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ABSTRACT. Built upon the hypoelliptic analysis of the effective Mori-Zwanzig
(EMZ) equation for observables of stochastic dynamical systems, we show that
the obtained semigroup estimates for the EMZ equation can be used to de-
rive prior estimates of the observable statistics for systems in the equilibrium
and nonequilibrium state. In addition, we introduce both first-principle and
data-driven methods to approximate the EMZ memory kernel and prove the
convergence of the data-driven parametrization schemes using the regularity
estimate of the memory kernel. The analysis results are validated numerically
via the Monte-Carlo simulation of the Langevin dynamics for a Fermi-Pasta-
Ulam chain model. With the same example, we also show the effectiveness of
the proposed memory kernel approximation methods.

1. Introduction. The projection operator method, which is also known as the
Mori-Zwanzig (MZ) formulation [24, 39], is a widely used dimension-reduction
framework in statistical mechanics. The key feature of such formulation is that it al-
lows us to formally derive the generalized Langevin equations (GLEs) [40, 3, 32, 14]
for coarse-grained quantities of interest based on microscopic equations of motion.
Such GLEs can be found in a variety of applications, including molecular dynam-
ics [20, 33, 10, 9], fluid mechanics [26, 11], and, more generally, systems described
by nonlinear partial differential equations (PDEs) [31, 29, 23, 22]. Although being
used in the physics and applied mathematics communities for a rather long time, a
systematic study of the MZ equation within a rigorous analytical framework is still
lacking. This is closely related to the well-known difficulty in the quantification of
the orthogonal dynamics in the MZ equation. Being a high-dimensional flow that is
generated by an integro-differential operator, the mathematical properties such as
the regularity and ergodicity of the orthogonal dynamics are not well understood.
Hence from a theoretical point of view, there is no available prior estimate which
helps to determine the properties of the MZ memory integral and the fluctuation
force. As a result, the numerical approximations of these terms have to be done in
a rather ad hoc manner.
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Some recent works have shed light on this direction. In particular, Kupferman,
Givon and Hald proved [13] the existence and uniqueness of the orthogonal dynam-
ics for a classical dynamical system with Mori’s projection operator. More recently,
Zhu and Venturi [34] were able to get the uniform boundedness of the orthogonal
dynamics propagator for Hamiltonian systems using semigroup estimates [34]. The
theoretical result obtained therein was later extended and greatly improved for the
analysis of the effective Mori-Zwanzig (EMZ) equation corresponding to stochastic
differential equations (SDEs) [38]. In particular, they developed a thorough math-
ematical analysis of the EMZ equation using the hypoelliptic technique developed
mainly by Hérau, Nier, Eckmann, Hairer and Helffer [16, 7, 15]. The key finding is
that the ergodicity and regularity of the stochastic flow generated by the Markovian
semigroup e X, where K is the Kolmogorov operator corresponding to the SDE,
implies the ergodicity and regularity of the stochastic flow generated by the EMZ
orthogonal semigroup e *eX< | provided that P = T — Q is a Mori-type projection
operator. This connection enables us to get a clear understanding of the dynamical
properties of the orthogonal dynamics generated by e~t<<<,

In this work, we continue Zhu and Venturi’s hypoelliptic study of the EMZ equa-
tion for stochastic dynamical systems. The main objective of the paper is twofold.
First, we apply the semigroup estimate obtained in [38] to different stochastic sys-
tems and show that it enables us to derive useful prior estimates for the statistics
of observables. In particular, we prove that the reduced-order observables in some
commonly used stochastic models have exponentially decaying time autocorrelation
function and EMZ memory kernel. This fact verifies the frequently used exponen-
tially decaying assumption for the memory kernel from a theoretical point of view.
Secondly, we will demonstrate the effectiveness of the series expansion approxima-
tion method for the memory kernel reconstruction of the EMZ equation. To this
end, we will focus on the first-principle parametrization method [37] and the data-
driven methods [1, 2, 4, 21] developed over the years. For the numerical examples
we considered, these two methods are proven to yield accurate simulation results
within the range of their applicability. Moreover, we will prove the convergence of
the commonly used data-driven method using the regularity estimate for the orthog-
onal dynamics. For the reduced-order modeling problem of a large-scale stochastic
system, the proposed analysis for the EMZ equation shows the potential usage of
the hypoelliptic method in analyzing the dynamical behavior of the reduced-order
model. The numerical methodology provides a practical way to solve it.

This paper is organized as follows. Section 2 briefly reviews the derivation of
the effective Mori Zwanzig (EMZ) equation for the stochastic dynamical system
driven by white noise. In Section 3, we focus on the equilibrium and nonequilibrium
dynamics of the interacting anharmonic chains and derive prior estimates for various
observable statistics such as the time autocorrelation function, the nonequilibrium
mean, the EMZ memory kernel, and the fluctuation force. In Section 4, we introduce
different parametrization methods to approximate the EMZ memory kernel and
prove their convergence. All these theoretical results are verified numerically in
Section 5 via the simulation of the Langevin dynamics for a Fermi-Pasta-Ulam
chain model. The main findings of this paper are summarized in Section 6.

2. Effective Mori-Zwanzig equation for stochastic system. The starting
point of our work is the Mori-Zwanzig equation for stochastic dynamical systems.
Such an equation has been derived by different researchers [25, 9, 17, 38]. Here we
adopt the formulation introduced in [38]. To this end, we consider a d-dimensional
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stochastic differential equation in R%:

B — Pla) +o@)E0,  @(0) =20~ poe), W

where F : R? — R? and o : R? — R¥™ are smooth functions. &(t) is a m-
dimensional Gaussian white noise with independent components, and o = x(0) is
a random initial state characterized in terms of a probability density function pg ().
It is well known that the system of SDEs (1) induces a d-dimensional Markovian
process in R%. This allows us to define a composition operator M(t,0) that pushes
forward in time the average of the observable u(t) = u(x(¢)) over the noise, i.e.,

Eg(y[u(z(t))|zo] = M(L, 0)u(xo) = et'cu(:co). (2)

Using Itd’s interpretation for the stochastic integral, we note that M(¢,0) is a
Markovian semigroup generated by the following (backward) Kolmogorov operator
[28, 18]:
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With the evolution operator M(t,0) available, we can now derive the Mori-Zwanzig
equation for noise-averaged quantity Eg()[u(x(t))|zo]. To this end, we introduce
a projection operator P and the complementary projection Q@ = Z — P. By differ-
entiating Dyson’s identity [37, 36, 5] for the Markovian semigroup M(t,0), we can
obtain the exact evolution equation governing the evolution of (2):

0

t
ate“Cu(O):et’CPICu(O)+etQ’<QQ/cu(o)+ / e CPReI=IKRLOu(0)ds, (4)
0

where u(0) = u(x). Note that in (4), e!S* QK is replaced by a another operator
e!RL QLK which makes it slightly different from the commonly used MZ equation
[17, 9]. Such a modification is needed for the semigroup estimation we are going
to present. It is possible because Q is a projection operator, e?@* and e!9*< are
equivalent in the range of Q. The three terms on the right-hand side of (4) are
called streaming term, fluctuation (or noise) term, and memory term respectively.
It is often useful to compute the evolution of the observable w(t) within a closed
linear space such as the image of the projection operator P. Hence we apply the
projection operator P to (4) and get the projected equation:

t
%Pemu(()) = Pe*PKu(0) + / Pe PR QL u(0)ds. (5)
0
Eqn (4) and its projected form (5) only describe the noise-averaged dynamics of
the observable u(x(t)), hence they are called as the effective Mori-Zwanzig (EMZ)
equations for the stochastic system. The EMZ equation and the classical MZ equa-
tion for deterministic (autonomous) systems [37, 34, 36] have the same structure.
The only difference is that the Liouville operator £ is replaced by a Kolmogorov

operator K.

