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Abstract
Binary expansion testing (BET) provides powerful detection of interesting
nonlinear dependence among pairs of variables in the exploratory data anal-
ysis of large-scale data sets. However, the Bonferroni adjusted p-values can
be overly conservative when used to determine the significant testing pairs.
A novel contribution of this paper is the extreme value theory analysis of
BET. This results in a potentially powerful new significance threshold for
the maximal BET z-statistics.
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1 Introduction

The Binary Expansion Testing (BET) framework (Zhang, 2019) is a power-
ful nonparametric test of independence of two continuous random variables.
In particular, it has wide use in the detection of interesting nonlinear rela-
tionships in pairwise applications, especially for large scale data sets. For
example, Xiang et al. (2022) uses BET to find many important nonlinear
patterns among the expression of pairs of genes from the breast cancer sub-
set of The Cancer Genome Atlas (TCGA) data set (The Cancer Genome
Atlas Network, 2012). Many of these seem to have interesting biological
interpretations.

Although BET works well in testing independence between pairwise vari-
ables, there is room for improvement in the exploratory data analysis of
large-scale data sets. As discussed in Section 3.2 of Xiang et al. (2022), the
significantly dependent pairs are determined by the pairwise application of
BET using Bonferroni adjusted p-values. However, that Bonferroni adjust-
ment can be overly conservative, especially in large-scale data sets such as
TCGA. To address this issue and improve the statistical power, the goal of
this paper is to study the distribution of the maximal BET z-statistics when
doing pairwise testing. Specifically, we plan to use extreme value theory to
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derive the limiting distribution of the maximal BET z-statistics under the
null hypothesis that all variables are independent. In Section 2, we briefly
introduce the ideas and procedure of BET. In Section 3, we calculate the
distribution of the BET z-score for pairwise testing and the limiting dis-
tribution of the maximal BET z-statistics. In Section 4, we propose a new
method to select the significantly dependent pairs by using the maximal
BET z-statistics.

2 BET Framework: Background and Definitions

First, we give a brief introduction to binary expansion as developed in Zhang
(2019). This BET framework uses symmetry statistics that are complete
and sufficient statistics for dependence. By Basu’s theorem (Basu, 1958),
bounded complete sufficient statistics are independent of any ancillary statis-
tic. Thanks to this important theoretical insight, the analysis of dependence
can be focused on these symmetry statistics.

Suppose X1, X2, ..., Xp are p independent continuous variables, and n
independent replications are observed. For testing the independence of
Xi and Xj using BET, first, the copula transformation is applied to get
U = FXi

(Xi) and V = FXj
(Xj), where U , V have a uniform marginal distri-

bution over [0, 1], and the ordering relationship of Xi and Xj is preserved.
For example, in Fig. 1, the left panel shows a scatter plot of expression for the
genes FAM171A1 and SPARCL1 from TCGA (The Cancer Genome Atlas
Network, 2012) in the normalized log count scale, which has an approxi-
mately parabolic relationship; the right panel shows the scatter plot of the
same two genes after the copula transformation with the BET diagnostic
plot explained below.

The binary expansions of U and V are expressed as U =
∑∞

k=1 Ak/2k and

V =
∑∞

k′=1 Bk′/2k′
, where Ak

i.i.d∼ Bernoulli(1/2), Bk′
i.i.d∼ Bernoulli(1/2).

Next, in the BET procedure, we truncate the expansions at given depths
d1 and d2 separately. To achieve common approximation error, we assume
d1 = d2 = d, then the truncated expansions Ud =

∑d
k=1 Ak/2k and Vd =

∑d
k′=1 Bk′/2k′

are approximations of U and V , and are discrete variables
taking 2d possible values.

