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Abstract

Traditional shape descriptors have been gradually re-
placed by convolutional neural networks due to their su-
perior performance in feature extraction and classification.
The state-of-the-art methods recognize object shapes via
image reconstruction or pixel classification. However, these
methods are biased toward texture information and over-
look the essential shape descriptions, thus, they fail to gen-
eralize to unseen shapes. We are the first to propose a few-
shot shape descriptor (FSSD) to recognize object shapes
given only one or a few samples. We employ an embed-
ding module for FSSD to extract transformation-invariant
shape features. Secondly, we develop a dual attention mech-
anism to decompose and reconstruct the shape features via
learnable shape primitives. In this way, any shape can be
formed through a finite set basis, and the learned repre-
sentation model is highly interpretable and extendable to
unseen shapes. Thirdly, we propose a decoding module
to include the supervision of shape masks and edges and
align the original and reconstructed shape features, enforc-
ing the learned features to be more shape-aware. Lastly, all
the proposed modules are assembled into a few-shot shape
recognition scheme. Experiments on five datasets show that
our FSSD significantly improves the shape classification
compared to the state-of-the-art under the few-shot setting.

1. Introduction

Shape recognition has been a critical area of research
in computer vision, with applications in numerous fields,
such as industrial automation [47, 81], botanics classifica-
tion [68], and fine-grained shape recognition for medical
organs [80]. In industrial automation, it is usually required
to identify the textureless components that possess a unique
shape, e.g. the workpiece classification. In botany science,
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diverse herbs collected in the wild need to be classified and
made taxonomy. Moreover, the shape recognition is useful
to identify lesions or pathological changes in medical diag-
nosis [80].

As demonstrated in the variety of recognition tasks, con-
volutional neural networks (CNN) allow high-dimensional
image data to be presented as semantic features. Such rep-
resentations capture both shape and texture information.
While existing studies argue that shape information plays
dominant roles in general recognition tasks [36, 40,62, 83],
many studies highlight that local textures provide adequate
information for various vision tasks [4, 8, 17, 19]. There
are ongoing efforts to combine texture and shape informa-
tion [25, 34]. Nonetheless, the majority of works focus on
utilizing rexture information to capture object shapes in ob-
ject segmentation [44, 63], arbitrary-shaped text detection
[9, 58,72, 87], salient object detection [55, 59, 74,77, 86],
circle/ellipse detection [48, 49, 71], and shape classifica-
tion [1,2,37,84]. However, these texture-based methods do
not target extracting generic shape information suitable for
shape recognition of common textureless objects or novel
textureless objects.

Finding discriminative representations for object shapes
is non-trivial, and no ultimate mathematical definition has
ever been established so far. Traditional shape descrip-
tors mathematically approximate the geometric information
of shapes and demonstrate their efficacy empirically [66].
These methods enable fast computation while maintaining
high accuracy. Moreover, explicit mathematical definitions
produce interpretable descriptors, and therefore, are still
widely used today.

Zeiler et al. [83] argue that CNN features carry limited
shape information. To address this issue, the approaches
proposed by [22,32,41,61, 64] attempt to combine dedi-
cated shape descriptors with well-established CNN features
so that the learned representation can carry more shape in-
formation. These methods provide some degree of inter-
pretable modeling and representations. Nonetheless, these
methods model semantic and shape representations sepa-
rately, i.e., the feature integration is applied right before
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output layers without further coupling in earlier layers.

In this paper, we formulate a generic shape representa-
tion for few-shot shape recognition. In contrast to existing
representations, our model couples the shape descriptions
with deep learning for few-shot learning. Our FSSD model
is based on a matching network for few-shot learning, but
with three unique contributions. Firstly, we propose to use
group equivariant convolutional neural networks (G-CNN)
instead of regular convolutional networks to help the em-
bedding module handle rotations of input. Secondly, to en-
courage networks to learn interpretable shape features com-
parable to conventional hand-crafted shape descriptions, we
propose novel shape primitives learned through dual atten-
tion architecture. The shape primitives serve as the basis to
describe various shapes and help “explain out” the formu-
lation of each input shape through reconstruction and visu-
alization. Thirdly, we incorporate supervision through pair-
wise decoders to align the original and reconstructed shape
features. This ensures the fidelity of shape primitives and
the efficacy of the learned shape representation.