In this paper, we mainly focus on the EMZ equation corresponding to Mori-type
linear projection operator. To derive such an equation, we consider the weighted
Hilbert space H = L?(R%, p), where p is a positive weight function in R?. Let

0.9) = gy [ P@s@p@yie  hge (©
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be the inner product in H. The Mori-type projection operator P is a finite-rank
operator in H with the canonical form:

M
Ph= Y Gi;'(ui(0),h),u;(0),  heH, (7)
i,j=1
where G; = (u;(0),u;(0)), and u;(0) = u;(x(0)) (¢ = 1,...,M) are M linearly
independent functions with respect to inner product (-,-),. Since P is a finite rank
operator, we can rewrite the EMZ equations (4)-(5) equivalently as:

d%ff) — Qu() +/0 K(t — s)yu(s)ds + £ (1), (8)
d t
apu(t) = QPu(t) + /0 K (t — s)Pu(s)ds, (9)
where w(t) = [u(t),...,up(t)]T and
Gij = (u;(0),1;(0)), (Gram matrix), (10a)
M
Q;; = Z G;kl (ur(0), Ku;(0)), (streaming matrix), (10b)
k=1
K;;(t) = Z Gj_kl (ur(0), Ke" 2 QKu;(0)), (memory kernel), (10c¢)
k=1
fi(t) = ' 9*2QKu;(0)  (Auctuation term). (10d)

To be noticed that here we allow a slight abuse of notation and use w(x(t)) to
represent its noise average Eg () [u(x(t))|xo]. This applies to all EMZ equations in
the following sections. In statistical mechanics, the EMZ equation (8) and (9) are
often called the generalized Langevin equations (GLEs). The projection operator
method provides a systematic way to derive such closed equations of motion for
reduced-order observables u(x(t)) from the first principle. Depending on the choice
of the Hilbert space weight function p, the EMZ equations (8)-(9) yield evolution
equations for different dynamical quantities. When considering SDE (1) in the
context of statistical physics, the most common setting of p is p = pg = pg, where
po = po(x) is the distribution of the random initial condition (see (1)), and ps =
ps(x) is the steady state distribution of the stochastic system. For such a case,
GLE (8) yields the full dynamics of the noise-averaged quantity Eg s [u(x(t))|xo],
which is a stochastic process since the initial condition g ~ pg is random. On the
other hand, the projected GLE (9) yields the evolution equation of the steady state
time-autocorrelation function of w(x(t)), which is defined as [27, 38]

Cij (1) = (ui(@(1)), uj (1)) ps = Pe™ui(0) = Eay [Egr) [ (t)u;(0) o]
= (M(#,0)us(0), 4;(0)) o, = (M(2,0)ui(0),;(0)) ps-

Using the projected EMZ equation (9) to derive the evolution equation for the time
auto-correlation function (11) is the main technical difference between our EMZ
framework and the ones used in [17, 9]. As we will see in Section 5, approximating
this projected equation is the key step of our reduced-order modeling. Other pro-
jection operators such as the Zwanzig-type projection are also used in the literature
[17] to derive nonlinear GLEs for reduced-order quantities. This, however, is not
the main focus of the current paper.

(11)
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Lastly, we emphasize that the GLEs for deterministic Hamiltonian systems in the
Gibbs equilibrium state p = peq = e BH | 7 satisfy the second fluctuation-dissipation
theorem:

M
Kij(t) = ZG;; (ug(0), Le2F2QLu;(0)) .,
k=1

M M
= — Z G;;(Qﬁuk (0)7 eQﬁQQﬁui (0)>Peq - Z Gj_kl <fk (O)a fl (t)>Peq (12)
k=1

k=1

because of the idempotence of the symmetric operator @ and the skew-adjointness
of the Liouville operator £ with respect to the inner product (-, ) peq- HOWeEVer, since
the Kolmogorov backward operator I in the EMZ equation is not skew-adjoint, the
second fluctuation-dissipation theorem of the form (12) is no longer valid and needs
to be generalized. We refer to our recent work [35] for more detailed exploration in
this regard.

3. Applications of the hypoelliptic analysis for the EMZ equation. In the
previous section, we demonstrated how the EMZ equation is derived from the evo-
lution operator e* and the orthogonal e*@X2. In this section, we focus on the prior
estimation of these two semigroups and apply the established analytical results to
various physical models. To be consistent with the literature on the hypoelliptic
analysis, we will use the negative of K and QK Q as semigroup generators and write
the semigroups appearing in EMZ equation (4) as e~ and e~*9X2. Moreover,
all estimates are obtained first in the “flat” Hilbert space L?(R) and then trans-
formed back in weighted Hilbert space L?(R%; p). The relationship between L?(R%),
L?(R%; p) and the operators defined therein can be summarized using the following
commutative diagram:

PRY —4 . 2R )
PR P.K, O
RS —— (R%p)

where U and its inverse &/ ~! are unitary transformations which will be specified
later for differential stochastic models. More detailed explanations can be found in
[38]. Throughout this paper, we denote the standard L?(R?) norm as || - ||. The
inner product in L2(RY; p) is defined as (6) with the induced weighted norm || - || L2

given by
1 R
g2 = Vpdz| .
Il = | o [ (0]

Unless otherwise stated we only consider scalar quantities of interest. The following
theoretical results were proved in [38]:

Proposition 1 (Zhu and Venturi [38]). Assuming a Kolmogorov operator K of the
form (3) is a mazimal-accretive operator in L*(R?) which satisfies the hypoelliptic
conditions listed in Theorem 1 [38]. If the spectrum of K in L*(R™) is such that
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o(K) NiR = {0}, then there exits positive constants o and C' = C(a) such that

lle™* g — Foiio|| < Ce™ o], (13)
for g € L2(R™) and all t > 0, where 7y is the spectral projection onto the kernel of
K. Moreover, the n-th order derivatives of the semigroup etk satisfies

—tK £n t ~ 1 " —at ]- ].
le”"™K"|| < | Bg - + ||7oK| ) , B(t)=Ce 1+E+~~+W (14)

for some positive constant C and M.

In [38], it is further shown that the similar semigroup estimates hold for orthog-
onal semigroup etk if P =7 — Q is finite-rank, symmetric projection operator
such as Mori’s projection. In particular, we have
Proposition 2 (Zhu and Venturi [38]). Assume that K satisfies all conditions listed
in Proposition 1. If P : L*(R") — L*(R") is a symmetric, finite-rank projection
operator, and the spectrum of OKQ in L*(R™) is such that o(QKQ) NiR = {0},
then there exits positive constants ag and C' = C(ag) such that

le=t 99y — 7a0|| < Ce™ ot |do| (15)

for all iy € L*(R™) and t > 0, where 7?0 is the spectral projection onto the kernel

of QKQ. Moreover, the n-th order deriwatives of the semigroup e *X2 satisfies
e~ t P n
e~ e(GRay | < (B (4) + ||7r§~)<Q/cQ>||)
~ —aot 1 1
Bg(t) = Ce 1 + +- o | (16)
for some positive constant C and Mg.

The proof of Proposition 1-2 mainly uses the spectrum estimate for operator K
and OKQ and the functional calculus. The analysis is rather technical and hence
will not be repeated here. In the following subsections, we focus on applying these
theoretical results to specific stochastic dynamical systems.

3.1. Application to Langevin dynamics. Consider the Langevin dynamics of
an interactive particle system, described by the following system of SDEs in R?¢:

dq_ lp
dt  m

17
dp y (17)

B Vi)~ Lptoth)

In eqn (17), m is the mass of each particle, V(q) is the interaction potential and
&(t) is a d-dimensional Gaussian white noise process modeling the physical Brow-
nian motion. The parameters v and ¢ are linked by the fluctuation-dissipation
relation o = (2v/B)'/2, where B is proportional to the inverse of the thermody-

namic temperature. The (negative) Kolmogorov operator (3) associated with the
SDE (17) is given by

B

where “” denotes the standard dot product. If the interaction potential V(q) is
strictly positive at infinity and satisfies the weak ellipticity assumption (Hypothesis

1
K=-2.9,+V,V(g)- vp+»y(:l-vp—A,,), (18)
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1 in [38]), then the Langevin equation (17) admits a unique invariant Gibbs distri-
bution given by pe,(p,q) = e #"/Z, where H = % + V(q) is the Hamiltonian
and Z is the partition function. In [38], it is further proved that Proposition 1 holds
for any @ip € L?(R??) and t > 0 with 7o(-) = ((-),e #M/2)e=#M"/2. Now we choose
Peq as the weight of Hilbert space L2(R%; p,,), then the L2-estimation (13) can be
unitarily transformed [38] into the semigroup estimate in L?(R?%; p,,) as:

—tK

||€ ug — 7TOU0||qu S C’(ZﬁatHuOHqu7 (19)

where 7o(+) = ((-))eq = E[(+)]. Similarly, for orthogonal semigroup e*9*< we have:
=19 %ug — n8uq |12 < Ce @ ug]l . (20)

Different from the estimate for e ¥, the explicit expression of the kernel projection
operator 7r0 depends on the specific form of P. For Mori-type projection operator P
we considered if there exists unique observable set {w;}2; such that (w;,u;)eq = 0

and Kw; = K*w; = u;, then 7709 admits analytical form

7 () = mo(-) + P(-) +Z s W) eqWi.- (21)

Otherwise 72(-) = mp + P. With semigroup estimates (19) and (20), we can derive

prior estimations for different observable statistics.