Such Ak and Bk′ generate m = (2d − 1)2 cross interactions, each of which
is a new binary variable and reflects a dependence relationship between Ud

and Vd. To express each cross interaction in the form of products, we first
define new binary variables: Ȧk = 2Ak − 1 and Ḃk′ = 2Bk′ − 1, where Ȧk

and Ḃk′ take the values −1 and 1. Hence the interaction between each pair
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of Ak and Bk′ can be presented as the product ȦkḂk′ . Thus, each cross
interaction results from the product of at least one Ȧk and Ḃk′ , which has
the form Ȧk1 ...Ȧkr

Ḃk′
1
...Ḃk′

t
with r, t > 0. Each cross interaction is a binary

variable taking the values −1 and 1, dividing the unit square [0, 1]2 into
2 regions. These two regions are colored white (1) and shaded (−1). For
example, the right panel of Fig. 1 shows one cross interaction when given
depth parameter d = 2. This cross interaction captures a particular parabolic
dependence pattern in terms of many more points in the shaded region than
in the white region. This relationship is clear in the scatter plot on the left
panel.

Each cross interaction defines one Binary Interaction Design (BID). For
each BID, a symmetry statistic Sk is defined as the difference of point counts
of n pairs (U, V ) in white and shaded regions partitioned by the BID, as
shown in the right panel of Fig. 1 where Sk is −363. If Ud and Vd are
independent, the points should be uniformly distributed on the unit squares,
and for each BID, the symmetry statistic Sk should be close to 0. Thus, when
the absolute value of one Sk is far from 0, we could reject the independent null
hypothesis. The corresponding BID could explain the potential dependence
pattern between U and V , i.e., the relationship between Xi and Xj .

For m BIDs used in the BET procedure, the z-score of each BID is defined
as |Sk/

√
n|. The title of the right panel of Fig. 1 indicates the z-score of the

corresponding BID (12.7).
Now we get a complete BET procedure for testing a pair of variables.

First we choose depth parameters d1 = d2 = d and get the m = (2d − 1)2

BIDs. After computing all symmetry statistics Sk of m BIDs for this pair,
we find the BID with the largest absolute value of Sk, and also record the
corresponding p-value and z-statistic. We use this largest BID z-score as the
z-statistic of BET, i.e., when given d1 = d2 = d, we denote Zij,d as the
z-statistic of BET between Xi and Xj :

Zij,d = maxk∈1,...,m
|Sk|√

n
. (1)

As discussed above, the BET diagnostic plot in the right panel of Fig. 1
(white and shaded regions) represents the BID detecting a parabolic rela-
tionship, where the absolute value of the corresponding symmetry statistic
Sk of this BID for this pair of genes is the largest and is far from 0. Thus,
the z-score of this BID shown in the title of the right panel (z-stat = 12.7)
is also the z-statistic of BET between this pair of genes, and this BID gives
a reasonable explanation of the dependence pattern. Based on the symbols
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of the breast cancer subtypes, we notice that this relationship tends to be
driven by a separation between the Basal (dark ◦) subgroup and other breast
cancer (light +) subgroups, which is biologically meaningful.

Xiang et al. (2022) did a careful comparison with more conventional
measures of dependence, and found some overall improvement in identifying
non-linear dependent pairs of variables, at a much reduced computational
cost.

3 Distribution of the Maximal Z-statistic of BET

In this section, we discuss the approximate distribution of the maximal BET
z-score among all pairs of variables in a n×p data set. Recall in Section 2, we
define Zij,d to be the BET z-score for testing dependence between Xi and Xj .
Let Z(pn),d = max1≤i<j≤p Zij,d, which denotes the maximal BET z-statistic of
the pairwise application to the n×p data set. We have two steps to calculate
the approximate distribution of Z(pn),d: first, in Section 3.1, we calculate a
tail bound of the z-score of BET between two independent variables Zij,d;
second, in Section 3.2, we derive an approximate distribution of the maximal
BET z-score among p independent variables Z(pn),d.