The main contributions of our work are as follows:
i. To our best knowledge, we propose the first few-shot
shape recognition model capable of recognizing seen
and unseen geometric shapes.
We propose a dual attention architecture to learn shape
primitives to improve shape representation learning.
We add supervision through shape masks and the edge
of objects to guide shape-aware feature learning.
We collect a dedicated shape recognition dataset and
transform an existing image dataset into shapes. We
demonstrate that the proposed approach outperforms
the state-of-the-art on five datasets.

ii.

iii.

2. Related works
2.1. Shape Descriptors

Defining the shape of an object is a challenging task, and
current methods for shape descriptions generally focus on
the following factors [06]: i) input representation (i.e., the
description of an object can be based on its boundary or
on its whole region); ii) ability to reconstruct the object;
iii) ability to recognize incomplete shapes, and iv) robust-
ness to various transformations such as translation, rotation,
and scale. Therefore, most shape description methods can
be classified into two categories: 1) boundary-based meth-
ods and ii) region-based methods. Boundary-based meth-
ods include Hough transform [3, 13,23,33,39, 56,57, 60],
Fourier descriptors [20, 82], curvature scale-space descrip-
tors [26, 53], shape context [6], segment boundary de-
scriptors [35], wavelet transform descriptors [10] and more
[18,29,38,54,73,75,79]. Region-based methods include an-
gular radial transformation [7,28, 78], image moment [16],
and general Fourier shape descriptors [85].

1838

Unlike existing works, this paper presents a deep learn-
ing pipeline formed from the perspective of shape descrip-
tion. Such a network can learn boundary-based generic
shape features that are robust to translations and rotations,
and can reconstruct object shapes from the basis set.

2.2. Few-shot Learning (FSL)

FSL can perform image classification, object detection,
or segmentation given limited training data. Existing FSL
works can be divided into two categories: i) metric-based
methods (e.g., Prototypical Networks, Relation Networks);
and ii) optimization-based methods such as MAML. Rela-
tion Networks [67] introduce a relation module to learn the
similarity between the features of two input samples. Proto-
typical Networks [65] map a set of samples per class into a
prototype vector. Then, classification is performed by mea-
suring the cosine similarity between query samples and pro-
totypes. MAML [15] trains models iteratively on multiple
tasks.

While existing FSL pipelines target various vision tasks,
e.g., few-shot object detection [14,30], few-shot segmenta-
tion [42,43], and few-shot keypoint detection [46, 50], few-
shot shape recognition and deep shape-aware features are
still under-explored. We argue and show that good shape
descriptors are essential for good performance compared
to other factors, e.g., distance metric in similarity measure-
ment.

2.3. Shape Recognition

Most shape recognition methods utilize simple CNNs to
classify binary shape images [1,2,37,84]. Some other works
encode and map shapes into high-dimensional spaces for
classification [27,52]. In shape detection, special detection
frameworks are used instead of bounding boxes. For exam-
ple, Kang et al. [31] proposed the use of bounding masks
to regress the object edges, while ellipse detection [12,71]
utilizes elliptical bounding boxes to detect the most com-
mon ellipse shapes in the natural world. Tasks such as
arbitrary-shaped text detection and salient object detection
are closely related to shape reconstruction. In arbitrary-
shaped text detection [9, 58, 72, 87], the aim is to capture
regions around various text shapes rather than using bound-
ing boxes. Salient object detection [55, 59, 74,77, 86] fo-
cuses on reconstructing more accurate object boundaries.