FEquilibrium state. The equilibrium Langevin dynamics was studied thoroughly in
[38]. Here we only review the key estimation result while the derivation is omitted.
If the initial condition of the Langevin dynamics is (17) set to be py = p(t =
0) = peg, then the system is in a statistical equilibrium state, the corresponding
dynamics is called the equilibirum Langevin dynamics. For equilibrium system, the
time autocorrelation function C(¢) of a scalar observable u(x(t)) = u(p(t), q(t)) is
stationary quantity satisfying C(¢,s) = C(|t — s|,0). Following the definition (11),
we have

C(t) := B0 [Ee(o [u(t)u(0)[x(0)] = (€™ ug, t)eq- (22)

Using Cauchy-Schwarz inequality and the semigroup estimate (19), for uy € L2
(R2%; p,) it is easy to get the asymptotic estimate for C(t):

|C () — (uo)2,| = [{e™ ™ uo, uo)eq — (u0)?Z,|
= |<e UO — (U0)eqs 10) eq]

< [le™"uo — (uo) , S0 uglgz - (23)

This implies the equilibrium correlation function C(t) approaches to the equilibrium
value (ug)?, = E*[uo] exponentially fast. To get the EMZ equation for observable
u(t), we introduce Mori-type projection P = (-, ug)equo. Substituting this into EMZ
equation (8) and (9) yields:

%u( — /ths s)ds + f(t), (24)

—C( /Kt—s (5)ds. (25)

Here we note again that wu(t) is actually the white noise-averaged quantity Eg
[u(z(t))|z(0)] and Q = (ug, Kug)eq/(ud)eq- By using Cauchy-Schwarz inequality
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and the semigroup estimate (20), we can get the exponential convergence estimate
for the EMZ memory kernel K (t) and the fluctuation force f(t):

[ K (1) — (KZquo, 75 QKuo)eq| < Ce™ |G o]l 2, | QKuo | 12, (26)
| £ = m§oKu|| , < CemtQkuollz,. (27)

where K7, is the adjoint operator of K in L?(R?%; p,) and the specific form of the
kernel prOJectlon operator 7r0 depends on P and the observable ug, as we explained

n (21).

Noneguilibrium nonsteady state. Semigroup estimate (19) can also be used to get
prior estimates for nonequilibrium Langevin dynamics. If the initial condition of
(17) is set to be pg = p(t = 0) # peq, then the system evolves from a nonequilibrium
nonsteady state. We now study the dynamics of the nonequilibrium mean function
M (t) defined as:

M(t) := Ea(0)[Ee () [u(t)|2(0)] = (™ uo) -

M (t) encodes the statistical moment information for a scalar observable u(x(t)).
Using the Cauchy-Schwarz inequality, the substitution pg = po./peq/+/Peq and the
estimate (19), we obtain the asymptotic estimate for M (¢):

|M(t) = (uo)eq| = |(e _tKu0>po = ({u0)eq) pol
= |(e” UO - <U0>eq>po|

< [le™uo — (u(0))eql 2,

Different from the equilibrium case, the convergence of the nonethbrlum mean
M (t) requires the finiteness of the L?(R2?) norm ||p3/peq|, which imposes an addi-
tional constraint on the initial probability distribution pg. For instance, if the initial
probability density is set to be the Gibbs distribution py = e~ ##/4 /Z3/4 at high
temperature T' oc 4/3, we have |[p?/peq| = +00 therefore the above estimate is not
sufficient to guarantee the exponential convergence of M (t) towards the equilibrium
value (ug)eq. A similar conclusion can be obtained from the return to equilibrium
estimate for the probability density function p(t,p, q) (see [15], Section 6.5):

The above estimate is a dual of (13) which holds only for pg = p(0,p,q) €
e PM/28"(R?), where S’(R??) is the space of tempered distributions. Obviously,
when py = e P4/ Z5,, ¢ e PM/2S'(R??), there is no theoretical guarantee that
the marginal distribution p,,(t) would converge to the equilibrium marginal distri-
bution.

2
1
p(t,p.q) — Ee*ﬁ” ¢?dpdg < Ce™21,

3.2. Application to a heat conduction model. Consider a chain of nearest-
neighbor interacting anharmonic oscillators coupled to two heat baths at end of the
chain. Without adding external forces, the chain dynamics is determined by the
system Hamiltonian:

N

Hs(p,q)=2( +V1qz>+ZV2 G — Gi1).

=0
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Now we attach the boundary oscillators to two thermostats with temperature 77,
and Ty, then the dynamics of the resulting heat conduction model [8, 6, 7] is
described by the system of stochastic differential equations:

dg; = p;dt, PO
dpo = —V{(qo) + Vs (q1 — qo)dt + rrdt
dpy = —V{(qn) + Vi (an — qn—1)dt + rrdt

dpj = —=V{(g;)dt — V3(q; — qj-1)dt + V5(gj41 — q;)dt, j=1b-N=1
dry, = —yrrrdt+ A yngodt — Apy/2yp ToEr (t)dt

drr = —yrrrdt + MhyraNdt — Ar\/2vRTRER(t)dt

(28)
where \p, Ar are the coupling constants between the boundary oscillators and the
heat bath. &1, (t) and {r(t) are the standard Gaussian white noise. The Kolmogorov
backward operator IC corresponding to the system of SDEs (28) is given by:

K =N yLTLo?, + ARvrTrOZ, — vo(rL — A1q0)0r, — YR(TR — ARAN)Orp
N
+ rL0p + TROpy + Z(pia% - Z ‘/2 —qi-1 (8 - api—l)'

i=0
(29)
Equilibrium state. When T1, = Tr = T, the system admits an invariant proba-
bility density which is given by the extended Gibbs distribution p., = e~ P9(P.aT) /Z,
where § = 1/T and G(p, g, r) is the effective energy corresponding to the chain+heat
bath system, defined as

2 2

G(p.q.r) = Hs(p.q) + 535 + 535 — dors — anrr (30)
The analysis for the equilibrium heat conduction model is exactly the same as the
one for the Langevin dynamics. For potential energy Vi and V5 satisfying suitable
conditions listed in [7], Eckmann and Hairer proved that the spectrum of the trans-
formed Kolomogorov operator K in L2 (R2N+4) is discrete and contained in a cusp
Si. Therefore according to Proposition 1, if K has no purely imaginary eigenvalue
in L2(R2V+4) we have the exponential decay estimate for scalar observable u(x(t)):

lle .S Ce_o‘t||u0||Lz , (31)

et @Ky, — xS uOnp < Cem ! lug|1z,, (32)

—thu

where weighted Hilbert space L2 = L*(R?, Peq). Following the procedure outlined
in Section 3.1, it is easy to obtam corresponding exponentially decaying estimates
for the equﬂibrium correlation function C(t), EMZ memory kernel K (t), and the
fluctuation force f(t). For the sake of brevity, the derivation details are omitted.

Nonquilibrium steady state. When T, # Tg, it is proved in [6] that the system
admits a unique invariant measure p. The corresponding probability density pg is
a smooth function in R2V*4 and can be represented as

ps = h(p,q,r)e FoIPar), (33)

In (33), Bo < min{Br,Br}, h(p,q,r) € Nyso L2 (R*VH4.G2(p, g, 7)) is a function
decaying faster than any polynomials as ||z| — co. pg characterises a nonequilib-
rium steady state of the system. Generally speaking, it is hard to get an explicit
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expression of iz(p, g, ), hence the probability density (33). However, we can still use
the Gibbs form equilibrium probability density e=#9 /Z as a reference state to derive
prior estimates. To this end, we consider a weighted Hilbert space L?(R*N*4:p,.),
where p, = e72509 /7 and 1/By = Ty > max{Ty,Tr}. For the nonequilibrium case,
the spectrum estimate obtained by Eckmann et al in [7] still holds, which implies
the following exponentially decay estimate for scalar observable u(x(t)):

e~ = moollzs < Ce™ fuollzz (34

At the steady state, the correlation function C(t) is stationary which can be defined
as (11) if the initial condition of (28) satisfies p(0) = pg. Using Cauchy-Schwarz
inequality and the formal expression of the steady state density (33), we obtain

C(t) = (u0)25| = [{e™ w0, u0) ps — (U0) s 0) ps|
= ‘<6_t’6u0 - <uO>PS’uO>PS|
< Jlem™ug — (o) ps [l 2 [P, @, 7)uo|| < Ce™**||h(p, g, ®)uo |l |[uol| L2

Since h(p,q,r) € MN,>0 L2(R?N+4. G2 (p, q, 7)), for any observable u(z(t)) € S

(R2N+4) " e.g. polynomial functions, we have ||iL(p,q,a:)uo||||u0||Lg < 4o00. The
above estimate implies that the steady state correlation function C(t) decays to
(u0>f, . exponentially fast. We emphasize that all estimates in Section 3 can be
readily generalized to the N-dimensional EMZ equation (8) and (9) where the ob-

servable u(x(t)) is a N-dimensional vector [38].