3.1 Distribution of the BET Z-statistic In the first step, the tail bound
of the BET z-statistic is stated in the following theorem:
Theorem 1 Suppose Xi, Xj are two independent variables and n indepen-
dent replications are observed. When given BET depths d1 = d2 = d, let A
represent the set of indices of m BIDs, where m = (2d − 1)2, and let Sk

denote the corresponding symmetry statistic for a given k ∈ A. Then the
z-statistic of BET between Xi and Xj is Zij,d = maxk∈A |Sk|/

√
n, which

satisfies as n → ∞,

1−e−λ1(z,n)−λ1(z, n)2/m ≤ P (Zij,d > z) ≤ 1−e−λ1(z,n)+λ1(z, n)2/m, (2)

where

λ1(z, n) = 2mg(a, n)(1 + o(1)),

g(z, n) =
1

1 − r

1
√

2πa(1 − a)n
e−nH ,

a(z, n) =
z
√

n + n + 1
2n

r(z, n) =
1 − a

a
,

H(z, n) = a log(2a) + (1 − a) log(2 − 2a).
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Proof of Theorem 1 To get the tail bound of the z-statistic of BET, first we
calculate the approximate distribution of Zij,d:

P (Zij,d ≤ z) = P (maxk∈A
|Sk|√

n
≤ z) = P (

|S1|√
n

≤ z, ...,
|Sm|√

n
≤ z),

where S1, ..., Sm represent the symmetry statistics S for all m BIDs.
Before calculating the distribution of the z-statistic of BET, we need to

calculate the tail bound of the z-score of a given BID, which is p1 = P ( |Sk|√
n

>

z):

p1 = P (
|Sk|√

n
> z) = P (|Sk| > z

√
n) = P (Sk > z

√
n or − Sk < −z

√
n)

= P (Sk ≥ z
√

n + 1 or − Sk ≤ −z
√

n − 1) = 2P (Sk ≥ z
√

n + 1).

This equation reflects that we first need to compute the probability distri-
bution of the symmetry statistic Sk. 
�
To obtain P (Sk ≥ s), we base our calculation on the following observations:

• S1, ..., Sm are pairwise independent from Theorem 4.3. in Zhang (2019).

• Bn,k = (Sk + n)/2 ∼ Binomial(n, 1/2) from Theorem 4.1. in Zhang
(2019).

• The following lemma is Theorem 2 from Arratia and Gordon (1989)
which gives a large deviation for the binomial distribution:

Lemma 2 For Bn ∼ B(n, p′), if the P (Bn ≥ k) satisfies p′ < a = k/n < 1,
then:

P (Bn ≥ an) ∼ 1
1 − r

1
√

2πa(1 − a)n
e−nH as n → ∞,

where

r ≡ p′

a

1 − a

1 − p′ ,

H ≡ a log(
a

p′ ) + (1 − a) log(
1 − a

1 − p′ ).
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According to the second observation, the distribution of Bn,k is written
as:

P (Bn,k ≥ an)=P ((Sk +n)/2 ≥ an)=P (Sk ≥ 2an−n)=P (Sk ≥ (2a−1)n).

Then according to Lemma 2, we let

(2a − 1)n = z
√

n + 1, i.e., a =
z
√

n + n + 1
2n

> p′ = 1/2,

r =
1 − a

a
,

H = a log(2a) + (1 − a) log(2 − 2a),

and define
g(z, n) =

1
1 − r

1
√

2πa(1 − a)n
e−nH ,

the tail bound of the symmetry statistic Sk is given as follows:

P (Sk ≥ z
√
n + 1) = P (Sk ≥ (2a − 1)n) = P (Bn,k ≥ an) = g(a, n)(1 + o(1)) as n → ∞.

Thus we have the following expression:

p1 = 2P (Sk ≥ z
√

n + 1) = 2g(a, n)(1 + o(1)) as n → ∞.

