effectively preserve semantic
information of previous seen samples.

3.3. Analysis of Memory Consumption

In this section, we further discuss the required memory size of
exemplar-based methods, including iCaRL, BiC, and DER++
w/BFP. In our experiment setting, all these methods have a
fixed memory size of 4,000 images for all seen classes. Also,
we compare the required memory consumption of our AGFR
used for storing generative models with the above exemplar-
based methods. The comparison result is shown in Table 1.

On the CIFAR-100 dataset, the memory consumption
for the exemplar set is affordable due to the low resolu-
tion of raw images. However, the required memory space
increases dramatically from CIFAR-100 to TinylmageNet
dataset in order to host higher-resolution images in the ex-
emplar set. With larger datasets and higher image resolution,
the memory consumption will increase linearly in dataset
size and quadratically in image size. Therefore, it becomes
less reasonable to store more raw images to improve model
performance. Note that although our approach requires more
memory space on CIFAR-100 dataset under the setting of 10
and 20 divided tasks, it saves more space on the Tinylma-
geNet dataset. Moreover, our AGFR framework is promising
to be extremely space-saving on large-scale datasets with
higher image resolution, such as ImageNet [29], compared to
the state-of-the-art exemplar-based methods.

4. CONCLUSIONS

In this work, we proposed a novel generative feature replay
framework to mitigate the catastrophic forgetting problem
and data privacy issue in the setting of class incremental
learning without using exemplar sets. Different from other
class incremental approaches, our method proposed to use a
self-supervised pre-trained feature extractor for better gen-
eralization in facing new tasks. Considering the fact that
low-dimensional features are much easier to generate, we ap-
plied conditional GANSs to replay features of previous tasks.
We also used multiple autonomous generative models to deal
with different tasks. Experiments illustrated that our method
outperformed other state-of-the-art methods in average accu-
racy, especially when the number of tasks was large.
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