4. Memory kernel parametrization and the reduced-order modelling.
From the previous discussion, we see that the prior estimation for the EMZ equation
memory kernel implies that K () is bounded by an exponentially decaying function.
However, it does not answer what K (¢) exactly is, which is an important problem
for the application of the EMZ equation. In this section, we turn to focus on the
numerical approximation of the EMZ memory kernel. The main method we will
consider is the series expansion approach. Over the years, various basis functions
have been used to construct approximation schemes of the classical system Mori-
Zwanzig memory kernel [1, 2, 20, 21, 19, 4, 36], where the expansion coefficients
(parameters) are obtained through first-principle or data-driven methods. We will
show that for the EMZ equation corresponding to the SDEs, similar approaches
can be used to parameterize the memory kernel. In particular, we will prove that
many commonly used data-driven methods are convergent due to the regularity of
the orthogonal flow.

4.1. The first-principle method of parametrization. A first-principle method
to approximate the memory kernel was considered in [36, 37]. It is shown that a
series expansion of the memory kernel can be derived exactly from the semigroup
expansion of orthogonal semigroup e!@X<. Following the derivation given therein,
we consider the series expansion of the orthogonal semigroup:

4OKQ S ()8, (0K D), (3)
n=0

where ®,, (QK Q) is the n-th order polynomial function of operator QK Q and g, (¢)
the corresponding temporal basis. The simplest choice is the Taylor expansion where
®,, and g, are ¢, (QKQ) = (QKQ)™ and g, (t) = t"/nl. Other possible choice of
®, (n=0,...,N) can be, e.g. the Faber polynomials [36], and the corresponding
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gn(t) = e~ J,,(bt), where J,, (bt) is the Bessel function of the first kind. Semigroup
expansion (35) leads to function series expansions of the memory kernel. For a
one-dimensional EMZ equation, a substitution of (35) into (10c¢) leads to

K(t) = Y gty 2n 1QLQ) o, ), Z ngn(t) (36)

=0 {uo, o)

where k,, is the n-th expansion coefficient which can be understood as the operator
cumulant averaged with respect to the probability density p. Naturally, a truncation
of the expansion series (36) yields an approximation of the exact memory kernel.
From a theoretical point of view, it is hard to prove the convergence of expansion
(36) for nonlinear SDEs due to unboundedness of the operator QK Q. However, the
validity of this approximation method has been verified numerically for linear and
nonlinear Hamiltonian systems in the statistical equilibrium [36, 37].

First-principle method to calculate k,. The first-principle method calculates k,
via the evaluation of the operator cumulants in (36). This can be realized using
a recursive scheme and the associated combinatorial algorithm introduced in [37].
The original method is developed for the MZ equation of deterministic Hamiltonian
systems. However, it can be readily generalized to address stochastic systems with
some slight modifications of the derivation. Here we only briefly review the main
idea of the algorithm and refer to [37] for detailed explanations. Without loss of
generality, it is convenient to consider a one-dimensional Mori’s projection:

<f7 u0>P

Pf= 20 37
7= Tuor o), (37

and introduce the following notation

K(OK) g, u Kiug, u
i = Q) o, wo)y - (Ko, o) (38)
<u07u0>p <u(0)7u(0)>l)

Clearly, if we are given {u1,..., int2}, then we can easily compute {ki,...,k,}

n (36), therefore the n-th order approximation of the memory kernel K(t) for
any given polynomial function ®,. For example, if ¢,(QKQ) = (QKQ)" then
kq = pg+2/q! (¢ =0,...,n). Directly evaluating p; is a daunting task since it in-
volves taking operator powers and averaging of operator QK Q which is a integral-
differential operator by definition. However, the following recursive formula indi-
cates that p,; can be constructed iteratively from ~;:

P =91 M2 =72~ @, e e =T— Y kg (39)

The proof of (39) is provided in A. Recurrence relation (39) shifts the problem of
computing {u1,..., s} to the problem of evaluating the coefficients {v1,...,v,}
defined in (38). This can be done iteratively using the enumerative combinatorial
algorithm introduced in [37], with the Livouille operator £ used therein replaced
by the Kolomogorov operator K. For the sake of brevity, we omit technical details
which can be found in [37]. In B, we provide the derivation of the combinatorial
algorithm for the Langevin dynamics (17) of the Fermi-Pasta-Ulam (FPU) chain.

4.2. The data-driven method of parametrization. Different from the first-
principle method, many established data-driven methods can be used to parame-
terize the memory kernel. Generally speaking, these methods use data collected
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by simulating stochastic dynamics (1) to approximate the expansion coefficients
k,. The expansion series can be formulated in the temporal space as well as the
frequency space [19]. In this section, we are only concerned with the time-domain
expansion and use the following ansatz to approximate K (t):

(K(t), $n(t))w
(6n(t), n(t))w

In (40), {¢n(t)} is the basis function defined in some open interval I C RT. The
common choice of which is the orthogonal functions in a weighted Hilbert space
L?(I,w). Under this setting, (40) becomes a generalized Fourier series. Hence,
we can apply established results in approximation theory, say [12], to prove the
convergence of the series expansion (40) as N — co. As a preparation, we first use
the Cauchy-Schwartz inequality and semigroup estimate (16) to obtain the upper
bounds of the n-th order derivative ' of the memory kernel:

[K()] = [ e 9C2(QKQ)" Quo, uo)
= ("9 2(QKQ)" Quo, Kuo), |

N
K(t)~ > kndn(t), where k, = (40)
n—0

t n
< 9Kl ol (Bo (%) + 19Ok o0, (1)

According to the definition of Bg(t) in (16), estimate (42) implies that K (™) (t) is
bounded by a continuous function of time in domain I = (T7,T%), where 0 < T} <
Ty < +oo. Hence for suitable weight function w, we have K(t)|; € N, H(I),
where K (t)|; is the restriction of K(¢) in the open interval I and HE(I) is the
weighted Sobolev space defined in I. This regularity provides sufficient conditions
for the convergence of expansion (40). If {¢,(t)} is chosen to be, say the shifted
Jacobi-type polynomials defined in I, then according to Theorem 6.2.4 in [12], the
following convergence estimate holds for any 0 < m < N:

<
LE ()

(1 _ t2)m/2K(m) (t)‘

N
. C
HK(t)Iz—nZOknén(t) N H L’ tel=(Ty,T).

(43)

Since K (t) is naturally defined in domain I = (0,400), we can also set {¢,(t)} to
be the standard Laguerre polynomial with the weight function w = e~*/2. For fixed
n € NT, using (42) we can get

Jim KO (0)] < O Quoll 1Ko I (QCQ)", (44)

!The definition of the n-th order derivative of K(t) is a rather technical problem.
In (42), it is formally expressed using the time derivative of et2K2 ie. KM (1) =
(K*et9RL(QK Q)" QKug, uo)p. Mathematically, K(™)(t) is actually a weak derivative defined
via the Dunford functional integral:

KM () = </ A" KC* R(A, QK Q) QK uodA - uo> ; (41)
ouU P
where R(\, QKQ) = (A — QK Q)™ ! is the resolvent of operator QKQ and dU is the boundary of
the cusp U which contains the spectrum of QK Q. Note that the right hand side of (41) is a smooth
function of ¢, hence differentiable to an arbitrary order. More details on the weak convergence of
the functional integral can be found in [15, 38].



EFFECTIVE MORI-ZWANZIG EQUATION FOR THE REDUCED-ORDER MODELING 971

which yields |K (™ (t)[t™/? € L2 (I). According to Theorem 6.2.5 in [12], this leads
to the following convergence estimate for any 0 < m < N:

N
HK(t) =D kndn(t)
n=0

__C
~ (VN

H /2 r(m >(t)‘

, tel=(0,400).
Lg (D)

L2(D)
(45)

In the above derivation, semigroup estimate (16) holds in the uniform topology for
any scalar observable u € L?(R™;p). As a consequence, the convergence rate we
obtained on (43) and (45) are not optimal. But we already know the convergence is
spectral, i.e. faster than any polynomials. As far as we are concerned, this is the first
convergence result for data-driven methods used in the Mori-Zwanzig framework.
We also note that error estimate (43) only implies the approximation of K (¢) within
(T1,T>) is accurate. In order to maintain low extrapolation error, in applications we
will use basis functions defined in I = (0,400) to approximate the memory kernel.