To calculate the tail bound of the z-statistic of BET, we first define a
useful notation for a Poisson approximation: let I be a finite or countable
index set. For each α ∈ I, let Yα be a Bernoulli random variable with pα =
P (Yα = 1) > 0, and let {Nα, α ∈ I} be a set of subsets of I, i.e., Nα ⊆ I
with α ∈ Nα. The set Nα is thought of as a neighborhood of α consisting of
the set of the indices β such that Yα and Yβ are dependent. Let

W =
∑

α∈I

Yα and λ = EW,

and define:
b1 =

∑

α∈I

∑

β∈Nα

pαpβ , (3)

b2 =
∑

α∈I

∑

β:α�=β∈Nα

pαβ , where pαβ = E[YαYβ ], (4)
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b3 =
∑

α∈I

E|E{Yα − pα|σ(Yβ : β /∈ Nα)}|. (5)

Based on the above notation, we use the following lemma giving a Poisson
approximation for the maximum of dependent variates using the first and
second moments, which is from Arratia et al. (1990):
Lemma 3 If b1, b2 and b3 defined by (3), (4) and (5) are all small, then the
probability of the event {W = 0} has a Poisson approximation:

|P (W = 0) − e−λ| ≤ (b1 + b2 + b3)(1 − e−λ)/λ < (1 ∧ λ−1)(b1 + b2 + b3).

In our calculation of P (Zij,d ≤ z) = P ( |S1|√
n

≤ z, ..., |Sm|√
n

≤ z), we take I =
I1 = {1, ..., m}. Let α1 = k ∈ I1, and since the Sk are pairwise independent,
we define Nα1 = Nk = {k}, and we have:

Yα1 = Yk = 1{|Sk|√
n

> z},

pα1 = pk = p1 = 2g(a, n)(1 + o(1)) as n → ∞,

W1 =
m∑

k=1

Yk,

λ = λ1 = mEYk = mpα1 = 2mg(a, n)(1 + o(1)) as n → ∞,

and the distribution of the z-statistic of BET is written as:

P (Zij,d ≤ z) = P (
|S1|√

n
≤ z, ...,

|Sm|√
n

≤ z)

= P (
m∑

k=1

Yk = 0)

= P (W1 = 0).

Thus in our proof, we calculate b1, b2 and b3 from (3), (4) and (5) as
follows:

b1 =
∑

k∈I

p2k = mp21 = λ2
1/m,

b2 = 0,

b3 = 0,
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since Yα is independent of the sigma field σ(Yβ : β /∈ Nα) and E{Yα|σ(Yβ :
β /∈ Nα)} = pα, E{Yα − pα|σ(Yβ : β /∈ Nα)} = 0.

Finally according to Lemma 3, we get:

e−λ1 − λ2
1/m < P (Zij,d ≤ z) < e−λ1 + λ2

1/m

1 − e−λ1 − λ2
1/m ≤ P (Zij,d > z) ≤ 1 − e−λ1 + λ2

1/m,

where λ1 = 2mg(a, n)(1 + o(1)) as n → ∞.
Thus, Theorem 3.1 gives a useful tail bound of the BET z-score between

Xi and Xj from the limiting distribution. This tail bound sheds light on
the limiting distribution of the maximal BET z-statistic, as described in
Section 3.2.

3.2 Limiting Distribution of the Maximal BET Z-statistic Now we
derive a limiting distribution of the maximal BET z-score among p indepen-
dent variables, as stated in the following theorem:
Theorem 4 Suppose X1, X2, ..., Xp are p independent variables and n inde-
pendent replications are observed. When given BET depths d1 = d2 =
d, we have m BIDs. Then the maximal z-score of BET is Z(pn),d =
max1≤i<j≤p Zij,d, which satisfies as p → ∞ and p = O(nδ), where δ ∈
(0, 1/3),

lim
n→∞ |P (Z(pn),d ≤ p4

n4δ−1/2
t) − ef(t,p,n)| = 0,

where

f(t, p, n) = −mp(p − 1)
a

2a − 1
[2aa(1 − a)1−a]−n

√
2πa(1 − a)n

,

a(t, p, n, δ) =
p4t/n4δ−1 + n + 1

2n
.