This paper proposes a novel dual attention mechanism to
learn a finite set of universal shape primitives. The learned
set of primitives through known shapes can be extended to
compose, represent, and interpret unseen shapes, enabling
robust yet discriminant shape features for the classification
of new shapes.
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Figure 1. The overall architecture of the proposed FSSD consists of four modules (from left to right): embedding module, feature recon-
struction module, similarity module, and decoder module. FSSD follows a few-shot learning pipeline, where feature reconstruction module
learns a set of primitives for shapes and reconstructs the output features of embedding module using the input support set and query set.
Feature reconstruction module consists of Holistic Multi-head Cross-Attention (H-MCA) and Standard Multi-head Cross-Attention (S-
MCA). The pairwise decoders enables supervision through ground truth shape masks and edges to align original and reconstructed shape

features. The similarity is calculated using the reconstructed support set features and query set features, enabling shape classification.

3. Proposed method

We develop a few-shot model which can focus on shape
characteristics and maintain a high accuracy of shape classi-
fication. The entire model consists of four parts: (i) embed-
ding module, (ii) feature reconstruction module, (iii) simi-
larity module, and (iv) decoding module.

3.1. Problem Statement

This paper uses episode-based training [70] often used
in few-shot learning. In each episode, the so-called c-way
mj-shot learning is applied. Specifically, c classes are ran-
domly selected from the training set, with m; samples ran-
domly selected from each class to form the support set
S = (xi, i) ¢, and my samples randomly selected from
each class to form the query set Q = (x;, yj);.n:zlxc

A typical few-shot learning network consists of two
parts: an embedding module and a similarity module. To
accommodate the shape primitives and supervision, we in-
troduce a novel feature reconstruction module and a de-
coding module. Firstly, the embedding module employs
a group-equivariant convolutional network (G-CNN) that
incorporates group transformations into the convolutional
operations by rotation-equivariant operations. Secondly, a
novel dual attention architecture is implemented to learn
shape primitives for feature reconstruction. Thirdly, the
similarity module uses the cosine similarity to calculate the
similarity between the support set features and the query set
features. Finally, the original features and the support/query
reconstructed features are fed into the decoding module to
recover the shape mask and edges. The overall architecture
of our method is shown in Figure 1.
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3.2. Embedding Module

Shape descriptors should be robust to geometric transfor-
mations such as translation, rotation, and scale changes. Re-
cent works have shown that group-equivariant networks can
capture objects better as they do not require learning sepa-
rately each object pose. Given the transformation group g,
group-equivariant networks [ | 1] use the following operator:

6]

where f is the feature map or image, ¥ is the convolu-
tion filter, ® is the convolution, and 7T, indicates the pro-
posed transformation groups in [11], py = {r, 72,73 ¢} and
pr={e,r,r2, v, mr,r3m, rm, mr3, r2m, mr?, rmr, m},
where e represents an equivalent transformation, r repre-
sents a counterclockwise rotation of 90° and m represents
a mirror transformation. Next, take the p, group as an ex-
ample. Let T, € p4, f be the image, and ¥ be a CNN fil-
ter. Then, the equivariance property means that applying T},
to f followed by convolution filter ¥ is identical to apply-
ing filter W first to f followed by 7T} in the feature domain.
By using the equivariance property, backbone is “invariant”
to transformations so it does not have to learn each object
pose separately. By working in the equivariant feature do-
main rather than on the raw images, our similarity module
then learns invariance on equivariant features by learning
to match shapes in different poses. This process has been
shown in Figure 1.

[T,f] © U = T,[f ® ],

3.3. Feature Reconstruction Module

Discovering the basis or principal components has been
popular practice in signal processing and representation
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learning, e.g., Fourier transform, principal component anal-
ysis (eigenfaces), low-rank matrix analysis, sparse coding.
Inspired by such works, we let shape descriptors be approx-
imated by a finite set of shape primitives. We propose to
learn a finite set of shape primitives @ to ground the shape
features of the images for both training and unseen data.