Data-driven method to calculate ky,. Substitution of the truncated expansion (40)
into the projected EMZ equation (5) leads to the approximation scheme for Pu(t).
Since for Mori’s projection, we have Pu(t) = C(t) according to the definition (11),
the scheme reads:

d
70t ~QC(t +Zk/¢>n C(t — s)ds,

where the stationary correlation function C(t) can be constructed from Monte-Carlo
(MC) simulation data of the numerical solution of SDE (1), and the expansion coef-
ficients k,, can be obtained by solving numerically the following regression problem:

d
—C) - Zk /¢n C(t — s)ds

In Section 5, we will use the LASSO regression [30] to solve (46) and get the approx-
imated parameter set {k,})_;. When compared with the first-principle method,
the data-driven method in general has wider range of applicability but also demands
more computational power because it requires the MC simulation data of the full
dynamics.

min

{Fn iy (10

L)

4.3. Reduced-order modeling. With the memory kernel K(¢) obtained using
the first-principle or the data-driven parametrization method, we can now work
on the reduced-order modeling for any low-dimensional observables u(x(t)) of the
stochastic system. Under the Mori-type projection, we see that the projected EMZ
equation (9) and the full dynamics (8) (with random initial condition py = pg)
shares the memory kernel K (¢). Hence to build a reduced-order model (ROM) for
u(x(t)) using the EMZ equation (8), it therefore boils down to the approximation
of the fluctuation force f(t).

In the Mori-Zwanzig framework, f(¢) is formally given by e*2*2QKuy which
is also a stochastic process since the initial condition ug is random. Due to the
randomness, it is hard to use techniques such as the operator series expansion (35) to
approximate f(t). However, since u(t) in the steady state is a stationary stochastic
process, f(t) is also stationary and one may use the truncated Karhunen-Loéve
(KL) expansion series to approximate it. Without loss of generality, we assume
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(f(t)), =0, then the KL expansion for f(t) can be written as:

1) = 3 e wen(t), (47)
k=1

where {n; }H<_ | are the random coefficients and {\y, ex}< | are, respectively, eigen-
values and eigenfunctions of the homogeneous Fredholm integral equation of the
second kind:

T
/O ) () per(s)ds = Mex(t),  te[0,T), (48)

where T' is a certain numerical integration time and (f(t), f(s)), is the time au-
tocorrelation function of f(¢). In this paper, we only consider a specific case
which allows us to determine the random coefficients {n;}~_, and the correla-
tion function (f(t), f(s)), uniquely. To this end, we assume that the observable
u(t) is a Gaussian process and satisfies the second fluctuation-dissipation theorem:
(f(t), f(s))p, = K(|t — s|). For such a case, it can be further verified [37] that f(t)
is also a Gaussian processes and its KL expansion random coefficients {nk}ff:l are
necessarily i.i.d Gaussian random variables satisfying (n;n;) = d;;. As a result, we
obtain the following ROM for w(t):

%u(t) = Qu(t) + /o Kt — s)u(s)ds + f(t)

~ Quit) + ) /O knn(t — s)u(s)ds + > v/ Nemen(t).
n=0 k=1

By sampling the random coefficients {nk}le and then solving numerically (49) with
a proper numerical integrator, we obtain a ensemble of sample trajectories which,
in principle, would imitate the dynamics of u(x(t)) in the steady state. In Section
5, we will also calculate the statistics from these simulated sample trajectories and
compare them with the exact ones obtained from the molecular dynamics (MD)
simulations to assess the effectiveness of the ROM.

The modeling of f(¢) is harder when the observable u(t) is a non-Gaussian pro-
cess. In fact, this is a topic which is worth independent investigations. Here we only
note some developed methods to address this problem. Specifically, Chu and Li [4]
used a multiplicative noise to approximate f(t). Zhu and Venturi [37] introduced a
sample-based, transformed KL expansion to approximate the fluctuation force. In
our recent work [35], a modified Sakamoto-Graham algorithm were proposed to do
the modelling. On the other hand, as we briefly mentioned at the end of Section
2, the second fluctuation-dissipation theorem is not generally valid for stochastic
system observables. Instead, a generalized second fluctuation-dissipation theorem
for stochastic systems can be used in reduced-order modelling. We refer to [35] for
more details.

5. Applications. In this section, we will use the Langevin dynamics of a Fermi-
Pasta-Ulam (FPU) chain model to numerically verify the theoretical results ob-
tained in previous sections and validate the parametrization method of the EMZ
memory kernel. To this end, we consider the Hamiltonian of the FPU chain:
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8 =20

pso(t)

t

FIGURE 1. Sample path of the tagged oscillator momentum pso(t).
We display the result for the stochastic FPU system (52) with weak
(0 = 0.1) and strong nonlinearity (6 = 1) at high (8 = 1) and low
(8 = 20) temperature.

N-1 2 N1
ﬁ + V q]+1 - CIJ (50)
=0 7=0
where the potential energy is given by
v 2 4
V(gj+1—gqj) = §(Qj+1 —q;)°+ Z(Qj+l —q;)%, (51)

and {q;,p;} are, respectively, the generalized coordinate and momentum of the j-th
oscillator. In addition, the periodic boundary condition qy = gy and py = pn is
imposed, and the total number of oscillators is set to be N = 100. For such a
system, it is convenient to work on a new, non-canonical coordinate {r,p} where
r; = ¢ — qj—1 is the distance between two neighboring oscillators. In the new
coordinate, the Langevin dynamics (17) for the stochastic FPU model is given by

d 1

PrAE E(Pj —Pj-1); (52)
d _OV(rjy) OVI(r) vy

dth - 87“j+1 87“j mpj + O'f(t).

The corresponding Kolmogorov backward operator is explicitly given by:

/C:E(p,r)+5( )

8‘/ ’I“J+1 8V(rj) 0 1 o i
Z:: [( orj+1 or; 3p] + m( pj*l)arj

_Ni:l p; 0 _10%
1\ m op; Bop3 )’

Jj=1

where L(p,r) is the Liouville operator in the new coordinate {r,p}, S(p) is an
advection-diffusion operator involving p. In Figure 1, we display the sample paths of
the momentum pso(t) of the 50th oscillator for SDE (52) with different parameters.
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FIGURE 2. Temporal auto-correlation function of the tagged oscil-
lator momentum p; (¢) for weakly nonlinear FPU system at different
temperature T' o< 1/8. We compare results we obtained by calculat-
ing the EMZ memory from first principles using 14-th order Faber
polynomials with results from MC simulation (10 sample paths).
In the subplots, we display |C(¢)/C(0)| and the exponentially de-
caying upper bound ce~** with an estimated decaying rate «.

5.1. Memory kernel parametrization. Stochastic FPU chain with weak non-
linearity. We first consider the equilibrium dynamics of the FPU chain with weak
nonlinearity. To this end, we set modeling parameter v =m =1, 7, = v = 1 and
§ = 0.1. The initial condition of (17) is set to be x(0) ~ p, where p., = e PH
is the equilibrium Gibbs distribution. For the weakly nonlinear system, we aim to
verify the following claims:

i) The observable statistics, in particular the auto-correlation function C(t) and
the corresponding memory kernel K (t) defined in the projected EMZ (25), decays
exponentially to its equilibrium value.

ii) The first-principle method introduced in Section 4.1 yields an accurate ap-
proximation to the memory kernel K (t), therefore of C(t).

For claim i), we note that the FPU potential energy defined as (51) satisfies the
weak ellipticity condition (Hypothesis 1) in [38]. Therefore the theoretical results in
Section 3.1 hold for any polynomial-type observable. Now we choose the momentum
p;(t) of a tagged oscillator as the quantity of interest and use Mori’s projection
P() = ((-),2(0))eq/(P3(0))eq to derive the projected EMZ equation (25). Some

simple calculation implies 2 = —1, hence the projected EMZ equation for the
momentum yields the evolution equation for the time correlation function:
dO(t K
% =-C(t) +/ K(t —s)C(s)ds, (54)
0

where C(t) = (p;(t),p;(0))eq- According to estimate (23), the auto-correlation
function C(t) decays to the equilibrium value (p;(0))2, = 0 exponentially fast with
the rate . In the non-canonical coordinate {p;,r;}, we have Kq; = Kiai = pj-
Moreover, since the periodic boundary condition is posed ¢; cannot be written as a
function of {p;,7;} (the linear transformation {¢;}3_; — {r;}}_, is not invertible).
Hence the kernel projection operator 7TOQ of QK Q admits the explicit form:

5 () = E[()] + P(),



EFFECTIVE MORI-ZWANZIG EQUATION FOR THE REDUCED-ORDER MODELING 975

B=1 B =20

081

061

K(t)/K(0)
K(t)/K(0)

0.2 0®

-0.2

FIGURE 3. Approximated EMZ memory kernel corresponding to
the tagged particle momentum correlation function C(¢). The sub-
plots display |K(¢)/K(0)| and the exponentially decaying upper
bound cge~*e! with an estimated decaying rate ag. Other set-
ting is same as Figure 2.

and the memory kernel estimate is given by (26). Then we obtain (K7 uo,
71'09 QKup)eq = 0 and the memory kernel estimate:

K (t)] < Cemoet,

where C' = C(p;(0)). In Figure 2, we plot the auto-correlation function C(t) ob-
tained by Monte-Carlo (MC) simulation (10° sample paths) for FPU systems with
mild nonlinearities (f = 0.1) at different temperatures (8 = 1 and 5 = 20). The
corresponding memory kernel K (t) is shown in Figure 3 which is obtained by the
first-principle parametrization method. In both plots, we can see that C(t) and
K(t) approaches to the predicted asymptotic C'(t = c0o) = 0 and K(t = o0) =0
exponentially fast.