Proof of Theorem 4 First, for a given pair (Xi, Xj), from Theorem 1 we have
the tail bound of the z-score between Xi and Xj :

1 − e−λ1 − λ2
1/m ≤ P (Zij,d > z) ≤ 1 − e−λ1

+ λ2
1/m, where λ1 = 2mg(a, n)(1 + o(1)),

i.e,

P (Zij,d > z) = (1 − e−λ1)(1 + o(1)) as n → ∞,
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P (Zij,d > z) = [1 − e−2mg(a,n)](1 + o(1)) as n → ∞,

where

g(a, n) =
1

1 − r

1
√

2πa(1 − a)n
e−nH ,

a =
z
√

n + n + 1
2n

r =
1 − a

a
,

H = a log(2a) + (1 − a) log(2 − 2a).

Now, to calculate the approximate distribution of Z(pn),d = max1≤i<j≤p

Zij,d, since {Zij,d, 1 ≤ i < j ≤ p} are not mutually independent, we use the
Poisson approximation theorem Lemma 3 again.

In this proof, we take the finite index set I = I2 = {(i, j), 1 ≤ i < j ≤ p}.
Let α2 = (i, j) ∈ I2, we define the neighborhood set Nα2 = Nij = {(k, l) ∈
I2; k = i or l = j}, and we have:

Yα2 = Yij = 1{Zij,d > z},

W = W2 =
∑

1≤i<j≤p

Yij ,

pα2 = P (Zij,d > z),

λ = λ2 =
∑

1≤i<j≤p

EYij =
p(p − 1)

2
P (Zij,d > z) =

p(p − 1)
2

pα2 .

Based on the above definitions, the probability distribution of the maxi-
mal BET z-score can be presented as:

P (Z(pn),d ≤ z) = P (max1≤i<j≤p Zij,d ≤ z)

= P

⎛

⎝
∑

1≤i<j≤p

Yij = 0

⎞

⎠

= P (W2 = 0).



Extreme Value Theory for Binary Expansion Testing

In this proof, we have the following calculations for b1, b2 and b3 defined
by (3), (4) and (5):

b1 =
∑

α2∈I2

∑

β2∈Nα2

pα2pβ2 =
p(p − 1)

2
× (2p − 1)p2α2

=
4p − 2

p(p − 1)
λ2
2,

b2 =
∑

α2∈I2

∑

β2:α2 �=β2∈Nα2

pα2β2 ,

b3 = 0,

and to calculate an upper bound on b2, we first calculate pα2β2 = E[Yα2

Yβ2 ] = E[YijYik]:

E[YijYik] = E[I(Zij > z, Zik > z)]

= P (maxi∈{1,...,m}
|Si|√

n
> z, maxj∈{m+1,...,2m}

|S′
j |√
n

> z)

= P ([∪i∈{1,...,m}{
|Si|√

n
> z}] ∩ [∪j∈{m+1,...,2m}{

|S′
j |√
n

> z}])

= P (∪i∈{1,...,m}[{
|Si|√

n
> z} ∩ [∪j∈{m+1,...,2m}{

|S′
j |√
n

> z}]])

= P (∪i∈{1,...,m} ∪j∈{m+1,...,2m} [{|Si|√
n

> z} ∩ {|S′
j |√
n

> z}])

≤
∑

i∈{1,...,m}

∑

j∈{m+1,...,2m}
P (

|Si|√
n

> z,
|S′

j |√
n

> z)

=
∑

i∈{1,...,m}

∑

j∈{m+1,...,2m}
P (

|Si|√
n

> z)P (
|S′

j |√
n

> z)

= m2p2α1
,

where pα1 = 2P (Sk ≥ z
√

n +1) = 2g(a, n)(1+ o(1)) as n → ∞. Thus we get
upper bounds for b2 and b1 + b2:

b2 =
∑

α2∈I2

∑

β2:α2 �=β2∈Nα2

pα2β2

≤
∑

α2∈I2

∑

β2:α2 �=β2∈Nα2

m2p2α1
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=
p(p − 1)

2
× 2(p − 1) × m2p2α1

,

hence

b1 + b2 =
p(p − 1)

2
× (2p − 1)p2α2

+
p(p − 1)

2
× 2(p − 1) × m2p2α1

< p3(p2α2
+ m2p2α1

)

≤ p3((1 − e−λ1 + λ2
1/m)2 + λ2

1)

≤ 2p3λ2
1.