Attention-based Primitives. The support & query features
in an episode are combined into a matrix Q € RE*d where
B is the batch size (i.e., the total number of support & query
images) and d is the channel dimension.

Firstly, the feature vector per image, extracted from G-
CNN, is regarded as a single query. Each shape primitive
is corresponding to one key-value pair. Once we obtain the
query-key-value, the attention can be established. Similar
to the conventional attention mechanism [69], we have:

).

where W € REXN contains attention scores, dj, is a scal-
ing factor, and Q' € RZ*? contains reconstructed shape
features. For any image with index j, the corresponding
reconstructed shape feature vector q;- can be written as:

N

/

q; = § Wji ;.
i=1

One can see that the reconstructed feature vector q’ is ob-
tained by a linear combination of shape primitives ®
[¢1,...,¢y]. This also demonstrates that using attention
to model feature vectors with shape primitives is reason-
able. In Section 4.4, we empirically show that the linear
addition of primitives results in continuously changing de-
coded images.

T

W = softmax (Q

Vi @

QI: WQ?

3

Similarity Module. The similarity score is computed for
pairwise reconstructed support-query feature vectors. We
use the cosine similarity as metric due to its simplicity.
Given a pair of query and support samples, the similarity
score s is obtained by the so-called weighted sum-kernel:

5 = (dy, dp)
N T N
—(Lute) (Tute))
i=1 j=1 “4)

N
= Zzwfw§<¢iv ¢j>~

1j5=1

~.

If i = j, (¢;, ;) becomes larger than the case of i # j
(assuming the unit /5 norm of vectors). Based on this fact
and Eq. (4), if two samples are indeed similar, the similarity
function encourages larger weights on the same primitives
from both samples.
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Dual Attention Architecture. In this section, we apply
multi-head unit to extend single-head based shape primi-
tives. Since we use ® as the “basis” to reconstruct inputs, a
common P is learned and used. Standard Multi-head Cross-
Attention (S-MCA) [69] will learn different sub-primitive
matrices for each head and thus cannot achieve our aim.
Thus, we propose a Holistic Multi-head Cross-Attention
(H-MCA) that encourages a common ® across different
heads. By “holistic” we mean maintaining the integrity of
primitives.

In the reminder of this paper, we use Q’; to indicate the
reconstruction via H-MCA. To that end, first, the dimen-
sions of Q and ® (used as key) are mapped to d' = d x h
dimension, while on the other hand ® (used as value) is du-
plicated h times (% is the number of heads). Thus, the output
of each head is obtained from a linear combination of com-
mon primitives from set ®, which preserves the structural
integrity of the primitives, and helps visualize primitives.
However, H-MCA itself lacks flexibility in reconstructing
the features Q, sometimes leading to poor Q' due to in-
adequate shape characteristics. To accommodate and sup-
plement H-MCA, S-MCA is added into H-MCA to achieve
enhanced reconstruction:

Q' = H-MCA(Q) +S-MCA(Q) = Q; + Qs, (5

where QY is the reconstruction by S-MCA. We term Eq. (5)
as dual attention architecture. One can easily see that the
enhanced Q' satisfies Eq. (3) while using supplementary
term QY. This practice is also similar to residual structure
in ResNet, where H-MCA basically reconstructs the iden-
tity feature Q';, whereas S-MCA learns the subtle changes
QJ to complete the reconstructed features Q.

Figure 2(a) shows an example of how S-MCA works.
The attention tensor W € R2X1*2 agsumes the number
of primitives, heads, and batch size are 2, 2, and 1, re-
spectively. Please note that S-MCA breaks the integrity of
the primitives as the attention is performed on each head.
Thus, if S-MCA is used alone, the reconstructed Q' is not
obtained by the linear weighting of holistic primitives ®,
which contradicts Eq. (3).