For claim ii), we adopt the MZ-Faber expansion of e *2X< [36] to approximate
the memory kernel, where e~%*.J,,(bt) is the basis function. The simulation result
is displayed in Figure 2. It can be seen that the MZ-Faber approximation of the
EMZ memory kernel yields relatively accurate results for FPU systems with mild
nonlinearties at both low (8 = 20) and high temperature (5 = 1).

Stochastic FPU chain with strong nonlinearity. When the modeling parameter of
the stochastic FPU chain is set to be v = m = 1 and § = 1, we get a strong
nonlinear FPU chain. The first principle method introduced in Section 4.1 still can
be applied here to approximate the EMZ memory kernel. However, large 6 will lead
to significant numerical instabilities at large ¢ when calculating K (¢) and C(t) [37].
Hence in this paragraph, we will adopt the data-driven method to approximate
the memory kernel. To this end, we use the standard Laguerre polynomial [12]
and Faber series [36] to construct the data-driven approximation scheme of the
EMZ memory kernel. In particular, the LASSO regression is used to solve (46)
numerically to get the approximated parameter {k, })__;. The data-driven method
is used to verify the following claims:

iii) The auto-correlation function C(t) defined in the projected EMZ (25) decays
exponentially to its equilibrium value.
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FIGURE 4. Temporal auto-correlation function of the tagged oscil-
lator momentum p;(¢) for strongly nonlinear FPU system at differ-
ent temperature T oc 1/3. The MC simulation results (10® sample
paths) of the correlation function are compared with the one ob-
tained by the data-driven memory kernel using Faber series (20th
order) and the standard Laguerre polynomials (20th order). In the
subplots, we display |C(t)/C(0)| and the exponentially decaying
upper bound ce~* with an estimated decaying rate «.

iv) The data-driven method introduced in Section 4.1 yields effective approxima-
tions to the memory kernel K (t), therefore of C(t).

To demonstrate iii), we use MC simulation (10° sample paths) to calculate the
momentum auto-correlation function. It is shown in the subplots of Figure 4 that
C(t) defined in the projected EMZ (25) decays 0 exponentially fast. To validate
iv), we adopt the Faber series and the standard Laguerre polynomials as the ba-
sis function to construct the data-driven approximation schemes for K(t). These
calculation results, along with the one obtained by the established rational approx-
imation method [19], are presented in Figure 4. We can see that the data-driven
method leads to accurate predication of C(t).

5.2. Reduced-order modeling. In this subsection, we consider the equilibrium
dynamics of the FPU chain with strong nonlinearity. We will set the modeling
parameters slightly different from that above with v = m =0 = 1, 50 = 1 and
v; = 0 for j # 502. It is easy to verify that with this setting, the equilibrium Gibbs
distribution pe, = e BH ig still the stationary distribution of (52) with Oypeq =
K*peq = 0, where K* is the adjoint of K. Hence (52) yields an equilibrium dynamics.
Since in the equilibrium, pso(t) is obviously a Gaussian process, we can directly
apply the ROM (49) to simulate the dynamics of pso(t). Specifically, we have:

2This parameter set is chosen such that the ROM model (49) for observable pso(t) satisfies the
classical second FDT. The reason why this is the case is an interesting topic but out of the scope
of the current paper. To this end, we refer to [35] for detailed explanations.
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FiGURE 5. Comparison of the dynamics of the particle momentum
ps0(t) generated by the MC simulation and the ROM (55). The
displayed results are for a stochastic FPU system with strong non-
linearity (0 = 1) at high temperature § = 1 (first row) and low
temperature 3 = 20 (second row). In the first column, we compare
the simulated sample paths. The time autocorrelation functions
C(t)/C(0) (second column) are obtained by averaging a cluster of
the sample trajectories. The third column compares the stationary
distribution of the stochastic process p,,, which are obtained via
kernel density estimations.

d N t K
ZpPo0(t) = Qpso(t) + Z/o knén(t — $)pso(s)ds + > v/ Aknkex(t)
n=0 k=1

(55)

N t K
= [ ke = shpsa(s)ds + Y- v/ Remen (o),
n=0"0 k=1

where by simple calculations, we get 2 = 0. By sampling 7, in (55) and then solving
it numerically using the 3rd-order Adams-Bashforth time integration scheme, we
can get the solution of the ROM which can be regarded as a realization of pso(t)
in the equilibrium. Figure 5 compares the sample trajectories of the ROM and the
path of pso(t) obtained by MC simulations. One can see that they are pretty much
comparable with each other. We also calculate the time autocorrelation functions
C(t)/C(0) and the stationary marginal distributions p,,, of the stochastic process
from the simulated sample trajectories. The correlation time of pso(t) is obviously
longer than what obtained for the previous example. This difference is also reflected
in the sample trajectories displayed in Figure 1 and Figure 5 because the former
ones are rougher. The obtained result indicates ROM (55) imitates the dynamics
of pso(t) in the equilibrium. We emphasize that the methodology also applies to
nonequilibrium systems in the steady state.

6. Summary. In this paper, we mainly focus on the application of the effective
Mori-Zwanzig (EMZ) equation on the reduced-order modeling of stochastic systems.
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In particular, we showed that the semigroup estimates for e "¢ and e *9X2 can be
used to derive the exponentially decay upper bounds for various observable statistics
associated with the EMZ equation, including the autocorrelation function C(t), the
EMZ memory kernel K (¢), and the fluctuation force. The results are presented for
the Langevin dynamics of an anharmonic oscillator chain and the heat conduction
model in and out of statistical equilibrium. In addition, we introduced both the
first-principle and data-driven methods to parameterize the EMZ memory kernel,
and demonstrated that the regularity of K (¢) enables us to prove the convergence
of frequently used data-driven approximation schemes. As far as we are concerned,
this is the first theoretical convergence result regarding the approximation of the
memory kernel. All these theoretical findings are verified numerically by simulating
the Langevin dynamics for a Fermi-Pasta-Ulam (FPU) chain model. With the
same example, we also proved the effectiveness of the numerical methods within
their range of applicability. We conclude by emphasizing that analytical results
obtained in this paper can be generalized and applied to the EMZ equation of other
hypoelliptic stochastic systems. The numerical methodology we considered can also
be used to build effective reduced-order models for nonequilibrium systems in the
steady state.
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Appendix A. Proof of recurrence relation (39). The proof of the recurrence
relation (39) for equilibrium Hamiltonian system is given by Chu and Li in [4]. Here
we provide a more general proof and show that such relation holds for any linear
operator K and finite-rank projection operator P. (39) is a direct consequence of
the following operator polynomial identity:

PK(QK)" = PKMD =N " PK(QK)-DPL=FD, 0<neN.  (56)
i=1
We can prove (56) by induction. For n = 0, we have identity P = PK. Suppose
for n = k, we have

k
PR(QK)" = PRI = 3 PR(QK) PRI,
i=1
Then for n = k + 1, we have

PK(QK)* = PK(QK)* K — PK(QK)*PK

k
=PEETIKE = " PE(QK)THPEEHDE — PR(QK)FPK
i=1
k+1
_ PIC(IC+2) _ ZPIC(Q’C)(i_l)PIC(k_i+2).
i=1
By mathematical induction, the statement (56) holds for all 0 < n € N. Applying
operator identity (56) on the observable u(0) and then using the definition (37)
and (38), we can get the recurrence relation (39). For M-dimensional finite-rank
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projection (7), using the same trick we get the following matrix form recurrence
relation:

M, =T, Zrn M, (57)

where M,,, T',, are M x M dimensional matrix, defined as
PK(QK) " Yau(0) = M,u(0),  PK"u(0) = T,u(0),

and u(0) = [u1(0),u2(0), - - ,up(0)]T is the (initial) vector of quantities of interest
and the range of P is Ran(P) = Span{u;(0)}M,.

Appendix B. First-principle algorithm to calculate ~, for stochastic FPU
chain. The notation used in this section follows exactly from [37]. We first note
that for a system with potential energy given by a polynomial function, the action
of the n-th operator power K™ on a polynomial observable u(x) yields a polynomial
function. Take u(x(t)) = z; as an example, this implies

(0 m®

n . (n) mk %
K'z; = E Ay, Ty T =
b;eB(n)
(@) (1)
n+1 n (”+1) m’ﬁ my
K =KK"z; = E ap, Ty, Ty (58)

bieB<n+l)

where {ag?)} are polynomial coefficients and {mgj} are polynomial exponents.