After calculating the upper bound on the b1 + b2 + b3, according to
Lemma 3,

|P (W2 = 0) − e−λ2 | ≤ (b1 + b2 + b3)(1 − e−λ2)/λ2 < (1Λλ−1
2 )(b1 + b2 + b3),

and since P (Z(pn),d ≤ z) = P (W2 = 0) from the above equation, we get

|P (Z(pn),d ≤ z) − e−λ2 | < 2p3λ2
1,

where

λ1 = 2mg(a, n)(1 + o(1)) when n → ∞,

λ2 =
p(p − 1)

2
[1 − e−2mg(a,n)](1 + o(1)) when n → ∞,

g(a, n) =
1

1 − r

1
√

2πa(1 − a)n
e−nH ,

a =
z
√

n + n + 1
2n

,

r =
1 − a

a
,

H = a log(2a) + (1 − a) log(2 − 2a).

Now we calculate the error bound as follows:

2p3λ2
1 = 8p3m2 1

(1 − r)2
e−2nH

2πa(1 − a)n
(1 + o(1))

= 8p3m2 a2

(2a − 1)2
e−2nH

2πa(1 − a)n
(1 + o(1))
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=
4p3m2

π

ae−2nH

(2a − 1)2(1 − a)n
(1 + o(1)).

Since the exponential term is:

e−2nH = e−2n(log[(2a)a]+log[(2−2a)1−a])

= e−2n log[2aa(1−a)1−a]

= [2aa(1 − a)1−a]−2n,

we have the error bound as follows:

2p3λ2
1 =

4p3m2

π

a

(2a − 1)2n
[2aa(1 − a)1−a]−2n

(1 − a)
(1 + o(1))

and since [2aa(1−a)1−a]−2n

(1−a) ∈ (0, 2), we get the upper bound of the error term
as:

2p3λ2
1 ≤ 4p3m2

π

a

(2a − 1)2n
(1 + o(1)) × 2

=
4p3m2

π

z
√

n + n + 1
2(z

√
n + 1)2

(1 + o(1)) × 2

=
4p3m2

π

z
√

n + n + 1
(z

√
n + 1)2

(1 + o(1)).

Now we calculate, for the condition p = O(nδ), the region of δ: consider

2p3λ2
1 ≤ 4p3m2

π

z
√

n + n + 1
(z

√
n + 1)2

(1 + o(1))

and

z
√

n + n + 1 < 2n, i.e., z <
n − 1√

n
<

√
n,

we have that p satisfies: at least there exists a ζ > 0,

p3n = O(n2−ζ),

⇒ p3 = O(n1−ζ),

⇒ p = O(n1/3−ζ/3).
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Thus, p = O(nδ), where δ ∈ (0, 1/3).
We take z = p4

n4δ−1/2 t, where t is a constant, then we get: for the error
term,

2p3λ2
1 ≤ 4p3m2

π

p4t/n4δ−1 + n + 1
p8t2/n8δ−2 + 2p4t/n4δ−1 + 1

(1 + o(1))

=
4m2

π

p7tn4δ−1 + p3n8δ−1 + p3n8δ−2

p8t2 + 2p4tn4δ−1 + n8δ−2
(1 + o(1))

=
4m2

π
O(

1
p
)

and

2p3λ2
1 ≤ 4p3m2

π

p4t/n4δ−1 + n + 1
p8t2/n8δ−2 + 2p4t/n4δ−1 + 1

(1 + o(1))

=
4m2

π

p7tn4δ−1 + p3n8δ−1 + p3n8δ−2

p8t2 + 2p4tn4δ−1 + n8δ−2
(1 + o(1))

=
4m2

π

O(n11δ−1) + O(n11δ−1) + O(n11δ−2)
O(n8δ) + O(n8δ−1) + O(n8δ−2)

(1 + o(1))

=
4m2

π
O(

1
n1−3δ

).