3.4. Decoder Module

The reconstructed features Q' are used by the similarity
module for few-shot learning. Q' also requires additional
constraints to achieve faithful reconstruction akin to input
features Q. One might align Q' and Q via the Least Squares
Error or KL-divergence. One might align both terms to
enhance edges and the shape mask [74]. In such a way,
the shape supervision can be injected directly on top of the
shape features Q.

In our case, the alignment between Q and Q' is achieved
through two decoders with common supervision: one de-
coder focuses on the edges, and the other focuses on the

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on June 24,2024 at 13:55:46 UTC from IEEE Xplore. Restrictions apply.



o2 b2 (o} P
Wig -+ I W21
+ | w1 (Wiz) [+ war(Wypp) -
Wip * W22
' . "
(@) (b)

Figure 2. (a) Standard Multi-head Cross-Attention (S-MCA).
Each primitive ¢, ¢ (2 = [¢p1, ¢,]) is essentially divided into

two pieces. (b) Holistic multi-head cross-attention (H-MCA). The
primitives are complete regardless of the number of heads. In both
cases, the number of primitives is 2, h=2, B=1, and attention ten-
sor W € R?X1%2,

Figure 3. (a) shows a polar bear from the AwA?2 dataset, and
(d) shows an eight-petaled flower from the simple shape dataset.
(a)(d) original image, (b)(e) mask image, and (c)(f) edge image.

shape mask. Moreover, we encourage the similarity be-
tween Q’; and Q as high as possible.

By passing Q, Q’; and Q’ through two decoders, the de-
coders enforce their alignment as well as learning of shape
primitives. Both masks and edges (Figures 3(b) and (c))
are used as ground truth, allowing the network to focus on
the shape information of objects. Additionally, the decoder
module also accomplishes the task of image reconstruction.

3.5. Loss Function

Our loss function can be summarized as:

L= Ecls + £res; (6)
where L. and L, are the loss functions for classification
and image reconstruction, respectively. The loss function
L5 includes six components:

Qy
edge

= Q
‘CT@S - ’Cmask+’cedge+‘cnzask+£ + ‘Cmask—’_ ‘C’

edge’
where L5 and Lqg are the loss functions for mask and
edge image reconstruction, respectively. £?, £ and L9
are the image reconstruction loss functions for the original
features, holistically reconstructed features and dual recon-

structed features, respectively. For the reconstruction loss
function, MSE loss is used.
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Figure 4. Example of shape images from five datasets. Each row
showcases the data from one class. (a) Simple shape dataset, e.g.,
folding line, octagram. (b) The shape-AwA2 dataset, including
antelope, beaver. (c) Caltech 101 shapes with classes: airplanes
side 2 and brain. (d) Swedish leaf dataset. (e) Workpiece dataset.

(b)

4. Experiments
4.1. Datasets

We validate the effectiveness of the proposed FSSD on
five datasets. Firstly, we create simple shape dataset and
create shape-AwA2 dataset by transforming the popular an-
imal dataset AwA2 [5]. Secondly, the public Caltech 101
shapes dataset [51], Workpiece dataset [21,45,47,76] and
Swedish leaf dataset [68] are also used. Figure 4 shows
some examples of the five datasets. Specifically, the simple
shape dataset and shape-AwA?2 are obtained as follows:

* The simple shape dataset is developped using basic ge-
ometric elements such as lines, arcs, angles, and cir-
cles. It is created using PIL (Python Imaging Library)
by randomly generating shapes with varying sizes, po-
sitions, orientations, and foreground/background col-
ors. There are a total of 25 classes with 250,000 im-
ages in this dataset.

AwA?2 dataset is a popular few-shot learning dataset.
However, extracting shape features directly from color
images is challenging. Therefore, in this paper, a state-
of-the-art salient object detector [77] is employed to
extract masks of animals from AwA2, creating the
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Table 1. Comparison with traditional shape descriptors and classical few-shot learning methods across five datasets. The 5-way 1-shot and
5-way 5-shot results averaged over 5,000 test episodes are reported.