At this point, it is convenient to define the set of polynomial exponents B(") =

{by,by, -}, the set polynomial coefficients A(™) {agf), g;),- -}, and the com-

bined index set Z(") = {A(™) B}, Clearly, Z(") identifies uniquely the polynomial
(58), i.e., there is a one-to-one correspondence between Z(™ and K"z;. If we can

compute the mapping Z(™) X, Z(+1 induced by the action of the Kolmogorov
operator K to the polynomial (58) (represented by I(")), then we can compute the
ezact series expansion of K™ x; for arbitrary n. The whole process can be represented
as

u(x) = Ku(z) = K2u(z) — - — K"u(x) —
70 K70 K72 Ky K ()

where <= represents the translation between the action of L on the observables
and its action on the index set Z(™). It is left to determine the updating rule of
Z(™ for the Langevin dynamics of the FPU chain. Suppose we are interested in
the distance between the oscillators j and 5 — 1, i.e., in the polynomial observable
u(p,r) = r;. Using the formal definition of the Kolmogorov operator (53), the
action of K™ on 7; can be explicitly written as

() (3) (@) (1

]Cnrj = Z aé?)rzikl . mkupzll pliv , (59)
biEB(")
where {ki,...,k,} and {ly,...,l,} are the relevant degrees of freedom for r and

p at iteration n. We can explicitly compute the sets of such relevant degrees of
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freedom as
Kmg)={i= 5] i+ 5]} (60)

Lod) ={i- |52+ |25}

The action of the Kolmogorov operator on each monomial appearing in (59) can be
written as

m® m(f) (’) 51
lC’I“klk“ plll ..pl:v
) m(z) @ RO
= Z Z (Lr, + Ly, +Sph)rk1k1 : kupzl "'pl:v ) (61)
vEK,(n,j) heLy(n,j)
where
1 1o}
L, =— — Py—1)=—
T m(pv Do 1)67“v
0
Ly, = [V(rher —ra) +0 (1} —13)] =—
= [P =) +0 (s = 12)]
_apw 07 0%
P m dpn B Op;,
m® m;: 9§1> l(y)

The action of L,,, L, and S,, on the monomial 7, " cerp tpytoee,” can be
explicitly computed. This yields explicit linear maps of the polynomlal exponents

bi=[m® 59, m®=m . ml], s =[" L s0, (62)

and polynomial coefficients a( ). With such maps available, we can transform
the combined index set Z(") (representing Kmr;) to ZFY (representing K" +1r;).
Specifically, we obtain

T(n+1) _ Ig:ﬂ) L'HIZ:H) wzé:+1),

where

#B(") 1

= W Wm0 m® e s e}

veK,(ng) i=1 k=0
#B(")

B- W

h€Ly(n,j) =1
{{vsiﬁa;:), o (1) = Dag ) {lm . 0] [m®, 50 - 2eh]}} ,

#B(")
(n+1) _ (@ ) k+1,, ( R k+1y n)
I U CREC st 1 (1) b
hE€Ly(n,j) i=1 k=0
{{m% + enyk, s — en], [m? + 3ep 4, s - eh]}}

(63)

On the other hand, since K}, = —L(p,r) +S(p). It is easy to obtain the updating

rule for the corresponding index set Z*(™ from the formal expression (63). With
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these results available, we can immediately determine the coefficients -; in (38) by
averaging over the probability density p., as

n
(K27, Ked 1))eq

n is even
Y = (K'rj,ri)eq (rjsrideq | (64)
n = ——————— = n—1
<rj7 Tj>eq <’CnT_HT]7 ICZ;2 Tj>eq n is odd
<ijrj>€‘1 7 |

Using formula (38), (39) and the exact expression of the polynomial ®,,(QKQ), we
can get the expansion coefficient k,, in (36).

REFERENCES

[1] A. D. Baczewski and S. D. Bond, Numerical integration of the extended variable generalized
Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys., 139
(2013), 044107.

[2] M. Berkowitz, J. D. Morgan, D. J. Kouri and J. A. McCammon, Memory kernels from molec-
ular dynamics, J. Chem. Phys., 75 (1981), 2462-2463.

(3] A. J. Chorin, O. H. Hald and R. Kupferman, Optimal prediction and the Mori-Zwanzig
representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), 2968-2973.

[4] W. Chu and X. Li, The Mori-Zwanzig formalism for the derivation of a fluctuating heat
conduction model from molecular dynamics, Commun Math Sci., 17 (2019), 539-563.

(5] J. M. Dominy and D. Venturi, Duality and conditional expectations in the Nakajima-Mori-
Zwanzig formulation, J. Math. Phys., 58 (2017), 082701.

(6] J.-P. Eckmann and M. Hairer, Non-equilibrium statistical mechanics of strongly anharmonic
chains of oscillators, Commun. Math. Phys., 212 (2000), 105-164.

[7] J.-P. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators, Commun. Math.
Phys., 235 (2003), 233-253.

[8] J.-P. Eckmann, C.-A. Pillet and L. Rey-Bellet, Non-equilibrium statistical mechanics of an-
harmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys.,
201 (1999), 657-697.

[9] P. Espafol, Hydrodynamics from dissipative particle dynamics, Phys. Rev. E, 52 (1995),
1734.

[10] P. Espaiiol and P. Warren, Statistical mechanics of dissipative particle dynamics, EPL, 30
(1995), 191.

[11] S. K. J. Falkena, C. Quinn, J. Sieber, J. Frank and H. A. Dijkstra, Derivation of delay equation
climate models using the Mori- Zwanzig formalism, Proc. R. Soc. A, 475 (2019), 20190075,
21 pp.

[12] D. Funaro, Polynomial Approzimation of Differential Equations, volume 8, Springer-Verlag,
Berlin, 1992.

[13] D. Givon, R. Kupferman and O. H. Hald, Existence proof for orthogonal dynamics and the
Mori-Zwanzig formalism, Isr. J. Math., 145 (2005), 221-241.

[14] F. Grogan, H. Lei, X. Li and N. A. Baker, Data-driven molecular modeling with the general-
ized Langevin equation, J. Comput. Phys., 418 (2020), 109633-109641.

[15] B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Oper-
ators and Witten Laplacians, Springer, 2005.

[16] F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck
equation with a high-degree potential, Arch. Ration. Mech. Anal, 171 (2004), 151-218.

[17] T. Hudson and X. H. Li, Coarse-graining of overdamped Langevin dynamics via the Mori—
Zwanzig formalism, Multiscale Modeling & Simulation, 18 (2020), 1113-1135.

[18] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, vol-
ume 23, Springer-Verlag, Berlin, 1992.

[19] H. Lei, N. A. Baker and X. Li, Data-driven parameterization of the generalized Langevin
equation, Proc. Natl. Acad. Sci., 113 (2016), 14183-14188.

[20] Z.Li, X. Bian, X. Li and G. E. Karniadakis, Incorporation of memory effects in coarse-grained
modeling via the Mori-Zwanzig formalism, J. Chem. Phys., 143 (2015), 243128.


http://dx.doi.org/10.1063/1.4815917
http://dx.doi.org/10.1063/1.4815917
http://www.ams.org/mathscinet-getitem?mr=MR1750741&return=pdf
http://dx.doi.org/10.1073/pnas.97.7.2968
http://dx.doi.org/10.1073/pnas.97.7.2968
http://www.ams.org/mathscinet-getitem?mr=MR3983738&return=pdf
http://dx.doi.org/10.4310/CMS.2019.v17.n2.a10
http://dx.doi.org/10.4310/CMS.2019.v17.n2.a10
http://www.ams.org/mathscinet-getitem?mr=MR3686336&return=pdf
http://dx.doi.org/10.1063/1.4997015
http://dx.doi.org/10.1063/1.4997015
http://www.ams.org/mathscinet-getitem?mr=MR1764365&return=pdf
http://dx.doi.org/10.1007/s002200000216
http://dx.doi.org/10.1007/s002200000216
http://www.ams.org/mathscinet-getitem?mr=MR1969727&return=pdf
http://dx.doi.org/10.1007/s00220-003-0805-9
http://www.ams.org/mathscinet-getitem?mr=MR1685893&return=pdf
http://dx.doi.org/10.1007/s002200050572
http://dx.doi.org/10.1007/s002200050572
http://www.ams.org/mathscinet-getitem?mr=MR3999718&return=pdf
http://dx.doi.org/10.1098/rspa.2019.0075
http://dx.doi.org/10.1098/rspa.2019.0075
http://www.ams.org/mathscinet-getitem?mr=MR1176949&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2154727&return=pdf
http://dx.doi.org/10.1007/BF02786691
http://dx.doi.org/10.1007/BF02786691
http://www.ams.org/mathscinet-getitem?mr=MR4109389&return=pdf
http://dx.doi.org/10.1016/j.jcp.2020.109633
http://dx.doi.org/10.1016/j.jcp.2020.109633
http://www.ams.org/mathscinet-getitem?mr=MR2130405&return=pdf
http://dx.doi.org/10.1007/b104762
http://dx.doi.org/10.1007/b104762
http://www.ams.org/mathscinet-getitem?mr=MR2034753&return=pdf
http://dx.doi.org/10.1007/s00205-003-0276-3
http://dx.doi.org/10.1007/s00205-003-0276-3
http://www.ams.org/mathscinet-getitem?mr=MR4110819&return=pdf
http://dx.doi.org/10.1137/18M1222533
http://dx.doi.org/10.1137/18M1222533
http://www.ams.org/mathscinet-getitem?mr=MR1214374&return=pdf
http://dx.doi.org/10.1007/978-3-662-12616-5
http://www.ams.org/mathscinet-getitem?mr=MR3600515&return=pdf
http://dx.doi.org/10.1073/pnas.1609587113
http://dx.doi.org/10.1073/pnas.1609587113
http://dx.doi.org/10.1063/1.4935490
http://dx.doi.org/10.1063/1.4935490