Finally we get when p = O(nδ), where δ ∈ (0, 1/3),

lim
n→∞ |P (Z(pn),d ≤ p4

n4δ−1/2
t) − e

−mp(p−1) a

2a−1
[2aa(1−a)1−a]−n√

2πa(1−a)n | = 0,

where

m = (2d − 1)2

a(t, p, n) =
p4t/n4δ−1 + n + 1

2n
.

4 Significant Pairs Selection using the BET Z-score

As described in Section 1, when applying BET in a large-scale data set, the
Bonferroni adjustment based on the BET p-value could be a conservative
method to select the interesting nonlinear dependence pairs. While the scope
of this paper is purely theoretical, deeper investigation using simulations
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would be very interesting; for example, one could explore the power compar-
ison of the maximal BET z-scores with the Bonferroni correction and that
with the proposed extreme value theory by replicating the common depen-
dency structures such as linear, parabolic, circular, sine, checkerboard as in
Zhang (2019). Based on the theorem of the extreme value distribution of
the maximal BET z-statistic (Theorem 4), we reject the independence null
hypothesis when the observed z-statistic is large compared to the extreme
value distribution. In particular, the BET z-score is a meaningful statistic to
select the pairs of variables which tend to be nonlinearly dependent. For a
data set with p variables X1, X2, .., Xp and n independent observations where
p = O(nδ), δ ∈ (0, 1/3), after giving a fixed choice of the BET depth param-
eters d1 = d2 = d, we identify the set of variable pairs that are potentially
nonlinearly dependent as:

T = {(i, j) : i < j and Zij,d ≥ zα}, (6)

where Zij,d is the z-statistic of BET between Xi and Xj , and zα is the 100(1−
α)% quantile of the distribution given in Theorem 4 with the significance
level α. Larger α results in a more conservative test which means fewer
significant pairs are selected in T .

5 Discussion

In this paper, we have developed a limiting distribution theory for the max-
imal BET z-score under the condition p = O(nδ), δ ∈ (0, 1/3). A limitation
of this theory is demonstrated by the TCGA data analyzed in Xiang et al.
(2022), which is an example data set that has a large number of variables
(16615 genes) and only 817 samples. Thus the theorem of the maximal BET
z-statistic distribution (Theorem 4) is less relevant for this TCGA data set.
An open problem is extending the condition p = O(nδ), δ ∈ (0, 1/3) to
analyze the behavior of BET for larger data sets or even the high-dimension
low-sample size domain (HDLSS) (Hall et al., 2005), i.e., finding the distribu-
tion of the maximal BET z-score under the condition p = O(nδ), δ ∈ (0, ∞).
We would also like to mention that the fast algorithm for BET symmetry
statistics with bitwise operations is proposed in Zhang et al. (2023). More
specifically, these are different domains of asymptotic, and different high
dimensional theories could be considered: first, we should consider the con-
dition p = O(nδ), δ ∈ (0, 1); second, it would be interesting to pursue random
matrix theory (Tracy and Widom (2002); for a useful introduction, see Bai
and Silverstein (2010) and Tao (2012)), which helps solve this question under
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the situation p = n; third, the HDLSS domain is another interesting open
problem, i.e., we want to solve this extreme value distribution question when
p � n (Zhang, 2017).

Such generalizations could extend the application of the significant pairs
selection using the BET z-score into various important real data situations.
For additional future work, this significant pairs selection approach based
on the BET z-scores can be extended to the variable selections in different
models, such as regression models or neural networks, which involve the
influence of nonlinear relationships between predictors.
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