. Simple-Shape (1) Shape-AwA2 (1) Caltech 101 (1) Workpiece shapes (1)  Swedish leaf (1)
Algorithm Backbone  Params TG0 O sahot Lshot | Sshot  1shot  Swhot  Lshot  Sshot
Shape context [6] - oM 34.25% 50.64% 22.69% 31.92% 52.80% 66.00% 30.80% 53.60% 60.32%  70.02%
Fourier descriptors [82] - oM 55.76% 65.60% 18.49% 23.77% 38.17% 4891% 46.57% 62.53% 38.09% 54.96%
Hu moment [24] - oM 80.05% 87.49% 21.85% 22.72% 47.74% 50.63% 47.32% 50.16% 47.73%  64.44%
ProtoNet [65] ResNet18 43M 83.90% 80.79% 23.66% 34.07% 66.28% 85.41% 67.84% 86.55% 47.56% 91.01%
RelationNet [67] ResNet18 48M 80.84% 83.23% 22.74% 42.45% 59.53% 86.74% 66.76% 89.18% 43.56%  92.50%
Ours G-ResNetl8 45M 91.02% 92.58% 43.35% 54.45% 80.19% 89.13% 97.29% 97.79% 88.58% 93.76%

Table 2. Results for several backbones on the simple shape dataset. Query image Support image & similarity score

Baot4o
Model Backbone Acc (1) Model Backbone Acc (1) rhinoceros N
4-layer conv  78.72% PrototNet  ResNetl8  83.90%
Ous  ResNetl8  8524% G-ResNet18  86.59% Boseor
ResNet50 85.83% RelationNet ResNet18 80.84%
G-ResNetl8  91.02% G-ResNet18 84.71% rat
wolf Zebra rhinoceros  rat

masks of AwWA?2 dataset specifically for shape classi-
fication research. This shape dataset consists of 50

nonagon

Ol H

classes with 37,322 images. o525 1e-os
- EI%I
4.2. Experiment Setup :
square triangle rectangle three- nonagon
G-CNN with ResNet18 backbone is used for basic fea- I riangle
ture extraction. We use 5-way 1/5-shot setting Wi.th 15 afl . * ‘ ,
query samples per class. We set the number of episodes ,
to be 50,000 for training and 5,000 for testing. The Adam s
eal

optimizer with learning rate 0.001 is used. The learning
rate decays by 0.5 every 8,000 episodes. The classifica-
tion accuracy is used to measure the performance of few-
shot models, while PSNR (Peak Signal-to-Noise Ratio) and
SSIM (Structural Similarity Index) are used to measure the wpl
performance of image reconstruction.
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4.3. Results of Few-shot Shape Recognition
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Figure 5. Visualizations of shape matching. Matched shapes are
stressed by red frames. Similarity score is shown in red in the top-
left corner. Best viewed in zoom.

In this section, we compare the proposed FSSD with
traditional shape descriptors such as Shape Context [6],
Fourier Descriptors [82], and Hu Moment [24], and clas-
sical few-shot learning methods such as ProtoNet [65] and
RelationNet [67]. We compute 5-way 1/5-shot classifica-
tion accuracy on five datasets by averaging 5,000 randomly
generated episodes from the testing set. Table 1 shows the
superior performance of our method compared to other ap-
proaches on five datasets where the shape plays a prominent
role. Our method demonstrates superior performance and
efficacy in capturing shape information and outperforms
the compared methods. Unlike us, methods such as CNNs

dataset, the Swedish leaf dataset, and the Workpiece dataset
in Figure 5, which shows that our model is able to success-
fully perform shape retrieval.