982

(21]

22]

23]
24]
[25]
[26]
27)

(28]

YUANRAN ZHU AND HUAN LEI

Z. Li, H. S. Lee, E. Darve and G. E. Karniadakis, Computing the non-Markovian coarse-
grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Appli-
cation to polymer melts, J. Chem. Phys., 146 (2017), 014104.

K. K. Lin and F. Lu, Data-driven model reduction, Wiener projections, and the Mori-
Zwanzig formalism, J. Comput. Phys., 424 (2021), Paper No. 109864, 33 pp. arXiv preprint
arXiv:1908.07725, 2019.

F. Lu, K. K. Lin and A. J. Chorin, Data-based stochastic model reduction for the Kuramoto—
Sivashinsky equation, Physica D, 340 (2017), 46-57.

H. Mori, Transport, collective motion, and Brownian motion, Prog. Theor. Phys., 33 (1965),
423-455.

T. Morita, H. Mori and K. T. Mashiyama, Contraction of state variables in Non-Equilibrium
open systems. II, Prog. Theor. Phys., 64 (1980), 500-521.

E. J. Parish and K. Duraisamy, Non-Markovian closure models for large eddy simulations
using the Mori-Zwanzig formalism, Phys. Rev. Fluids, 2 (2017), 014604.

G. A. Pavliotis, Stochastic Processes and Applications: Diffusion processes, the Fokker-
Planck and Langevin Equations, volume 60. Springer, 2014.

H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, Second edi-
tion. Springer Series in Synergetics, 18. Springer-Verlag, Berlin, 1989.

[29] P. Stinis, Stochastic optimal prediction for the Kuramoto-Sivashinsky equation, Multiscale

Modeling & Simulation, 2 (2004), 580-612.

[30] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Royal Stat. Soc. Ser. B,

58 (1996), 267-288.

[31] D. Venturi and G. E. Karniadakis, Convolutionless Nakajima-Zwanzig equations for stochastic

analysis in nonlinear dynamical systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,
470 (2014), 1-20.

[32] D. Venturi, T. P. Sapsis, H. Cho and G. E. Karniadakis, A computable evolution equation

for the joint response-excitation probability density function of stochastic dynamical systems,
Proc. R. Soc. A, 468 (2012), 759-783.

[33] Y. Yoshimoto, I. Kinefuchi, T. Mima, A. Fukushima, T. Tokumasu and S. Takagi, Bottom-up

construction of interaction models of non-Markovian dissipative particle dynamics, Phys. Rev.
E, 88 (2013), 043305.

[34] Y. Zhu, J. M. Dominy and D. Venturi, On the estimation of the Mori-Zwanzig memory

integral, J. Math. Phys., 59 (2018), 103501.

[35] Y. Zhu, H. Lei and C. Kim, Generalized second fluctuation-dissipation theorem in the nonequi-

librium steady state: Theory and applications, arXiv preprint arXiv:2104.05222, 2021.

[36] Y. Zhu and D. Venturi, Faber approximation of the Mori-Zwanzig equation, J. Comp. Phys.,

372 (2018), 694-718.

[37] Y. Zhu and D. Venturi, Generalized langevin equations for systems with local interactions, J.

Stat. Phys., 178 (2020), 1217-1247.

[38] Y. Zhu and D. Venturi, Hypoellipticity and the Mori-Zwanzig formulation of stochastic dif-

ferential equations, arXiv preprint arXiv:2001.04565, 2020.

[39] R. Zwanzig, Memory effects in irreversible thermodynamics, Phys. Rev., 124 (1961), 983.
[40] R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys., 9 (1973), 215-220.

Received February 2021; revised June 2021; early access August 2021.

E-mail address: yzhub6@ucmerced.edu
E-mail address: leihuan@msu.edu


http://dx.doi.org/10.1063/1.4973347
http://dx.doi.org/10.1063/1.4973347
http://dx.doi.org/10.1063/1.4973347
http://www.ams.org/mathscinet-getitem?mr=MR4165611&return=pdf
http://dx.doi.org/10.1016/j.jcp.2020.109864
http://dx.doi.org/10.1016/j.jcp.2020.109864
http://arxiv.org/pdf/1908.07725
http://www.ams.org/mathscinet-getitem?mr=MR3582762&return=pdf
http://dx.doi.org/10.1016/j.physd.2016.09.007
http://dx.doi.org/10.1016/j.physd.2016.09.007
http://dx.doi.org/10.1143/PTP.33.423
http://www.ams.org/mathscinet-getitem?mr=MR588475&return=pdf
http://dx.doi.org/10.1143/PTP.64.500
http://dx.doi.org/10.1143/PTP.64.500
http://dx.doi.org/10.1103/PhysRevFluids.2.014604
http://dx.doi.org/10.1103/PhysRevFluids.2.014604
http://www.ams.org/mathscinet-getitem?mr=MR3288096&return=pdf
http://dx.doi.org/10.1007/978-1-4939-1323-7
http://dx.doi.org/10.1007/978-1-4939-1323-7
http://www.ams.org/mathscinet-getitem?mr=MR987631&return=pdf
http://dx.doi.org/10.1007/978-3-642-61544-3
http://www.ams.org/mathscinet-getitem?mr=MR2113171&return=pdf
http://dx.doi.org/10.1137/030600424
http://www.ams.org/mathscinet-getitem?mr=MR1379242&return=pdf
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://www.ams.org/mathscinet-getitem?mr=MR3190222&return=pdf
http://dx.doi.org/10.1098/rspa.2013.0754
http://dx.doi.org/10.1098/rspa.2013.0754
http://www.ams.org/mathscinet-getitem?mr=MR2892311&return=pdf
http://dx.doi.org/10.1098/rspa.2011.0186
http://dx.doi.org/10.1098/rspa.2011.0186
http://dx.doi.org/10.1103/PhysRevE.88.043305
http://dx.doi.org/10.1103/PhysRevE.88.043305
http://www.ams.org/mathscinet-getitem?mr=MR3856552&return=pdf
http://dx.doi.org/10.1063/1.5003467
http://dx.doi.org/10.1063/1.5003467
http://arxiv.org/pdf/2104.05222
http://www.ams.org/mathscinet-getitem?mr=MR3847452&return=pdf
http://dx.doi.org/10.1016/j.jcp.2018.06.047
http://www.ams.org/mathscinet-getitem?mr=MR4081226&return=pdf
http://dx.doi.org/10.1007/s10955-020-02499-y
http://arxiv.org/pdf/2001.04565
http://dx.doi.org/10.1103/PhysRev.124.983
http://dx.doi.org/10.1007/BF01008729
mailto:yzhu56@ucmerced.edu
mailto:leihuan@msu.edu

	1. Introduction
	2. Effective Mori-Zwanzig equation for stochastic system
	3. Applications of the hypoelliptic analysis for the EMZ equation
	3.1. Application to Langevin dynamics
	3.2. Application to a heat conduction model

	4. Memory kernel parametrization and the reduced-order modelling
	4.1. The first-principle method of parametrization
	4.2. The data-driven method of parametrization
	4.3. Reduced-order modeling

	5. Applications
	5.1. Memory kernel parametrization
	5.2. Reduced-order modeling

	6. Summary
	Acknowledgments
	Appendix A. Proof of recurrence relation (39)
	Appendix B. First-principle algorithm to calculate n for stochastic FPU chain
	REFERENCES