4.4. Ablation Studies

struggle to capture shape information in 5-way 1-shot set-
ting on the Workpiece and Swedish leaf datasets. While
CNNs begin to improve performance with more templates
being used, the achieved performance is still inferior to
our method. Moreover, we visualize shape matching using
our method on the shape-AwA?2 dataset, the simple shape
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To our best knowledge, there is no existing research on
shape-based neural networks for few-shot shape recogni-
tion. Therefore, we use state-of-the-art few-shot learning
model [67] as the baseline and conduct ablation experi-
ments on: (1) backbone types, (2) decoding methods, (3)
similarity calculation methods, (4) attention types, and (5)
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Table 3. Results of different decoders using G-CNN.

Mask Edge
Dataset Decoder Acc(T) SSIM(1) PSNR(1) SSIM(1) PSNR(1)
- 89.01% - -
Simple  Mask 89.09%  0.8636 40.01 -
Shape  Edge 88.90% - - 0.8943 38.41
Mask+Edge  91.02%  0.8926 40.01 0.9131 38.81

model hyper-parameters.

Types of backbone. To examine the importance of G-
CNN, the experiments are performed by only changing the
backbone while keeping other modules the same. The im-
pact of different backbones is shown in Table 2. On the
simple shape dataset, we observe that the performance in-
creases along with the model size. However, the margin be-
comes smaller between ResNet18 and ResNet50. If replac-
ing ResNet18 by G-ResNet18 (G-CNN version), our model
leads to significant improvements in performance (5.8%).
Moreover, using G-ResNet18 has very tiny overhead com-
pared to the original CNN model (45.41M vs. 43M). Com-
pared to ResNet50 (105.5M), G-ResNet18 (45.41M) enjoys
much lower model capacity and higher performance, which
shows the G-CNN extracts better shape representations.

Different decoder methods. To investigate the influ-
ence of shape mask/edge decoders, we only vary the de-
coders while the other modules are same. Table 3 shows
the results of different decoding methods. One can see how
both decoders contribute to the classification and image re-
construction measured by SSIM and PSNR. Using both de-
coders simultaneously provides superior performance com-
pared to each single one. This also implies that the mask
and edge groundtruth are complementary; the former pro-
vides the global information while the latter captures the
edge information.

Calculation of similarity. This experiment compares co-
sine similarity vs. the relation module popular in few-shot
learning [67]. The relation module learns a good “metric”
in a data-driven way and enjoys better performance than
conventional distances such as the Euclidean or cosine dis-
tance. Table 4 shows that using the cosine similarity in
few-shot shape recognition is reasonable. We believe this
is mainly due to the superior shape features learned through
our model, thus, the performance depends less on the dis-
tance metric.

Attention architecture. This experiment uses G-ResNet18
as the backbone, a pair-wise decoder, and the cosine simi-
larity while exploring the efficacy of different attention ar-
chitectures. As shown in Table 5, a standalone S-MCA
achieves higher classification accuracy and better image re-
construction quality than H-MCA. Nonetheless, S-MCA is
not meant to discover the common primitives across differ-
ent heads and leads to weak interpretations in visualization.
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Figure 6. (a) Shape recognition performance using 30, 60, 80, 100,
120, 180, and 240 shape primitives on the simple shape dataset. (b)
Same experiments tested on the shape-AwA?2 dataset.

On the other hand, H-MCA provides comparable perfor-
mance in accuracy but shows relatively weak performance
in reconstruction, as indicated in the methodology section.
The dual attention architecture enables the integration of
both modules to complement each other. As a result, the
combined model obtains the best classification results and
better reconstruction than the single H-MCA.

Numbers of shape primitives. Figures 6(a) and (b) show
the results with different numbers of shape primitives on
the simple shape dataset and shape-AwA?2 dataset, respec-
tively. While more shape primitives seem to provide the
enriched basis for reconstruction, they may also contain re-
dundant information, leading to the overfitting issue, which
can be observed in reconstruction-based feature learning.
One may observe in both figures that the performance of the
network did not improve with increasing numbers of prim-
itives. When the number of primitives exceeds a specific
point, the classification performance drops quickly. There-
fore, maintaining a moderate number of shape primitives
is critical. According to Figures 6(a) and (b), for the opti-
mal performance, we set the number of primitives to be 60
for the simple shape dataset and 120 for the shape-AwA?2
dataset by default throughout all experiments.

Visualization of shape primitives. To investigate the vi-
sualization of shape primitives, we selected two primitives
¢+, ¢, and performed interpolation on them as follows:

(binter
i

=ax ¢+ (1— a)x ¢,

7
a=ix0.1, i=0,...,10. ™

Through the interpolation of ¢; and ¢,, 11 interpolated
feature vectors were obtained. These feature vectors were
then fed into the decoder to decode them into correspond-
ing masks, as shown in Figure 7. The figure shows that
the reconstructed images corresponding to the interpolated
features are continuously changing. This demonstrates that
the decoded images corresponding to the linearly combined
primitives are obtained by continuous variation in the re-
construction space. Figure 8 shows the visualization results
of some primitives of the simple shape dataset when the
number of primitives is set to 60. From the results, it is
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Table 4. Comparison of different distances and similarity metrics.

Mask Edge
Backbone Decoder Method Acc(T) SSIM(1) PSNR(1) SSIM({) PSNR()
o Relation module  66.23%  0.8815 42.77 0.9455 39.67
G-CNN- Mask+Bdge o e dimilarity 91.02%  0.8926 4001 09131 38381
Table 5. Comparison of H-MCA and S-MCA.
. Mask Edge
Backbone Attention Acc(T) SSIM(1) PSNR(!) SSIM({) PSNR(1)
S-MCA 90.13%  0.9180 42.79 0.9395 39.39
G-CNN H-MCA 89.21%  0.8286 37.32 0.8854 37.12
Dual attention  91.02%  0.8926 40.01 0.9131 38.81
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Figure 7. Images (a) and (k) visualize primitives ¢, and ¢, and
(b)-(j) visualize the feature vectors interpolated by ¢; and ¢,.
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Figure 8. Partial visualization of primitives on the simple shape
dataset. The number of shape primitives is set to 60.

| S

not straightforward to link the visualization of primitives to
a real yet complete shape. However, both the theoretical
outcomes in Eq. 3 and the decoding of the reconstructed in-
terpolated features in Figure 7 demonstrate that these prim-
itives can approximate the original shape well.

Visualization of reconstructions. Figure 9 shows the vi-
sualization results of Q,Q’; and Q' on the test dataset
through the decoder using the mask branch. One can see
that for shapes not included in the training dataset, our
model can still leverage primitives to reconstruct them in
a precise manner. These results demonstrate that dual atten-
tion is needed for faithful and interpretable reconstruction.
For instance, the pentagon in Figures 9(a), (¢) and (d) repre-
sent ground truth, results by H-MCA and H-MCA+S-MCA,
respectively. One may see that H-MCA is not sensitive to
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Figure 9. Visualization of reconstructed images: (a) ground truth;
(b), (c), (d) are the decoding results of Q, Qy and Q.

(d)

obtuse angles, and the decoder tends to reconstruct obtuse
angles as arcs. However, the integration with S-MCA can
do a better job of reconstructing the obtuse angles.

5. Conclusions

We have proposed to incorporate shape properties in the
network architecture so that the network can perform effi-
cient few-shot shape learning. Our proposed FSSD replaces
the CNN with a G-CNN to enable the network obtain ro-
bustness to geometric variations of object poses. An image
reconstruction module is used and a pair-wise decoder ar-
chitecture to ensure the output image focuses on the edge
information of the target. A dual attention architecture is
used to implement shape primitives learning, and the shape
primitives are used to reconstruct new features to approx-
imate the original features. Our FSSD is robust to shape
transformations and has the ability to reconstruct shapes due
to improved shape modeling. The extensive experiments
on few-shot shape recognition show the effectiveness of the
proposed approach. Despite the learned geometric prim-
itives differ from human-made geometric primitives (e.g.,
lines, small arcs), we hope our work may inspire the future
research in this field.
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